
Near-Optimal Play in a Social Learning Game

Ryan Carr, Eric Raboin, Austin Parker, Dana Nau
Department of Computer Science, University of Maryland

College Park, MD, 20742, USA
{carr2,eraboin,austinjp,nau}@cs.umd.edu

Abstract

We provide an algorithm to compute near-optimal strategies
for the Cultaptation social learning game. We show that the
strategies produced by our algorithm are near-optimal, both
in their expected utility and their expected reproductive suc-
cess. We show how our algorithm can be used to provide
insight into evolutionary conditions under which learning is
best done by copying others, versus the conditions under
which learning is best done by trial-and-error.

Keywords: Evolutionary Games, Social Learning, Cultap-
tation, Lookahead Algorithms, Near-Optimal Strategies

Introduction
Social learning, in which members of a society learn by ob-
serving the behavior of others, is an important foundation
for human culture, and is observed in many other species
as well. It seems natural to assume that social learning
evolved due to the inherent superiority of copying others’
success rather than learning on one’s own via trial-and-
error innovation. However, there has also been substantial
work questioning this intuition (Boyd and Richerson 1995;
Laland 2004; Barnard and Sibly 1981; Nettle 2006; Gi-
raldeau, Valone, and Templeton 2002). For example, blindly
copying information from others is not useful if the informa-
tion is wrong—or if it once was right but has since become
outdated. Under what conditions does social learning out-
perform trial-and-error learning, and what kinds of social-
learning strategies are likely to perform well?

One attempt to gain insight into these questions is an evo-
lutionary simulation called The Social Learning Strategies
Tournament (Boyd et al. 2008),1 which was created in or-
der to study the conditions under which communication out-
performs trial-and-error and vice-versa. More than 100 re-
searchers worldwide have entered strategies in the tourna-
ment, vying for a e10,000 prize. To date, the tournament’s
organizers have not yet finished evaluating the strategies.

Moves in the social learning game are highly simplified
analogs of the following real-world activities: spending time
and resources to learn something new, learning something
from another player, and exploiting learned knowledge. By

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1NOTE: None of us is affiliated with the tournament in any way.

developing a formal way of analyzing this set of activities,
we hope it will allow us to perform case studies, and to iden-
tify how different patterns of behavior fare in different envi-
ronments.

This paper makes the following contributions to knowl-
edge about the social learning game. First, we have de-
rived a formula for approximating (to within any ε > 0)
the expected utility of a strategy in the social learning game.
Second, we have produced an algorithm that incorporates
a lookahead search to find near-optimal strategies. Third,
we have shown that locally optimal moves are not necessar-
ily optimal in the long term, but one can derive an upper
bound on how many levels of lookahead are needed to find
a globally optimal move. Fourth, we have given proofs of
correctness and big-O runtime analyses for our algorithms.

Definitions
This section gives a more detailed description of the social
learning game, adapted from (Boyd et al. 2008). The game
is an n-player round based game, where one move is made
by each agent each round. No agent knows of any other
agent’s moves at any point in the game except through the
observation action specified below. The moves available to
each agent are: to innovate (Inv), to observe (Obs), or to ex-
ploit one of mvs possible moves (X[1], . . . , X[mvs]). Each
Inv and Obs move informs the agent what the utility would
be for one of the mvs exploit moves, while each exploit
move X[i] provides utility. A player may only make an ex-
ploit move X[i] that she has learned of through an innovate
or an observe move.

To further complicate things, on round j of game play
each move’s utility will be replaced with another utility with
probability c(j). The function c specifies the probability
of change for every round of the game. c is provided as a
parameter to the game. These changes are invisible to the
agents playing the game until the agent interacts with the
changed move. For instance: if a move’s value happens to
change on the same round it is exploited, the player receives
the new utility, and is informed of the change.

The number of agents in the game will be plrs. Each
agent ai can make two other moves apart from the mvs ex-
ploit moves: innovate (Inv) and observe (Obs). Upon mak-
ing an innovate move, the agent discovers the value of an ex-
ploit move X[i] chosen at random from the set of all exploit



moves that the agent doesn’t already have information about.
When an agent already knows of all exploit moves then Inv
is illegal, and indeed undesirable (when there is nothing left
to innovate, why innovate?). The agent receives no utility on
any round where she makes an Inv move. Upon making an
observe move, an agent will get to observe the value received
by some other agent who made any exploit move on the last
round. Agents receive no utility for observe moves, nor any
information other than the move innovated and its value: the
agent being observed, for instance, is unknown. If no other
agent made an exploit move last round (no X[i] moves were
made), the observing agent receives no information.

Innovate and observe moves are essential precursors to
exploitation: it is against the rules to make any exploitation
move X[i] unless that move has been discovered via an ob-
servation or an innovation.

