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Abstract
An important way to learn new actions and behaviors is by observing others, and several evolutionary

games have been developed to investigate what learning strategies work best and how they might have
evolved. In this paper we present an extensive set of mathematical and simulation results for Cultaptation,
which is one of the best-known such games.

We derive a formula for measuring a strategy’s expected reproductive success, provide algorithms
to compute near-best-response strategies and near-Nash equilibria, and provide techniques for efficient
implementation of those algorithms. Our experimental studies provide strong evidence for the following
hypotheses:

1. The best strategies for Cultaptation and similar games are likely to be conditional ones in which the
choice of action at each round is conditioned on the agent’s accumulated experience. Such strate-
gies (or close approximations of them) can be computed by doing a lookahead search that predicts
how each possible choice of action at the current round is likely to affect future performance.

2. Such strategies are likely to exploit most of the time, but will have ways of quickly detecting
structural shocks, so that they can switch quickly to innovation in order to learn how to respond to
such shocks. This conflicts with the conventional wisdom that successful social-learning strategies
are characterized by a high frequency of innovation; and agrees with recent experiments by others
on human subjects that also challenge the conventional wisdom.
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1 Introduction

An important way to learn new actions and behaviors is social learning, i.e., learning by observing others.
Some social-learning theorists believe this is how most human behavior is learned [1], and it also is important
for many other animal species [11, 39, 33]. Such learning usually involves evaluating the outcomes of
others’ actions, rather than indiscriminate copying of others’ behavior [8, 22], but much is unknown about
what learning strategies work best and how they might have evolved.

For example, it seems natural to assume that communication has evolved due to the inherent superiority
of copying others’ success rather than learning on one’s own via trial-and-error innovation. However, there
has also been substantial work questioning this intuition [4, 25, 2, 28, 12].

Several evolutionary games have been developed to investigate social learning [29, 20, 27, 5]. One of
the best-known is Cultaptation, a multi-agent social-learning game developed by a consortium of European
scientists [5] who sponsored an international tournament with a e10,000 prize.1 The rules of Cultaptation
are rather complicated (see Section 2), but can be summarized as follows:

1NOTE: None of us is affiliated with the tournament or with the Cultaptation project.
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• Each agent has three kinds of possible actions: innovation, observation, and exploitation. These
are highly simplified analogs of the following real-world activities, respectively: spending time and
resources to learn something new, learning something by communicating with another agent, and
exploiting the learned knowledge.

• At each step of the game, each agent must choose one of the available actions. How an agent does
this constitutes the agent’s “social learning strategy.”

• Each action provides an immediate numeric payoff and/or information about the payoffs of other
actions at the current round of the game. This information is not necessarily correct in subsequent
rounds because the actions’ payoffs may vary from one round to the next, and the way in which they
may vary is unknown to the agents in the game.2

• Each agent has a fixed probability of dying at each round. At each round, each agent may also produce
offspring, with a probability that depends on how this agent’s average per-round payoff compares to
the average per-round payoffs of the other agents in the game.

A second Cultaptation tournament is scheduled to begin in February 2012. This tournament carries a
e25,000 prize and introduces a few new concepts into the game, such as the ability for agents to improve
actions they already know, and proximity-based observation. This paper does not deal with these additions,
although we plan to address them in future work.

Our work has had two main objectives: (1) to study the nature of Cultaptation to see what types of
strategies are effective; and (2) more generally, to develop ways of analyzing evolutionary environments
with social learning. Our results include the following:

1. Analyzing strategies’ reproductive success (Section 6). Given a Cultaptation game G and a set S
of available strategies for G, we derive a formula for approximating (to within any ε > 0) the expected
per-round utility, EPRU(s | G,S), of each strategy in S.3 We show that a strategy with maximal expected
per-round utility will have the highest expected frequency in the limit, independent of the initial strategy
profile. These results provide a basis for evaluating highly complex strategies such as the ones described
below.

Generalizability: These results can be generalized to other evolutionary games in which agents live more
than one generation, with a fixed probability of death at each generation, and reproduction is done using the
replicator dynamic.

2. Computing near-best-response strategies (Section 7). We provide a strategy-generation algorithm
that, given a Cultaptation game G and a set of available strategies S, can construct a strategy sα that is within
ε of the a response to S.4

Generalizability: The strategy-generation algorithm performs a finite-horizon search, and is generaliz-
able to other evolutionary games in which there is a fixed upper bound on per-round utility and a nonzero
lower bound on the probability of death at each round.

2For our analyses, we assume the payoffs at each round are determined by an arbitrary function (which may be either deter-
ministic or probabilistic), and we analyze how strategies perform given various possible characteristics of that function. In general,
such characteristics would not be known to any Cultaptation agent—but our objective is to examine the properties of strategies in
various versions of Cultaptation, not to develop a Cultaptation agent per se.

3Because of how death and mutation work in Cultaptation, it follows that EPRU(s | G, S ) is the same for every initial strategy
profile S composed of strategies in S. In particular, it is the same regardless of how many agents are using each strategy when the
game begins.

4More precisely, sα is an ε-best response to any initial strategy profile composed of strategies in S.
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3. Approximating symmetric Nash equilibria (Section 8). We provide CSLA, an iterative self-
improvement algorithm that uses the strategy-generation algorithm in Section 7 to produce a strategy sself
that is a near-best response in a Cultaptation game in which the other players are all using sself . Hence a
strategy profile composed entirely of instances of sself is a symmetric near-Nash equilibrium.

Generalizability: An iterative self-improvement algorithm similar to CSLA should be able to approxi-
mate a Nash equilibrium for any game in which the strategies are complex enough that computing a best (or
near-best) response is not feasible by analyzing the strategies directly, but is feasible using information from
a simulated game between strategies in the profile. Games of this type will typically have a high branching
factor but relatively simple interactions between agents.

4. State aggregation (Section 7.5). To make our algorithms fast enough for practical experimentation,
we provide a state-aggregation technique that speeds them up by an exponential factor without any loss in
accuracy. Our experimental results in Section 9 demonstrate the practical feasibility that this provides: in
our experiments, CSLA always converged in just a few iterations.

Generalizability: The state-aggregation technique is generalizable to other evolutionary games in which
the utilities are Markovian.

5. Experimental results (Section 9). In our experimental studies, the near-Nash equilibria produced by
CSLA in any given game were all virtually identical, regardless of the starting values that we used. That
strongly suggests (though it does not prove) that the strategy profile consisting of copies of sself approximates
an optimal Nash equilibrium, and possibly even a unique Nash equilibrium.

Consequently, sself’s characteristics provide insights into the characteristics of good Cultaptation strate-
gies. For example, our experiments show that sself exploits most of the time, but switches quickly to inno-
vation when a structural shock occurs, switching back to exploitation once it has learned how to respond to
the shock. This conflicts with the conventional wisdom [35, 4] that successful social-learning strategies are
characterized by a high frequency of innovation, but it helps to explain both the results of the Cultaptation
tournament [34] and some recent experimental results on human subjects [38].

6. Implications. Our results provide strong support for the following hypotheses about the best strategies
for Cultaptation and similar games:

• What they are like, and how they can be computed. The best strategies are likely to be conditional
ones in which the choice of action at each round is conditioned on the agent’s accumulated experience.
Such strategies (or close approximations of them) can be computed by doing a lookahead search that
predicts how each possible choice of action at the current round is likely to affect future performance.

• How they are likely to behave. It is likely that the best strategies will exploit most of the time, but
will have ways of quickly detecting structural shocks, so that they can switch quickly to innovation in
order to learn how to respond to such shocks.

2 Cultaptation Social-Learning Game

This section gives a more detailed description of the Cultaptation social learning game, adapted from the
official description [5]. The game is a multi-agent round-based game, where one action is chosen by each
agent each round. There are N agents playing the game, where N is a parameter to the game. No agent
knows of any other agent’s actions at any point in the game except through the Obs action specified below.
The actions available to each agent are innovation (Inv), observation (Obs), and exploitation (X1, . . . ,Xµ,
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where µ is a parameter to the game). Each Inv and Obs action informs the agent what the utility would be
for one of the exploitation actions, and an agent may not use an exploitation action Xi unless the agent has
previously learned of it through an innovation or observation action. Here are some details:

Exploitation. Each exploitation action Xi provides utility specific to that action (e.g. X1 may provide
utility 10 and X2 may provide utility 50). The utility assigned to each action at the beginning of the game is
drawn from a probability distribution π, where π is a parameter to the game.

The utility provided by each exploitation action Xi may change on round r, according to a probability
cr. The function c is a parameter to the game, and specifies the probability of change for every round of the
game. When the changes occur, they are invisible to the agents playing the game until the agent interacts
with the changed action. For instance: if an action’s utility happens to change on the same round it is
exploited, the agent receives the new utility, and discovers the change when the new utility is received. The
new utility for a changed action is determined via the distribution π.

Innovation. When an agent uses the Inv action, it provides no utility, but it tells the agent the name and
utility of some exploitation action Xi that is chosen uniformly at random from the set of all exploitation
actions about which the agent has no information. If an agent already knows all of the exploitation actions,
then Inv is illegal, and indeed undesirable (when there is nothing left to innovate, why innovate?). The agent
receives no utility on any round where she chooses an Inv action.

Observation. By performing an Obs action, an agent gets to observe the action performed and utility
received by some other agent who performed an exploitation action on the previous round. Agents receive
no utility for Obs actions, nor any information other than the action observed and its value: the agent being
observed, for instance, is unknown. If none of the other agents performed an exploitation action on the
previous round, then there were no Xi actions to observe so the observing agent receives no information. In
some variants of the social learning game, agents receive information about more than one action when ob-
serving. We do not treat such variants directly in this paper, but it is straightforward to extend our algorithms
to take this difference into account.

Example 1 Consider two strategies: the innovate-once strategy (hereafter I1), which innovates
exactly once and exploits that innovated action (whatever it is) for the rest of the game, and the
innovate-twice-observe-once strategy (hereafter I2O), which innovates twice, observes once,
and exploits the highest valued action of the actions discovered for the rest of the game. For
simplicity of exposition, suppose there are only four exploitation actions: X1, X2, X3, and X4.
The values for each of these actions are drawn from a distribution; in this example we will
assume that they are chosen to be 3, 5, 8, and 5, respectively. For simplicity, we will assume
the probability of change is 0. Suppose there are two agents: one I1 and one I2O. For the first
action, I1 will innovate, which we suppose gives I1 the value of action X1. On every sequential
action, I1 will choose action X1, exploiting the initial investment. If the agent dies k rounds
later, then the history of actions and utilities will be that given in Table 1; giving a utility of
3(k − 1) and a per-round utility of 3 k−1

k .

In contrast, I2O will innovate, informing it of the utility of X3: 8, then it will innovate again,
informing it of the utility of X4: 5, and finally it will observe. On the second round, I1 performed
X1, and since these are the only two agents, this was the only exploitation action performed.
Therefore, I2O’s observation action on the next round must report that another agent got a
utility of 3 from action X1 last round (if there were multiple possibilities, one would be chosen
uniformly at random). On round 4, I2O then knows that actions X1, X3, and X4 have utilities
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Round # 1 2 3 4 5 . . . k
I1’s action Inv X1 X1 X1 X1 . . . X1

I1’s utility 0 3 6 9 12 . . . 3(k − 1)
Per round 0 1.5 2 2.25 2.4 . . . 3 k−1

k

I2O’s action Inv Inv Obs X3 X3 . . . X3

I2O’s utility 0 0 0 8 16 . . . 8(k − 3)
Per round 0 0 0 2 3.2 . . . 8 k−3

k

Table 1: Action sequences from Example 1, and their utilities.

of 3, 8, and 5, respectively. Since the probability of change is 0, the obvious best action is X3,
which I2O performs for the rest of her life. The utility of I2O on round k is 8(k−3), making the
per-round utility 8 k−3

k . Note that on rounds 2 to 4, I2O will have a worse per-round utility than
I1, while after round 4, the utility of I2O will be higher (this is important because reproduction
is tied to per-round utility, as we will show shortly).

Formally, everything that an α knows about each round can be described by an action-percept pair,
(a, (m, v)), where a ∈ {Inv,Obs,X1, . . . ,Xµ} is the action that α chose to perform, and (m, v) is the percept
returned by the action. More specifically, m ∈ {X1, . . . ,Xµ, ∅} is either an exploitation action or a null value,
and v is the utility observed or received. While a is chosen by the agent, m and v are percepts the agent
receives in response to that choice. If a is Inv or Obs, then v is the utility of exploitation action m. If a
is Obs and no agent performed an exploitation action last round, then there is no exploitation action to be
observed, hence m = ∅ and v = 0. If a is some Xi, then m will be the same Xi and v will be the utility
the agent receives for that action. The agent history for agent α is a sequence of such action-percept pairs,
hα = 〈(a1, (m1, v1)), . . . , (ak, (mk, vk))〉. As a special case, the empty (initial) history is 〈〉.

Example 2 The history for I2O in Example 1 is:

hI2O = 〈(Inv, (X3, 8)), (Inv, (X4, 5)), (Obs, (X1, 3)), (X3, (X3, 8)), . . . 〉

To concatenate a new action-percept pair onto the end of a history, we use the ◦ symbol. For ex-
ample, hα ◦ (a, (m, v)) is the history hα concatenated with the action-percept pair (a, (m, v)). Further, for
hα = 〈p1, p2, . . . , pk〉, where each pi is some action-percept pair, we let hα[i] = pi, and hα[i, . . . , j] be the
subhistory 〈pi, . . . , p j〉.

Strategies. The Cultaptation game is ultimately a competition among strategies. Here, a strategy is a
function from histories to the set of possible actions: s : hα 7→ m, where hα is a history of an agent using
s and m is Inv, Obs or Xi for some i. Since each strategy may depend on the entire history, the set of
possible strategies is huge;5 but any particular Cultaptation game is a competition among a much smaller
set of strategies S, which we will call the set of available strategies. For example, if there are n contestants,
each of whom chooses a strategy to enter into the game, then in this case,

S = {the strategies chosen by the contestants}. (1)

5The number of possible mixed strategies is, of course, infinite. But even if we consider only pure strategies, the number is quite
huge. We show in Appendix C that for a 10,000-round Cultaptation game of the type used in the Cultaptation tournament [34], a
loose lower bound on the number of pure strategies is 1009.4×1020155

. In contrast, it has been estimated [37] that the total number of
atoms in the observable universe is only about 1078 to 1082.
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Each strategy in S may be used by many different agents, and the strategy profile at each round of the game
may change many times as the game progresses. When an agent reproduces, it passes its strategy on to a
newly created agent, with the per-round utility of each agent determining its likelihood of reproduction. A
strategy’s success is measured by its average prevalence over the last quarter of the game [5].

