Chapter 10

Is it Accidental or Intentional? A
Symbolic Approach to Noisy Iterated
Prisoner’s Dilemma

Tsz-Chiu Au and Dana Nau
Department of Computer Science

and Institute for Systems Research
University of Maryland, College Park

10.1 Introduction

The Iterated Prisoner’s Dilemma (IPD) has become well known as an ab-
stract model of a class of multi-agent environments in which agents accu-
mulate payoffs that depend on how successful they are in their repeated
interactions with other agents. An important variant of the IPD is the
Noisy IPD, in which there is a small probability, called the noise level, that
accidents will occur. In other words, the noise level is the probability of
executing “cooperate” when “defect” was the intended move, or vice versa.

Accidents can cause difficulty in cooperations with others in real-life sit-
uations, and the same is true in the Noisy IPD. Strategies that do quite well
in the ordinary (non-noisy) IPD may do quite badly in the Noisy IPD [Ax-
elrod and Dion, 1988; Bendor, 1987; Bendor et al., 1991; Molander, 1985;
Mueller, 1987; Nowak and Sigmund, 1990]. For example, if two players
both use the well-known Tit-For-Tat (TFT) strategy, then an accidental
defection may cause a long series of defections by both players as each of
them punishes the other for defecting.

This chapter reports on a strategy called the Derived Belief Strategy
(DBS), which was the best-performing non-master-slave strategy in Cate-
gory 2 (noisy environments) of the 2005 Iterated Prisoner’s Dilemma com-

2 Book Title

Table 10.1 Scores of the best programs in Competition 2 (IPD with Noise). The
table shows each program’s average score for each run and its overall average over
all five runs. The competition included 165 programs, but we have listed only the
top 25.

Score
Rank | Program Author Runl | Run2 | Run3 | Run4 | Run5 | Avg.
1 BWIN P. Vytelingum | 441.7 | 431.7 | 427.1 | 434.8 | 433.5 | 433.8
2 IMMO1 J.W. Li 424.7 | 414.6 | 414.7 | 409.1 | 407.5 | 414.1
3 DBSz T.C. Au 411.7 | 405.0 | 406.5 | 407.7 | 409.2 | 408.0
4 | DBSy T.C. Au 411.9 | 407.5 | 407.9 | 407.0 | 405.5 | 408.0
5 DBSpl T.C. Au 409.5 | 403.8 | 411.4 | 403.9 | 409.1 | 407.5
6 DBSx T.C. Au 401.9 | 410.5 | 407.7 | 408.4 | 404.4 | 406.6
7 DBSf T.C. Au 399.2 | 402.2 | 405.2 | 398.9 | 404.4 | 402.0
8 DBStft T.C. Au 398.4 | 394.3 | 402.1 | 406.7 | 407.3 | 401.8
9 DBSd T.C. Au 406.0 | 396.0 | 399.1 | 401.8 | 401.5 | 400.9
10 | lowES- M. Filzmoser 391.6 | 395.8 | 405.9 | 393.2 | 399.4 | 397.2
TFT_classic
11 TFTIm T.C. Au 399.0 | 398.8 | 395.0 | 396.7 | 395.3 | 397.0
12 | Mod P. Hingston 394.8 | 394.2 | 407.8 | 394.1 | 393.7 | 396.9
13 | TFTIz T.C. Au 397.7 1 396.1 | 390.7 | 392.1 | 400.6 | 395.5
14 | TFTIc T.C. Au 400.1 | 401.0 | 389.5 | 388.9 | 389.2 | 393.7
15 | DBSe T.C. Au 396.9 | 386.8 | 396.7 | 394.5 | 393.7 | 393.7
16 | TTFT L. Clement 389.1 | 395.8 | 394.1 | 393.4 | 394.7 | 393.4
17 | TFTIa T.C. Au 389.5 | 394.4 | 395.1 | 389.6 | 397.7 | 393.3
18 | TFTIb T.C. Au 391.7 | 390.0 | 390.5 | 401.0 | 392.4 | 393.1
19 | TFTIx T.C. Au 398.3 | 391.3 | 390.8 | 391.0 | 393.7 | 393.0
20 | mediumES- | M. Filzmoser 396.7 | 392.6 | 398.3 | 390.8 | 386.0 | 392.9
TFT _classic
21 | TFTIy T.C. Au 391.7 | 394.6 | 390.8 | 392.1 | 394.9 | 392.8
22 | TFTId T.C. Au 395.6 | 393.1 | 388.8 | 385.7 | 391.3 | 390.9
23 | TFTIe T.C. Au 396.7 | 391.1 | 385.2 | 388.2 | 393.5 | 390.9
24 | DBSb T.C. Au 393.2 | 386.1 | 392.6 | 391.1 | 391.0 | 390.8
25 | T4T D. Fogel 391.5 | 387.6 | 400.4 | 387.3 | 383.5 | 390.0

petition (see Table 10.1).

Like most opponent-modeling techniques, DBS attempts to learn a
model of the other player’s strategy (i.e., the opponent model') during the
games. Our main innovation involves how to reason about noise using the
opponent model.

The key idea used in DBS is something that we call symbolic noise
detection—the use of the other player’s deterministic behavior to tell
whether an action has been affected by noise. More precisely, DBS builds
a symbolic model of how the other player behaves, and watches for any

1The term “opponent model” appears to be the most common term for a model of
the other player, even though this player is not necessarily an “opponent” (since the IPD
is not zero-sum).

Is it Accidental or Intentional? A Symbolic Approach to Noisy IPD 3

deviation from this model. If the other player’s next move is inconsistent
with its past behavior, this inconsistency can be due either to noise or to
a genuine change in its behavior; and DBS can often distinguish between
these two cases by waiting to see whether this inconsistency persists in the
next few iterations of the game.?

Of the nine different version of DBS that we entered into the competi-
tion, all of them placed in the top 25, and seven of them placed among top
ten (see Table 10.1). Our best version, DBSz, placed third; and the two
players that placed higher were both masters of master-and-slave teams.

DBS operates in a distinctly different way from the master-and-slaves
strategy used by several other entrants in the competition. Each participant
in the competition was allowed to submit up to 20 programs as contestants.
Some participants took advantage of this to submit collections of programs
that worked together in a conspiracy in which 19 of their 20 programs (the
“slaves”) worked to give as many points as possible to the 20th program
(the “master”). DBS does not use a master-and-slaves strategy, nor does it
conspire with other programs in any other way. Nonetheless, DBS remained
competitive with the master-and-slaves strategies in the competition, and
performed much better than the master-and-slaves strategies if the score of
each master is averaged with the scores of its slaves. Furthermore, a more
extensive analysis [Au and Nau, 2005] shows that if each master-and-slaves
team had been limited to 10 programs or less, DBS would have placed first
in the competition.

10.2 Motivation and Approach

The techniques used in DBS are motivated by a British army officer’s story
that was quoted in [Axelrod, 1997, page 40]:

I was having tea with A Company when we heard a lot of
shouting and went out to investigate. We found our men
and the Germans standing on their respective parapets.
Suddenly a salvo arrived but did no damage. Naturally
both sides got down and our men started swearing at the
Germans, when all at once a brave German got onto his
parapet and shouted out: “We are very sorry about that;
we hope no one was hurt. It is not our fault. It is that

2An iteration has also been called a period or a round by some authors.

4 Book Title

damned Prussian artillery.” (Rutter 1934, 29)

Such an apology was an effective way of resolving the conflict and preventing
a retaliation because it told the British that the salvo was not the intention
of the German infantry, but instead was an unfortunate accident that the
German infantry did not expect nor desire. The reason why the apology was
convincing was because it was consistent with the German infantry’s past
behavior. The British had was ample evidence to believe that the German
infantry wanted to keep the peace just as much as the British infantry did.

More generally, an important question for conflict prevention in noisy
environments is whether a misconduct is intentional or accidental. A devia-
tion from the usual course of action in a noisy environment can be explained
in either way. If we form the wrong belief about which explanation is cor-
rect, our response may potentially destroy our long-term relationship with
the other player. If we ground our belief on evidence accumulated before
and after the incident, we should be in a better position to identify the true
cause and prescribe an appropriate solution. To accomplish this, DBS uses
the following key techniques:

(1) Learning about the other player’s strategy. DBS uses an induc-
tion technique to identify a set of rules that model the other player’s
recent behavior. The rules give the probability that the player will
cooperate under different situations. As DBS learns these probabili-
ties during the game, it identifies a set of deterministic rules that have
either 0 or 1 as the probability of cooperation.

(2) Detecting noise. DBS uses the above rules to detect anomalies that
may be due either to noise or a genuine change in the other player’s
behavior. If a move is different from what the deterministic rules pre-
dict, this inconsistency triggers an evidence collection process that will
monitor the persistence of the inconsistency in the next few iterations
of the game. The purpose of the evidence-collection process is to deter-
mine whether the violation is likely to be due to noise or to a change
in the other player’s policy. If the inconsistency does not persist, DBS
asserts that the derivation is due to noise; if the inconsistency persists,
DBS assumes there is a change in the other player’s behavior.