Example 1. Consider two strategies: the innovate-once
strategy (hereafter I1), which innovates exactly once and ex-
ploits that innovated move (whatever it is) for the rest of the
game, and the innovate-twice-observe-once strategy (here-
after I2O), which innovates twice, observes once, and ex-
ploits the highest valued move of the moves discovered for
the rest of the game. For simplicity of exposition, we al-
low only four exploit moves: X[1], X[2], X[3], and X[4];
and exactly two agents, one I1 and one I2O. We suppose a
uniform distribution over [1, 10] (with mean 5) and a prob-
ability of change of 0 on every round. The initial (randomly
chosen) utilities for the exploit moves are: X[1] : 3, X[2] :
5, X[3] : 8, X[4] : 5. On the very first move, I1 will make an
innovate, which we suppose gives I1 the value of moveX[1].
On every sequential move, I1 will make move X[1], exploit-
ing the initial investment. If the agent dies k rounds latter,
then the history of moves and utilities will be that given in
Table 1; giving a utilities of 3·(k−1) and a per-round utility
of 3k−1

k .
In contrast, I2O will make an innovate, giving the value

for move X[3]: 8, then makes another innovate giving the
value for move X[4]: 5, and finally observes. On the second
round, I1 made move X[1], and since these are the only two
agents, this was the only exploit move made. Therefore I2O
observes that another agent got a utility of 3 from moveX[1]
last round. On move 4, I2O’s then knows of moves X[1],
X[3], and X[4], with utilities of 3, 8, and 5, respectively.
Since the probability of change is 0, the obvious best move
is move 3, which I2O makes for the rest of her life. The utility
of I2O on round k is 8·(k−3), making the total utility 8k−3

k ,
so for rounds 2 to 4, I2O will actually have a worse utility
than I1, while after round 4, the utility of I2O will be higher.

Formally, all of the information each agent receives on
each round can be described by a triple 〈act,mv, v〉, where
act is whatever action the agent chose to perform on that
round (Inv, Obs, or some X[i]), mv is an exploit move or
a null value (X[1], . . . , X[mvs], ∅), and v is the utility ob-
served or received. While act is chosen by the agent,mv and
v are percepts the agent receives in response to that choice.
When act is Inv orObs, then v is the utility of exploit move
mv. If act is Obs and no agent made an exploit move last
round, then there is no exploit move to be observed, repre-

sented with mv = ∅ and v = 0. When act is some X[i],
then mv will be the same X[i] and v will be the utility the
agent receives that move. We call a sequence of such triples
h = 〈act1,mv1, po1〉, . . . , 〈actk,mvk, pok〉 a history.

Example 2. The history for I2O in Example 1 is:

〈I,X[3], 8〉, 〈I,X[4], 5〉, 〈O,X[1], 3〉, 〈X[3], X[3], 8〉, . . .

To concatenate a new triple onto the end of a history, we
use the ◦ symbol: i.e. h ◦ 〈act,mv, po〉 is the history h
concatenated with the triple 〈act,mv, po〉. Further, for h =
h1 ◦ · · · ◦ hk, we let |h| be k and h1,...,j be the subhistory
h1 ◦ · · · ◦ hj . We denote the empty (initial) history by the
symbol h∅.

The Cultaptation game uses 100 agents (plrs = 100),
each with one of two strategies being compared against one
another. On each round, each agent has a 2% chance of
dying. As such, we also include a parameter d in our formu-
lation representing the probability of death. Upon death, an
agent is removed from the game and replaced either through
“reproduction” or “mutation,” by a new agent whose strat-
egy is chosen in the manner described below. Mutation hap-
pens 2% of the time, and reproduction happens 98% of the
time. When reproduction occurs, the social learning strat-
egy used by the newborn agent is chosen from the strategies
of agents currently alive with a probability proportional to
their average per-round utility (the utility gained by an agent
divided by the number of rounds the agent has lived). The
agent with the highest average per-round utility is thus the
most likely to propagate its strategy on reproduction.

Example 3. Again looking at the sequences of moves in Ta-
ble 1, we see that both agents would have equal chance of
reproducing on round 1. However, on round 2 I1 has a per-
round utility of 1.5, while I2O has a per-round utility of 0,
meaning I1 gets 100% of the reproductions occurring on
round 2. Round three is the same, but on round 4 I1 has
a per round utility of 2.25 and I2O has a per-round utility
of 2. This means that I1 gets 100 · 2.25/4.25 = 53% of
the reproductions and I2O gets 100 · 2/4.25 = 47% of the
reproductions on round 4.

When a “mutation” occurs, however, the new agent’s
strategy is chosen at random from the strategies currently
playing. For instance, if there were a cultaptation game pit-
ting strategies I1 and I2O against one another, then a new
mutated agent would be equally likely to have either strategy
I1 or I2O, even if there were no living agents with strategy
I1. “Mutation” in this game refers only to the ability of a new
agent to have one of several pre-specified strategies – it does
not allow for changes to an agent’s codebase such as might
be expected from the use of the word “mutation.” Through
mutation, new strategies can be introduced into otherwise
homogeneous populations. However, it is through reproduc-
tion that agents have the chance to spread their strategy. It is
through reproduction that a social learning strategy can win
the game.

If we have two social learning strategies Sa and Sb, then at
any round in the social learning game, there will be a number
na of agents using strategy Sa, and a number nb of agents



Round # 1 2 3 4 5 . . . k

I1’s move Inv X[1] X[1] X[1] X[1] . . . X[1]
I1’s util 0 3 6 9 12 . . . 3(k − 1)

Per round 0 1.5 2 2.25 2.4 . . . 3(k − 1)/k
I2O’s move Inv Inv Obs X[3] X[3] . . . X[3]
I2O’s util 0 0 0 8 16 . . . 8(k − 3)
Per round 0 0 0 2 3.2 . . . 8(k − 3)/k

Table 1: Move sequences from Example 1, and their utilities.

using strategy Sb. A strategy Sa wins the Cultaptation so-
cial learning game if after 7,500 rounds of play, the average
value of na on the next 2,500 rounds is larger than the aver-
age value of nb on the next 2,500 rounds.