The replication dynamics work as follows. On each round, each agent has a 2% chance of dying. As
such, we also include a parameter d in our formulation representing the probability of death (d defaults
to 0.02). Upon death, an agent is removed from the game and replaced by a new agent, whose strategy
is chosen using the reproduction and mutation mechanisms described below. Mutation happens 2% of the
time, and reproduction happens 98% of the time.

Reproduction. When reproduction occurs, the social learning strategy used by the newborn agent is cho-
sen from the strategies of agents currently alive with a probability proportional to their per-round utility (the
utility gained by an agent divided by the number of rounds the agent has lived). The agent with the highest
per-round utility is thus the most likely to propagate its strategy on reproduction. We now give an example
of this.

Example 3 Again looking at the sequences of actions in Table 1, we see that both agents
would have equal chance of reproducing on round 1. However, on round 2 I1 has a per-round
utility of 1.5, while I2O has a per-round utility of 0, meaning I1 gets 100% of the reproductions
occurring on round 2. Round three is the same, but on round 4 I1 has a per round utility of
2.25 and I2O has a per-round utility of 2. This means that I1 gets 100 · 2.25/4.25 = 53% of the
reproductions and I2O gets 100 · 2/4.25 = 47% of the reproductions on round 4.

Mutation. In Cultaptation, mutation does not refer to changes in an agent’s codebase (as in genetic pro-
gramming). Instead, it means that the new agent’s strategy s is chosen uniformly at random from the set of
available strategies, regardless of whether any agents used s on the previous round. For instance, if there
were a cultaptation game pitting strategies I1 and I2O against one another, then a new mutated agent would
be equally likely to have either strategy I1 or I2O, even if there were no living agents with strategy I1.

Game Types. In the Cultaptation tournament [34], two types of games were played: pairwise games
and melee games. A pairwise game was played with an invading strategy and a defending strategy. The
defending strategy began play with a population of 100 agents, while the invading strategy began with none.
Mutation was also disabled for the first 100 rounds, to allow the defending strategy time to begin earning
utility. After 100 rounds, mutation was enabled and the invader had the challenging task of establishing a
foothold in a population consisting entirely of agents using the defending strategy (most of whom would
have had time to find several high-payoff actions). Since the pairwise games provide a clear early-game
advantage to the defender, they were typically played twice with the invader and defender swapping roles
on the second game. A melee game was played with n strategies, for some n > 2. Initially, the population of
100 agents was evenly divided between each strategy in the game. Mutation was disabled for the last quarter
of the game, so that it would not influence results when strategies had similar fitness.

Scoring. If we have k social learning strategies s1, . . . , sk playing Cultaptation, then on any given round
there will be some number n j of agents using strategy s j, for 1 ≤ j ≤ k. Strategy s j’s score for the game
is the average value of n j over the final 2,500 rounds of the game. The strategy with the highest score is
declared the winner.

The only way an agent may affect n j is through reproduction. We will show in Section 6.2 that any
strategy maximizing an agent’s expected per-round utility (defined in Section 5.5) will also maximize its
reproduction. We will therefore focus on computing the expected per-round utility.
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Round X1 X2 X3 X4 A1 A2 A3
1 2 4 1 9 N/A N/A (Obs, (∅, ·))
2 2 4 1 9 N/A N/A (Inv, (X4, 9))
3 2 4 1 9 Birth N/A (X4, (·, 9))
4 5 4 1 9 (Obs, (X4, 9)) Birth (X4, (·, 9))
5 5 2 1 9 (X4, (·, 9)) (Obs, (X4, 9)) (X4, (·, 9))
6 1 2 1 9 (X4, (·, 9)) (X4, (·, 9)) (X4, (·, 9))
7 1 2 8 9 (X4, (·, 9)) (X4, (·, 9)) Death
8 1 2 8 1 (X4, (·, 1)) (X4, (·, 1)) N/A
...

...
...

...
...

...
...

...

Figure 1: An example of a game in which there is a large structural shock. The columns for the exploitation
actions Xi show their values at each round, and the columns for agents A1–A3 show their histories. Note
that by round 6, all agents choose action X4, which has changed to a very low value. Since none of the
agents are innovating, none of them can find the newly optimal action X3.

3 Motivating Discussion

The purpose of this section is to explain the motivations for several aspects of our work:

• Sections 3.1 and 3.2 give examples of types of strategies that seem like they should work well at
first glance, but can have unexpectedly bad consequences. The existence of such situations motivate
the algorithms described later in this paper, which perform a game tree search in order to consider
strategies’ long-term consequences.

• An important way of getting insight into a game is to examine its best-response strategies; and this
approach is at the heart of our formal analysis and our game-tree search algorithms. Section 3.3
explains some issues that are important for finding best-response strategies in Cultaptation.

3.1 Innovation, Observation, and Structural Shocks

If we want to acquire a new action to exploit, then what is the best way of doing it: to observe, or to innovate?
At first glance, the observing might seem to be the best approach. If the other agents in the environment are
competent, then it is likely that they are exploiting actions that have high payoffs, hence we should be able
to acquire a better action by observing them than by innovating. This suggests that an optimal agent will
rely heavily on observation actions. However, the following example shows that relying only on observation
actions can lead to disastrous consequences if there is a structural shock, i.e., a large change in the value of
an exploitation action.6

Example 4 (structural shocks) Figure 1 shows a Cultaptation game in which all agents use
the following strategy: each agent begins with a single Obs action, followed by a single Inv
action if the Obs action returns ∅,7 in order to obtain an exploitation action Xi which the agent
will use in all subsequent rounds.

Agent A3 acquires action X4 by doing an unsuccessful Obs followed by an Inv; and A1 and
A2 acquire X4 by observing A3. At first, X4 is far better than the other exploitation actions, so
all of the agents do well by using it. On round 8, the action X4 changes to the lowest possible

6We have borrowed this term from the Economics literature, where it has an analogous meaning (e.g., [10, 14]).
7This will generally only happen on the first round of the game, before any agent has obtained an exploitation action.
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value, but the agents continue to use it anyway. Furthermore, any time a new agent is born, it
will observe them using X4 and will start using it too.

This is a pathological case where the best action has disappeared and the agents are in a sense “stuck”
exploiting the suboptimal result. Their only way out is if all agents die at once, so that one of the newly born
agents is forced to innovate. In Section 9.1.2, our experiments show that in some cases, situations like these
are a big enough risk that a near-best response strategy will choose innovation moves more frequently than
observation moves.

3.2 Innovation and Observation Versus Exploitation

One might also think that agents should perform all of their innovation and observation actions first, so that
they have as many options as possible when choosing an action to exploit. However, as Raboin et al. [32]
demonstrate, this intuition is not always correct. Because the game selects which agents reproduce based on
average per-round utility, not total accumulated utility, it is frequently better for newborn agents to exploit
one of the first actions it encounters, even if this action has a mediocre payoff (e.g., exploiting an action
with value 10 on the second round of an agent’s life gives it as much per-round payoff as exploiting an
action with value 50 on the tenth round). Once the agent has at least some per-round utility so that it has a
nonzero chance of reproducing, it can then begin searching for a high-valued action to exploit for the rest of
its lifetime.

3.3 Best-Response Strategies in Cultaptation

A widely used technique for getting insight about a game (e.g., see [26]) is to look at the game’s best-
response strategies. Given an agent α and a strategy profile (i.e., an assignment of strategies to agents) s−α
for the agents other than α, α’s best response is a strategy sopt that maximizes α’s expected utility if the other
agents use the strategies in s−α.

In Cultaptation, it is more useful to consider a best response to the set of available strategies S, rather
than any particular strategy profile. During the course of a Cultaptation game, the strategy profile will
change many times as agents die and other agents are born to take their places. Each strategy in S will be
scored based on its average performance over the course of the game; and we can show (see Section 6.2.1)
that given S, each strategy’s score is independent of the initial strategy profile if the game is sufficiently
long.

If G is a Cultaptation game (i.e., a set of values for game parameters such as the number of agents, set
of available actions, probability distribution over their payoffs; see Section 5 for details), then for any agent
α, any set of available strategies S, and any history hα for α, there is a probability distribution πObs(a|hα,S)
that gives the probability of observing each action a, given S and hα. Given πObs and G, we can calculate the
probability of each possible outcome for each action our agent might take, which will allow us to determine
the best response to S. To compute πObs is not feasible except in general, but it is possible to compute
approximations of it in some special cases (e.g., cases in which all of the agents, or all of the agents other
than α, use the same strategy). That is the approach used in this paper.

4 Related Work

In this section we will discuss related work on social learning and on computational techniques related to
our own.
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4.1 Social Learning

The Cultaptation social learning competition offers insight into open questions in behavioral and cultural
evolution. An analysis of the competition is provided by Rendell et al. [34]. Of the strategies entered
into the competition, those that performed the best were those that greatly favored observation actions over
innovation actions, and the top performing strategy learned almost exclusively through observation. This
was considered surprising, since several strong arguments have previously been made for why social learning
isn’t purely beneficial [4, 35]. However, this result is consistent with observations made during our own
experiments, in which the ε-best-response strategy rarely did innovation (see Section 9).

In previous work, Carr et al. showed how to compute optimal strategies for a highly simplified versions
of the Cultaptation social learning game [6]. Their paper simplifies the game by completely removing the
observation action—which prevents the agents from interacting with each other in any way whatsoever,
thereby transforming the game into a single-agent game rather than a multi-agent game. Their model also
assumes that exploitable actions cannot change value once they have been learned, which overlooks a key
part of the full social learning game.

Wisdom and Goldstone attempted to study social learning strategies using a game similar to Cultap-
tation, but using humans rather than computer agents [38]. Their game environment consisted of a group
of “creatures,” each of which had some hidden utility. The agents’ objective was to select a subset of the
creatures to create a “team,” which was assigned a utility based on the creatures used to create it. Agents
had a series of rounds in which to modify their team, and on each round they were allowed to see the teams
chosen by other agents on the previous round (and in some cases, the utility of the other agents’ teams), and
the object of the game was to maximize the utility of one’s team. In this game, the acts of keeping a creature
on one’s team, choosing a creature that another agent has used, and choosing a creature no one has yet used
correspond to exploitation, observation, and innovation (respectively) in the Cultaptation game.

The successful strategies Wisdom and Goldstone saw are similar to those used by the strategies found
by our algorithm: they keep most of the creatures on their team the same from round to round (which
corresponds in Cultaptation to performing mostly exploitation actions), and new creatures are mostly drawn
from other agents’ teams (which corresponds to preferring observation over innovation in Cultaptation).
However, Wisdom and Goldstone highlight these characteristics as interesting because they run contrary to
the conventional wisdom for social learning strategies, which suggests that broader exploration should lead
to better performance, and therefore that successful strategies should innovate more often [35]. In this case,
analyzing the strategies found by our algorithm allowed us to draw the same conclusions about what works
well. This gives more evidence that the conventional wisdom on social learning [4, 35] may be mistaken.

How best to learn in a social environment is still considered a nontrivial problem. Barnard and Sibly
show that if a large portion of the population is learning only socially, and there are few information pro-
ducers, then the utility of social learning goes down [2]. Thus, indiscriminate observation is not always the
best strategy, and there are indeed situations where innovation is appropriate. Authors such as Laland have
attempted to produce simple models for determining when one choice is preferable to the other [25]. Game
theoretic approaches have also been used to explore this subject, but it is still ongoing research [15, 9]. Gi-
raldeau et al. offer reasons why social information can become unreliable. Both biological factors, and the
limitations of observation, can significantly degrade the quality of information learned socially [12].

Work by Nettle outlines the circumstances in which verbal communication is evolutionarily adaptive,
and why few species have developed the ability to use language despite its apparent advantages [28]. Nettle
uses a significantly simpler model than the Cultaptation game, but provides insight that may be useful to
understanding social learning in general. In Nettle’s model, the population reaches an equilibrium at a point
where both individual and social learning occur. The point of equilibrium is affected by the quality of
observed information and the rate of change of the environment.
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N Number of agents in the environment.
S The set of available strategies. Agents may only use strategies in S.
r Number of the current round, ranging from 1 to∞.
c The probability of change on all rounds.
d The probability of death on all rounds.
(a, (m, v)) An action-percept pair in which the action a returns the percept (m, v).
hα Agent history for α. A sequence of action-percept pairs experienced by agent α.
hα[i] The i-th action-percept pair in hα.
X(hα) Number of exploitable actions given history hα.
µ Number of exploitation actions in the game.
π Probability distribution for the new value of any action whose value changed at round r.
πObs(m, v|hα,S) Probability that Obs will observe action m with value v at history hα.
πInv(v|r) Probability that Inv will return an action with value v on round r.
V The set of potential utility values.
P(h′α|hα, a,S) Probability of transitioning to history h′α if α performs action a at history hα.
L(|hα|) Probability that α lives long enough to experience history hα.
T Set of all action-percept pairs of the form (a, (m, v)).

Table 2: A glossary of notation used in this paper.

4.2 Related Computational Techniques

The restless bandit problem, a generalization of the stochastic multi-armed bandit problem that accounts for
probability of change, is cited as the basis for the rules of the Cultaptation tournament [34]. The rules of the
Cultaptation game differ from the restless bandit problem by including other agents, making observation
actions possible and complicating the game significantly. We also show in Section 6.2 that maximizing
total payoff, the goal of the restless bandit problem, is different from maximizing expected per-round utility
(EPRU) of an agent in the Cultaptation tournament.

The restless bandit problem is known to be PSPACE-complete, meaning it is difficult to compute optimal
solutions for in practice [30, 13]. Multi-armed bandit problems have previously been used to study the
tradeoff between exploitation and exploration in learning environments [36, 24].

As discussed later in Section 5, finding a best-response strategy in Cultaptation is basically equivalent
to finding an optimal policy for a Markov Decision Process. Consequently, our algorithm for finding near-
best-response strategies has several similarities to the approach used by Kearns et al. to find near-optimal
policies for large MDPs [21]. Both algorithms use the discount factor of the MDP (which, in our case, is
the probability of death d) and the desired accuracy ε to create a horizon for their search, and the depth
hα of this horizon depends on the discount factor and the branching factor, but not on the size of the full
state space (unlike conventional MDP algorithms). Thus, both their algorithm and ours also have running
time exponential in 1/ε and in the branching factor. However, the algorithm provided by Kearns et al. was
designed as an online algorithm, so it only returns the near-optimal action for the state at the root of the
search tree. Ours, on the other hand, returns a strategy specifying which action the agent should take for all
states that can occur on the first hα rounds. This means that our exponential-time algorithm only needs to
run once to generate an entire strategy, rather than once per agent per round in each game we simulate.

