
Maintaining Cooperation in Noisy Environments

Tsz-Chiu Au
Department of Computer Science

University of Maryland
College Park, Maryland, 20742

chiu@cs.umd.edu

Dana Nau
Department of Computer Science

University of Maryland
College Park, Maryland, 20742

nau@cs.umd.edu

Abstract

To prevent or alleviate conflicts in multi-agent environ-
ments, it is important to distinguish between situations where
another agent has misbehaved intentionally and situations
where the misbehavior was accidental. One situation where
this problem arises is the Noisy Iterated Prisoner’s Dilemma,
a version of the Iterated Prisoner’s Dilemma (IPD) in which
there is a nonzero probability that a “cooperate” action will
accidentally be changed into a “defect” action and vice versa.
Tit-For-Tat and other strategies that do quite well in the ordi-
nary (non-noisy) IPD can do quite badly in the Noisy IPD.
This paper presents a technique called symbolic noise detec-
tion, for detecting whether anomalies in player’s behavior are
deliberate or accidental. This idea to use player’s determin-
istic behavior to tell whether an action has been affected by
noise. We also present DBS, an algorithm that uses symbolic
noise detection in the Noisy IPD. DBS constructs a model
of the other agent’s deterministic behavior, and watches for
any deviation from this model. If the other agent’s next ac-
tion is inconsistent with this model, the inconsistency can be
due either to noise or to a genuine change in their behavior;
and DBS can often distinguish between two cases by waiting
to see whether this inconsistency persists in next few moves.
This technique is effective because many IPD players often
have clear deterministic patterns of behavior.
We entered several different implementations of DBS in the
2005 Iterated Prisoner’s Dilemma competition, in Category 2
(noisy environments). Out of the 165 contestants in this cate-
gory, most of DBS implementations ranked among top ten.
The best one ranked third, and it was beaten only by two
“master-and-slaves strategy” programs that each had a large
number of “slave” programs feeding points to them.

Introduction
The Iterated Prisoner’s Dilemma (IPD) has become well
known as an abstract model of a class of multi-agent en-
vironments in which agents accumulate payoffs that depend
on how successful they are in their repeated interactions with
other agents. An important variant of the IPD is the Noisy
IPD, in which there is a small probability, called the noise

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.
This work is based on an earlier work: Accident or Intention: That
Is the Question (in the Noisy Iterated Prisoner’s Dilemma), in AA-
MAS’06 (May 8–12 2006) c©ACM, 2006.

level, that accidents will occur. In other words, the noise
level is the probability of executing “cooperate” when “de-
fect” was the intended move, or vice versa.

Accidents can cause difficulty in cooperations with others
in real-life situations, and the same is true in the Noisy IPD.
Strategies that do quite well in the ordinary (non-noisy) IPD
may do quite badly in the Noisy IPD (Axelrod & Dion 1988;
Bendor 1987; Bendor, Kramer, & Stout 1991; Molander
1985; Mueller 1987; Nowak & Sigmund 1990). For ex-
ample, if two players both use the well-known Tit-For-Tat
(TFT) strategy, then an accidental defection may cause a
long series of defections by both players as each of them
punishes the other for defecting. How to cope with noise
is an important issue for agents to maintain cooperation in
noisy environments.

In this paper, we describe a technique called symbolic
noise detection—the use of the other player’s deterministic
behavior to tell whether an action has been affected by noise.
We describe an algorithm called DBS that implements this
technique by building a symbolic model of how the other
agent behaves, and watching for any deviation from this
model. If the other agent’s next move is inconsistent with
their past behavior, this inconsistency can be due either to
noise or to a genuine change in their behavior; and DBS can
often distinguish between these two cases by waiting to see
if this inconsistency persists or not in the next few iterations
of the game. For more details, see (Au & Nau 2006)

In short, our strategy focuses on an important question for
conflict prevention in noisy environments: whether a mis-
conduct is intentional or accidental. In a noisy environment,
a deviation from an agent’s usual course of action can be ex-
plained in either way. If we form a wrong belief about which
explanation is correct, our response may potentially destroy
a good long-term relationship. If we ground our belief on ev-
idence accumulated before and after the incident, we should
be in a better position to identify the true cause and prescribe
an appropriate solution. To accomplish this, DBS uses the
following key techniques:

1. Learning about the other player’s strategy. DBS uses
an induction technique to create rules that model the other
player’s recent behavior. The rules give the probability
that the player will cooperate under different situations.
When a rule is consistent with all of the other player’s
recent behaviors, DBS changes it to a deterministic rule



that has either 0 or 1 as the probability of cooperation.