For the purposes of this paper, we concern ourselves with
the asymptotic values for na and nb: that is, as the round
number approaches infinity, which is larger? If na, then Sa
is the better strategy. If nb, then Sb is the better strategy.

The only way an agent may affect na or nb is through
reproduction. We will show in Section that any strategy
maximizing an agent’s expected per-round utility will also
maximize its reproduction. We will therefore focus on com-
puting the expected per-round utility.

Formal Model
In this section we introduce a formal mathematical model of
the game, culminating with a formal definition of the prob-
lem we are solving. Figure 1 is a glossary of the notation
used in this paper.

We use r for the round number and E(h) to specify the
number of exploit moves available after history h. Notice
that after all exploit moves X[1], . . . , X[mvs] have been in-
novated or observed in a history h, then E(h) = mvs and
innovate moves become illegal.

We model the payoffs supplied for exploit moves X[i] by
a probability distribution π parameterized by round. π(v|i)
is the probability of v being set as the payoff for an exploit
move on round i. If no moves change on round i, then
π(v|i) = 0 for all v. If we let πInv(v|i) be the probabil-
ity that value v is innovated on round i, it can be defined
recursively in terms of c and π as:

πInv(v|i) =

{
π(v|0), if i=0,
c(i) · π(v|i)+

(1− c(i)) · πInv(v|i− 1), otherwise.

That is, initially the chance of innovating a value v is the
same as that value being chosen for an exploit move. On
later rounds (i > 0) the chance of innovating v is the chance
that a move’s value changed to v on the current round, plus
the chance that a move’s value was v on the previous round
and it did not change this round.

We assume a provided distribution πObs that gives the
probability of value v being observed by an observe move,
and we allow πObs to dependent upon the current history.
For instance πObs(v|h) will be the probability of value v be-
ing observed after history h.

Finally, we set V to all move values that may occur with
non-zero probability:

V = {v|∃i, πInv(v|i) > 0 ∨ ∃h, πObs(v|h) > 0}.
We require the set V to have finite cardinality.

Transition Probabilities. A transition probability func-
tion P (h, h′|a) defines the probability of transitioning from
history h to history h′ in the next round if the agent performs
action a. This function can be defined for any state transi-
tion, given what we know about the moves in the game.

If the action a is an innovate, then

P (h, h ◦ 〈Inv,m, v〉|Inv) = (1){
πInv(v|r)/(mvs− E(h)) If 〈−,m,−〉 is not in h,

0 otherwise.
(2)

Recall that an agent cannot innovate move m if it is al-
ready in the repertoire. Observation moves are not subject
to the same restriction, so if a is an observe, then

P (h, h ◦ 〈Obs,m, v〉|Obs) = πObs(v|h)/mvs (3)

Finally, if a is an exploit, and v is the last known value for
move X[m] such that 〈−,m, v〉 is the most recent tuple of
form 〈−,m,−〉 in h, then setting last to the round number
of that tuple, we have:

P (h,h ◦ 〈X[m],m, v〉|X[m]) =
|h|∏

k=last

(1− c(k)) +
|h|∑

k=last

c(k)π(v, k)[
|h|∏
i=k

(1− c(i))]

That is, the probability of it not changing at all, plus the
probability that it most recently changed to v and has not
changed since. If v is not the last known value for X[m],
then

P (h, h ◦ 〈X[m],m,v〉|X[m]) =
|h|∑

k=last

c(k)π(v, k)[
|h|∏
i=k

(1− c(i))]

which is similar, but assumes that the value must have
changed at least once.
P (h, h′|a) will give a probability of zero if the transition

from h to h′ is nonsensical, such as when h′ is not one move
longer than h, or when the extra move in h′ is not a, or when
h and h′ do not agree on all information in h.



plrs Number of agents in the environment.
r Number of the round, ranging from 0 to∞.
c(r) The probability of change on round r.
d The probability of death on each round.
h A history of an agent, h = h1, . . . , hk.
〈act,mv, po〉 The action, move, and utility of a move in the history.
E(h) Number of exploitable moves given history h.
mvs Number of exploit moves in the game.
π(r) The probability distribution over generated move values on round r.
πObs(v|h) Prob. of observing value v with history h.
πInv(v|r) Prob. of innovating value v on round r.
V The set of potential utility values.
P (h, h′|act) Probability of transitioning from history h to history h′ with action act.
L(h) Probability of being alive with history h.
T Set of all tuples: 〈act,mv, v〉.

Figure 1: A glossary of notation used in this paper.

Utility Function: A utility functionU(〈act,mv, v〉) defines
the utility gleaned on triple 〈act,mv, v〉.

U(〈act,mv, v〉) =
{
v If ∃i, act = X[i]
0 otherwise. (4)

Notice that U(·) is only non-zero on exploit moves.