Many algorithms for optimal control of an MDP have been developed, however they all have running
time that grows linearly with the size of the state space of the MDP. This makes them intractable for problems
like ours, which have exponentially large state spaces. Several approaches for near-optimal control, which
produces a policy within some ε of optimal, have been developed [21, 23, 3].

10



5 Formal Model

In this section we introduce a formal mathematical model of Cultaptation games. A glossary of the notation
used in this paper is provided as Table 2.

Game Definition. Cultaptation requires a number of parameters to determine exactly how it will run.
Therefore, in our formal model, we will define the game parameters, G, to be a set of values for the follow-
ing: N, the number of agents; µ, the number of exploitation actions in the game; c, the probability that an
exploitation action changes its utility each round; π, the probability distribution used to assign a utility value
to each exploitation action, both the outset and each time an action’s utility changes; and d, the probability
of death. In the Cultaptation tournament, only the values of N, µ, and d were known ahead of time, but for
our analysis we use the values of the other parameters as well.

Recall that in the Cultaptation tournament [5], each evolutionary simulation was a contest between two
or more strategies submitted to the tournament. Thus, there is a fixed set of strategies that are allowed to
occur in a given simulation. We will call this the set of available strategies S, where S = {s1, s2, ..., s`} for
some finite ` (i.e. in pairwise games ` = 2, in melee games ` > 2). Any strategy profile s that occurs in the
simulation will consist only of strategies in S. When an agent is chosen to be replaced via mutation, its new
strategy is selected at random from the strategies in S.

We can now define a Cultaptation game formally, as follows. A Cultaptation game is an `-player game,
in which each player receives the game parameters G as input. Each player then simultaneously chooses a
strategy to put into the set of available strategies. We will call player i’s strategy si, so that S = {s1, s2, ..., s`}.
The pair (G,S) is an instance of G. In (G,S), each player i will receive a payoff equal to score(si), defined
below.

Scoring. The version of Cultaptation used in the tournament continued for 10,000 rounds, and each strat-
egy was assigned a score equal to its average population over the last 2,500 rounds. But as is often done
in analyses of repeated games, our formal model assumes an infinite Cultaptation game, i.e., the game con-
tinues for an infinite number of rounds, and the score for strategy s is its average population over the entire
game:

score(s) = lim
r→∞

∑r
j=1 p(s, j)

r
,

where p(s, j) is the population size of agents using strategy s on round j. This greatly simplifies our analysis
in Section 5.5, by allowing us to average out the various sources of noise present in the game.

Actions. The rest of the formal model will be constructed from the perspective of an arbitrary agent, α, in
a given infinite Cultaptation game instance (G,S). We use r for the number of a round, and X(hα) to specify
the number of exploitation actions available after history hα. After all exploitation actions X1, . . . ,Xµ have
been innovated or observed in a history hα, then X(hα) = µ and innovation actions become illegal.

We model the payoffs supplied for exploitation actions Xi by a probability distribution π. π(v) is the
probability of an action having payoff v at the start of the game instance. π(v) is also the probability that,
when an action changes its payoff, the new payoff is v. We let V be the set of all action values that may
occur with non-zero probability:

V = {v | π(v) > 0}.

We require the set V to be finite.
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If we let πInv(v|r) be the probability that value v is innovated on round r, it can be defined recursively in
terms of c and π as:

πInv(v|r) =

{
π(v), if r=0,
cπ(v) + (1 − c)πInv(v|r − 1), otherwise.

That is, initially the chance that Inv will return an action with value v is determined by the given distri-
bution π(v). On later rounds (r > 0) the chance that Inv will return an action with value v is the chance that
an action’s value changed to v on the current round (given by cπ(v)), plus the chance that an action’s value
was v on the previous round and it did not change this round.

While computing the probability distribution for utilities of actions returned by Inv was fairly straight-
forward, computing a similar distribution for Obs actions is significantly more difficult. Let α be any agent,
and S be the set of available strategies. From S we can get a probability distribution over the other agents’
actions in any given situation; and from this we can derive πObs(m, v|hα,S), the probability that Obs would
return the action-percept pair (m, v), given history hα.

In order to derive πObs, we must consider each possible strategy profile s−α for agents besides α, de-
termine how likely that strategy profile is to occur, and then determine what each agent in s−α will do for
every possible sequence of actions they could have encountered, bounded only by the percepts our agent
has received in hα. As we discussed in Section 3.3, the number of possible histories alone is astronomically
large. Since πObs is conditioned on each possible history it will be larger still, so in any practical implemen-
tation the best we can do is to approximate πObs (Section 7.5 describes how we will do this). But for our
theoretical development, we will assume we have an oracle for πObs, that will tell us exactly how likely we
are to observe any given action-utility pair.

In what follows, we will show that, given π, πObs, V , and S, we can calculate the possible outcomes of
each action the agent may take, and the probability of each of these outcomes. This allows us to treat an
infinite Cultaptation game as a Markov Decision Process (MDP) [18]. Calculating the best response in this
case is equivalent to finding an optimal control policy for an MDP.

5.1 Transition Probabilities

A transition probability function P(h′α|hα, a,S) defines the probability of transitioning from history hα to his-
tory h′α = hα ◦ (a, (m, v)) in the next round if an agent α performs action a. These transition probabilities are
for the case where α does not die before reaching h′α; we introduce functions to account for the probability
of death in Section 5.2.

There are three cases for what P(h′α|hα, a,S) might be, depending on whether a is an innovation, obser-
vation, or exploitation action:

• If a = Inv, then

P(hα◦(Inv, (m, v))|hα, Inv,S) =

 πInv(v|r)
µ−X(hα) if hα contains no percepts that contain the action m,

0 otherwise.
(2)

• Recall that an agent cannot innovate action m if it has already encountered m by innovating or observ-
ing. Observation actions are not subject to the same restriction, so if a = Obs, then

P(hα ◦ (Obs, (m, v))|hα,Obs,S) = πObs(m, v|hα,S) (3)

where πObs(m, v|hα,S) models the exploitation behavior of the other agents in the environment. Ob-
viously, the exact probability distribution will depend on the composition of strategies used by these
agents. The above definition is general enough to support a wide range of environments; and in
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Section 7.5 we will discuss one potential way to model this function for a more specific set of envi-
ronments.

• Finally, if a = Xm, then hα must contain at least one percept for Xm. Let r be the last round at which
the last such percept occurred. For the case where Xm’s utility did not change since round r, we have

P(hα ◦ (Xm, (m, v))|hα,Xm,S) = (1 − c)|hα |−r︸       ︷︷       ︸
prob. of not changing

+ cπ(v)
|hα |∑
j=r

(1 − c)|hα |− j

︸                    ︷︷                    ︸
prob. of changing back to v.

(4)

For the case where Xm’s utility did change since round r, we have

P(hα ◦ (Xm, (m, v))|hα,Xm,S) = cπ(v)
|hα |∑
j=r

(1 − c)|hα |− j (5)

which is similar, but assumes that the value must have changed at least once.

In all other cases, no transition from hα to h′α is possible, so P(h′α|hα, a,S) = 0.

5.1.1 Probability of Reaching a History

We will frequently be interested in P(hα|s,S), the probability of history hα occurring given that the agent is
following some strategy s ∈ S. We will be able to derive P(hα|s,S) iteratively, calculating the probability of
each step of history hα occurring using the functions derived above.

Specifically, P(hα|s,S) is the probability that each hα[i] = (ai, (mi, vi)) occurs given the action chosen by
the strategy in the history hα[1, . . . , i − 1] = (a1, (m1, v1)) · · · · · (ai−1, (mi−1, vi−1)), or:

P(hα|s,S) =

|hα |−1∏
i=1

P(hα[1, . . . , i] ◦ hα[i + 1]|hα[1, . . . , i], s(hα[1, . . . , i]),S) (6)

5.2 Accounting for Probability of Death

The probability of an agent living long enough to experience history hα depends on the probability of death.
It is

L(|hα|) = (1 − d)|hα |−1. (7)

When we calculate the probability of reaching a given history hα, we will generally multiply it by L(|hα|)
to account for the chance that the agent dies before reaching hα.

Sometimes we will also be interested in the probability that a randomly-selected agent has history hα.
For this we will need to know the probability that a randomly-selected agent is exactly |hα| rounds old, which
is simply:

L(|hα|)∑∞
i=1 L(i)

=
L(|hα|)

1
1−(1−d)

=
L(|hα|)

1
d

= d L(|hα|). (8)
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5.3 Utility Functions

A utility function U((a, (m, v))) defines the utility gleaned on action-percept pair (a, (m, v)):

U((a, (m, v))) =

{
v, if ∃i such that a = Xi,

0, otherwise.
(9)

Notice that U(·) is only non-zero on exploitation actions.
The per-round utility (PRU) of a history hα = (a1, (m1, v1)) ◦ · · · ◦ (a|hα |, (m|hα |, v|hα |)) is defined to be the

sum of the utility acquired in that history divided by the history’s length:

PRU(hα) =
1
|hα|

|hα |∑
i=1

U((ai, (mi, vi))) (10)

5.4 Strategy Representation

A strategy s is defined as a function mapping each history hα ∈ H to the agent’s next action s(hα) ∈
{Inv,Obs,X1, . . . ,Xµ}. For instance, the strategy I1 from Example 1 is defined by the function:

sI1(hα) =

{
Inv, if hα is empty,
Xi, for hα = (Inv, (Xi, v)), . . .

In this paper we will deal with partially specified strategies. A partially specified strategy is a mixed strategy
(i.e., a probability distribution over a set of pure strategies) that is defined by a finite set Q of history action
pairs (Q ⊂ H × {Inv,Obs,X1, . . . ,Xµ}), in which each hα ∈ H appears at most once. Given any history hα,
if there is an action m such that (hα,m) ∈ Q, then sQ chooses the action m. Otherwise, sQ chooses an action
arbitrarily from all actions that are legal in hα. Partially specified strategies have the advantage of being
guaranteed to be finitely representable.

5.5 Evaluating Strategies

At each round, an agent with history hα has reproductive fitness PRU(hα), and agents are selected to re-
produce with probability proportional to their reproductive fitness (i.e. using the replicator equation [16]).
Since a strategy’s score is a function of its average population over the course of the game, we want some
metric that allows us to compare the expected reproductive fitness of two strategies. This will allow us to
predict which strategy is more likely to win.

At first glance, it may appear that the way to predict which strategy will have higher expected reproduc-
tive fitness is to compare their expected utilities. However, prior work has shown that this is not the case: in
Cultaptation, a strategy’s expected reproductive fitness is not necessarily proportional to its expected utility
[32]. We now present a simple example that illustrates this phenomenon.

Example 5 (reproductive fitness not proportional to expected utility) Consider an infinite
Cultaptation game with no probability of change, no observation actions, probability of death
d = 0.05, two exploitation actions valued at 65 and 100, and an innovate action that will return
either exploitation action with uniform probability. This means that an agent needs to perform
at most two innovate actions to have knowledge of the action with value 100, since innovating
does not return an action the agent already knows.

We will compare two strategies: sII and sIEI. Both strategies will perform an innovate as their
first action. If the action they learn has value 100, both strategies will exploit that action until
the agent dies. If the action learned has value 65, sII will perform a second innovate on its
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Table 3: The expected utility and expected reproductive fitness of sII and sIEI from Example 5. sIEI has a
higher expected reproductive fitness, and therefore will be likely to win a game against sII, even though sII
has a higher expected utility.

Expected Utility Expected Reproductive Fitness
sII 90.25 65.074
sIEI 88.825 65.185

next turn, learning the action with value 100, and will exploit that action until its agent dies.
Meanwhile, sIEI will exploit the action with value 65 once, before performing an innovate on
its third turn to learn the action with value 100. It then exploits this action until its agent dies.

Since the two strategies are identical when they learn the action with value 100 on their first
action, and since this case is equally likely to be encountered by both strategies, we can ignore
it for the purposes of comparing them. For the rest of this analysis we will assume the first
innovate returns the action with value 65. In this case, we can calculate the expected utility
for both strategies using geometric series, and we can calculate their expected reproductive
fitnesses using methods described in Section 6. Table 3 presents these values. While sII has a
higher expected utility, since it exploits the action with value 100 more often, sIEI has a higher
expected reproductive fitness, since it does not wait as long to begin exploiting. Therefore, sIEI
will be the likely winner in a contest between these two strategies.

Since we cannot always use a strategy’s expected utility to determine whether it is expected to win,
we will instead compute a strategy’s expected reproductive fitness directly, by computing its Expected Per-
Round Utility.

Definition. The Expected Per-Round Utility for a strategy sα, EPRU(sα | G,S), is the expected value of
PRU(hα) over all possible histories hα for a randomly-selected agent α using strategy sα ∈ S in an infinite
Cultaptation game instance (G,S). �

To calculate EPRU(sα | G,S), we look at each possible history hα and multiply PRU(hα) by the proba-
bility that a randomly-chosen agent using sα has history hα. This probability is equal to the probability that
a randomly-chosen agent is |hα| rounds old (Equation 8) times the probability of reaching history hα in |hα|
steps using strategy sα (Equation 6). Hence, the EPRU of a strategy is:

EPRU(sα | G,S) =
∑

hα∈H

d L(|hα|)︸   ︷︷   ︸
Portion of agents |hα | rounds old

× P(hα|sα,S)︸       ︷︷       ︸
Chance of reaching hα using s

× PRU(hα)︸    ︷︷    ︸
Per-round utility

.

Note that for a given environment, the probability of death d is a constant. Hence, in our analysis we
will frequently factor it out.