(3) Temporarily tolerating possible misbehaviors by the other
player. Until the evidence-collection process finishes, DBS assumes
that the other player’s behavior is still as described by the determin-
istic rules. Once the evidence collection process has finished, DBS de-
cides whether to believe the other player’s behavior has changed, and

Is it Accidental or Intentional? A Symbolic Approach to Noisy IPD 5
updates the deterministic rules accordingly.

Since DBS emphasizes the use of deterministic behaviors to distinguish
noise from the change of the other player’s behavior, it works well when
the other player uses a pure (i.e., deterministic) strategy or a strategy that
makes decisions deterministically most of the time. Fortunately, determin-
istic behaviors are abundant in the Iterated Prisoner’s Dilemma. Many
well-known strategies, such as TFT and GRIM, are pure strategies. Some
strategies such as Pavlov or Win-Stay, Lose-Shift strategy (WSLS) [Kraines
and Kraines, 1989; Kraines and Kraines, 1993; Kraines and Kraines, 1995;
Nowak and Sigmund, 1993] are not pure strategies, but a large part of their
behavior is still deterministic. The reason for the prevalence of determinism
is discussed by Axelrod in [Axelrod, 1984]: clarity of behavior is an impor-
tant ingredient of long-term cooperation. A strategy such as TFT benefits
from its clarity of behavior, because it allows other players to make credible
predictions of TFT’s responses to their actions. We believe the success of
our strategy in the competition is because this clarity of behavior also helps
us to fend off noise.

The results of the competition show that the techniques used in DBS
are indeed an effective way to fend off noise and maintain cooperation in
noisy environments. When DBS defers judgment about whether the other
player’s behavior has changed, the potential cost is that DBS may not
be able to respond to a genuine change of the other player’s behavior as
quickly as possible, thus losing a few points by not retaliating immediately.
But this delay is only temporary, and after it DBS will adapt to the new
behavior. More importantly, the techniques used in DBS greatly reduce
the probability that noise will cause it to end a cooperation and fall into
a mutual-defect situation. Our experience has been that it is hard to re-
establish cooperation from a mutual-defection situation, so it is better avoid
getting into mutual defection situations in the first place. When compared
with the potential cost of ending an cooperation, the cost of temporarily
tolerating some defections is worthwhile.

Temporary tolerance also benefits us in another way. In the noisy It-
erated Prisoner’s Dilemma, there are two types of noise: one that affects
the other player’s move, and the other affects our move. While our method
effectively handles the first type of noise, it is the other player’s job to deal
with the second type of noise. Some players such as TFT are easily pro-
voked by the second type of noise and retaliate immediately. Fortunately, if
the retaliation is not a permanent one, our method will treat the retaliation

6 Book Title

in the same way as the first type of noise, thus minimizing its effect.

10.3 Iterated Prisoner’s Dilemma with Noise

In the Iterated Prisoner’s Dilemma, two players play a finite sequence of
classical prisoner’s dilemma games, whose payoff matrix is:

Player 2
Cooperate Defect
Player 1 Cooperate | (ucc,uce) (uep,upc)
Defect (upc,ucp) (upp,upp)

where upc > ucc > upp > ucp and 2ucc > upc + ucp. In the
competition, upc, ucc, upp and ucp are 5, 3, 1 and 0, respectively.

At the beginning of the game, each player knows nothing about the
other player and does not know how many iterations it will play. In each
iteration, each player chooses either to cooperate (C) or defect (D), and
their payoffs in that iteration are as shown in the payoff matrix. We call
this decision a move or an action. After both players choose a move, they
will each be informed of the other player’s move before the next iteration
begins.

If ag, by, € {C,D} are the moves of Player 1 and Player 2 in iteration
k, then we say that (ay,by) is the outcome of iteration k. If there are N
iterations in a game, then the total scores for Player 1 and Player 2 are
D 1<k< N Yagby And D) op oy Upyay s TESPectively.

The Noisy Iterated Prisoner’s Dilemma is a variant of the Iterated Pris-
oner’s Dilemma in which there is a small probability that a player’s moves
will be mis-implemented. The probability is called the noise level.®> In
other words, the noise level is the probability of executing C' when D was
the intended move, or vice versa. The incorrect move is recorded as the
player’s move, and determines the outcome of the iteration.* Furthermore,
neither player has any way of knowing whether the other player’s move was
executed correctly or incorrectly.’

3The noise level in the competition was 0.1.

4Hence, a mis-implementation is different from a misperception, which would not
change the outcome of the iteration. The competition included mis-implementations
but no misperceptions.

5As far as we know, the definitions of “mis-implementation” used in the existing
literature are ambiguous about whether either of the players should know that an action
has been mis-executed.

Is it Accidental or Intentional? A Symbolic Approach to Noisy IPD 7

For example, suppose Player 1 chooses C' and Player 2 chooses D in
iteration k, and noise occurs and affects the Player 1’s move. Then the
outcome of iteration k is (D, D). However, since both players do not know
that the Player 1’s move has been changed by noise, Player 1 and Player 2
perceive the outcome differently: for Player 1, the outcome is (C, D), but for
Player 2, the outcome is (D, D). Asin real life, this misunderstanding would
become an obstacle in establishing and maintaining cooperation between
the players.

10.4 Strategies, Policies, and Hypothesized Policies

A history H of length k is the sequence of outcomes of all iterations up
to and including iteration k. We write H = {(a1,b1), (az,b2), ..., (ag, br)).
Let H = {(C,C),(C,D),(D,C),(D, D))* be the set of all possible histories.
A strategy M : 'H — [0, 1] associates with each history H a real number
called the degree of cooperation. M (H) is the probability that M chooses
to cooperate at iteration k + 1, where k = |H| is H’s length.

For examples, TFT can be considered as a function My g7, such that (1)
Mrpr(H)=1.0if k=0 or a, = C (where k = |H|), and (2) Mppr(H) =
0.0 otherwise; Tit-for-Two-Tats (TFTT), which is like TFT except it defects
only after it receives two consecutive defections, can be considered as a
function M7 g7, such that (1) Mppprpr(H) =0.0if k£ > 2 and ag—1 = ax =
D, and (2) Myprr(H) = 1.0 otherwise.

We can model a strategy as a policy. A condition Cond : H —
{True, False} is a mapping from histories to boolean values. A history H
satisfies a condition Cond if and only if Cond(H) = True. A policy schema
Q) is a set of conditions such that each history in H satisfies exactly one
of the conditions in . A rule is a pair (Cond, p), which we will write as
Cond — p, where Cond is a condition and p is a degree of cooperation
(a real number in [0,1]). A rule is deterministic if p is either 0.0 or 1.0;
otherwise, the rule is probabilistic. In this paper, we define a policy to be a
set of rules whose conditions constitute a policy schema.

My pr can be modeled as a policy as follows: we define Cond, ; to be
a condition about the outcomes of the last iteration of a history, such that
Condgp(H) = True if and only if (1) & > 1, ar = a and b, = b, (where
k = |H]|), or (2) k =0 and a = b = C. For simplicity, we also write
Cond, p as (a,b). The policy for Mrpr is mrpr = {(C,C) — 1.0, (C, D) —
1.0, (D,C) — 0.0, (D, D) — 0.0}. Notice that the policy schema for mppr

8 Book Title

isQ={(C,C),(C,D),(D,C),(D,D)}.

Given a policy 7 and a history H, there is one and only one rule Cond —
p in 7 such that Cond(H) = True. We write p as w(H). A policy 7 is
complete for a strategy M if and only if 7(H) = M (H) for any H € H. In
other words, a complete policy for a strategy is one that completely models
the strategy. For instance, mrpr is a complete policy for Mppr.

Some strategies are much more complicated than TFT—we need a large
number of rules in order to completely model these strategies. If the number
of iterations is small and the strategy is complicated enough, it is difficult
or impossible for DBS to obtain a complete model of the other player’s
strategy. Therefore, DBS does not aim at obtaining a complete policy of
the other player’s strategy; instead, DBS leans an approximation of the
other player’s strategy during a game, using a small number of rules. In
order to distinguish this approximation from the complete policies for a
strategy, we call this approximation a hypothesized policy.

Given a policy schema 2, DBS constructs a hypothesized policy m whose
policy schema is 2. The degrees of cooperation of the rules in 7 are esti-
mated by a learning function (e.g., the learning methods in Section 10.6),
which computes the degrees of cooperation according to the current his-
tory. For example, suppose the other player’s strategy is My g, the given
policy schema is Q = {(C,C), (C, D), (D, C),(D, D)}, and the current his-
tory is H = {(C,C),(D,C),(C,C),(D,C),(D,C),(D, D), (C,D),(C,C)}.
If we use a learning method which computes the degrees of cooperation by
averaging the number of time the next action is C' when a condition holds,
then the hypothesized policy is 7 = {(C,C) — 1.0,(C, D) — 1.0,(D,C) —
0.66, (D, D) — 0.0}. Notice that the rule (D,C) — 0.66 does not accu-
rately model My ppr; this probabilistic rule is just an approximation of
what My prr does when the condition (D, C') holds. This approximation is
inaccurate as long as the policy schema contains (D, C')—there is no com-
plete policy for Mrprr whose policy schema contains (D, C). If we want
to model My pprr correctly, we need a different policy schema that allows
us to specify more complicated rules.