2. Detecting noise. DBS uses the deterministic rules to de-
tect anomalies that may be due either to noise or a gen-
uine change in the other player’s behavior. If a move is
different from what those rules predict, this inconsistency
triggers an evidence collection process to monitor the per-
sistence of the inconsistency in the next few iterations of
the game. The purpose of the evidence-collection process
is to determine whether the violation is likely to be due to
noise or to a change in the other player’s policy.

3. Temporarily tolerating possible misbehaviors by the
other player. Until the evidence-collection process fin-
ishes, DBS assumes that the other player’s behavior is still
as described by the deterministic rules. Once the evidence
collection process has finished, DBS decides whether to
believe the other player’s behavior has changed, and up-
dates the deterministic rules accordingly.

4. Decision making based on the model of the other
player. DBS uses a game-tree search procedure to gen-
erate moves that will maximize DBS’s utility if the other
player continues to behave as DBS’s model predicts.

Since DBS emphasizes the use of deterministic behaviors
to distinguish noise from the change of the other player’s be-
havior, it works well when the other player uses a pure (i.e.,
deterministic) strategy or a strategy that makes decisions de-
terministically most of the time. Fortunately, deterministic
behaviors are abundant in the Iterated Prisoner’s Dilemma.
Many well-known strategies, such as TFT and GRIM, are
pure strategies. Some strategies such as Pavlov or Win-Stay,
Lose-Shift strategy (WSLS) (Kraines & Kraines 1989; 1993;
1995; Nowak & Sigmund 1993) are not pure strategies, but a
large part of their behavior is still deterministic. The reason
for the prevalence of determinism is discussed by Axelrod
in (Axelrod 1984): clarity of behavior is an important in-
gredient of long-term cooperation. A strategy such as TFT
benefits from its clarity of behavior, because it allows other
players to make credible predictions of TFT’s responses to
their actions. We believe the success of our strategy in the
competition is because this clarity of behavior also helps us
to fend off noise.

An Outline of DBS
We call our strategy Derived Belief Strategy (DBS). Figure 1
is an outline of the DBS procedure. The hypothesized policy
π is a rule-based model of the other player’s recent behavior;
and to decide what moves to make, DBS does a game-tree
search against this model’s predictions. π includes proba-
bilistic rules saying what moves the other player is likely to
make under various conditions, and deterministic rules say-
ing what moves the other player will make under various
conditions. If the other player’s last move contradicts a de-
terministic rule r in π, DBS will ignore this contradiction
the first few times it happens, and will not update r. How-
ever, if the same contradiction occurs several times, DBS
will substitute a probabilistic rule for r in π. Likewise, will
DBS convert a probabilistic rule to a deterministic rule if all
of the other player’s recent moves are consistent with the

Procedure DerivedBeliefStrategy()
Initialize the hypothesized policy π (e.g., TFT)
Loop until the end of the game
Generate a move a based on π (by game-tree search)
Obtain the other player’s move b
If b contradicts any deterministic rule r in π
& the contradiction has recently occurred several times
replace r in π with a probabilistic rule

Else if b is consistent with a deterministic rule r not in π
& the consistency has recently occurred repeatedly
replace the corresponding probabilistic rule in π with r

Figure 1: An outline of the DBS procedure.

Table 1: Scores of the top ten programs, averaged over the
five runs in Competition 2.

Rank Program Avg. score
1 BWIN 433.8
2 IMM01 414.1
3 DBSz 408.0
4 DBSy 408.0
5 DBSpl 407.5
6 DBSx 406.6
7 DBSf 402.0
8 DBStft 401.8
9 DBSd 400.9

10 lowESTFT classic 397.2

deterministic rule; and otherwise DBS will update the prob-
abilistic rule by updating the probability. For more details
about this procedure, please read (Au & Nau 2006).