Example 6 Recall the innovate-once strategy, which innovates once to learn an action and then
exploits that action until it dies. Suppose this strategy exists in an environment with a probability
of death of 0.2 and only one possible exploit action with non-changing value 10. All agents
using this strategy will therefore learn the only action on their first round, and then exploit an
action with value 10 on all subsequent rounds. Hence, there is only one possible history for a j-
round old agent using this strategy, and its per-round utility is 10 · ( j−1)/ j. The probability that
a randomly-selected agent will be j rounds old will be 0.2 ·L( j) = 0.2 ·0.8 j−1. Thus the expected
per-round utility achieved by this strategy in this environment is

∑∞
j=1 0.2 · 0.8 j−1 · 10 · ( j− 1)/ j.
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6 Analysis of EPRU

In this section we examine methods for computing the expected per-round utility of a strategy. First we
present a method for computing an approximation to the EPRU for given a strategy, then we present a proof
that a strategy maximizing EPRU will also maximize its average population in an infinite Cultaptation game
instance.

6.1 Computation of EPRU

We will now define a formula that can be used to compute EPRU exactly for a given strategy s. The definition
of EPRU given in Section 5.5 used a “backward” view: for every possible history hα, it looked back through
hα to determine PRU(hα). Notice, however, that hα must have some preceding history h′α, where hα = h′α ◦ t
for some action-percept pair t. This definition of EPRU must examine h′α and hα independently, even though
their only difference is the addition of t.

For this reason, it will make more sense computationally to use a “forward” view of EPRU: we will
construct a recursive function on s and hα which, for each possible hα ◦ t:

• calculates the per-round utility gained from t, both for history hα ◦ t and for all histories that can be
reached from hα ◦ t, and then

• recurses on s and hα ◦ t.

For the calculation in the first bullet, we will use the formula EVexp(r, v), which computes the expected
amount of per-round utility we gain (on the current round and on future rounds) by exploiting a value v on
round r

EVexp(r, v) =

∞∑
j=r

L( j)v
j

= v
∞∑
j=r

1
j
(1 − d) j−1 (11)

Using known properties of infinite series, EVexp can also be expressed as 8

EVexp(r, v) = v

 ∞∑
i=1

1
i
(1 − d)i−1 −

r−1∑
i=1

1
i
(1 − d)i−1


= v

 ln d
d − 1

−

r−1∑
i=1

1
i
(1 − d)i−1

 (12)

and is therefore computable.
We can now express the expected per-round utility of a strategy s recursively in terms of the average

per-round payoff of an agent.

EPRUalt(s, hα | G,S) =
∑
t∈T

P(hα ◦ t|hα, s(hα),S) ·
(
EVexp(|hα ◦ t|,U(t)) + EPRUalt(s, hα ◦ t | G,S)

)
(13)

where T is the set of all possible action-percept pairs, and hα ◦ t represents a possible history on the next
round. Note that the size of T is finite. A proof that EPRU(s | G,S)/d = EPRUalt(s, 〈〉 | G,S) is included in
Appendix A.

8The simplification
∑∞

i=1
1
i (1 − d)i−1 = ln d

d−1 is due to [7].
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Unfortunately, computing EPRUalt is not possible since it suffers from infinite recursion. To handle this,
we introduce a depth-limited computation of EPRUalt, which only computes the portion of the total EPRU
contributed by the first k rounds:

EPRUk
alt(s, hα | G,S) ={
0 If k = 0∑

t∈T P(hα ◦ t|hα, s(hα),S)(EVexp(|hα|,U(t)) + EPRUk−1
alt (s, h ◦ t | G,S)) otherwise

(14)

We prove in Section 7.3 that if the search depth k is deep enough, EPRUk
alt(s, hα |G,S) will always be within

ε of EPRUalt(s, hα | G,S).

6.2 EPRU Corresponds to Reproductive Success

This section provides a proof that if a strategy has the highest EPRU for the given environment, it will also
have the optimal expected probability of reproducing. This proof applies only to pairwise games, but the
same techniques can apply to arbitrary (finite) numbers of strategies.

Assume we have an infinite Cultaptation game instance (G,S), as defined in Section 5, made up of agents
using strategies s and s′ (i.e. S = {s, s′}). Recall from Section 5 that the score for strategy s is

score(s) = lim
r→∞

∑r
i=0 p(s, i)

r

where p(s, i) is the number of agents using strategy s on round i. Our objective for this section will be to
show that EPRU(s | G,S) > EPRU(s′ | G,S) if and only if score(s) > score(s′).

We begin by defining a reset event, which will help us illustrate some interesting properties of infinite
Cultaptation.

Definition. Let n and n′ be the number of agents using s and s′, respectively, on the first round of the
game instance, and let N = n + n′. A reset event occurs when all the agents in the environment die on two
consecutive rounds, and on the second round they are replaced (via mutation) by n agents using s and n′

agents using s′. The probability of a reset event occurring is β = dNdNmN
(

n
N

)
0.5n. �

In other words, after a reset event occurs the conditions are identical to those that were present on the
first round; the game instance has essentially started over. Note that β is the same on every round, and it is
always greater than 0.

Since the game instance continues for an infinite number of rounds, there will be an infinite number of
reset events. Thus, if we were to run other game instances with S = {s, s′}, both strategies would have the
same score each time. Therefore, we also know that we can define each strategy’s score as a function of its
expected population at each round, rather than its population for a single game instance. This gives us

lim
r→∞

∑r
i=0 p(s, i)

r
= lim

r→∞

∑r
i=0 EP(s, i)

r
(15)

where EP(s, r) is the expected population of agents using strategy s on round r.
We will also define EAU(s, r) to be the expected agent utility of strategy s on round r; that is, EAU(s, r)

is the expected PRU of a randomly-chosen agent using strategy s on round r. We can now define EP(s, r)
recursively for each strategy using the mechanics of Cultaptation, as follows. We will let EP(s, 0) = n and
EP(s′, 0) = n′. Then, for r ≥ 0

EP(t, r + 1) = (1 − d)EP(t, r)︸           ︷︷           ︸
Survived from previous round

+ Nd(1 − m)
EP(t, r)EAU(t, r)

TU(r)︸                              ︷︷                              ︸
New agents from selection

+ Nd
m
2︸︷︷︸

New agents from mutation
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where t ∈ {s, s′} and TU(r) = EP(s, r)EAU(s, r) + EP(s′, r)EAU(s′, r) is the expected total utility on round r.
Recall from Section 5 that N is the total number of agents in the environment, d is the probability of death,
and m is the probability of mutation.

We now consider the behavior of EAU(s, r) as r increases.

Lemma 1 For any strategy s, limr→∞ EAU(s, r) = γ for some finite γ.

Proof. Let u(s, r) be the expected utility of a single agent using strategy s when r rounds have passed since
the first round or the last reset event. For all r, we know that 0 ≤ u(s, r) ≤ Vmax/d, since agents cannot earn
negative utility, and no strategy can do better than exploiting the best possible action for its entire expected
lifespan of 1/d rounds. We can rewrite EAU(s, r) in terms of u(s, r) as follows.

EAU(s, r) = β

 r−1∑
i=0

(1 − β)iu(s, r)

 + (1 − β)ru(s, r)

Taking the limit of this form gives us

lim
r→∞

EAU(s, r) = lim
r→∞

β

 r−1∑
i=0

(1 − β)iu(s, i)

 + lim
r→∞

(1 − β)ru(s, r) = lim
r→∞

β

 r−1∑
i=0

(1 − β)iu(s, i)

 .
Since u(s, i) is bounded and

∑r−1
i=0 (1 − β)i is a geometric series, limr→∞ β

(∑r−1
i=0 (1 − β)iu(s, i)

)
converges

absolutely by the comparison test. Hence, limr→∞ EAU(s, r) = γ for some finite γ. �

Lemma 2 For any strategy sα and set of available strategies S,

lim
r→∞

EAU(sα, r) = EPRU(sα | G,S)

Proof. The expected agent utility EAU(sα, r) is defined as the expected PRU of an agent using strategy sα
on round r. As r approaches infinity, the probability that a randomly-selected agent will be i rounds old
approaches L(i)/

∑∞
j=0 L( j) = dL(i). The probability of reaching a history hα is defined in Section 5.5 as

P(hα|sα,S), and as r increases the set of histories a randomly-selected agent may have approaches H, the set
of all histories. Thus,

lim
r→∞

EAU(sα, r) =
∑

hα∈H

dL(|hα|) × P(hα|sα,S) × PRU(hα),

which is the definition of EPRU(sα | G,S). �

EP(s, r) and EP(s′, r) are both functions of EAU(s, r) and EAU(s′, r), which converge to EPRU(s | G,S)
and EPRU(s′ | G,S) respectively. Therefore, EP(s, r) and EP(s′, r) must also converge as r approaches
infinity. We will let EP(s) = limr→∞ EP(s, r) for s ∈ {s, s′}. We can find the value of EP(s) as follows

EP(s) = (1 − d)EP(s) + Nd(1 − m)
EP(s) EPRU(s | G,S)

EP(s) EPRU(s | G,S) + EP(s′) EPRU(s′ | G,S)
+ Nd

m
2
.

After substituting EP(s′) = N − EP(s) and rearranging terms, we have

0 = (EPRU(s | G,S)EP(s)2 − EPRU(s′ | G,S))

+ N
(
(1 +

m
2

) EPRU(s′ | G,S) − (1 −
m
2

) EPRU(s | G,S)
)

EP(s) − N2 m
2

EPRU(s′ | G,S).
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Assume EPRU(s | G,S) > 0 and EPRU(s | G,S) > 0 and let x = EPRU(s | G,S)/EPRU(s′ | G,S). Then
we can rewrite the above as

0 = (x − 1)EP(s)2 + N
(
1 +

m
2
− x(1 −

m
2

)
)

EP(s) − N2 m
2
. (16)

This equation, when subject to the constraint 0 ≤ EP(s) ≤ N, allows us to express EP(s) as a strictly
increasing function of x. It also has the property that when x = 1, EP(s) = EP(s′) = N/2.

Lemma 3 EP(s) > EP(s′) if and only if EPRU(s | G,S) > EPRU(s′ | G,S).

Proof. Assume EPRU(s | G,S) > EPRU(s′ | G,S). Then x > 1 in Equation 16, and therefore EP(s) > N/2,
so EP(s) > EP(s′). Assume EP(s) > EP(s′). Using Equation 16, we know that x > 1 and therefore that
EPRU(s | G,S) > EPRU(s′ | G,S). Hence, EP(s) > EP(s′) if and only if EPRU(s | G,S) > EPRU(s′ | G,S).

�

We can now calculate the ratio between each strategy’s score using EP(s) and EP(s′).

Lemma 4 For all s and s′,

lim
r→∞

∑r
i=0 EP(s, i)

r
> lim

r→∞

∑r
i=0 EP(s′, i)

r

if and only if EP(s) > EP(s′).

Proof. We know that

limr→∞

∑r
i=0 EP(s,i)

r

limr→∞

∑r
i=0 EP(s′,i)

r

=
limr→∞

∑r
i=0 EP(s, i)

limr→∞
∑r

i=0 EP(s′, i)
.

Since the sequence br =
∑r

i=0 EP(s′, i) is unbounded and strictly increasing, we can use the Stolz-Cesàro
theorem to obtain

limr→∞
∑r

i=0 EP(s, i)
limr→∞

∑r
i=0 EP(s′, i)

=
limr→∞

∑r+1
i=0 EP(s, i) −

∑r
i=0 EP(s, i)

limr→∞
∑r+1

i=0 EP(s′, i) −
∑r

i=0 EP(s′, i)
=

limr→∞ EP(s, r)
limr→∞ EP(s′, r)

=
EP(s)
EP(s′)

.

�

From Equation 15 and Lemmas 3 and 4, we immediately get the following:

Theorem 1 For all s and s′,

lim
r→∞

∑r
i=0 n(s, i)

r
> lim

r→∞

∑r
i=0 n(s′, i)

r

if and only if EPRU(s | G,S) > EPRU(s′ | G,S).

Therefore, a strategy’s expected reproductive success is directly proportional to its EPRU.
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6.2.1 Irrelevance of the Initial Strategy Profile

From the fact that EPRU is independent of the initial strategy profile s, we also get the following corollary
which will help us understand some of our experimental results (see Section 9).

Corollary 1 The initial strategy profile s of an infinite Cultaptation game instance (defined in Section 5)
does not affect the score of any strategy in S.

If this seems counterintuitive, consider the following. At the beginning of this section we defined a reset
event, in which every agent dies on two consecutive rounds, and all are replaced via mutation so that the
population is identical to the initial strategy profile. For each reset event, there will be many similar events
in which every agent dies on two consecutive rounds and is replaced via mutation, but in some arrangement
different from the initial strategy profile. The probability of this happening is d2NmN , which is greater than 0.
In an infinite-length game, such an event will eventually occur with probability 1. After it occurs, the initial
strategy profile clearly has no bearing on how the rest of the game plays out, yet there are still an infinite
number of rounds left in the game. Since each strategy’s score is its average population over the entire game
(see Section 5), the impact of the initial strategy profile on each strategy’s total score is vanishingly small in
an infinite-length game.

6.2.2 Application of EPRU to other Evolutionary Games

Many of the equations used in calculating EPRU involve concepts particular to Cultaptation, such as inno-
vation, observation, and changing action values. However, the general technique we use is to calculate the
expected reproductive fitness of an agent on round j, multiply this quantity by the expected proportion of
agents that are j rounds old, and sum these quantities to get the expected fitness of an entire population. This
should be a useful metric in any evolutionary game in which agents live for more than one generation and
reproduce according to the replicator equation, even if the game uses some measure other than per-round
utility to determine reproductive fitness. The proofs in this section rely primarily on the symmetry between
1) the probability that an agent will be alive after k rounds and 2) the expected proportion of a population
of agents that are k rounds old on any given round. Thus, any evolutionary game that allows agents to live
more than one generation and in which agents die with the same probability on every round should be able
to use a metric very similar to EPRU to compare strategies.

7 Finding an ε-Best Response Strategy

In this section we explain what it means for a strategy to be a best response or near-best response in infinite
Cultaptation, and we provide an algorithm for calculating a near-best response to S−α, the available strategies
other than our own.

7.1 Problem Specification

Now that we have derived EPRU and proved that a strategy’s EPRU is directly proportional to its score in
an infinite Cultaptation game, we can determine how each strategy in a given set of available strategies S
will perform by evaluating the EPRU of each strategy. Therefore, we can define a best-response strategy in
terms of EPRU, as follows.

Recall that in an infinite Cultaptation game (as defined in Section 5) there are ` players, each of whom
selects a strategy to put into the set of available strategies S. Let S−α be the set of available strategies other
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than our own, i.e. S−α = {s1, ..., sα−1, sα+1, ..., s`}. We will say that strategy sopt is a best response to S−α if
and only if for any other strategy s′,

EPRU(sopt | G,S−α ∪ sopt) ≥ EPRU(s′ | G,S−α ∪ s′).