We interpret a hypothesized policy as a belief of what the other player
will do in the next few iterations in response to our next few moves. This
belief does not necessarily hold in the long run, since the other player can
behave differently at different time in a game. Even worse, there is no
guarantee that this belief is true in the next few iterations. Nonetheless,
hypothesized policies constructed by DBS usually have a high degree of
accuracy in predicting what the other player will do.

Is it Accidental or Intentional? A Symbolic Approach to Noisy IPD 9

This belief is subjective—it depends on the choice of the policy schema
and the learning function. We formally define this subjective viewpoint as
follows. The hypothesized policy space spanned by a policy schema €2 and a
learning function L : QxH — [0, 1] is a set of policies Il = {n(H) : H € H},
where 7w(H) = {Cond — L(Cond, H) : Cond € Q}. Let H be a history of
a game in which the other player’s strategy is M. The set of all possible
hypothesized policies for M in this game is {w(H}) : Hy € prefixes(H)} C
IT, where prefixes(H) is the set of all prefixes of H, and Hy is the prefix
of length k of H. We say m(Hy) is the current hypothesized policy of
M in the iteration k. A rule Cond — p in 7(Hy) describes a particular
behavior of the other player’s strategy in the iteration k. The behavior is
deterministic if p is either zero or one; otherwise, the behavior is random
or probabilistic. If w(Hy) # w(Hyy1), we say there is a change of the
hypothesized policy in the iteration k + 1, and the behaviors described by
the rules in (7(Hy) \ 7(Hy+1)) have changed.

10.5 Derived Belief Strategy

In the ordinary ITterated Prisoner’s Dilemma (i.e., without any noise), if
we know the other player’s strategy and how many iterations in a game,
we can compute an optimal strategy against the other player by trying
every possible sequence of moves to see which sequence yields the highest
score, assuming we have sufficient computational power. However, we are
missing both pieces of information. So it is impossible for us to compute
an optimal strategy, even with sufficient computing resource. Therefore,
we can at most predict the other player’s moves based on the history of a
game, subject to the fact that the game may terminate any time.

Some strategies for the Iterated Prisoner’s Dilemma do not predict the
other player’s moves at all. For example, Tit-for-Tat and GRIM react de-
terministically to the other player’s previous moves according to fixed sets
of rules, no matter how the other player actually plays. Many strategies
adapt to the other player’s strategy over the course of the game: for exam-
ple, Pavlov [Kraines and Kraines, 1989] adjusts its degree of cooperation
according to the history of a game. However, these strategies do not take
any prior information about the other player’s strategy as an input; thus
they are unable to make use of this important piece of information even
when it is available.

Let us consider a class of strategies that make use of a model of the other

10 Book Title

player’s strategy to make decisions. Figure 10.1 shows an abstract represen-
tation of these strategies. Initially, these strategies start out by assuming
that the other player’s strategy is TFT or some other strategy. In every
iteration of the game, the model is updated according to the current history
(using UpdateModel). These strategies decide which move it should make
in each iteration using a move generator (GenerateMove), which depends
on the current model of the other player’s strategy of the iteration.

Procedure StrategyUsingModelOfTheOtherPlayer()
7 « InitialModel() // the current model of the other player
H«—0 // the current history
a «— GenerateMove(w, H) // the initial move

Loop until the end of the game
Output our move a and obtain the other player’'s move b
H — (H,(a,b))
7« UpdateModel(m, H)
a < GenerateMove(m, H)
End Loop

Fig. 10.1 An abstract representation of a class of strategies that generate moves using
a model of the other player.

DBS belongs to this class of strategies. DBS maintains a model of
the other player in form of a hypothesized policy throughout a game, and
makes decisions based on this hypothesized policy. The key issue for DBS in
this process is how to maintain a good approximation of the other player’s
strategy, despite that some actions in the history are affected by noise. A
good approximation will increase the quality of moves generated by DBS,
since the move generator in DBS depends on an accurate model of the other
player’s behavior.

The approach DBS uses to minimize the effect of noise on the hypoth-
esized policy has been discussed in Section 10.2: temporarily tolerate pos-
sible misbehaviors by the other player, and then update the hypothesized
policy only if DBS believes that the misbehavior is due to a genuine change
of behaviors. Figure 10.2 shows an outline of the implementation of this
approach in DBS. As we can see, DBS does not maintain the hypothesized
policy explicitly; instead, DBS maintains three sets of rules: the default
rule set (Rq), the current rule set (R.), and the probabilistic rule set (R,).
DBS combines these rule sets to form a hypothesized policy for move gen-

Is it Accidental or Intentional? A Symbolic Approach to Noisy IPD 11

eration. In addition, DBS maintains several auxiliary variables (promotion
counts and violation counts) to facilitate the update of these rule sets. We
will explain every line in Figure 10.2 in detail in the next section.

Procedure DerivedBeliefStrategy ()

1. Ry «— mrpr // the default rule set

2. Re—10 // the current rule set

3.a9g—C ;by—C; H—{(ag,bp)) ;m=Rq; k—1;,0v«0

4. a; «— MoveGen(m, H)

5. Loop until the end of the game

6. Output ax and obtain the other player's move by

7. rt— ((ag—1,bk—1) — by)

8. ((an1,by1) — ({C.D}\ {be})

0. If r*,r~ & R,, then

10. If ShouldPromote(r™) = true, then insert " into R,.
11. If r+ € R,, then set the violation count of »* to zero

12. If ¥~ € R. and ShouldDemote(r~) = true, then

13. Rj+— R.URg; R.+—0;v+0

14. If r— € Ry, thenv «—v+1

15. If v > RejectThreshold, or (r* € R, and r~ € Ry), then
16. Ry—0;v«0

17. R, — {(Cond — p') € Yp+1 : Cond not appear in R, or Ry}
18. T— R.UR4UR, // construct a hypothesized policy
19. H — (H,(a,br)); ag+1 — MoveGen(m, H) ; k — k+1
20. End Loop

Fig. 10.2 An outline of the DBS strategy. ShouldPromote first increases r1’s promotion
count, and then if r+’s promotion count exceeds the promotion threshold, ShouldPromote
returns true and resets r1’s promotion count. Likewise, ShouldDemote first increases
r~’s violation count, and then if »~’s violation count exceeds the violation threshold,
ShouldPromote returns true and resets r~’s violation count. R in Line 17 is the proba-
bilistic rule set; 141 in Line 17 is calculated from Equation 10.1.

10.6 Learning Hypothesized Policies in Noisy Environ-
ments

We will describe how DBS learns and maintains a hypothesized policy for
the other player’s strategy in this section. Section 10.6.1 describes how
DBS uses discounted frequencies for each behavior to estimate the degree of

12 Book Title

cooperation of each rule in the hypothesized policy. Section 10.6.2 explains
why using discounted frequencies alone are not sufficient for constructing an
accurate model of the other player’s strategy in the presence of noise, and
how symbolic noise detection and temporary tolerance can help overcome
the difficulty in using discounted frequencies alone. Section 10.6.3 presents
the induction technique DBS uses to identify deterministic behaviors in the
other player. Section 10.6.4 illustrates how DBS defers judgment about
whether an anomaly is due to noise. Section 10.6.5 discusses how DBS
updates the hypothesized policy when it detects a change of behavior.

10.6.1 Learning by Discounted Frequencies

We now describe a simple way to estimate the degree of cooperation of
the rules in the hypothesized policy. The idea is to maintain a discounted
frequency for each behavior: instead of keeping an ordinary frequency count
of how often the other player cooperates under a condition in the past, DBS
applies discount factors based on how recent each occurrence of the behavior
was.

Given a history H = {(a1,b1), (az,b2), ..., (ak,br)}, a real number o
between 0 and 1 (called the discount factor), and an initial hypothesized
policy m9 = {Cond; — p¥,Condy — p3,...,Cond, — p°} whose policy
schema is C = {Cond;,Conds, . ..,Cond,}, the probabilistic policy at iter-
ation k 4+ 1 is Y41 = {Cond; — p’f“,C’ondz — péH,Condn — phti}
where pf“ is computed by the following equation:

el 2a0<j<k (" 7g;)

i1 _ _ 10.1
P > o<j<k (@79 f5) (10.1)

and where
gi=<1 if1<j <k Cond;(Hj—1)= True and b; = C,
0 otherwise;
pYif j =0,
fj =q1 if1< j < k, Condi(Hj,l) = True,
0 otherwise;

g {0 =1,
T707 {(a1,b), (a2,b2), - . (aj-1,bj—1)} otherwise.

In short, the current history H has k+1 possible prefixes, and f; is basically

Is it Accidental or Intentional? A Symbolic Approach to Noisy IPD 13

a boolean function indicating whether the prefix of H up to the j — 1’th
iteration satisfies Cond;. g; is a restricted version of f;.

When o = 1, p; is approximately equal to the frequency of the occur-
rence of Cond; — p;. When « is less than 1, p; becomes a weighted sum of
the frequencies that gives more weight to recent events than earlier ones.
For our purposes, it is important to use a < 1, because it may happen that
the other player changes its behavior suddenly, and therefore we should
forget about its past behavior and adapt to its new behavior (for instance,
when GRIM is triggered). In the competition, we used a = 0.75.