Competition Results
To test DBS’s performance, we entered nine different ver-
sions of it as contestants in Category 2 (the Noisy IPD)
of the 2005 IPD competition (Kendall, Darwen, & Yao
2005). Each version of DBS had a different set of parame-
ters or different implementation. Table 1 shows the average
scores of the top ten programs. The competition website at
http://www.prisoners-dilemma.com gives a more exten-
sive set of tables showing each program’s ranking in each
run.

DBS performed impressively in the competition: all nine
versions of DBS were in the top 25, and seven of them
placed among top ten. The best version, DBSz, placed third;
and it lost only to BWIN and IMM01.

BWIN and IMM01 both used master-and-slaves strate-
gies, an approach that took advantage of the fact that each
participant in the competition was allowed to submit up to 20
programs as contestants. BWIN was a master program with
19 slave programs feeding points to it. Whenever BWIN and
one of its slaves played, BWIN would defect and the slave
would cooperate so that BWIN got 5 points and the slave got
nothing. The same was true for IMM01.

In constrast, DBS does not use a master-and-slaves strat-
egy, nor does it conspire with other programs in any other
way. Nonetheless, DBS remained competitive with the
master-and-slaves strategies. Furthermore, if we average the



score of each master with the scores of its slaves, the average
score for BWIN and its slaves is 379.9, and the average score
for IMM01 and its slaves is 351.7, both of which are less
than the scores of any of our versions of DBS. Furthermore,
a more extensive analysis (Au & Nau 2005) shows that if
the size of each master-and-slaves team had been limited to
less than 10, DBSz would have outperformed both BWIN
and IMM01, even without averaging their scores with their
slaves’ scores.

Related Work on the IPD
Early studies of the effect of noise in the Iterated Prisoner’s
Dilemma focused on how TFT, a highly successful strat-
egy in noise-free environments, would do in the presence
of noise. TFT is known to be vulnerable to noise; for
instance, if two players use TFT at the same time, noise
would trigger long sequences of mutual defections (Molan-
der 1985). A number of people confirmed the negative ef-
fects of noise to TFT (Axelrod & Dion 1988; Bendor 1987;
Bendor, Kramer, & Stout 1991; Molander 1985; Mueller
1987; Nowak & Sigmund 1990). Axelrod found that TFT
was still the best decision rule in the rerun of his first tourna-
ment with a one percent chance of misperception (Axelrod
1984, page 183), but TFT finished sixth out of 21 in the rerun
of Axelrod’s second tournament with a 10 percent chance of
misperception (Donninger 1986). In Competition 2 of the
2005 IPD competition, the noise level was 0.1, and TFT’s
overall average score placed it 33rd out of 165.

The oldest approach to remedy TFT’s deficiency in deal-
ing with noise is to be more forgiving in the face of defec-
tions. A number of studies found that more forgiveness pro-
motes cooperation in noisy environments (Bendor, Kramer,
& Stout 1991; Mueller 1987). For instance, Tit-For-Two-
Tats (TFTT) retaliates only when it receives two defections
in two previous iterations. TFTT can tolerate isolated in-
stances of defections caused by noise and is more readily
to avoid long sequences of mutual defections. However,
TFTT is susceptible to exploitation of its generosity and was
beaten in Axelrod’s second tournament by TESTER, a strat-
egy that may defect every other move. In Competition 2
of the 2005 IPD Competition, TFTT ranked 30—a slightly
better ranking than TFT’s. In contrast to TFTT, DBS can
tolerate not only an isolated defection but also a sequence
of defections caused by noise, and at the same time DBS
monitors the other player’s behavior and retaliates when ex-
ploitation behavior is detected (i.e., when the exploitation
causes a change of the hypothesized policy, which initially
is TFT).

(Molander 1985) proposed to mix TFT with ALLC to
form a strategy which is now called Generous Tit-For-Tat
(GTFT) (Nowak & Sigmund 1992). Like TFTT, GTFT
avoids an infinite echo of defections by cooperating when
it receives a defection in certain iterations. The difference is
that GTFT forgives randomly: for each defection GTFT re-
ceives, it randomly chooses to cooperate with a small prob-
ability (say 10%) and to defect otherwise. DBS, however,
does not make use of forgiveness explicitly as GTFT does.
DBS’s decisions are based entirely on the hypothesized pol-
icy that it has learned. But temporary tolerance can be

deemed a form of forgiveness, since DBS does not retaliate
immediately when a defection occurs in a mutual coopera-
tion situation. This form of forgiveness is carefully planned
and there is no randomness in it.