Computing sopt is not possible due to its prohibitively large size. However, we can compute an ε-best-
response strategy, i.e., a strategy s such that EPRU(s |G,S−α∪ s) is arbitrarily close to EPRU(sopt |G,S−α∪
sopt). This problem can be stated formally as follows: Given game parameters G, error bound ε > 0, and the
set S of available strategies other than our own, find a strategy sα such that EPRU(sα |G,S−α ∪ sα) is within
ε of EPRU(sopt | G,S−α ∪ sopt).

7.2 Bounding EPRU

In games where 0 < d < 1, an agent could potentially live for any finite number of rounds. However,
since the agent’s probability of being alive on round r decreases exponentially with r, the expected utility
contributed by an agent’s actions in later rounds is exponentially lower than the expected utility contributed
by earlier rounds. We will use this fact in deriving a bound on EPRUalt(s, hα | G,S) for a given strategy and
a history hα of length l.

Recall from Equations 11 and 12 that:

EVexp(r, v) = v
∞∑
i=r

1
i
(1 − d)i−1 = v

 ln d
d − 1

−

r−1∑
i=1

1
i
(1 − d)i−1

 (17)

where EVexp(r, v) is the expected contribution to EPRU made by exploiting an action with value v on round
r.

Since we know how much any given exploit contributes to the expected EPRU(sα |G,S) for a given strat-
egy sα, we can calculate G(l, v), the amount that exploiting the same action on all rounds after l contributes
to EPRU(sα | G,S), as follows:

G(l, v) =

∞∑
j=l+1

v
∞∑

n= j

1
n

(1 − d)n−1 = v
∞∑

j=l+1

∞∑
n= j

1
n

(1 − d)n−1

Expanding the summations yields:

G(l, v) = v
(

1
l + 1

(1 − d)l +
2

l + 2
(1 − d)l+1 + · · ·

)
= v

∞∑
n=l+1

n − l
n

(1 − d)n−1

= v

 ∞∑
n=l+1

(1 − d)n−1 −

∞∑
n=l+1

l
n

(1 − d)n−1


= v

 (1 − d)l

d
−

∞∑
n=l+1

l
n

(1 − d)n−1


Next, we pull l out of the summation and use (17) to obtain:

G(l, v) = v


(1 − d)l

d
− l

 ln d
d − 1

−

l∑
n=1

1
n

(1 − d)n−1

︸                             ︷︷                             ︸
a

 (18)
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Note that for 0 < d < 1, G(l, v) is finite. G(l, v) provides a closed form formula for the eventual
contribution of exploiting an action with value v at every round after the lth round. Since the set V of
possible action values is finite (see Section 5), let vmax = max(V) be the largest of these values. Then
G(l, vmax) is an upper bound on the expected per-round utility achieved after round l (clearly no strategy can
do better than making an action with maximal value every action after action l). We use this fact to bound
the depth limited expected per-round utility computation.

Theorem 2 Let vmax be the highest possible action utility for game parameters G, and let S−α be the set of
available strategies other than our own. Then for all l and all strategies sα,

EPRUalt(sα, 〈〉 | G,S−α ∪ sα) − EPRUl
alt(sα, 〈〉 | G,S−α ∪ sα) ≤ G(l, vmax).

Proof. Since it is not possible for any strategy to gain more utility than vmax on any round, this follows from
the discussion above. �

Theorem 2 states that G(l, vmax) is the highest possible contribution to EPRUalt(sα, 〈〉 |G,S) made by any
strategy sα after round l. Thus, if we are given an ε > 0 and we can find a value of k such that G(k, vmax) ≥ ε,
then we know that no strategy can earn more than ε expected utility after round k. The next section will
show how to find such a k.

7.3 Determining How Far to Search

In this section we show how to find a search depth k such that, for any given ε > 0, no strategy can earn
more than ε utility after round k. We first note a bound on G(l, v):

Lemma 5 G(l, v) ≤ v(1 − d)l/d.

Proof. The lemma follows from noting that part (a) of Equation 18 is greater than or equal to zero, since
ln d
d−1 =

∑∞
n=1

1
n (1− d)n−1 and l < ∞. Thus G(l, v) = v( (1−d)l

d −w) ≤ v (1−d)l

d , since w is always non-negative. �

Now if we can find a k such that

ε = vmax(1 − d)k/d,

then we can be certain that ε ≥ G(k, v). Solving for k in the above equation yields

k = log(1−d)

(
dε

vmax

)
, (19)

which has a solution for 0 < d < 1 and vmax > 0, both of which will always be true in Cultaptation. This
gives us the following theorem.

Theorem 3 Given ε > 0, set of available strategies S−α other than our own, and game parameters G with
maximal utility vmax, let k = log(1−d)

(
dε

vmax

)
. If sα has the maximal value of EPRUk

alt(sα, ∅ | G,S−α ∪ sα), then
sα is an ε-best response to S−α.

Proof. Let sopt be the strategy with the maximal value of EPRU(sopt | G,S−α ∪ sopt). By Theorem 2, we
know that sopt cannot earn more than ε expected utility on rounds after k. Since sα earns the maximum
EPRU possible in the first k rounds, it follows that |EPRU(sopt |G,S−α∪ sopt)−EPRU(sα |G,S−α∪ sα)| ≤ ε.
Therefore, sα is an ε-best response. �
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Algorithm 1 Produce strategy s that maximizes EPRUk
alt(s, hα | G,S−α ∪ s), given initial history hα, set of

possible utility values V , and S−α, the set of available strategies other than our own.
Strat(hα,k,V , S−α)

1: if k = 0 then
2: return 0
3: end if
4: Let Umax = 0
5: Let smax = null
6: for each action a ∈ {Inv,Obs,X1, . . . ,Xµ} do
7: Let Utemp = 0
8: Let stemp = 〈hα, a〉
9: for each action m ∈ {1, . . . , µ} do

10: for each value v ∈ V do
11: Let t = (a, (m, v))
12: Let p = P(hα ◦ t|hα, a,S−α)
13: if p > 0 then
14: Let {S ′,U′} = Strat(hα ◦ t, k − 1,V,S−α)
15: stemp = stemp ∪ S ′

16: Utemp = Utemp + p (EVexp(|hα ◦ t|,U(t)) + U′)
17: end if
18: end for
19: end for
20: if Utemp > Umax then
21: Umax = Utemp
22: smax = stemp
23: end if
24: end for
25: return {smax,Umax}

7.4 Algorithm

We will now present our algorithm for computing the strategy s with the maximal value of
EPRUk

alt(s, ∅ | G,S−α ∪ s), and show how it can be used to compute an ε-best response.
Algorithm 1 returns a 2-tuple with a partially specified strategy s and a scalar U. Strategy s maximizes

EPRUk
alt(s, hα | G,S−α ∪ s), and U is the value of this expression.

The algorithm performs a depth-first search through the space of strategies that start from the input
history hα, stopping once it reaches a specified depth k. For each possible action a ∈ {Inv,Obs,X1, . . . ,Xµ}

at hα, it computes the expected per-round utility gained from performing a, and the utility of the best strategy
for each possible history h′α that could result from choosing a. It combines these quantities to get the total
expected utility for a, and selects the action with the best total expected utility, amax. It returns the strategy
created by combining the policy 〈hα, amax〉 with the strategies for each possible h′α, and the utility for this
strategy.

Seen another way, Strat(hα, k,V,S−α) computes EPRUk
alt(s, hα | G,S−α ∪ s) for all possible strategies s,

returning the strategy maximizing EPRUk
alt as well as the maximal value of EPRUk

alt.

Proposition 1 Strat(hα, k,V,S−α) returns (s,U) such that

EPRUk
alt(s, hα | G,S−α ∪ s) = U = argmaxs′(EPRUk

alt(s′, hα | G,S−α ∪ s′)).
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A proof of this proposition is presented in Appendix A.
We now have an algorithm capable of computing the strategy with maximal expected utility over the

first k rounds. Hence, in order to find an ε-best response strategy we need only find the search depth k such
that no strategy can earn more than ε expected utility after round k, and then call the algorithm with that
value of k.

Theorem 4 Given ε > 0, available strategies other than our own S−α, and a set of values V with maximum
value vmax, let k = log(1−d)

(
dε

vmax

)
. Then Strat(∅, k,V,S−α) returns (s,U) such that s is an ε-best response to

S−α.

Proof. This follows from Theorem 3 and Proposition 1. �

We also have the following.

Corollary 2 Given available strategies other than our own S−α and a set of values V, let sk be the strategy
returned by Strat(∅, k,V,S−α). Then limk→∞ sk is a best response to S−α.

Proof. Let sopt be a best response to S−α. By Lemma 5 and Theorem 3,

EPRU(sopt | G,S−α ∪ sopt) − EPRU(sk | G,S−α ∪ s) ≤ vmax(1 − d)k/d.

Since limk→∞ vmax(1−d)k/d = 0, it follows that limk→∞(EPRU(sopt |G,S−α∪sopt)−EPRU(sk |G,S−α∪sk)) =

0. Therefore, limk→∞ sk is a best response to S−α. �

7.5 Implementation

In this section we discuss modifications that improve the running time of Algorithm 1 without any loss
in accuracy. Section 7.5.1 discusses techniques for state aggregation, which allow us to cut the branching
factor of the algorithm in half. Section 7.5.2 discusses the representation of πObs, and Section 7.5.3 discusses
caching and pruning.

7.5.1 State Aggregation

If the pseudocode for Algorithm 1 were implemented verbatim, it would search through each history that
can be reached from the starting state. However, there is a significant amount of extraneous information
in each history that is not needed for any of the algorithm’s calculations. For example, the histories hα =

〈(Inv, (1, 10))〉 and h′α = 〈(Inv, (2, 10))〉 both describe a situation where α innovates once and obtains an
action with value 10. The only difference between these histories is the identifier assigned to the action,
which does not impact any of the calculations—yet the pseudocode must still search through each of these
histories separately. We can eliminate this redundancy by using repertoires, rather than histories, as the
states for the algorithm to search through. A repertoire is a record of what the agent knows about each of
the actions it has learned, rather than a record of everything that has happened to it.

Making this simple change allows Algorithm 1 to calculate the value of an observation action by com-
bining information it learns when exploring innovate and exploit actions, rather than recursing again. This
cuts the branching factor of our search in half. The analysis and details involved in this change, as well as
the proof that the version of the algorithm using repertoires returns the same result as the previous version,
are included in Appendix B.
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Running time analysis. When Algorithm 1 considers a history hα, it makes one recursive call for each
possible action-percept pair (a, (m, v)) that can be executed at hα. There are 2µ such pairs for each history; if
our agent knows how to exploit j actions, then it can innovate any of the µ − j actions it does not know, and
it can observe any of the µ actions. Each of these actions can also have any of v values. Hence, the number
of recursive calls made by the algorithm each action is at most 2µv. Since the algorithm recurses to depth
k, the running time for Algorithm 1 is O((2µv)k). With the state aggregation technique described above, we
do not need to perform additional recursions for observation actions. Hence, the number of recursive calls
made each action is at most µv, and the total running time is O((µv)k), which improves upon the original
running time by a factor of 2k.

7.5.2 Representing πObs

For our formal proofs, we treated πObs as a black box that, when given our agent’s history and round number,
could tell us the exact probabilities of observing each action on the current round. However, since there are
an exponential number of possible histories, storing πObs in this form would require an exponential amount
of space, which would severely limit the size of games for which we could compute strategies. We would
also need to run a prohibitively large number of simulations in Algorithm 2 (introduced in Section 8) to get
enough samples to generate a new πObs of this type.

Therefore, as an approximation, our implementation assumes that πObs has a similar structure to πInv,
and remains constant throughout the agent’s lifetime. That is, the πObs used in the experiments returns the
probability of an action valued v being observed. While this leads to some loss in accuracy, it is very easy to
store and compute. Further, we will see in our experimental results (particularly those dealing with iterative
computation in Section 9.2) that this form of πObs is still able to produce good strategies.

7.5.3 Caching and Pruning

Since our implementation uses repertoires rather than histories to represent the agent’s set of known actions,
and since it is possible for two histories to produce the same repertoire, the algorithm will sometimes en-
counter repertoires that it has already evaluated. So that the algorithm will not have to waste time evaluating
them again, the implementation includes a cache which stores the EPRU of every repertoire it has evalu-
ated. When the algorithm encounters a repertoire whose expected utility is needed, the implementation first
checks the cache to see if the EPRU of the repertoire has been previously computed, and uses the computed
value if it exists. Caching is widely used in tree-search procedures, and is analogous to the transposition
tables in chess-playing algorithms [31].

We also use another well-known method for avoiding unnecessary evaluation of states, namely branch-
and-bound pruning [19, 17]. Before one computes the expected per-round utility of a given action, one
checks to see if an upper bound on the EPRU of that action would be sufficient to make the given action’s
utility higher than the best previously computed action. In many situations, the maximal utility that can be
achieved for a given action will in fact be less than the utility we know we can achieve via some other action,
and therefore we can skip the evaluation of that action (i.e. we can “prune” it from the search tree).

We have no theoretical guarantees on runtime reduction using these techniques, but we will see in
Section 9.1.1 that the combination of pruning and caching allows us to avoid evaluating significant portions
of the state space in the environments we tested.

8 Cultaptation Strategy Learning Algorithm

Until now we have assumed that Algorithm 1 has access to πObs, the distribution of observable actions, when
it performs its calculations. While the algorithm finds the near-best-response strategy given a particular πObs,
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Algorithm 2 Produce an approximation of a strategy that is an ε-best response to itself.
CSLA(πInv, τ, k)

1: Let πObs = πInv.
2: s = ∅.
3: repeat
4: Let sold = s.
5: Let V = {πInv, πObs}.
6: s = Strat(∅, k,V,S)
7: Simulate a series of Cultaptation games in which s plays itself, and action utilities are initially drawn

from πInv, recording all actions exploited in the last quarter of this game.
8: Use records of exploited actions to generate a new distribution πObs (i.e. πObs(v) = fraction of the

time v was exploited in the records).
9: until stratDiff(s, sold) < τ

10: return s.

agents playing the real Cultaptation game are not given access to πObs beforehand, and even estimating what
πObs looks like can be very difficult while playing the game due to the limited amount of information each
agent receives in its lifetime. It is also unclear how exactly an agent’s own actions will affect πObs: by
exploiting a particular action, the agent is making that action observable to others who might then exploit it
in greater proportion than in the πObs used to compute the agent’s strategy.