An important question is how large a policy schema to use for the hy-
pothesized policy. If the policy schema is too small, the policy schema won’t
provide enough detail to give useful predictions of the other player’s behav-
ior. But if the policy schema is too large, DBS will be unable to compute
an accurate approximation of each rule’s degree of cooperation, because the
number of iterations in the game will be too small. In the competition, we
used a policy schema of size 4: {(C,C),(C,D),(D,C),(D,D)}. We have
found this to be good enough for modeling a large number of strategies.

It is essential to have a good initial hypothesized strategy because at
the beginning of the game the history is not long enough for us to derive
any meaningful information about the other player’s strategy. In the com-
petition, the initial hypothesized policy is 7rpr = {(C,C) — 1.0, (C,D) —
1.0, (D,C) — 0.0, (D, D) — 0.0}.

10.6.2 Deficiencies of Discounted Frequencies in Noisy En-
vironments

It may appear that the probabilistic policy learned by the discounted-
frequency learning technique should be inherently capable of tolerating
noise, because it takes many, if not all, moves in the history into account:
if the number of terms in the calculation of the average or weighted average
is large enough, the effect of noise should be small. However, there is a
problem with this reasoning: it neglects the effect of multiple occurrences
of noise within a small time interval.

A mis-implementation that alters the move of one player would distort
an established pattern of behavior observed by the other player. The gen-
eral effect of such distortion to the Equation 10.1 is hard to tell—it varies
with the value of the parameters and the history. But if several distortions
occur within a small time interval, the distortion may be big enough to al-
ter the probabilistic policy and hence change our decision about what move

14 Book Title

to make. This change of decision may potentially destroy an established
pattern of mutual cooperation between the players.

At first glance, it might seem rare for several noise events to occur at
nearly the same time. But if the game is long enough, the probability of it
happening can be quite high. The probability of getting two noise events in
two consecutive iterations out of a sequence of i iterations can be computed
recursively as X; = p(p + ¢Xi—2) + ¢X;_1, providing that X, = X; = 0,
where p is the probability of a noise event and ¢ = 1—p. In the competition,
the noise level was p = 0.1 and ¢ = 200, which gives X509 = 0.84. Similarly,
the probabilities of getting three and four noises in consecutive iterations
are 0.16 and 0.018, respectively.

In the 2005 competition, there were 165 players, and each player played
each of the other players five times. This means every player played 825
games. On average, there were 693 games having two noises in two consecu-
tive iterations, 132 games having three noises in three consecutive iterations,
and 15 games having four noises in four consecutive iterations. Clearly, we
did not want to ignore situations in which several noises occur nearly at
the same time.

Symbolic noise detection and temporary tolerance outlined in Sec-
tion 10.2 provide a way to reduce the amount of susceptibility to multi-
ple occurrences of noise in a small time interval. Deterministic rules enable
DBS to detect anomalies in the observed behavior of the other player. DBS
temporarily ignores the anomalies which may or may not be due to noise,
until a better conclusion about the cause of the anomalies can be drawn.
This temporary tolerance prevents DBS from learning from the moves that
may be affected by noise, and hence protects the hypothesized policy from
the influence of errors due to noise. Since the amount of tolerance (and the
accuracy of noise detection) can be controlled by adjusting parameters in
DBS, we can reduce the amount of susceptibility to multiple occurrences of
noise by increasing the amount of tolerance, at the expense of a higher cost
of noise detection—losing more points when a change of behavior occurs.

10.6.3 Identifying Deterministic Rules Using Induction

As we discussed in Section 10.2, deterministic behaviors are abundant in the
Tterated Prisoner’s Dilemma. Deterministic behaviors can be modeled by
deterministic rules, whereas random behavior would require probabilistic
rules.

A nice feature about deterministic rules is that they have only two

Is it Accidental or Intentional? A Symbolic Approach to Noisy IPD 15

possible degrees of cooperation: zero or one, as opposed to an infinite set of
possible degrees of cooperation of the probabilistic rules. Therefore, there
should be ways to learn deterministic rules that are much faster than the
discounted frequency method described earlier. For example, if we knew at
the outset which rules were deterministic, it would take only one occurrence
to learn each of them: each time the condition of a deterministic rule was
satisfied, we could assign a degree of cooperation of 1 or 0 depending on
whether the player’s move was C' or D.

The trick, of course, is to determine which rules are deterministic. We
have developed an inductive-reasoning method to distinguish deterministic
rules from probabilistic rules during learning and to learn the correct degree
of cooperation for the deterministic rules.

In general, induction is the process of deriving general principles from
particular facts or instances. To learn deterministic rules, the idea of induc-
tion can be used as follows. If a certain kind of behavior occurs repeatedly
several times, and during this period of time there is no other behavior
that contradicts to this kind of behavior, then we will hypothesize that the
chance of the same kind of behavior occurring in the next few iterations is
pretty high, regardless of how the other player behaved in the remote past.

More precisely, let K > 1 be a number which we will call the promotion
threshold. Let H = ((a1,b1), (a2,b2),...,(ag,br)) be the current history.
For each condition Cond; € C, let I; be the set of indexes such that for
all i € I;, i < k and Cond;({(a1,b1), (az,b2),...,(a;,b;))) = True. Let fj
be the set of the largest K indexes in I;. If |I;| > K and for all i € I,
bi+1 = C (i.e., the other player chose C' when the previous history up to the
i’th iteration satisfies Cond;), then we will hypothesize that the other player
will choose C' whenever Cond; is satisfied; hence we will use Cond; — 1
as a deterministic rule. Likewise, if |I;| > K and for all ¢ € fj, biy1 = D,
we will use Cond; — 0 as a deterministic rule. See Line 7 to Line 10 in
Figure 10.2 for an outline of the induction method we use in DBS.

The induction method can be faster at learning deterministic rules than
the discounted frequency method that regards a rule as deterministic when
the degree of cooperation estimated by discounted frequencies is above or
below certain thresholds. As can be seen in Figure 10.3, the induction
method takes only three iterations to infer the other player’s moves cor-
rectly, whereas the discounted frequency technique takes six iterations to
obtain a 95% degree of cooperation, and it never becomes 100%.6 We may

61f we modify Equation 10.1 to discard the early outcomes of a game, the degree of
cooperation of a probabilistic rule can attain 100%.

16 Book Title

want to set the threshold in the discounted frequency method to be less than
0.8 to make it faster than the induction method. However, this will increase
the chance of incorrectly identifying a random behavior as deterministic.
A faster learning speed allows us to infer deterministic rules with a
shorter history, and hence increase the effectiveness of symbolic noise de-
tection by having more deterministic rules at any time, especially when a
change of the other player’s behavior occurs. The promotion threshold K
controls the speed of the identification of deterministic rules. The larger the
value of K, the slower the speed of identification, but the less likely we will
mistakenly hypothesize that the other player’s behavior is deterministic.

1F S S S S S S
A4 A4 A4 \v4 P
0.9f N
c
S osf 1
=}
S oql ,
oo
Q.
O 0.6f b
]
O o5l |
y—
o
© 04f 1
g
o 0.3f b
3]
0 o2 .
01 —O— Induction 1
—— Discount Frequency | |
. . . n n n n

0 1 2 3 4 5 6 7 8 9 10
Iteration

Fig. 10.3 Learning speeds of the induction method and the discounted frequency
method when the other player always cooperates. The initial degree of cooperation
is zero, the discounted rate is 0.75, and the promotion threshold is 3.

10.6.4 Symbolic Noise Detection and Temporary Tolerance

Once DBS has identified the set of deterministic rules, it can readily use
them to detect noise. As we said earlier, if the other player’s move violate
a deterministic rule, it can be caused either by noise or by a change in
the other player’s behavior, and DBS uses an evidence collection process
to figure out which is the case. More precisely, once a deterministic rule
Cond; — o; is violated (i.e., the history up to the previous iteration satis-
fies Cond; but the other player’s move in the current iteration is different
from o0;), DBS keeps the violated rule but marks it as violated. Then DBS

Is it Accidental or Intentional? A Symbolic Approach to Noisy IPD 17

starts an evidence collection process that in the implementation of our com-
petition entries is a violation counting: for each violated probabilistic rule
DBS maintains a counter called the wviolation count to record how many
violations of the rule have occurred (Line 12).” In the subsequent itera-
tions, DBS increases the violation count by one every time a violation of
the rule occurs. However, if DBS encounters a positive example of the rule,
DBS resets the violation count to zero and unmark the rule (Line 11). If
any violation count excesses a threshold called the violation threshold, DBS
concludes that the violation is not due to noise; it is due to a change of
the other player’s behavior. In this case, DBS invokes a special procedure
(described in Section 10.6.5) to handle this situation (Line 13).

This evidence collection process takes advantages of the fact that the
pattern of moves affected by noise is often quite different from the pat-
tern of moves generated by the new behavior after a change of behavior
occurs. Therefore, it can often distinguish noise from a change of behavior
by observing moves in the next few iterations and gather enough evidence.

As discussed in Section 10.6.2, we want to set a larger violation threshold
in order to avoid the drawback of the discount frequency method in dealing
with several misinterpretations caused by noise within a small time inter-
val. However, if the threshold is too large, it will slow down the speed of
adaptation to changes in the other player’s behavior. In the competition,
we entered DBS several times with several different violation thresholds;
and in the one that performed the best, the violation threshold was 4.