Strategy Representation. A strategy S is defined as a
function mapping each history h ∈ H to the agent’s next ac-
tion S(h) ∈ {Inv,Obs,X[1], . . . , X[mvs]}. For instance,
the strategy I1 from Example 1 is defined by the function:

SI1(h) =
{

Inv If h is empty.
X[i] For h = 〈Inv,X[i], v〉, . . .

In this paper we will deal with partially specified strate-
gies. A partially specified strategy is defined by a fi-
nite set PS of history move pairs (PS ⊂ H ×
{Inv,Obs,X[1], . . . , X[mvs]}). The set PS defines a
strategy in the following way:

SPS(h) =
{

m If (h,m) ∈ PS,
rand(h) otherwise

where rand(h) is a randomly chosen move legal in h.
Partially specified strategies have the advantage of being

guaranteed to be finitely representable.

Expected Per-Round Utility. The per-round utility (PRU)
of a history h = h1 ◦ · · · ◦ hk is defined to be the sum of
the utility acquired in that history divided by the history’s
length:

PRU(h) = (1/k)
∑

〈act,mv,v〉=hi

U(〈act,mv, v〉

The probability of a given history occurring depends on
the strategy S the associated agent uses. For h = h1, . . . , hk
it is the product of each hi+1 following the sub-history

h1,...,i, or:

P (h|S) =
k−1∏
i=1

P ((h1,...,i), (h1,...,i) ◦ hi+1|S((h1,...,i)))

(5)

The probability of an agent living long enough to expe-
rience history h depends on the probability of death. It is
L(h) = (1− d)|h|−1.

Finally, the expected per-round utility for a strategy S is
sum over all histories of the history’s PRU , weighted by
their probability of occurring.

EPU(S) =∑
h∈H

L(h)︸︷︷︸
Prob. of living |h| rounds

× P (h|S)︸ ︷︷ ︸
Prob. S causing h

× PRU(h)︸ ︷︷ ︸
Per-round utility

.

Problem Specification. The problem we focus on in this
paper is: given distributions π and πObs, as well as func-
tion c(·) describing the probability of change, probability of
death d ∈ [0, 1], and ε > 0, find a strategy S such that
EPU(S) is within ε of maxS′ EPU(S′).

We will show in Section that the strategy maximizing
EPU(S) is the evolutionarily dominant strategy.

Analysis of EPU
In this section we examine the expected per-round utility.
First we present a method for computing an approximation
to the expected per-round utility, then we present an argu-
ment that a strategy maximizing expected per-round utility
will also maximize its population in the Cultaptation social
learning game.

Computation of EPU
We will now define a formula that can be used to compute
EPU exactly for a given strategy S. We will show that the



following formula,EVexp(r, v), computes the expected con-
tribution to the EPU of exploiting value v on round r.

EVexp(r, v) = v

∞∑
k=r

1
k

(1− d)k−1 (6)

The existence of EVexp will be essential to deriving a
finitely computable formulation of EPU . It can also be ex-
pressed as 2

EVexp(r, v) = v

∞∑
k=1

1
k

(1− d)k−1 − v
r−1∑
k=1

1
k

(1− d)k−1

= v

(
ln(d)
d− 1

−
r−1∑
i=1

1
i
(1− d)i−1

)
(7)

and is therefore computable.
We can now define the expected value of a strategy S in

terms of the average per-round payoff of an agent.

EPUalt(S, h) =∑
t∈T

P (h, h ◦ t|S(h))

× (EVexp(|h ◦ t|, U(t)) + EPUalt(S, h ◦ t))

Where T is the set of all tuples of the form 〈act,mv, v〉,
and h ◦ t represents a possible history on the next round.
Note that the size of T is finite so long as the number of
moves is finite.
Proposition 1. EPU(S) = EPUalt(S, h∅)

Proof. First, we will show that EPUalt(S, h∅) equals the
summation of P (h|S)EVexp(|h|, U(h|h|)) for all histories
h. Then we will show that this equals the summation of
L(h)P (h|S)PRU(h) for all h.

From the definition in equation 5, note that P (h∅ ◦ t|S) =
P (h∅, h∅ ◦ t|S(h∅)) for histories of length one. Thus, the
base case simplifies to

EPUalt(S, h∅) =
∑
t∈T

P (h∅ ◦ t|S)EVexp(1, U(t))

+
∑
t∈T

P (h∅ ◦ t|S)EPUalt(S, h∅ ◦ t)

Similarly, P (h|S)P (h, h ◦ t|S(h)) simplifies to just
P (h ◦ t|S). With this in mind, the computation of
P (h|S)EPUalt(S, h) in all cases can be rewritten as

P (h|S)EPUalt(S, h) =∑
t∈T

P (h ◦ t|S)EVexp(|h ◦ t|, U(t))

+
∑
t∈T

P (h ◦ t|S)EPUalt(S, h ◦ t))

This is the sum of P (h ◦ t|S)EVexp(|h ◦ t|, U(t)) for
each possible history h ◦ t, plus a recursive call to

2The simplification
P∞

i=1
1
i
(1 − d)n−1 = ln(d)

d−1
is due to

(Childers 2008).

P (h ◦ t|S)EPUalt(S, h ◦ t) for each of the subsequent his-
tories.