To address these difficulties, we developed the Cultaptation Strategy Learning Algorithm (CSLA), which
uses a method for creating a strategy and a distribution πObs simultaneously so that (i) πObs is the distribution
created when all agents in a Cultaptation game play the computed strategy and (ii) the computed strategy is
a near-best response for πObs (and other parameters).

This algorithm copes with the lack of information about πObs, and generates an approximation of a
strategy that is a best response to itself. At a high level, the algorithm can be thought of as generating a
series of strategies, each an ε-best response to the one before it, and stopping when two successive strategies
are extremely similar. A more detailed description of this process follows.

The algorithm begins by assuming πObs = πInv. The algorithm then proceeds iteratively; at each iteration
it generates s, the ε-best response strategy to the current πObs, then simulates a series of Cultaptation games
in which s plays itself, and extracts a new πObs from the actions exploited in these games.

At the end of each iteration, the algorithm compares s to sold, the strategy produced by the previ-
ous iteration, using the stratDiff function. stratDiff(s, sold) computes the probability that an agent using
s would perform at least one different action before dying than the same agent using sold. For instance,
stratDiff(s, sold) = 1.0 means that the two strategies will always perform at least one different action (i.e. the
actions they choose on the first round are different), while stratDiff(s, sold) = 0.0 means that s is identical to
sold.

When stratDiff(s, sold) is found to be below some threshold τ, CSLA terminates and returns s, the strat-
egy computed by the last iteration. The formal algorithm is presented as Algorithm 2.

Properties of the strategy. In our experimental studies (see Section 9), the strategies produced by CSLA
in any given game were all virtually identical, even when a random distribution (rather than πInv) was used
to initialize πObs. This strongly suggests (though it does not prove) that the strategy profile consisting of
copies of sself is a symmetric near-Nash equilibrium.

Furthermore, there is reason to believe that s is evolutionarily stable. Consider an environment in which
all agents use the strategy s, and suppose a small number (say, one or two) other strategies are introduced
as invaders. Because s was an near-best response to the environment that existed before the opponent’s
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agents are introduced, and because the introduction of one or two invaders will change this environment
only slightly, agents using s will still be using a strategy that is close to the best response for the cur-
rent environment, and they will also have some payoff they have accumulated on previous rounds when
their strategy was still an near-best response. Thus, the invaders should have a difficult time establishing a
foothold in the population, hence should die out with high probability. This suggests (but does not prove)
that s is evolutionarily stable.9

8.1 Implementation Details

We have created a Java implementation of CSLA. Here we briefly discuss two issues we dealt with during
implementation.

8.1.1 Representing πObs

Our implementation of CSLA uses the same representation of πObs as our implementation of Algorithm 1
does. In other words, it assumes πObs has the same form as πInv, and remains constant throughout the game.
Ideally we would be able to condition πObs on the agent’s history, but in practice this would require too
much space (since there are an exponential number of possible histories), and we would need to run too
many simulations in step 7 to get an accurate distribution for each history.

8.1.2 Training

In the Machine Learning literature, the process of improving an agent’s performance on a given task is often
referred to as “training.” In Algorithm 2, strategy s is trained by playing against itself in a series of simulated
games in step 7. However, in our implementation of CSLA we have left the agents involved in the games
in step 7 as a parameter to the algorithm. This means that CSLA can also produce a strategy that is trained
by playing in an environment consisting of itself and one or more given strategies. The intuition behind this
approach is that a strategy trained by playing against itself and strategy s′ may perform better when playing
against s′ than a strategy trained against itself alone. We test this hypothesis experimentally, in Section 9.2.

9 Experimental Results

In this section we present our experimental results.
Section 9.1.1 examines the performance of our implementation of the ε-best response algorithm. We

find that our optimizations allow the algorithm to find strategies within 1% of the best response 1,000 times
faster than the unoptimized algorithm. Section 9.1.2 examines the strategies found by the ε-best response
algorithm when presented with different environments and strategy profiles, and the results give us an idea
of what kinds of circumstances are necessary for the near-best-response strategy to prefer innovation over
observation.

Section 9.2 presents a series of experiments comparing two strategies generated with our Cultaptation
Strategy Learning Algorithm to a known good strategy used in the international Cultaptation tournament.
We find that the strategies generated with CSLA are able to beat the known good strategy, even when the
environment is different than the one CSLA used to learn the strategies (Sections 9.2.2 and 9.2.3). Finally,
we perform an in-depth qualitative analysis of all three strategies and highlight the differences in behavior
that give our learned strategies an advantage (Section 9.2.4).

9Among other things, a formal proof would require a way to calculate the payoffs for s and any invading strategy. Accomplishing
this is likely to be complicated, but we hope to do it in our future research.
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Table 4: Expected per-round utility of the ε-best response strategy computed by Algorithm 4, for eight
different values of ε in various environments.

ε = 0.4 ε = 0.8 ε = 1.2 ε = 1.6 ε = 2.0 ε = 2.4 ε = 2.8 ε = 3.2
EPRU in uniform1 40.1 40.0 39.6 39.6 39.6 38.9 38.9 38.9

EPRU in uniform10 39.3 39.1 38.8 38.8 38.8 38.1 38.1 38.1
EPRU in uniform20 38.7 38.5 38.2 38.2 38.2 37.7 37.7 37.7
EPRU in uniform30 38.7 38.5 38.2 38.2 38.2 37.7 37.7 37.7
EPRU in uniform40 38.7 38.5 38.2 38.2 38.2 37.7 37.7 37.7

9.1 Experiments with ε-Best Response Algorithm

In this section we present the experiments involving our implementation of Algorithm 4, which generates
ε-best-response strategies for a given set of game parameters and strategy profile.

9.1.1 Implementation Performance

Our first set of experiments was designed to study the accuracy and running time of our implementation, and
the effectiveness of the methods we have developed to improve its performance. We first examined the effect
of ε on running time and on the expected per-round utility computed by Algorithm 4. We ran the experiments
in several different environments: first we examined the uniform1 environment. In this environment, πInv
is a uniform distribution over the values in {33.33, 66.67, 100, 133.33, 166.67}, and S contains the innovate-
once (I1) strategy from Example 1, so πInv is identical to πObs. The probability of change in uniform1 is
1%, and the probability of death is 40%.

We also introduced several variations on the uniform1 environment to study the effect of different prob-
abilities of change. They are uniform10, uniform20, uniform30, and uniform40, which have the respective
probabilities of change of 10%, 20%, 30%, and 40%.

In Table 4, we see the EPRU computed for various values of epsilon in these environments. As a point
of reference, strategy I1 can be analytically shown to achieve an EPRU of about 38.56. We can see that
an upper bound on achievable EPRU in the uniform1 environment is 40.5, since the EPRU of an ε-best
response to S is 40.1 when ε is 0.4. Also, we note that the algorithm finds lower EPRUs as the probability
of change increases. This is as expected: in a rapidly changing environment, one cannot expect an agent
to do as well as in a static environment where good actions remain good and bad actions remain bad. The
ε-best-response strategies computed generally innovate as the first action, then exploit that value if it is not
the lowest value available (in this case 33.33). Otherwise, the strategies tend to innovate again in an attempt
to find an action with a value bigger than 33.33. This is how they manage to achieve a higher EPRU than
the innovate-once strategy.

As part of the experiment in the uniform1 environment, we kept track of the number of nodes searched
by four variations of the algorithm. In the first variation, we ran Strat(R, r, k,V,S) (Algorithm 4) without
optimizations. We also examined the algorithm’s performance with the pruning and caching optimizations
described in Section 7.5.3.

In Figure 2 we see that employing both caching and pruning allows us to compute strategies within 1%
of the best response about 1,000 times faster. We note that the search times required for 80,000-node search
is around 15 seconds on a 3.4GHz Xeon processor.
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Figure 2: Number of nodes searched in the uniform1 environment, with different combinations of caching
and pruning.

9.1.2 Effects of Varying πInv and πObs on the ε-Best-Response

The objective of this experiment was to study how near-best-response strategies (as computed by Algo-
rithm 4) change as we vary the mean and standard deviation of πInv and πObs (which we will call µInv, σInv,
µObs and σObs, respectively). If we assume that the other agents in the game are rational and not trying to
deceive us by intentionally exploiting low-utility actions, then one should expect that µObs ≥ µInv. It may
seem natural, then, to conclude that an agent should choose to observe rather than innovate whenever possi-
ble, since the average action returned by observing will have higher utility than one returned by innovating.
However, previous work has suggested that the standard deviation of these distributions may also play a role
in determining which is better [32]. Also, as discussed in Section 3.1, it is possible to imagine pathological
scenarios where a population that relies too heavily on observation can become stuck exploiting a low-value
action. We designed this experiment to test the hypothesis that, even if we let µObs > µInv, we can still vary
the standard deviations of these distributions such that the ε-best-response strategy computed by EPRUk

alt
will choose to innovate rather than observe. Our methods and results are presented below.

We used the repertoire-based algorithm Strat(R, r, k,V) (Algorithm 4) to compute ε-best-response strate-
gies for Cultaptation games with several different parameter settings, then analyzed the strategies to deter-
mine how often they would observe or innovate. In this experiment, the agents died with 40% probability
on each round (d = 0.4) and there were 5 potential exploitation actions. These games are smaller than the
Cultaptation game used in the tournament, to ensure they can be solved in a reasonable amount of time. In
our games, we used distributions πObs and πInv with means of 110 and 100 respectively.

Table 5 shows the results for four combinations of parameter settings: σInv ∈ {10, 300} and σObs ∈

{10, 300}. When σInv = 10, the near-best-response strategy will observe almost exclusively (innovating only
in rare cases where observation returns several low-quality moves in a row). However, in the environment
where σInv = 300 the near-best-response strategy includes significantly more Innvoates; when σObs = 10 it
will innovate 99.5% of the time, and even when σObs = 300 it still innovates 21.5% of the time.

This experiment lets us conclude that the means of πInv and πObs are not sufficient to determine if
innovation or exploitation is better. In particular, if the standard deviation of innovated values is high, then
innovation becomes more valuable because multiple innovations tend to result in a higher valued action than
multiple observations.

An interesting strategy emerges when πInv and πObs both have high standard deviations. Even though
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Table 5: The portion of innovation actions (calculated as nInv/(nInv + nObs)) in the ε-best-response strategy
when the standard deviations of πInv and πObs are as specified. In all cases, µInv = 100 and µObs = 110.

σObs = 10 σObs = 300
σInv = 10 2.80 × 10−9 3.40 × 10−10

σInv = 300 0.995 0.215

the mean value of innovated actions is lower than the mean value of observed actions, the ε-best-response
strategy in these cases innovates initially, then, if the value innovated is high, exploits that value. If the
innovated value is not high, an observation action is performed to ensure the agent has a reasonably-valued
action available to exploit until it dies.

9.2 Experiments with the Cultaptation Strategy Learning Algorithm

The objective of our second experiment was to examine the performance of strategies produced by the
Cultaptation Strategy Learning Algorithm (Algorithm 2 in Section 8), and the importance of the environment
(see Section 8.1.2) used to train these strategies. Specifically, we were interested in—

• examining whether the strategies produced with CSLA were capable of beating a strategy that is
known to do well;

• examining whether strategies produced by CSLA were able to perform well in environments different
from those they were trained in;

• comparing how well a strategy that is trained only against itself (i.e. all agents in the simulated game
in Step 6 of the CSLA algorithm use strategy s) can do at repelling an invader, versus how well a
strategy trained against the invader (i.e. the invading strategy is included in the population of agents
at Step 6) can do at repelling the invader.

For the previous experiments, we assumed we had an oracle for πObs. For the rest of this section we will
be running experimental simulations, so our oracle will observe what the agents do in the simulations and
construct πObs from this, as described in Section 8.

For the known good strategy we used an algorithm called EVChooser, which performs a few innova-
tion and observation actions early in the game and uses the results of these actions (along with a discount
factor) to estimate the expected value of innovating, observing, and exploiting, making the action with the
highest expected value. It placed 15th out of over 100 entries in the Cultaptation tournament [5]. We chose
EVChooser because (1) it has been shown to be a competitive strategy, (2) since we had written it, its source
code was readily available to us (unlike the other successful strategies from the Cultaptation tournament),
and (3) it could be tuned to perform well in the Cultaptation environments we used (which, in order to
accommodate CSLA’s exponential running time, were much smaller than those used in the international
Cultaptation tournament).

For games as small as the ones in our experiments, we believe EVChooser is representative of most of
the high-performing strategies from the tournament. Nearly all of the strategies described in the tournament
report [5] spend some time trying to figure out what the innovate and observe distributions look like, and
afterwards use some heuristic for choosing whether to innovate, observe, or exploit their best known action
on any given round. This heuristic often involves some time of expected-value computation; for instance,
the winning strategy discountmachine used a discount factor to compare the utility gained by exploiting the
current best-known action to the utility of possibly learning a better action and exploiting it on all future

30



rounds, which is exactly what EVChooser does.10 Unlike our CSLA algorithm, none of the strategies in the
tournament conducted lookahead search.

For this experiment, we used an environment where πInv was a uniform distribution over the actions
{20, 40, 80, 160}, probability of change was 1%, and probability of death was 25%. Due to the exponential
running time of our strategy generating algorithm, this is the largest environment (i.e. smallest probability
of death, highest number of actions and action values) for which we could compute full strategies.

9.2.1 Convergence and Consistency of CSLA

We developed a Java implementation of Algorithm 2 that allows us to specify the type of game to be used
for the simulation in Step 7 We then created two strategies, sself and sEVC. The training process for both
strategies began with s0, the best-response to a random πObs distribution, and continued by constructing
a strategy si+1 as a best-response to the πObs generated by simulating games involving si. When training
sself the simulated games consisted solely of agents using si, but while training sEVC they consisted of a
population of agents using si being invaded by EVChooser. In both cases, 100 games were simulated at
each step of the iteration, to limit the amount of noise in the πObs that was extracted from the simulations.

While we have no theoretical guarantees that the strategies produced by Algorithm 2 will converge, the
algorithm’s similarity to policy iteration [18] led us to suspect that the they would converge. Also, since
CSLA is greedy, i.e., it selects the best response strategy at each step of the iteration, we were interested in
seeing whether the strategy it found represented a local maximum or a global one.