A family of strategies called “Pavlovian” strategies, or
simply called Pavlov, was found to be more successful than
TFT in noisy environments (Kraines & Kraines 1989; 1993;
1995; Nowak & Sigmund 1993). When an accidental de-
fection occurs, Pavlov can resume mutual cooperation in a
smaller number of iterations than TFT (Kraines & Kraines
1989; 1993). Pavlov learns by conditioned response through
rewards and punishments; it adjusts its probability of co-
operation according to the previous outcome. Like Pavlov,
DBS learns from its past experience. DBS, however, has
an intermediate step between learning from experience and
decision making: it maintains a model of the other player’s
behavior, and uses this model to reason about nosie.

Relationships to Other Areas within AI
There are a number of games similar to the Iterated Pris-
oner’s Dilemma that are used in studying behavior among
self-interested agents (Axelrod 1984; Dawkins 1990). Thus,
the ideas we have described in this paper are likely to be
useful in research on computer games, and in research in
multi-agent systems. Below we discuss each of those areas
in more detail.

Game Playing
The use of opponent modeling is important in games of
imperfect information such as Poker (Barone & While
2000; Billings et al. 2003; Davidson et al. 2000) and
RoShamBo (Egnor 2000). There have been many works
on learning opponent’s strategy in the non-noisy IPD (Dyer
2004; Hingston & Kendall 2004). A common approach to
opponent modeling is to model the opponent’s strategy as a
probabilistic finite automaton, assuming the opponent’s next
move depends only on the outcomes of the last several itera-
tions. Then the probabilities in the automata are learnt using
various learning methods. In contrast, DBS does not aim
at learning the other player’s strategy completely; instead,
it learns the other player’s recent behavior, since the other
player may alter its strategy in the middle of a game.

To the best of our knowledge, ours is the first piece of
work on using opponent models in the IPD to detect errors
in the execution of other agent’s actions. We believe our
technique may also be useful in other kinds of environments.

Multi-Agent Systems
There have been many works on the study of cooper-
ation in multi-agent systems (Ferber 1999; Weiss 2000;
Wooldridge 2002). Noise can have a destructive effect to
the formation and maintenance of coordination relationships
among agents. The agents in a general multi-agent environ-
ment are usually more capable than those in the IPD, and
therefore they can cope with noise by a variety of methods.
For instance, if agents can communicate with each other, the
agents may detect noise by a predefined communication pro-
tocol. However, if the agents cannot completely trust each



other, then we believe that there is no protocol that is guar-
anteed to tell which action has been affected by noise. It
would be interesting to see how symbolic noise detection
could enhance these methods or vice versa.

Summary
For conflict prevention in noisy environments, a critical
problem is to distinguish between situations where another
player has misbehaved intentionally and situations where the
misbehavior was accidental. That is the problem that DBS
was formulated to deal with.

DBS’s impressive performance in the 2005 Iterated Pris-
oner’s Dilemma competition occurred because DBS was
better able to maintain cooperation in spite of noise than any
other program in the competition.

Since clarity of behavior is an important ingredient of
long-term cooperation in the IPD, most IPD programs have
behavior that follows clear deterministic patterns. The clar-
ity of these patterns made it possible for DBS to construct
policies that were good approximations of the other players’
strategies, and to use these policies to fend off noise.

We believe that clarity of behavior is also likely to be im-
portant in other multi-agent environments in which agents
have to cooperate with each other. Thus it seems plausible
that techniques similar to those used in DBS may be useful
in those domains.

In the Noisy IPD competition, there was no way for an
agent to tell whether an execution of an action was affected
by noise or not. In other environments, agents may be able to
obtain partial information about whether noise has occurred.
There may be some interesting ways to utilize that informa-
tion within symbolic noise detection.