A proof is omitted, but clearly all histories h are evaluated
by depth |h| in the recursion. This results in the summation
of P (h|S)EVexp(|h|, U(h|h|)) for all histories h of length
|h| ≥ 1.

The proof then proceeds arithmetically:

EPUalt(S, h∅) =
∑
h∈H

P (h|S)EVexp(|h|, U(h|h|))

=
∑
h∈H

P (h|S)
∞∑

k=|h|

L(k)U(h|h|)
k

=
∑
h∈H

∞∑
k=|h|

L(k)P (h|S)U(h|h|)
k

=
∞∑
k=1

∑
h∈H(≤k)

L(k)P (h|S)U(h|h|)
k

=
∞∑
k=1

∑
h∈H(k)

L(k)P (h|S)PRU(h)

= EPU(S)

where H(≤ k) is the set of all histories of length ≤ k, and
H(k) is the set of all histories of length exactly k.

Unfortunately, EPUalt is not finitely computable – be-
cause there is no end to the game, it suffers from an infinite
recursion. To handle this, we introduce a depth-limited com-
putation of EPUalt, which only computes the portion of the
total EPU contributed by the first i rounds.

EPUδalt(S, h) = 0 If δ = 0∑
t∈T P (h, h ◦ t|S(h))×
(EVexp(r, U(t)) + EPUδ−1

alt (S, h ◦ t)) otherwise

We prove in Section that if the search depth δ is large
enough, EPUδalt(S, h) will be within ε of EPUalt(S.h).

Optimal EPU leads to Optimal Play
This section provides a sketch of a proof that if a strategy
has the optimal expected per-round utility, it will also have
the optimal expected probability of reproducing.

Assume we have two strategies Sa and Sb playing the
Cultaptation Game, and that there are na agents using Sa
and nb agents using Sb, where na + nb = plrs. To simplify
our discussion, we assume the game to have been running
for an infinite number of rounds, such that for any integer i,
it is possible for an agent to have been alive i rounds.

Let TU(S, i) be the expected utility (not per-round utility,
but total utility) obtained by an agent using S in the first i
turns. For each agent with strategy Sx, we let ax ∈ A be an
agent with that strategy where A is the set of all agents and
ax has lifetime age(ax). The expected fraction of repro-



ductions achieved by all agents using strategy Sx is:

PR(Sx) =

∑
ax∈A

TU(Sx,age(ax))
age(ax)∑

aa∈A
TU(Sa,age(aa))

age(aa) +
∑
ab∈A

TU(Sb,age(ab))
age(ab)

(8)
For strategy Sx, the expected value of the numerator in

Equation 8 is a sum over all possible ages j of the expected
number of agents with an age j (or nx·(1−d)j−1/

∑∞
i=1(1−

d)i = nx · (1 − d)j−1 · d) times the per-round utility of Sx
after j rounds (or TU(Sx, j)/j), giving:

N(Sx) = nxd

∞∑
j=1

(1− d)j−1TU(Sx, j)
j

Note that

PR(Sa) =
N(Sa)

N(Sa) +N(Sb)
(9)

Thus the probability of strategy Sa reproducing on this
round is proportional to N(Sa). It turns out that N(Sa) is
directly related to EPU(Sa). EPU(S) is equal to the sum,
for all i, of an agent’s probability of being alive on round i
times the expected per-round utility of S on round i. Hence,
one way of expressing EPU(S) is:

EPU(S) =
∞∑
j=1

(1− d)j−1U(Sa, j)
j

(10)

Hence,

PR(Sa) =
na · d · EPU(Sa)

na · d · EPU(Sa) + nb · d · EPU(Sb)
(11)

Let q = EPU(Sb)/EPU(Sa). Note that

PR(Sa) =
na · d

na · d+ nb · d · q
=

na
na + q · nb

(12)

Therefore, EPU(Sa) > EPU(Sb) implies q < 1, hence
PR(Sa) > na

na+nb
if nb > 0. Therefore, if EPU(Sa) >

EPU(Sb), we expect the fraction of agents using Sa to
grow at each reproductive step until it reaches 1. Finally, if
we have a strategy Sopt such that, for all S, EPU(Sopt) >
EPU(S), we expect the fraction of agents using Sopt to ap-
proach 1 when Sopt and S play one another. Thus Sopt is
the optimal strategy from an evolutionary standpoint.

This goes to show that by optimizing EPU , one is, in
fact, optimizing the expected fraction of agents eventually
alive in a given social learning game. Since wins and losses
are determined by the number of agents alive on game’s end,
the optimal evolutionary strategy optimizes EPU .

Finding an ε- Optimal Strategy
In many cases, such as in the example in Table 1, agents
benefit in the long run from spending multiple rounds at the
beginning of the game learning new actions. Strategies that
only make locally optimal choices and begin exploiting as
soon as they have learned their first action are clearly not
optimal in these cases. Therefore, we are not likely to be
able to find a good strategy by considering only the current

Algorithm 1 Produce strategy S that maximizes
EPUkalt(S, h), given initial history h, and set of pos-
sible utility values V .
Strat(h,k,V )

if k = 0 then return 0 endif
Let Umax = 0, Smax = null, and amax = null
for each action a ∈ {I,O,X[1], .., X[mvs]} do

Let Utemp = 0 and Stemp = null
for each move m ∈ {1, ..,mvs} do

for each value v ∈ V do
Let t = 〈a,m, v〉 and p = P (h, h ◦ t|a)
if p > 0 then

Let {S′, U ′} = Strat(h ◦ t, k − 1, V )
Stemp = Stemp ∪ S′
Utemp = Utemp+p·(EVexp(|h◦t|, U(t))+U ′)

end if
end for

end for
if Utemp > Umax then
Umax = Utemp
Smax = Stemp ∪ 〈h, amax〉

end if
end for
return {Smax, Umax}

round in the game; we will need to search ahead multiple
rounds, to see where our agent’s actions will put it later in
the game.