We designed a simple experiment to see how these issues would play out when generating sself and sEVC:
we modified the program to use a randomly-generated distribution for the initial value of πObs, rather than
always initially setting πObs = πInv as is done in Algorithm 2, and we used this modified program to generate
100 alternate versions of sself and sEVC. We then compared these alternates to the original sself and sEVC
using stratDiff. In the case of sself , we found that all 100 alternate versions were identical to the original. In
the case of sEVC, we found that 58 alternate versions were identical to the original, and the rest exhibited a
stratDiff of no more than 1.08 × 10−4. This means that an agent using an alternate version of sEVC would
choose all the same actions as one using the original sEVC at least 99.989% of the time. This tells us that not
only does Algorithm 2 converge for the environment we are testing it in, it converges to the same strategy
each time it is run. This suggests that the algorithm is finding a globally-best solution for this environment,
rather than getting stuck in a local maximum.

Finally, to get an idea of how different sself and sEVC are, we calculated stratDiff(sself , sEVC) and found
it to be 0.27. This means that training a strategy against an external, fixed strategy in Algorithm 2 does
produce significantly different results than training a strategy against itself. For a more in-depth look at
where sself and sEVC differ, see Section 9.2.4.

9.2.2 Pairwise Competitions: sself vs. EVChooser and sEVC vs. EVChooser

We played both of our generated strategies, sself and sEVC, against EVChooser for 20,000 games – in 10,000
games, our strategy was defending against an invading population of EVChooser agents, and in 10,000
games the roles were reversed, with our strategy invading and EVChooser defending. We recorded the
population of each strategy on every round, as well as the winner of every game.11 The populations in an
individual game were extremely noisy, as seen in Figure 3(e), however by averaging the populations over

10discountmachine differs from EVChooser largely because it modifies the expected value of Observing using a machine-learned
function that accounts for observe actions being unreliable and returning multiple actions, neither of which are possible in our
version of the game

11Recall that the winner of a Cultaptation game is the strategy with the highest average population over the last quarter of the
game.
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a) EVChooser invading sself b) sself invading EVChooser

c) EVChooser invading sEVC d) sEVC invading EVChooser

e) Population of sself at each round, in a single game against EVChooser

Figure 3: Average populations of both strategies for each round, in match-ups between sself and EVChooser
(parts a and b) and between sEVC and EVChooser (parts c and d), over 10,000 games. From round 2000
onwards, sself or sEVC control 57% of the population on average, regardless of whether EVChooser was
invading or defending. Since mutation is enabled from round 100 onwards, populations in an individual
game (exhibited in part e) are highly mercurial and do not converge. Therefore, we must run a large number
of trials and average the results to get a good idea of each strategy’s expected performance.
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Table 6: Win percentages of sself and sEVC when playing against EVChooser over 10,000 games as both
Defender and Invader.

Win percentage
Defending vs. EVChooser Invading vs. EVChooser

sself 70.65% 70.16%
sEVC 69.92% 69.92%

Table 7: Percentage of games won (out of 10,000) by sself , sEVC, and EVChooser in a melee contest between
all three.

sself sEVC EVChooser
Melee win percentage 38.78% 37.38% 23.84%

all 10,000 games we can see some trends emerge. These average populations for each strategy in all four
match-ups are presented in Figure 3(a–d), while the win rates for each match-up are presented in Table 6.

In Figure 3 we see that, on average, the strategies generated by Algorithm 2 control roughly 57% of the
population for the majority of the game in all four match-ups. Interestingly, both sself and sEVC are able to
reach this point in roughly the same amount of time whether they are invading or defending. It is also worth
noting that, even though we showed above that sself and sEVC have significant differences, they performed
almost identically against EVChooser in terms of population and win percentages

9.2.3 Melee Competition: sself vs. sEVC vs. EVChooser

Our next experiment was to run sself , sEVC, and EVChooser against one another in a melee contest to see
how the three strategies would interact in an environment where none of them originally had the upper hand.
All three strategies had an initial population of 33 agents at the start of each game. We used the same πInv,
probability of change, and probability of death as in Experiment 2. Mutation was disabled for the final 2,500
rounds of each melee game, as was done in the Cultaptation tournament to allow the population to settle.
We ran 10,000 games in this manner, and percentage of wins for each strategy are shown in Table 7.

In the table we can see that sself has a slight edge over sEVC, and both these strategies have a significant
advantage over EVChooser. In fact, we observed that in the first 100 rounds of most games (before mu-
tation begins) EVChooser nearly died out completely, although it is able to gain a foothold once mutation
commences. Mutation is also turned off after 7500 rounds in Cultaptation melee games; this caused the
population to quickly become dominated by one of the three strategies in all 10,000 games played.

9.2.4 Performance Analysis of sself , sEVC, and EVChooser

In the experiments in Section 9.2.2, we saw that the strategies found by CSLA consistently outperform
EVChooser in environments similar to the ones they were trained in. In order to get a better idea of why
this happens, we ran two experiments to compare the performance of sself and EVChooser in more detail.
The first was designed to show us the kinds of situations in which the two strategies chose different actions,
while the second was designed to let us see how well the two strategies were able to spread good actions
through their population.

Action Preferences The objective of this experiment was to identify the kinds of situations in which sself ,
sEVC, and EVChooser made different choices. To this end, we allowed sself to play against itself for five
games, in an environment identical to the one used for the previous experiments in Section 9.2 (note that
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a) sself innovates b) sEVC innovates c) EVChooser innovates

d) sself observes e) sEVC observes f) EVChooser observes

g) sself exploits h) sEVC exploits i) EVChooser exploits

Figure 4: The observed probability that sself , sEVC, and EVChooser will innovate, observe, or exploit when
they are a given number of rounds old (on the x-axis) and with a given value of the best action in the agent’s
repertoire. These results were observed by allowing each strategy to play itself for five games of 10,000
rounds each with 100 agents alive on each round, generating a total of 5,000,000 samples. All graphs in this
figure share the same legend, which is included in graph c) and omitted elsewhere to save space.
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this is the same environment sself was trained in). On each round, for each agent, we recorded the number
of rounds the agent had lived, the value of the best action in its repertoire,12 and whether the agent chose to
innovate, exploit, or observe on that round. Since there are 100 agents alive at any given time and each game
lasts ∞ rounds, this gave us five million samples. Figures 4(a), (d), and (g) show the observed probability
that sself would innovate, observe, or exploit (respectively) for its first ten rounds and for each possible best
action value. We then repeated this process for sEVC and EVChooser, allowing each strategy to play against
itself for five games and recording the same data. The results for sEVC and EVChooser may be found in
Figures 4(b), (e), and (h), and Figures 4(c), (f), and (i), respectively.

The most obvious difference among the three strategies is that EVChooser almost never innovates,13 a
property it shares with the strategies that did well in the Cultaptation tournament [34]. On the other hand,
sself and sEVC have conditions under which they innovate and conditions under which they do not. For
instance, both sself and sEVC always innovate if their first action (which is always an observation) returns no
action. Also, sEVC frequently innovates if it is stuck with the worst action after several observes, and sself
also innovates (although less frequently; see next paragraph) in this case. Another sharp contrast between
EVChooser and the generated strategies is in their exploitation actions. EVChooser spends nearly all of its
time exploiting, even if it has a low-value action, and only observes with significant probability on round
two. On the other hand, sself and sEVC will begin exploiting immediately if they have one of the two best
actions, but otherwise will spend several rounds observing or innovating to attempt to find a better one, and
the number of rounds they spend searching for a better action increases as the quality of their best known
action decreases.

The main difference between sself and sEVC that can be seen in Figure 4 is in the way they handle being
stuck with the lowest-value action after several rounds. In these circumstances, sself prefers observation
while sEVC prefers innovation. Here we see the most obvious impact of the differing environments used to
generate these two strategies. sself prefers observation in these cases because it was trained in an environment
where all agents are willing to perform innovation. Therefore, if an sself agent is stuck with a bad action for
more than a few rounds it will continue to observe other agents, since if a better action exists, it is likely
that it has already been innovated by another agent and is spreading through the population. On the other
hand, sEVC prefers innovation in these situations because it has been trained with EVChooser occupying a
significant portion of the population, and we have seen that EVChooser almost never innovates. Therefore,
if sEVC is stuck with a bad action after several rounds, it will attempt to innovate to find a better one, since
it is less likely that another agent has already done so.

Spreading High-value Actions The objective of this experiment was to measure the rate at which sself ,
sEVC, and EVChooser were able to spread high-valued actions through their populations. To measure this,
we again played sself against itself in the same environment used in the previous experiment (which we will
refer to as the “normal” environment in this section), and on each round we recorded the number of agents
exploiting actions with each of the four possible values (20, 40, 80, and 160). To account for the noise
introduced by changing action values, we ran 10,000 games and averaged the results for each round. We
then repeated this process, playing sEVC and EVChooser against themselves. The results for sself , sEVC, and
EVChooser may be found in Figures 5(a), (c), and (e) respectively.

This experiment lets us see what the steady state for these strategies looks like, and how quickly they
are able to reach it. However, we are also interested in seeing how they respond to structural shocks [10, 14]
(i.e. how quickly the strategies are able to recover when a good, widely-used action changes values). To this
end, we created a “shock” environment, which is identical to the normal environment with one modification:
actions with value 160 have a probability of change equal to 0 except on rounds divisible by 100, in which

12This could be 20, 40, 80, 160, or None if the agent had not yet discovered an action
13EVChooser innovates 1% of the time on its first round.
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a) sself in normal environment b) sself in shock enviornment

c) sEVC in normal environment d) sEVC in shock enviornment

e) EVChooser in normal environment f) EVChooser in shock enviornment

Figure 5: The average number of agents exploiting an action with value U in two environments. The
“normal” environment in parts a, c, and e shows how quickly sself , sEVC, and EVChooser spread actions
through their population under normal circumstances when they control the entire population. The “shock”
environment in parts b, d, and f shows how quickly each strategy responds to periodic structural shock.
The “normal” environment is the same as in the rest of Section 9.2, and the “shock” environment is similar
except that actions with value 160 are forced to change every 100th round and held constant all other rounds.
Each data point is an average over 10,000 games.
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case they have probability of change equal to 1. All other actions use the normal probability of change
for this environment, 0.01. This modification creates a shock every 100 rounds, while still keeping the
expected number of changes the same for all actions. We then repeated the experiment above with the shock
environment, running 10,000 games for sself , sEVC, and EVChooser and averaging the results, which are
presented in Figures 5(b), (d), and (f) respectively.

In Figure 5 we can see that sself and sEVC exhibit nearly identical performance in both the normal and
shock environments. In the normal environment, they are able to reach their steady state in only a few
rounds, and the steady state consists of a roughly equal number of agents exploiting the best and second-
best action. In the shock environment, we see that sself and sEVC respond to external shock by drastically
increasing the number of agents exploiting the second-best action over the course of a few rounds, and
returning to their steady states at a roughly linear rate over the next 100 rounds. The number of sself and
sEVC agents exploiting the two worst actions remains extremely low except for small spikes immediately
after each shock.

Compared to the generated strategies, EVChooser’s performance appears to be less stable, and less ro-
bust to structural shock. In the normal environment, we see that EVChooser takes hundreds of rounds to
reach its steady state. While EVChooser’s steady state does include more agents exploiting the best action
than sself and sEVC, it also includes a significant number of agents exploiting the two worst actions. In the
shock environment, we see that changes to the best action result in significant increases to the number of
EVChooser agents exploiting the other actions, including the two worst ones. We can also see that popula-
tions of EVChooser agents take a lot longer to return to normal after an external shock than populations of
sself and sEVC. These results help us account for the superior performance of sself and sEVC over EVChooser
in previous experiments, and indicate that there is plenty of room for improvement in EVChooser and strate-
gies like it.

10 Conclusion

In this paper, we have obtained several results that we hope will help provide insight into the utility of inter-
agent communication in evolutionary environments. These results can be divided into two main classes:
algorithms for computing strategies and equilibria for Cultaptation and similar games, and properties of
Cultaptation found by examining the strategies generated by the algorithms.

10.1 Algorithms

Generating near-best-response strategies. In Section 7 we described an algorithm that, for any set S−α
of available strategies other than our own, can construct a nonstationary strategy sopt that is a best response
to the other strategies in an infinite Cultaptation game. The algorithm performs a finite-horizon search,
and is generalizable to other evolutionary games in which there is a fixed upper bound on per-round util-
ity and a nonzero lower bound on the probability of death at each round. In Section 7.5 we described a
state-aggregation technique that speeds up the algorithm by an exponential amount; the state-aggregation
technique is generalizable to other evolutionary games in which the utilities are Markovian.

Even with this speedup, computing sopt is not feasible on large instances of Cultaptation, because it
requires too much time and space. But the same algorithm can be used to compute, for any ε > 0, a much
simpler strategy that is an ε-best response (i.e., its expected utility is within ε of sopt’s). This computation
takes much less time and space.

Computing symmetric near-Nash equilibria. In Section 8 we introduced the Cultaptation Strategy
Learning Algorithm (CSLA), which runs the strategy-generation iteratively in order to compute a strategy
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sself that is a symmetric near-Nash Equilibrium. Our experiments in Section 9.2 show that CSLA converges
to sself in just a few iterations. We have argued that sself is likely to be evolutionarily stable, but have not yet
proved this. We hope to prove it in our future work.

10.2 Properties of Cultaptation

The strategies generated by our algorithm show a clear preference for Observe actions over Innovate actions.
The same bias appeared in the Cultaptation tournament, where the best strategies relied almost exclusively
on observation. This result was a surprise to tournament organizers Rendell et al. who expected to see
innovation performed more frequently among winning strategies [34].

Probably the reason for the tournament organizers surprise was that the existing literature on social learn-
ing in evolutionary games has suggested that learning through observation might have only limited value
in games like Cultaptation. Reasoning about a slightly simpler model, Rogers concluded that populations
would still retain a significant portion of individual learners even if social learning was allowed [35]. Boyd
and Richerson extended Rogers’ result, claiming that social learning would not improve the average fitness
of a population in any evolutionary scenario, as long as the only benefit to social learning was that it avoided
the costs of individual learning [4].

In contrast, we are able show that sself is an effective strategy despite performing mostly Observe actions.
We can also provide specific details about when and in what conditions Innovate becomes preferable. Rather
than relying exclusively on Observe actions, sself will innovate if an agent is stuck with a low-valued action
after several attempted observations. This effect is even more prominent in sEVC, which was far more likely
than sself to perform innovate actions if the first few observations failed to produce a good value. Figure 4
shows a noticeable increase in the number of Innovate actions performed by sEVC when the agent still has
a low value by the third round of its life. Based on the data in Figure 5, we know that the quality of πObs
is not as good in an environment with EVChooser, so sEVC will resort to innovation both more quickly and
more often than sself .