Acknowledgments
This work was supported in part by ISLE contract
0508268818 (subcontract to DARPA’s Transfer Learning
program), UC Berkeley contract SA451832441 (subcontract
to DARPA’s REAL program), and NSF grant IIS0412812.
The opinions in this paper are those of the authors and do
not necessarily reflect the opinions of the funders.

References
Au, T.-C., and Nau, D. 2005. An Analysis of Derived
Belief Strategy’s Performance in the 2005 Iterated Pris-
oner’s Dilemma Competition. Technical Report CSTR-
4756/UMIACS-TR-2005-59, University of Maryland.
Au, T.-C., and Nau, D. 2006. Accident or intention: That
is the question (in the noisy iterated prisoner’s dilemma).
Axelrod, R., and Dion, D. 1988. The further evolution of
cooperation. Science 242(4884):1385–1390.
Axelrod, R. 1984. The Evolution of Cooperation. Basic
Books.
Barone, L., and While, L. 2000. Adaptive learning for
poker. In GECCO-2000, 566–573.
Bendor, J.; Kramer, R. M.; and Stout, S. 1991. When
in doubt... cooperation in a noisy prisoner’s dilemma. The
Journal of Conflict Resolution 35(4):691–719.

Bendor, J. 1987. In good times and bad: Reciprocity in
an uncertain world. American Journal of Politicial Science
31(3):531–558.
Billings, D.; Burch, N.; Davidson, A.; Holte, R.; and Scha-
effer, J. 2003. Approximating game-theoretic optimal
strategies for full-scale poker. In IJCAI-2003, 661–668.
Davidson, A.; Billings, D.; Schaeffer, J.; and Szafron,
D. 2000. Improved opponent modeling in poker. In
ICAI’2000, 1467–1473.
Dawkins, R., ed. 1990. The Selfish Gene. Oxford Univer-
sity Press.
Donninger, C. 1986. Paradoxical Effects of Social Be-
havior. Heidelberg: Physica Verlag. chapter Is it always
efficient to be nice?, 123–134.
Dyer, D. W. 2004. Opponent modelling and strategy evo-
lution in the iterated prisoner’s dilemma. Master’s thesis,
School of Computer Science and Software Engineering,
The Univ. of Western Australia.
Egnor, D. 2000. Iocaine powder explained. ICGA Journal
23(1):33–35.
Ferber, J., ed. 1999. Multi-Agent Systems: An Introduc-
tion to Distrbuted Artificial Intelligence. Addison-Wesley
Professional.
Hingston, P., and Kendall, G. 2004. Learning versus evo-
lution in iterated prisoner’s dilemma. In GECCO-2004.
Kendall, G.; Darwen, P.; and Yao, X. 2005. The iterated
prisoner’s dilemma competition. http://www.prisoners-
dilemma.com.
Kraines, D., and Kraines, V. 1989. Pavlov and the pris-
oner’s dilemma. Theory and Decision 26:47–79.
Kraines, D., and Kraines, V. 1993. Learning to cooperate
with pavlov an adaptive strategy for the iterated prisoner’s
dilemma with noise. Theory and Decision 35:107–150.
Kraines, D., and Kraines, V. 1995. Evolution of learning
among pavlov strategies in a competitive environment with
noise. The Journal of Conflict Resolution 39(3):439–466.
Molander, P. 1985. The optimal level of generosity in
a selfish, uncertain environment. The Journal of Conflict
Resolution 29(4):611–618.
Mueller, U. 1987. Optimal retaliation for optimal cooper-
ation. The Journal of Conflict Resolution 31(4):692–724.
Nowak, M., and Sigmund, K. 1990. The evolution of
stochastic strategies in the prisoner’s dilemma. Acta Ap-
plicandae Mathematicae 20:247–265.
Nowak, M. A., and Sigmund, K. 1992. Tit for tat in het-
erogeneous populations. Nature 355:250–253.
Nowak, M., and Sigmund, K. 1993. A strategy of win-
stay, lose-shift that outperforms tit-for-tat in the prisoner’s
dilemma game. Nature 364:56–58.
Weiss, G., ed. 2000. Multiagent Systems: A Modern
Approach to Distributed Artificial Intelligence. The MIT
Press.
Wooldridge, M. 2002. Introduction to MultiAgent Systems.
John Wiley & Sons Ltd.