We say a strategy S is optimal if there is no strategy S′
such that EPU(S′) > EPU(S). We will now present a
computable algorithm that, given an error bound ε, finds a
strategy S such that, if Sopt is the optimal strategy,

EPU(Sopt)− EPU(S) ≤ ε (13)

The algorithm works by searching out some finite number of
rounds k and determining the best strategy for all histories
of length ≤ k. Because agents’ probability of being alive on
round r decreases exponentially with r, a strategy’s actions
on earlier rounds are much more important in determining
its EPU than actions it performs on later rounds. We will
use this fact to put a bound on the maximum contribution to
EPU(S) that can be made after some round k. Then, once
the algorithm searches out to round k such that the contri-
bution to EPU of all histories after that round is less than
ε, we can be sure that the strategy returned by the algorithm
has computed an EPU within ε of the optimal strategy Sopt
(a formula for k is presented in section ).

Algorithm
Algorithm 1 returns a 2-tuple with a partially specified

strategy S and the expected value for the strategy’s average
per-round utility up to round k. If k is chosen to be large
enough, then this algorithm will provide a strategy with ex-
pected EPU within ε of optimal.

The algorithm performs a depth-first search through the
space of strategies that start from the input history h, stop-
ping once it reaches a depth specified depth k. For each



possible action a ∈ {I,O,X[1], .., X[mvs]} at h, it com-
putes the expected per-round utility gained from performing
a, and the utility of the best strategy for each possible history
h′ that could result from choosing a. It combines these quan-
tities to get the total expected utility for a, and selects the ac-
tion with the best total expected utility, amax. It returns the
strategy created by combining the policy 〈h, amax〉 with the
strategies for each possible h′, and the utility for this strat-
egy. Hence, Strat(h∅, k, V ) will return the ε-optimal strat-
egy for the entire game, provided k is chosen large enough.

Seen another way, Strat(h, k, V ) computes
EPUkalt(S, h) for all possible strategies S, returning a
(partially specified) strategy maximizing EPUkalg as well as
the maximal value of EPUkalg.

Running Time Analysis

When Algorithm 1 considers a history h, it makes one recur-
sive call for each possible combination of actions, moves,
and values 〈a,m, v〉 that can be executed at h. The num-
ber of 〈a,m〉 pairs is at most 3(nm), since each move
m ∈ {1, 2, ..., nm} can be either Innovated, Observed, or
Exploited. Each of these moves can also have any of v
values. Hence, the branching factor of the algorithm is at
most 3(nmv). Since the algorithm performs a depth-first
search to depth k, and since it performs a constant amount
of computation at each node in the search, its running time
is O((3nmv)k).

Bounding EPU

In games where 0 < d < 1, there is always a chance that the
agent is still alive on any round r = 1, . . . ,∞. In this case,
considering all possible strategies is clearly not computable,
since each strategy is potentially infinite in length. How-
ever, since the agent’s probability of being alive on round
r decreases exponentially with r, the expected utility con-
tributed by an agent’s actions in later rounds is exponentially
lower than the expected utility contributed by earlier rounds.
We will use this fact in deriving a bound on EPUalt(S, h)
for a given strategy and a history h of length k.

Recall from Equations 6 and 7 that:

EVexp(r, v) = v

∞∑
k=r

1
k

(1− d)k−1

= v

(
ln(d)
d− 1

−
r−1∑
i=1

1
i
(1− d)i−1

)
(14)

where EVexp(r, v) is the expected contribution to EPU
made by exploiting a move with value v on round r.

Since we know how much any given exploit contributes
to the expected EPU(S) for a given strategy S, we can cal-
culate G(k, v), the amount that exploiting the same action

on all rounds after k contributes to EPU(S):

G(k, v) =
∞∑

j=k+1

v ∞∑
n=j

1
n

(1− d)n−1


= v

∞∑
j=k+1

∞∑
n=j

1
n

(1− d)n−1

Expanding the summations yields:

G(k, v) = v

(
1

k + 1
(1− d)k +

2
k + 2

(1− d)k+1 + · · ·
)

= v

∞∑
n=k+1

n− k
n

(1− d)n−1

= v

( ∞∑
n=k+1

(1− d)n−1 −
∞∑

n=k+1

k

n
(1− d)n−1

)

= v

(
(1− d)k

d
−

∞∑
n=k+1

k

n
(1− d)n−1

)
Next, we pull k out of the summation and use (14) to obtain:

G(k, v) = v
(1− d)k

d
− kv

(
ln(d)
d− 1

−
k∑

n=1

1
n

(1− d)n−1

)
︸ ︷︷ ︸

a

(15)

Note that for 0 < d < 1, G(k, v) is finite. The following
theorem states that after round k, no strategy S contributes
more than G(k, vmax) to EPU(S):
Theorem 1. Let vmax be the highest possible action util-
ity in a game. Then for all k and all strategies S,
APUalt(S, h∅)−APUkalt(S, h∅) ≤ G(k, vmax)

Proof. Since it is not possible for any strategy to gain more
utility than vmax on any round, this follows from the discus-
sion above.