10.6.5 Coping with Ignorance of the Other Player’s New
Behavior

When the evidence collection process detects a change in the other player’s
behavior, DBS knows little about the other player’s new behavior. How
DBS copes with this ignorance is critical to its success.

When DBS knows little about the other player’s new behavior when
it detects a change of the other player’s behavior, DBS temporarily uses
the previous hypothesized policy as the current hypothesized policy, un-
til it deems that this substitution no longer works. More precisely, DBS
maintains two sets of deterministic rules: the current rule set R. and the
default rule set Ry. R, is the set of deterministic rules that is learned after
the change of behavior occurs, while Ry is the set of deterministic rules

"We believe that a better evidence collection process should be based on statistical
hypothesis testing.

18 Book Title

before the change of behavior occurs. At the beginning of a game, Ry is
mrprr and R, is an empty set (Line 1 and Line 2). When DBS constructs a
hypothesized policy 7 for move generation, it uses every rule in R, and Ry .
In addition, for any missing rule (i.e., the rule those condition are differ-
ent from any rule’s condition in R. or Ry), we regard it as a probabilistic
rule and approximate its degree of cooperation by Equation 10.1 (Line 17).
These probabilistic rules form the probabilistic rule set R, C t¥p41.

While DBS can insert any newly found deterministic rule in R,, it insert
rules into Ry only when the evidence collection process detects a change of
the other player’s behavior. When it happens, DBS copies all the rules in
R. to R4, and then set R. to an empty set (Line 13).

The default rule set is designed to be rejected: we maintain a violation
count to record the number of violations to any rule in Ry. Every time any
rule in Ry is violated, the violation count increased by 1 (Line 14). Once
the violation count exceeds a rejection threshold, we drop the default rule
set entirely (set it to an empty set) and reset the violation count (Line 15
and Line 16). We also reject R; whenever any rule in R. contradicts any
rule in Ry (Line 15).

We preserve the rules in R, mainly for sake of providing a smooth tran-
sition: we don’t want to convert all deterministic rules to probabilistic rules
at once, as it might suddenly alter the course of our moves, since the move
generator in DBS generates moves according to the current hypothesized
policy only. This sudden change in DBS’s behavior can potentially disrupt
the cooperative relationship with the other player. Furthermore, some of
the rules in R, may still hold, and we don’t want to learn them from scratch.

Notice that symbolic noise detection and temporary tolerance makes use
of the rules in R, but not the rules in Ry, although DBS makes use of the
rules in both R, and R4 when DBS decides the next move (Line 18). We do
not use R,y for symbolic noise detection and temporary tolerance because
when DBS inserts rules into R4, a change of the other player’s behavior
has already occurred—there is little reason to believe that anomalies de-
tected using the rules in Ry are due to noise. Furthermore, we want to turn
off symbolic noise detection and temporary tolerance temporarily when a
change of behavior occurs, in order to identify a whole new set of deter-
ministic rules from scratch.

Is it Accidental or Intentional? A Symbolic Approach to Noisy IPD 19

10.7 The Move Generator in DBS

We devised a simple and reasonably effective move generator for DBS. As
shown in Figure 10.1, the move generator takes the current hypothesized
policy 7 and the current history Heyrrent Whose length is | = |Heyrrentl,
and then decides whether DBS should cooperate in the current iteration.
It is difficult to devise a good move generator, because our move could lead
to a change of the hypothesized policy and complicate our projection of
the long-term payoff. Perhaps, the move generator should take the other
player’s model of DBS into account [Carmel and Markovitch, 1994]. How-
ever, we found that by making the assumption that hypothesized policy
will not change for the rest of the game, we can devise a simple move gen-
erator that generates fairly good moves. The idea is that we compute the
maximum expected score we can possibly earn for the rest of the game, us-
ing a technique that combines some ideas from both game-tree search and
Markov Decision Processes (MDPs). Then we choose the first move in the
set of moves that leads to this maximum expected score as our move for
the current iteration.

To accomplish the above, we consider all possible histories whose prefix
iS Heyrrent as atree. In this tree, each path starting from the root represents
a possible history, which is a sequence of past outcomes in H.yrrent plus
a sequence of possible outcomes in future iterations. Each node on a path
represents the outcome of an iteration of a history. Figure 10.4 shows an
example of such a tree. The root node of the tree represents the outcome
of the first iteration.

Let outcome(S) be the outcome represented by a node S. Let
(So,S1,...,5k) be a sequence of nodes on the path from the root Sy to
Sk. We define the depth of Sk to be k — I, and the history of Sy be
H(Sk) = (outcome(S1), outcome(Sz), ..., outcome(Sk)). S; is called the
current node if the depth of S; is zero; the current node represents the
outcome of the last iteration and H(S;) = Heurrent- As we do not know
when the game will end, we assume it will go for N* more iterations; thus
each path in the tree has length of at most [+ N*.

Our objective is to compute a non-negative real number called the max-
imum expected score E(S) for each node S with a non-negative depth. Like
a conventional game tree search in computer chess or checkers, the maxi-
mum expected scores are defined recursively: the maximum expected score
of a node at depth 7 is determined by the maximum expected scores of its
children nodes at depth i + 1. The maximum expected score of a node S

20 Book Title

of depth N* is assumed to be the value computed by an evaluation func-
tion f. This is a mapping from histories to non-negative real numbers,
such that F(S) = f(H(S)). The maximum expected score of a node S of
depth k, where 0 < k < N¥*, is computed by the mazimizing rule: sup-
pose the four possible nodes after S are Scc, Scp, Spe, and Spp, and
let p be the degree of cooperation predicted by the current hypothesized
policy 7 (i.e., p is the right-hand side of a rule (Cond — p) in 7 such that
H(S) satisfies the condition Cond). Then E(S) = max{Ec(S), Ep(S)},
where Ec(S) = p(ucc + E(Sce)) + (1 —p)(ucp + E(Scp)) and Ep(S) =
p(upc+E(Spc))+(1—p)(upp+E(Spp)). Furthermore, we let move(S) be
the decision made by the maximizing rule at each node 5, i.e., move(S) = C
if Ec(S) > Ep(S) and move(S) = D otherwise. By applying this max-
imizing rule recursively, we obtain the maximum expected score of every
node with a non-negative depth. The move that we choose for the current
iteration is move(S;), where S; is the current node.

First Iteration
(Root Node)

Previous Iteration
(Current Node)

Depth 0

Depth 1

Depth 2

Fig. 10.4 An example of the tree that we use to compute the maximum expected scores.
Each node denotes the outcome of an iteration. The top four nodes constitute a path
representing the current history Heyrrent. The length of Heyrrent is I = 2, and the
maximum depth N* is 2. There are four edges emanating from each node S after the
current node; each of these edges corresponds to a possible outcome of the iteration after
S. The maximum expected scores (not shown) of the nodes with depth 2 are set by an
evaluation function f; these values are then used to calculate the maximum expected
scores of the nodes with depth 1 by using the maximizing rule. Similarly, the maximum
expected scores of the current node is calculated using four maximum expected scores
of the nodes with depth 1.

The number of nodes in the tree increases exponentially with N*. Thus,

Is it Accidental or Intentional? A Symbolic Approach to Noisy IPD 21

the tree can be huge—there are over a billion nodes when N* > 15.
It is infeasible to compute the maximum expected score for every node
one by one. Fortunately, we can use dynamic programming to speed
up the computation. As an example, suppose the hypothesized policy is
= {(C,C) = pcc, (C,D) — pep, (D,C) — ppe, (D,D) — ppp}, and
suppose the evaluation function f returns a constant f,,,, for any history
that satisfies the condition (01, 02), where 01,02 € {C, D}. Then, given our
assumption that the hypothesized policy does not change, it is not hard to
show by induction that all nodes whose histories have the same length and
satisfy the same condition have the same maximum expected score. By
using this property, we construct a table of size 4 X (N* + 2) in which each
entry, denoted by E§1027 stores the maximum expected score of the nodes
whose histories have length [4+ k and satisfy the condition (o01,02), where
01,09 € {C,D}. We also have another table of the same size to record the

decisions the procedure makes; the entry m0102 of this table is the deci-

N1 N1
ELEY = fee, Eopt = fop,

Eg&rl = fpc, and Eggl = fpp. Then the maximum expected scores in

sion being made at Eoloz. Initially, we set

the remaining entries can be computed by the following recursive equation:

E§102 max (p0102 (UCC + Ek+1) + (1 _p0102)(U’CD + Ek+1)
Poj o, (uDC + Ek+1) (1 - p0102)(uDD + EkJrl)) ’

where 01,0, € {C, D}. Similarly, m¥ . = C if (po,0, (ucc + EEE') + (1 —
p0102)(uCD + EkJrl)) (p0102 (UDC + Ek+1) (1 p0102)(uDD + EDJE)l) and
m§102 = D otherwise. If the outcome of the previous iteration is (01, 02),
we pick m? L0, as the move for the current iteration. The pseudocode of

this dynamic programming algorithm is shown in Figure 10.5.

10.8 Competition Results

The 2005 IPD Competition was actually a set of four competitions, each for
a different version of the IPD. The one for the Noisy IPD was Category 2,
which used a noise level of 0.1.

Of the 165 programs entered into the competition, eight of them were
provided by the organizer of the competition. These programs included
ALLC (always cooperates), ALLD (always defects), GRIM (cooperates un-
til the first defection of the other player, and thereafter it always defects),
NEG (cooperate (or defect) if the other player defects (or cooperates) in

Book Title

Procedure MoveGen(m, H)
(pcc,pcp,PpC,PDD) — T
{(ah b1)7 ((12, b2)a R (ak’v bk)} —H
(aOleO) — (ga O)) (9‘7[)) — (*akabk)
(BEH BT BN BNt — (fee, fep, foes fop)
For kK = N* down to 0

For each (01,02) in {(C,C),(C, D), (D,C),(D,D)}

Fflog Poyo» (UCC + Eé'z'l) + (1 - p0102)(uCD + EéJlrjl)

Glgloz “— Pojos (uDC + Elz)t‘l) + (1 _p0102)(uDD + Egzl)

k k k
Eolokg — ma}’:(FologﬂGolo]g)
If £ ., > GG o, thenmg , —C
k k k
If £ ,, <G o, thenmg , D
End For

End For
0
Return m,,

Fig. 10.5 The procedure for computing a recommended move for the current iteration.

In the competition, we set N* =60, fcc =3, fcp =0, fpc =5, and fpp = 1.

the previous iteration), RAND (defects or cooperates with the 1/2 proba-
bility), STFT (suspicious TFT, which is like TFT except it defects in the
first iteration) TFT, and TFTT. All of these strategies are well known in

the literature on IPD.

The remaining 157 programs were submitted by 36 different partici-
pants. Each participant was allowed to submit up to 20 programs. We

submitted the following 20:

e DBS. We entered nine different versions of DBS into the competition,

each with a different set of parameters or different implementation.
The one that performed best was DBSz, which makes use of the exact
set of features we mentioned in this chapter. Versions that have fewer
features or additional features did not do as well.

Learning of Opponent’s Strategy with Forgiveness (LSF). Like
DBS, LSF is a strategy that learns the other player’s strategy during
the game. The difference between LSF and DBS is that LSF does not
make use of symbolic noise detection. It uses the discount frequency
(Equation 10.1) to learn the other player’s strategy, plus a forgiveness
strategy that decides when to cooperate if mutual defection occurs. We
entered one instance of LSF. It placed around the 30’th in three of the

Is it Accidental or Intentional? A Symbolic Approach to Noisy IPD 23

runs and around 70’th in the other two runs. We believe the poor
ranking of LSF is due to the deficiency of using discount frequency
alone as we discussed at the beginning of Section 10.6.

e Tit-for-Tat Improved (TFTI). TFTI is a strategy based on a to-
tally different philosophy from DBS’s. It is not an opponent-modeling
strategy, in the sense that it does not model the other player’s behavior
using a set of rules. Instead, it is a variant of TF'T with a sophisticated
forgiveness policy that aims at overcoming some of the deficiencies of
TFT in noisy environments. We entered ten instantiations of TFTT in
the competition, each with a different set of parameters or some dif-
ferences in the implementation. The best of these, TFTIm, did well in
the competition (see Table 10.1), but not as well as DBS.

Three of the other participants each entered the full complement
of twenty programs: Wolfgang Kienreich, Jia-wei Li, and Perukrishnen
Vytelingum. All three of them appear to have adopted the master-and-
slaves strategy that was first proposed by Vytelingum’s team from the Uni-
versity of Southampton. A master-and-slaves strategy is not a strategy for
a single program, but instead for a team of collaborating programs. One of
the programs in such a team is the master, and the remaining programs are
slaves. The basic idea is that at the start of a run, the master and slaves
would each make a series of moves using a predefined protocol, in order to
identify themselves to each other. From then on, the master program would
always play “defect” when playing with the slaves, and the slave programs
would always play “cooperate” when playing with the master, so that the
master would gain the highest possible payoff at each iteration. Further-
more, a slave would alway plays “defect” when playing with a program
other than the master, in order to try to minimize that player’s score.

Wolfgang Kienreich’s master program was CNGF (CosaNostra Godfa-
ther), and its slaves were 19 copies of CNHM (CosaNostra Hitman). Jia-wei
Li’s master program was IMMO1 (Intelligent Machine Master 01), and its
slaves were IMS02, IMS03, ..., IMS20 (Intelligent Machine Slave n, for
n =02,03,...20). Perukrishnen Vytelingum’s master program was BWIN
(S2Agent1_ZEUS), and its slaves were BLOS2, BLOS3, ..., BLOS20 (like
BWIN, these programs also had longer names based on the names of ancient
Greek gods).

We do not know what strategies the other participants used in their
programs.

24 Book Title

10.8.1 OQwerall Average Scores

Category 2 (IPD with noise) consisted of five runs. Each run was a round-
robin tournament in which each program played with every program, in-
cluding itself. Each program participated in 166 games in each run (recall
that there is one game in which a player plays against itself, which counts
as two games for that player). Each game consisted of 200 iterations. A
program’s score for a game is the sum of its payoffs over all 200 iterations
(note that this sum will be at least 0 and at most 1000). The program’s
total score for an entire run is the sum of its scores over all 166 games. On
the competition’s website, there is a ranking for each of the five runs, each
program is ranked according to its total score for the run.

A program’s average score within a run is its total score for the run
divided by 166. The program’s overall average score is its average over all
five runs, i.e., its total over all five runs divided by 830 = 5 x 166.

The table in Table 10.1 shows the average scores in each of the five runs
of the top twenty-five programs when the programs are ranked by their
overall average scores. Of our nine different versions of DBS, all nine of
them are among the top twenty-five programs, and they dominate the top
ten places. This phenomenon implies that DBS’s performance is insensitive
to the parameters in the programs and the implementation details of an
individual program. The same phenomenon happens to TFTI—nine out of
ten programs using TFTI are ranked between the 11th place and the 25th
place, and the last one is at the 29th place.

10.8.2 DBS versus the Master-and-Slaves Strategies

Recall from Table 10.1: that DBSz placed third in the competition: it lost
only to BWIN and IMMO1, the masters of two master-and-slaves strategies.
DBS does not use a master-and-slaves strategy, nor does it conspire with
other programs in any other way—but in contrast, BWIN’s and IMMO01’s
performance depended greatly on the points fed to them by their slaves. In
particular,

(1) If we average the score of each master with the scores of its slaves, we get
379.9 for BWIN and 351.7 for IMMO1, both of which are considerably
less than DBSz’s score of 408.

(2) A more extensive analysis [Au and Nau, 2005] shows that if the size of
each master-and-slaves team had been limited to less than or equal to
10, DBSz would have outperformed BWIN and IMMO1 in the compe-

Is it Accidental or Intentional? A Symbolic Approach to Noisy IPD 25

Table 10.2 Percentages of different interactions. “All but Mé&S”
means all 105 programs that did not use master-and-slaves strate-
gies, and “all” means all 165 programs in the competition.

Player 1|Player 2 (c,C) (¢,D) (D,C) (D,D)
BWIN |BWIN’s slaves | 12% 5% 64% 20%
IMMO1 [IMMO1’s slaves| 10% 6% 47% 38%
CNGF|CNGF’s slaves | 2% 10% 10% 7%
BWIN'’s slaves | all but ME&S 5% 9% 24% 62%
IMMO1’s slaves | all but M€S 7% 9% 23% 61%
CNGPEF’s slaves| all but Mé&S 4% 8% 24% 64%
TFT| all but MES 33% 20% 20% 27%
DBSz | all but ME&S 54% 15% 13% 19%
TFTT| all but MES 55% 20% 11% 14%
TFT | all 23% 19% 16% 42%
DBSz| all 36% 14% 11% 39%
TEFTT| all 38% 21% 10% 31%
all but ME&S| all but MES 31% 19% 19% 31%
all| all 13% 16% 16% 55%

tition, even without averaging the score of each master with its slaves.

The reason for the above two phenomena is that the master-and-slaves
strategies did not cooperate the other players as much as they did amongst
themselves. In particular, Table 10.2 gives the percentages of each of the
four possible interactions when any program from one group plays with any
program from another group. Note that:

e When BWIN and IMMO1 play with their slaves, about 64% and 47% of
the interactions are (D, C), but when non-master-and-slaves strategies
play with each other, only 19% of the interactions are (D, C).

e When the slave programs play with non-master-and-slaves programs,
over 60% of interactions are (D, D), but when non-master-and-slaves
programs play with other non-master-and-slaves programs, only 31%
of the interactions are (D, D).

e The master-and-slaves strategies decrease the overall percentage of
(C,C) from 31% to 13%, and increase the overall percentage of (D, D)
from 31% to 55%.

10.8.3 A comparison between DBSz, TFT, and TFTT

Next, we consider how DBSz performs against TFT and TFTT. Table 10.2
shows that when playing with another cooperative player, TF'T cooperates
((C, C) in the table) 33% of the time, DBSz does so 54% of the time, and

26 Book Title

TFTT does so 55% of the time. Furthermore, when playing with a player
who defects, TFT defects ((D, D) in the table) 27% of the time, DBSz
does so 19% of the time, and TFTT does so 14% of the time. From this,
one might think that DBSz’s behavior is somewhere between TFT’s and
TFTT’s.