Determining How Far to Search
To obtain an upper bound on k, we first note a bound on
G(k, v):

Lemma 1. G(k, v) ≤ v · (1−d)k

d

This follows from noting that part (a) of Equation 15
is greater than or equal to zero, since it is equivalent to
EVexp(k, k + 1), which is always at least zero. Thus

G(k, v) = v( (1−d)k

d − w) ≤ v (1−d)k

d , since w is always
non-negative.

Now if we can find a k′ such that ε = vmax(1− d)k
′
/d,

then we can be certain that ε ≥ G(k′, v). Solving for k′ in
the above equation yields

k′ = log(1−d)(dε/vmax) (16)

The fact that we can compute this k′ such that
G(k′, vmax) ≤ ε implies the following corollary to Theo-
rem 1.



Corollary 1. For any ε > 0, and any history h, there is a k
such that |EPUkalt(S, h)− EPUalt(S, h)| ≤ ε.

Combining this result with the fact that Algorithm 1
computes EPUkalt(S, h∅), we have the following corollary,
which states that for large enough k, Algorithm 1 computes
a strategy whose EPU is within ε of optimal.
Corollary 2. For given ε > 0 and set of move values
V with vmax = max(V ), if k′ = log(1−d)(d · ε/vmax)
then Strat(h∅, k′, V ) (Algorithm 1) returns (S,U) such that
for any strategy S′ achieving optimal EPU , |EPU(S′) −
EPU(S)| ≤ ε.

Example Computation
In this section, we detail some example results. We show,
in particular, that locally optimal results are not necessar-
ily globally optimal. Consider an agent in a social learning
game defined by the following parameters:
• c(i) = 0.4 for all i;
• d(i) = 0.5 for all i;
• π is a uniform distribution over {1, 2, 20, 30};
• we have πObs represent a set of extremely weak op-

ponents, where πObs(1|h) = 1 for all h.
Now consider what the best move might be for an agent
with the following two move history. On the first move,
the agent innovates determining that move X[1] has value
1. On the second move, the agent innovates determining
that move X[2] has value 2. At this point, the agent knows
of moves X[1] and X[2] with values 1 and 2 respectively.
One might think, therefore, that the agent should exploit the
higher valued move (X[2]). However, it turns out that the
optimal move, as computed by Algorithm 1, is to exploit
X[1]. The approximated expected per-round utility of X[2]
is 2.25, while for X[1] it is 2.38. We ran the algorithm with
ε = 0.05, so both of these utilities are within 0.05 of optimal,
and we can guarantee that X[1] is the best move. We under-
stand this to be a result of the probability of change. Because
moves are likely to change, and becauseX[2]’s current value
is less than the mean of the distribution π, the algorithm is
able assess more expected value in the probability that X[1]
changes value than in the probability of sticking with X[2].
Since X[2] was discovered last turn, it has a smaller chance
of having changed than X[1] (probability 0.4 as opposed to
probability (1− (1− 0.4)2) = 0.64).

Related Work
In (Carr et al. 2008), Carr et al. show how to compute opti-
mal strategies for two highly simplified versions of the Cul-
taptation Project’s social learning game. Their paper simpli-
fies the game by completely removing the observe move—
which prevents the agents from interacting with each other
in any way whatsoever, thereby transforming the game into
a single-agent game rather than a multi-agent game. Their
model also assumes that exploitable moves cannot change
value once they have been learned, which overlooks a key
part of the full social learning game.

We know of no other work on the full-fledged social learn-
ing strategies game, although there are related problems in

anthropology, biology and economics, where effective social
learning strategies and their origins are of particular interest.

The social learning competition attempts to shed light on
some open questions in behavioral and cultural evolution.
Despite the obvious benefit of learning from someone else’s
work, several strong arguments have been made for why
social learning isn’t purely beneficial (Boyd and Richerson
1995; Rogers 1988). The answer to how best to learn in a so-
cial environment is non-trivial. Game theoretical approaches
have been used to explore this subject, but there is still on-
going research in improving the models that are used (Hen-
rich and McElreath 2003; Enquist, Ghirlanda, and Eriksson
2007).

In (Laland 2004), Laland discusses strategies for certain
kinds of social learning in detail, and explores when it is
appropriate to innovate or observe in a social learning situa-
tion. Indiscriminate observation is not always the best strat-
egy, and there are indeed situations where innovation is ap-
propriate. This is influenced by the conclusions of (Barnard
and Sibly 1981), where Barnard and Sibly reveal that if a
large portion of the population is learning only socially, and
there are few information producers, then the utility of social
learning goes down.

In (Nettle 2006), Nettle outlines the circumstances in
which verbal communication is evolutionarily adaptive, and
why few species have developed the ability to use language
despite its apparent advantages. Nettle uses a significantly
simpler model than the Cultaptation game, but provides in-
sight that may be useful to understanding social learning in
general. In Nettle’s model, the population reaches an equi-
librium at a point that where both individual and social learn-
ing occur. The point of equilibrium is affected by the quality
of observed information and the rate of change of the envi-
ronment.