But on the other hand, when playing with a player who defects, DBSz
cooperates ((C,D) in the table) only 15% of the time, which is a lower
percentage than for TFT and TFTT (both 20%). Since cooperating with
a defector generates no payoff, this makes TFT and TFTT perform worse
than DBSz overall. DBSz’s average score was 408 and it ranked 3rd, but
TFTT’s and TFT’s average scores were 388.4 and 388.2 and they ranked
30th and 33rd.

10.9 Related Work

Early studies of the effect of noise in the Iterated Prisoner’s Dilemma fo-
cused on how TFT, a highly successful strategy in noise-free environments,
would do in the presence of noise. TFT is known to be vulnerable to noise;
for instance, if two players use TFT at the same time, noise would trigger
long sequences of mutual defections [Molander, 1985]. A number of people
confirmed the negative effects of noise to TFT [Molander, 1985; Bendor,
1987; Mueller, 1987; Axelrod and Dion, 1988; Nowak and Sigmund, 1990;
Bendor et al., 1991]. Axelrod found that TFT was still the best decision
rule in the rerun of his first tournament with a one percent chance of mis-
perception [Axelrod, 1984, page 183], but TFT finished sixth out of 21
in the rerun of Axelrod’s second tournament with a 10 percent chance of
misperception [Donninger, 1986]. In Competition 2 of the 2005 IPD com-
petition, the noise level was 0.1, and TFT’s overall average score placed it
33rd out of 165.

The oldest approach to remedy TFT’s deficiency in dealing with noise
is to be more forgiving in the face of defections. A number of studies found
that more forgiveness promotes cooperation in noisy environments [Bendor
et al., 1991; Mueller, 1987]. For instance, Tit-For-Two-Tats (TFTT), a
strategy submitted by John Maynard Smith to Axelrod’s second tourna-
ment, retaliates only when it receives two defections in two previous itera-
tions. TFTT can tolerate isolated instances of defections caused by noise
and is more readily to avoid long sequences of mutual defections caused by
noise. However, TF'TT is susceptible to exploitation of its generosity and

Is it Accidental or Intentional? A Symbolic Approach to Noisy IPD 27

was beaten in Axelrod’s second tournament by TESTER, a strategy that
may defect every other move. In Competition 2 of the 2005 IPD Competi-
tion, TFTT ranked 30—a slightly better ranking than TFT’s. In contrast
to TFTT, DBS can tolerate not only an isolated defection but also a se-
quence of defections caused by noise, and at the same time DBS monitors
the other player’s behavior and retaliates when exploitation behavior is
detected (i.e., when the exploitation causes a change of the hypothesized
policy, which initially is TFT). Furthermore, the retaliation caused by ex-
ploitation continues until the other player shows a high degree of remorse
(i.e., cooperations when DBS defects) that changes the hypothesized policy
to one with which DBS favors cooperations instead of defections.

[Molander, 1985] proposed to mix TFT with ALLC to form a new strat-
egy which is now called Generous Tit-For-Tat (GTFT) [Nowak and Sig-
mund, 1992]. Like TFTT, GTFT avoids an infinite echo of defections by
cooperating when it receives a defection in certain iterations. The differ-
ence is that GTFT forgives randomly: for each defection GTFT receives it
randomly choose to cooperate with a small probability (say 10%) and defect
otherwise. DBS, however, does not make use of forgiveness explicitly as in
GTFT; its decisions are based entirely on the hypothesized policy that it
learned. But temporary tolerance can be deemed as a form of forgiveness,
since DBS does not retaliate immediately when a defection occurs in a mu-
tual cooperation situation. This form of forgiveness is carefully planned
and there is no randomness in it.

Another way to improve TFT in noisy environments is to use contrition:
unilaterally cooperate after making mistakes. One strategy that makes use
of contrition is Contrite TFT (CTFT) [Sugden, 1986; Boyd, 1989; Wu and
Axelrod, 1995, which does not defect when it knows that noise has occurred
and affected its previous action. However, this is less useful in the Noisy
IPD since a program does not know whether its action is affected by noise
or not. DBS does not make use of contrition, though the effect of temporary
tolerance resembles contrition.

A family of strategies called “Pavlovian” strategies, or simply called
Pavlov, was found to be more successful than TFT in noisy environ-
ments [Kraines and Kraines, 1989; Kraines and Kraines, 1993; Kraines
and Kraines, 1995; Nowak and Sigmund, 1993]. The simplest form of
Pavlov is called Win-Stay, Lose-Shift [Nowak and Sigmund, 1993], be-
cause it cooperates only after mutual cooperation or mutual defection,
an idea similar to Simpleton [Rapoport and Chammah, 1965]. When
an accidental defection occurs, Pavlov can resume mutual cooperation

28 Book Title

in a smaller number of iterations than TFT [Kraines and Kraines, 1989;
Kraines and Kraines, 1993]. Pavlov learns by conditioned response through
rewards and punishments; it adjusts its probability of cooperation accord-
ing to the previous outcome. Like Pavlov, DBS learns from its past experi-
ence and makes decisions accordingly. DBS, however, has an intermediate
step between learning from experience and decision making: it maintains a
model of the other player’s behavior, and uses this model to reason about
noise. Although there are probabilistic rules in the hypothesized policy,
there is no randomness in its decision making process.

For readers who are interested, there are several surveys on the Iterated
Prisoner’s Dilemma with noise [Axelrod and Dion, 1988; Hoffmann, 2000;
O’Riordan, 2001; Kuhn, 2001].

The use of opponent modeling is common in games of imperfect in-
formation such as Poker [Billings et al., 1998; Barone and While, 1998;
Barone and While, 1999; Barone and While, 2000; Davidson et al., 2000;
Billings et al., 2003] and RoShamBo [Egnor, 2000]. One entry in Axel-
rod’s original IPD tournament used opponent modeling, but it was not
successful. There have been many works on learning the opponent’s
strategy in the non-noisy IPD [Dyer, 2004; Hingston and Kendall, 2004;
Powers and Shoham, 2005]. By assuming the opponent’s next move de-
pends only on the outcomes of the last few iterations, these works model
the opponent’s strategy as probabilistic finite automata, and then use var-
ious learning methods to learn the probabilities in the automata. For ex-
ample, [Hingston and Kendall, 2004] proposed an adaptive agent called an
opponent modeling agent (OMA) of order n, which maintains a summary
of the moves made up to n previous iterations. Like DBS, OMA learns the
probabilities of cooperations of the other player in different situations using
an updating rule similar to the Equation 10.1, and generates a move based
on the opponent model by searching a tree similar to that shown in Fig-
ure 10.4. The opponent model in [Dyer, 2004] also has a similar construct.
The main way they differ from DBS is how they learn the other player’s
strategy, but there are several other differences: for example, the tree they
used has a maximum depth of 4, whereas ours has a depth of 60.

The agents of both [Hingston and Kendall, 2004] and [Dyer, 2004]
learned the other player’s strategy by exploration—deliberately making
moves in order to probe the other player’s strategy. The use of exploration
for learning opponent’s behaviors was studied by [Carmel and Markovitch,
1998], who developed a lookahead-based exploration strategy to balance

Is it Accidental or Intentional? A Symbolic Approach to Noisy IPD 29

between exploration and exploitation and avoid making risky moves during
exploration. [Hingston and Kendall, 2004] and [Dyer, 2004] used a different
exploration strategy than [Carmel and Markovitch, 1998]; [Hingston and
Kendall, 2004] introduced noise to 1% of their agent’s moves (they call this
method the trembling hand), whereas the agent in [Dyer, 2004] makes de-
cisions at random when it uses the opponent’s model and finds a missing
value in the model. Both of their agents used a random opponent model
at the beginning of a game.

DBS does not make deliberate moves to attempt to explore the other
player’s strategy, because we believe that this is a high-risk, low-payoff
business in IPD. We believe it incurs a high risk because many programs in
the competition are adaptive; our defections made in exploration may affect
our long-term relationship with them. We believe it has a low payoff because
the length of a game is usually too short for us to learn any non-trivial
strategy completely. Moreover, the other player may alter its behavior at
the middle of a game, and therefore it is difficult for any learning method
to converge. It is essentially true in noisy IPD, since noise can provoke the
other player (e.g., GRIM). Furthermore, our objective is to cooperate with
the other players, not to exploit their weakness in order to beat them. So as
long as the opponent cooperates with us there is no need to bother with their
other behaviors. For these reasons, DBS does not aim at learning the other
player’s strategy completely; instead, it learns the other player’s recent
behavior, which is subject to change. In contrast to the OMA strategy
described earlier in this section, most of our DBS programs cooperated
with each other in the competition.