In (Galef Jr. 1995), Galef differentiates social learning in
animals from mere imitation. The paper develops a model
that associates rewards or punishments with expressed be-
havior, which may be how animals avoid strictly repeating
what they have observed. Galef further states that in highly
variable environments, socially learned information may not
always be the most beneficial, yet animals that learn socially
are still able to learn locally adaptive behavior.

Other work on similar games include (Giraldeau, Valone,
and Templeton 2002), where Giraldeau et al. outline reasons
why social information can become unreliable. Both biolog-
ical factors, and the limitations of observation, can signifi-
cantly degrade the quality of information learned socially. In
(Schlag 1998), Schlag develops rules that can be applied in
a similar social learning environment that will increase the
overall expected payoff of a population by restricting how
and when agents act on information learned through obser-
vation.

Conclusion
We have developed an algorithm for synthesizing near-
optimal strategies in the social learning game. To de-
cide what move a strategy S should make at each point
in the game, our algorithm does a lookahead search to
estimate each move’s expected utility. The accuracy of



this estimate relies on the fact that since the agent has a
nonzero probability of death at each round, moves farther
into the future have diminishing effects on the expected util-
ity. The algorithm looks far enough ahead that that all fur-
ther moves will change the expected utility by less than ε.
We have proved that this occurs within a lookahead depth
of log(1−d)(dε/vmax), where d is the probability of dying
on each round and vmax is the value of the maximal-utility
move.

One limitation of our work is the algorithm’s exponen-
tial running time—but we are confident that pruning tech-
niques and approximation techniques can be developed to
make the algorithm run much more quickly. Once the algo-
rithm has been speeded up, this should make it possible to
use the algorithm to analyze different parameter settings for
the social learning game, to see which kinds of moves are
optimal under what kinds of conditions. When is it, for in-
stance, that innovation is always preferable to observations
and vice-versa? Such investigations are left for future work.

Also left for future work is the examination of informa-
tion gathering in the social learning game. One of our al-
gorithm’s inputs is the probability distributions from which
the action utilities are drawn. We have kept the algorithm
fully general by allowing these distributions to change from
one time step to the next—but what the distributions are,
and how/whether they change at each time step, is informa-
tion that the game’s authors have deliberately not revealed.
Without access to such information, a game agent must ei-
ther approximate the distributions or develop an algorithm
that can do well without them. If we choose to approximate,
should our agent be willing to sacrifice some utility early on,
in order to gain information that will improve its approxima-
tion? Are there strategies that perform well in a wide variety
of environments, that we could use until our agent develops
a good approximation? Are some of these strategies so ver-
satile that we can simply use them without needing to know
the distributions? These remain open questions.

Acknowledgements
This work supported in part by AFOSR grant
FA95500610405, NAVAIR contract N6133906C0149,
DARPA’s Transfer Learning and Integrated Learning
programs, and NSF grant IIS0412812. The opinions in this
paper are those of the authors and necessarily those of the
funders.

References
Barnard, C., and Sibly, R. M. 1981. Producers and
scroungers: A general model and its application to captive
flocks of house sparrows. Animal Behavior 29:543–550.
Boyd, R., and Richerson, P. 1995. Why does culture in-
crease human adaptability? Ethology and Sociobiology
16(2):125–143.
Boyd, R.; Enquist, M.; Eriksson, K.; Feldman, M.; and
Laland, K. 2008. Cultaptation: Social learning tournament.
http://www.intercult.su.se/cultaptation.
Carr, R.; Raboin, E.; Parker, A.; and Nau, D. 2008. When
innovation matters: An analysis of innovation in a social

learning game. In Second International Conference on
Computational Cultural Dynamics (ICCCD).
Childers, M. 2008. personal communication.
Enquist, M.; Ghirlanda, S.; and Eriksson, K. 2007. Critical
social learning: A solution to rogers’s paradox of nonadap-
tive culture. American Anthropologist 109(4):727–734.
Galef Jr., B. G. 1995. Why behaviour patterns that ani-
mals learn socially are locally adaptive. Animal Behavior
49:1325–1334.
Giraldeau, L. A.; Valone, T. J.; and Templeton, J. J. 2002.
Potential disadvantages of using socially acquired infor-
mation. Philosophical transactions of the Royal Society
of London. Series B, Biological sciences 357(1427):1559–
1566.
Henrich, J., and McElreath, R. 2003. The evolution of cul-
tural evolution. Evolutionary Anthropology 12:123–135.
Laland, K. 2004. Social learning strategies. Learning and
Behavior 32:4–14.
Nettle, D. 2006. Language: Costs and benefits of a spe-
cialised system for social information transmission. In
Wells, J., and et al., eds., Social Information Transmission
and Human Biology. London: Taylor and Francis. 137–
152.
Rogers, A. R. 1988. Does biology constrain culture?
American Anthropologist 90(4):819–831.
Schlag, K. 1998. Why imitate, and if so, how?, : A bound-
edly rational approach to multi-armed bandits. Journal of
Economic Theory 78:130–156.