Our decision-making algorithm combines elements of both minimax
game tree search and the value iteration algorithm for Markov Decision
Processes. In contrast to [Carmel and Markovitch, 1994], we do not model
the other player’s model of our strategy; we assume that the hypothesized
policy does not change for the rest of the game. Obviously this assump-
tion is not valid, because our decisions can affect the decisions of the other
players in the future. Nonetheless, we found that the moves returned by
our algorithm are fairly good responses. For example, if the other player
behaves like TFT, the move returned by our algorithm is to cooperate re-
gardless of the previous outcomes; if the other player does not behave like
TFT, our algorithm is likely to return defection, a good move in many
situations.

To the best of our knowledge, ours is the first work on using opponent
models in the IPD to detect errors in the execution of another agent’s

30 Book Title

actions.

10.10 Summary and Future Work

For conflict prevention in noisy environments, a critical problem is to distin-
guish between situations where another player has misbehaved intentionally
and situations where the misbehavior was accidental. That is the problem
that DBS was formulated to deal with. DBS’s impressive performance in
the 2005 Iterated Prisoner’s Dilemma competition occurred because DBS
was better able to maintain cooperation in spite of noise than any other
program in the competition.

To distinguish between intentional and unintentional misbehaviors, DBS
uses a combination of symbolic noise detection plus temporary tolerance: if
an action of the other player is inconsistent with the player’s past behavior,
we continue as if the player’s behavior has not changed, until we gather
sufficient evidence to see whether the inconsistency was caused by noise or
by a genuine change in the other player’s behavior.

Since clarity of behavior is an important ingredient of long-term coop-
eration in the IPD, most IPD programs have behavior that follows clear
deterministic patterns. The clarity of these patterns made it possible for
DBS to construct policies that were good approximations of the other play-
ers’ strategies, and to use these policies to fend off noise.

We believe that clarity of behavior is also likely to be important in
other multi-agent environments in which agents have to cooperate with
each other. Thus it seems plausible that techniques similar to those used
in DBS may be useful in those domains.

In the future, we are interested in studying the following issues:

e The evidence collection process takes time, and the delay may invite
exploitation. For example, the policy of temporary tolerance in DBS
may be exploited by a “hypocrite” strategy that behaves like TFT most
of the time but occasionally defects even though DBS did not defect
in the previous iteration. DBS cannot distinguish this kind of inten-
tional defection from noise, even though DBS has built-in mechanism
to monitor exploitation. We are interested to seeing how to avoid this
kind of exploitation.

e In multi-agent environments where agents can communicate with each
other, the agents might be able to detect noise by using a predefined
communication protocol. However, we believe there is no protocol that

Is it Accidental or Intentional? A Symbolic Approach to Noisy IPD 31

is guaranteed to tell which action has been affected by noise, as long as
the agents cannot completely trust each other. It would be interesting
to compare these alternative approaches with symbolic noise detection
to see how symbolic noise detection could enhance these methods or
vice versa.

The type of noise in the competition assumes that no agent know
whether an execution of an action has been affected by noise or not.
Perhaps there are situations in which some agents may be able to ob-
tain partial information about the occurrence of noise. For example,
some agents may obtain a plan of the malicious third party by counter-
espionage. We are interested to see how to utilize these information
into symbolic noise detection.

It would be interesting to put DBS in an evolutionary environment to
see whether it can survive after a number of generations. Is it evolu-
tionarily stable?

Acknowledgment. This work was supported in part by ISLE contract
0508268818 (subcontract to DARPA’s Transfer Learning program), UC
Berkeley contract SA451832441 (subcontract to DARPA’s REAL program),
and NSF grant 11S0412812. The opinions in this paper are those of the au-
thors and do not necessarily reflect the opinions of the funders.

This work is based on an earlier work: Accident or Intention: That Is

the Question (in the Noisy Iterated Prisoner’s Dilemma), in AAMAS’06
(May 8-12 2006) (©ACM, 2006.

We would like to thank the anonymous reviewers for their comments.

32

Book Title

Bibliography

Au, T.-C. and Nau, D. (2005). An Analysis of Derived Belief Strategy’s Per-
formance in the 2005 Iterated Prisoner’s Dilemma Competition. Technical
Report CSTR~4756/UMIACS-TR-2005-59, University of Maryland, College
Park.

Axelrod, R. (1984). The Evolution of Cooperation. Basic Books.

Axelrod, R. (1997). The Complezity of Cooperation: Agent-Based Models of
Competition and Collaboration. Princeton University Press.

Axelrod, R. and Dion, D. (1988). The further evolution of cooperation. Science,
242(4884):1385-1390.

Barone, L. and While, L. (1998). Evolving adaptive play for simplified poker. In
Proceedings of IEE International Conference on Computational Intelligence
(ICEC-98), pages 108-113.

Barone, L. and While, L. (1999). An adaptive learning model for simplified
poker using evolutionary algorithms. In Proceedings of the Congreess of
Evolutionary Computation (GECCO-1999), pages 153-160.

Barone, L. and While, L. (2000). Adaptive learning for poker. In Proceedings of
the Genetic and Evolutionary Computation Conference, pages 566-573.

Bendor, J. (1987). In good times and bad: Reciprocity in an uncertain world.
American Journal of Politicial Science, 31(3):531-558.

Bendor, J., Kramer, R. M., and Stout, S. (1991). When in doubt... cooperation in
a noisy prisoner’s dilemma. The Journal of Conflict Resolution, 35(4):691—
719.

Billings, D., Burch, N., Davidson, A., Holte, R., and Schaeffer, J. (2003). Approx-
imating game-theoretic optimal strategies for full-scale poker. In IJCAI,
pages 661-668.

Billings, D., Papp, D., Schaeffer, J., and Szafron, D. (1998). Opponent modeling
in poker. In AAAI pages 493-499.

Boyd, R. (1989). Mistakes allow evolutionary stability in the repeated prisoner’s
dilemma game. Journal of Theoretical Biology, 136:47-56.

Carmel, D. and Markovitch, S. (1994). The M* algorithms: Incorporating oppo-
nent models into adversary search. Technical Report CIS9402, Computer
Science Department Technion.

33

34 Book Title

Carmel, D. and Markovitch, S. (1998). How to explore your opponent’s strategy
(almost) optimally. In Proceedings of the Third International Conference
on Multi-Agent Systems, pages 64-71.

Davidson, A., Billings, D., Schaeffer, J., and Szafron, D. (2000). Improved oppo-
nent modeling in poker. In Proceedings of the 2000 International Conference
on Artificial Intelligence (ICAI’2000), pages 1467-1473.

Donninger, C. (1986). Paradozical Effects of Social Behavior, chapter Is it always
efficient to be nice?, pages 123-134. Heidelberg: Physica Verlag.

Dyer, D. W. (2004). Opponent modelling and strategy evolution in the iter-
ated prisoner’s dilemma. Master’s thesis, School of Computer Science and
Software Engineering, The University of Western Australia.

Egnor, D. (2000). Iocaine powder explained. ICGA Journal, 23(1):33-35.

Hingston, P. and Kendall, G. (2004). Learning versus evolution in iterated pris-
oner’s dilemma. In Proceedings of the Congress on Evolutionary Computa-
tion (CEC’04).

Hoffmann, R. (2000). Twenty years on: The evolution of cooperation revisited.
Journal of Artificial Societies and Social Simulation, 3(2).

Kraines, D. and Kraines, V. (1989). Pavlov and the prisoner’s dilemma. Theory
and Decision, 26:47-79.

Kraines, D. and Kraines, V. (1993). Learning to cooperate with pavlov an adap-
tive strategy for the iterated prisoner’s dilemma with noise. Theory and
Decision, 35:107-150.

Kraines, D. and Kraines, V. (1995). Evolution of learning among pavlov strategies
in a competitive environment with noise. The Journal of Conflict Resolu-
tion, 39(3):439-466.

Kuhn, S. T.
(2001). Prisoner’s dilemma. http://karmak.org/archive/2002/11/Prisoner’s
Dilemma.html Stanford Encyclopedia of Philosophy.

Molander, P. (1985). The optimal level of generosity in a selfish, uncertain envi-
ronment. The Journal of Conflict Resolution, 29(4):611-618.

Mueller, U. (1987). Optimal retaliation for optimal cooperation. The Journal of
Conflict Resolution, 31(4):692-724.

Nowak, M. and Sigmund, K. (1990). The evolution of stochastic strategies in the
prisoner’s dilemma. Acta Applicandae Mathematicae, 20:247-265.

Nowak, M. and Sigmund, K. (1993). A strategy of win-stay, lose-shift that out-
performs tit-for-tat in the prisoner’s dilemma game. Nature, 364:56—58.

Nowak, M. A. and Sigmund, K. (1992). Tit for tat in heterogeneous populations.
Nature, 355:250-253.

O’Riordan, C. (2001). Iterated prisoner’s dilemma: A review. Technical Report
NUIG-IT-260601, Department of Information Technology, National Univer-
sity of Ireland, Galway.

Powers, R. and Shoham, Y. (2005). Learning against opponents with bounded
memory. In IJCAL

Rapoport, A. and Chammah, A. M. (1965). Prisoner’s dilemma. University of
Michigan Press.

Sugden, R. (1986). The economics of rights, co-operation and welfare. Blackwell.

Bibliography 35

Wu, J. and Axelrod, R. (1995). How to cope with noise in the iterated prisoner’s
dilemma. Journal of Conflict Resolution, 39:183—-189.