Rendell et al. attribute the effectiveness of Observe actions in the tournament to the “filtering” process
performed by other agents. Since most agents will act rationally by exploiting their best action, an Observe
action will quickly reveal high valued actions to the observer. Our results show a similar phenomenon,
where sself is able to propagate high-valued actions more quickly not simply because it exploits its best
action, but also because it hesitates to exploit low-valued actions and spends that time learning instead.
By not polluting πObs with low-valued exploits, the probability that a high-valued action will be observed
actually increases. The consequence of this is shown in Figure 5, where high-valued actions propagate very
quickly in a population of sself agents, and more slowly in a population of EVChooser. The graph in Figure 4
shows that EVChooser is far more likely than sself to exploit low-valued actions.

10.3 Future Work

One limitation of this work is that we were unable to compare sself , the strategy generated by our CSLA,
against the best-performing agents in the Cultaptation tournament. EVChooser, the strategy that we used
as an invader in Section 9.2, placed 15th in the Cultaptation tournament. In the future, we hope to get the
source code for the top-performing agents and test our algorithms against them.

Also left for future work is the examination of information-gathering in the social learning game. An
agent in the game would not normally be able to compute a best-response strategy as we have done in this
paper, because it would not know the other players’ strategies, nor the probability distributions from which
the innovation and observation utilities are drawn. Such an agent would need either to approximate the
distributions or to use an algorithm that can do well without them. If we choose to approximate, should
our agent be willing to sacrifice some utility early on, in order to gain information that will improve its
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approximation? Are there strategies that perform well in a wide variety of environments, that we could use
until our agent develops a good approximation? Are some of these strategies so versatile that we can simply
use them without needing to know the distributions? These remain open questions.
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A Proofs

Proposition 2 EPRU(s | G,S)/d = EPRUalt(s, 〈〉 | G,S).

Proof.
First, we will show by induction that EPRUalt(s, 〈〉 | G,S) equals the summation of

P(hα|sα,S) EVexp(|hα|,U(hα[|hα|])) for all histories hα. Then we will show that this equals the summation of
L(|hα|)P(hα|sα,S) PRU(hα) for all hα.

We will begin with the definition of EPRUalt in Equation 13, and note that P(〈〉 ◦ t|〈〉, sα(〈〉),S) = P(〈〉 ◦
t|sα,S) for histories of length one. This gives us a base case of

EPRUalt(sα, 〈〉 | G,S) =
∑
t∈T

P(〈〉 ◦ t|sα,S) EVexp(1,U(t)) +
∑
t∈T

P(〈〉 ◦ t|sα,S) EPRUalt(sα, 〈〉 ◦ t | G,S).

For the inductive case, we will again start from Equation 13, this time noting that
P(hα|sα,S)P(hα ◦ t|hα, sα(hα),S) simplifies to just P(hα ◦ t|sα,S). Thus, for all hα we can rewrite
P(hα|sα,S) EPRUalt(sα, hα | G,S) in terms of histories one round longer than hα, as follows:

P(hα|sα,S) EPRUalt(sα, hα | G,S) =
∑
t∈T

P(hα ◦ t|sα,S) EVexp(|hα ◦ t|,U(t))

+
∑
t∈T

P(hα ◦ t|sα,S) EPRUalt(sα, hα ◦ t | G,S)).

Therefore, by induction we have

EPRUalt(sα, 〈〉 | G,S) =
∑

hα∈H

P(hα|sα,S) EVexp(|hα|,U(hα[|hα|])),

where H is the set of all possible histories.
The proof then proceeds arithmetically:

EPRUalt(sα, 〈〉 | G,S) =
∑

hα∈H

P(hα|sα,S) EVexp(|hα|,U(hα[|hα|]))

=
∑

hα∈H

P(hα|sα,S)
∞∑

i=|hα |

L(i)U(hα[|hα|])
i

=
∑

hα∈H

∞∑
i=|hα |

L(i)P(hα|sα,S)U(hα[|hα|])
i

=

∞∑
i=1

∑
hα∈H(≤i)

L(i)P(hα|sα,S)U(hα[|hα|])
i

=

∞∑
i=1

∑
hα∈H(i)

L(i)P(hα|sα,S) PRU(hα) = EPRU(sα | G,S)/d

Where H(≤ i) is the set of all histories of length less than or equal to i, and H(i) is the set of all histories
exactly of length i. �

Proposition 3 Strat(hα, k,V,S) returns (sα,U) such that

EPRUk
alt(sα, hα | G,S) = U = maxs′(EPRUk

alt(s′, hα | G,S)).
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Proof. Let s′ be a strategy maximizing EPRUk
alt(s′, hα | G,S) and let {sα,U} be the strategy and value

returned by Strat(hα, k,V,S). We will show by induction on k that

EPRUk
alt(sα, hα | G,S) = U = EPRUk

alt(s′, hα | G,S).

In the base case, k = 0 and clearly EPRU0
alt(s′, hα |G,S) = 0 for any s′, therefore EPRUk

alt(sα, hα |G,S) =

EPRUk
alt(s′, hα | G,S) = 0 = U as required.

For the inductive case, suppose that for k, Strat(hα, k,V,S) returns {sα,U} such that
EPRUk

alt(sα, hα | G,S) = U = maxs′(EPRUk
alt(s′, hα | G,S)). We must then show that Strat(hα, k + 1,V,S)

returns {sα,U} such that

EPRUk+1
alt (sα, hα | G,S) = U = maxs′(EPRUk+1

alt (s′, hα | G,S)).

Let stemp be the strategy constructed in lines 8–19 of the algorithm. First we show that on line 20,

EPRUk+1
alt (stemp, hα | G,S) =∑

t∈T

P(hα ◦ t|hα, stemp(hα),S)
(
EVexp(|hα|,U(t)) + EPRUk

alt(stemp, hα ◦ t | G,S)
)

= Utemp. (20)

This follows because the t on line 11 iterates over all possible t ∈ T (due to the for loops on lines 6, 9, and
10), meaning that the eventual value of Utemp is∑

t∈T

P(hα ◦ t|hα, stemp(hα)|S)
(
EVexp(|hα ◦ t|,U(t)) + U′

)
.

By the inductive hypothesis, U′ = EPRUk
alt(stemp, hα ◦ t | G,S), sufficing to show that (20) holds.

Now we show that

EPRUk+1
alt (sα, hα | G,S) = EPRUk+1

alt (s′, hα | G,S).

Clearly EPRUk+1
alt (sα, hα | G,S) ≤ EPRUk+1

alt (s′, hα | G,S), since s′ is assumed to have maximal EPRUk+1
alt for

hα, so it suffices to show that

EPRUk+1
alt (sα, hα | G,S) ≥ EPRUk+1

alt (s′, hα | G,S).

Since sα maximizes∑
t∈T

P(hα ◦ t|hα, sα(hα),S)(EVexp(|hα ◦ t|,U(t)) + U′),

where U′ ≥ EPRUk
alt(s′, hα ◦ t | G,S) by the inductive hypothesis, there can be no action a such that∑

t∈T

P(hα ◦ t|hα, a,S)(EVexp(|hα ◦ t|,U(t)) + EPRUk
alt(s′, hα ◦ t | G,S))

>
∑
t∈T

P(hα ◦ t|hα, s′(hα),S)(EVexp(|hα ◦ t|,U(t)) + U′).

Therefore EPRUk+1
alt (sα, hα | G,S) ≥ EPRUk+1

alt (s′, hα | G,S). This concludes the inductive argument.
Thus for all k, EPRUk

alt(sα, hα | G,S) = U = maxs′ EPRUk
alt(s′, hα | G,S). �
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Algorithm 3 Creates and returns a repertoire for history hα.
CreateRepertoire(hα = (a1, (m1, v1)), . . . , (ar, (mr, vr)))

Let µ = {mi|i = 1, . . . , r}.
Let R = ∅ {R will be the repertoire.}
for m ∈ µ do

Let i = max
{1,...,r}

(mi = m)

Add 〈vi, r − i〉 to R.
end for
return R

B Converting from Histories to Repertoires

In this appendix, we will formally define a repertoire, explain how to transform histories into repertoires, and
show that the number of possible repertoires is substantially smaller than the number of possible histories,
while maintaining the property that any best-response action for a given repertoire is also a best resonse
for any history associated with that repertoire (Theorem 5). Finally, we will present a modified version of
Algorithm 1, which uses repertoires rather than histories, and we will show how this simple change cuts the
branching factor of the algorithm in half (Algorithm 4).

B.0.1 Repertoire Definition

A repertoire tells the last value and age of each action an agent “knows,” where an action’s age is the number
of rounds that have passed since the agent last obtained information about it. Since at any given point in a
game, each known action has a unique age, we label exploitation actions by their value and age, leaving off
the action number (e.g. if we discovered an action with value 4 last round and an action with value 26 three
rounds ago, then the repertoire will be {〈4, 1〉, 〈26, 3〉} where 〈4, 1〉 denotes the existence of an action with
value 4 discovered 1 round ago, and 〈26, 3〉 denotes the existence of an action with value 26 discovered 3
rounds ago). Formally, a repertoire is defined to be a set of pairs, where the first value in each pair represents
the knowledge of an action with the given value, while the second value in the pair represents the number of
rounds since that knowledge was last updated.

Definition. Let v1, . . . , vm ∈ V be action values and γ1, . . . , γm ∈ Z
+ (the positive integers) be action ages.

A repertoire R is a set of action value/action age pairs R = {〈v1, γ1〉, . . . , 〈vm, γm〉}. We denote the set of all
repertoires as Rep, and the set of all repertoires where all γi ≤ j as Rep j. �

Rep has unbounded size, but Rep j has finite size. We show how to create a repertoire R from a history
hα using the CreateRepertoire function in Algorithm 3.

Repertoires change based on the action performed. For example, repertoire

R = {〈4, 1〉, 〈26, 3〉}

can change to repertoire

R′ = {〈4, 2〉, 〈26, 4〉, 〈27, 1〉}

after an innovation action where an action with value 27 is innovated. Notice that all actions in R′, apart
from the newly-innovated action with age 1, are one round older than they were in R. This aging process
occurs often enough for us to introduce a function which ages a repertoire R = {〈vi, γi〉}:

age({〈vi, γi〉}) = {〈vi, γi + 1〉}
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Finally, we will introduce two functions to represent the two ways our repertoire can change when we
perform an action.

The first, newaction, returns a repertoire with a new action added to it:

newaction(R, v) = age(R) ∪ {〈v, 1〉}

The second, updaction, returns a repertoire with updated information on action m:

updaction(R, v,m) = age(R \ {〈vm, γm〉}) ∪ {〈v, 1〉}

B.0.2 Transition Probabilities

We can now define the probability of transitioning between repertoires on round r. We will call the transition
probability functions PRep(R′|R, r, a,S) for a ∈ {Inv,Obs,Xi}. In general, these functions will mirror the
P(h′|h, a,S) functions defined in Section 5, with some extra clauses added to ensure that if it is not possible
to go from repertoire R to repertoire R′ using the given action, then the transition probability is 0.

Innovation actions For innovation actions, the function is:

PRep(R′|R, r, Inv,S) =

{
0 if |R| = µ ∨ @v : R′ = newaction(R, v)
πInv(v|r) if R′ = newaction(R, v)

The first clause ensures that if all possible actions are already in R, or if it is not possible to go from
R to R′ in one innovation action, then the transition probability is 0. The second clause simply tells us the
probability of innovating an action with value v, given that it is possible to go from R to R′ in one innovation
action.

Observation actions In Section 5 we assumed the existence of a distribution πObs that, when given the
current history, would tell us the probability of observing an action with a given value. Here, we will make
the following assumptions about πObs:

• When given a repertoire and round number, πObs(v|R, r,S) tells us the probability of observing an
action that has value v and is not already known by R.

• When given a repertoire and round number, πObs(m, v|R, r,S) tells us the probability of observing an
action that has value v, and was previously in R at position m. The value of this action may have
changed.

• πObs can make its predictions without using any information lost when converting from a history to a
repertoire.

These assumptions are all satisfied by the πObs used in our implementation, and we expect them to hold
for other practical implementations as well, since a distribution conditioned on entire histories would be
impractically large.

With this in mind, the transition probability function for observation actions is

PRep(R′|R, r,Obs,S) =


πObs(m, v|R, r,S) if 〈v′m, γm〉 ∈ R ∧

R′ = updaction(R, v,m)
πObs(v|R, r,S) if R′ = newaction(R, v)
0 Otherwise.

The first clause gives us the probability of observing an action already in our repertoire, while the second
gives us the probability of observing a new action.
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Exploitation actions Let 〈vi, γi〉 be the value and age of exploitation action Xi. Then

PRep(R′|R, r,Xi,S) =



0 if |R| , |R′|
0 if ∀v′ ∈ V,R′ , updaction(R, v′, i)∏r

j=r−γi
(1 − c( j)) +

∑r
j=r−γi

c( j)π(vi, j)
(∏r

i= j(1 − c(i))
)

if R′ = updaction(R, vi, i)∑r
j=r−γi

c( j)π(v′i , j)
(∏r

i= j(1 − c(i))
)

if R′ = updaction(R, v′i , i) and vi , v′i

The first two clauses check that we can, in fact, transition between R and R′ by exploiting. The third
clause gives us the probability that the action we exploited has not changed since we last saw it, while the
fourth clause gives us the probability that the action we exploited has changed.

B.0.3 Consistency between P and PRep

Later in this section, we will show that using a repertoire-based algorithm to compute ε-best-response strate-
gies returns the same results as using the history-based Algorithm 1. To do this, we will use the notion of
consistency between the P and PRep equations.

Definition. Let M be the set of actions known to an agent with history hα. The P and PRep equations are
consistent for hα if, for all a ∈ {Inv,Obs,Xi} and v ∈ V:∑

m∈M

P(h ◦ (a, (m, v)) | h, a,S) =

|R|∑
m=1

PRep(updaction(R, v,m)|R, r, a,S) (21)

and ∑
m∈{1,...,µ}\M

P(h ◦ (a, (m, v)) | h, a,S) = PRep(newaction(R, v)|R, r, a,S) (22)

where R = CreateRepertoire(h) and r = |hα|. �

Lemma 6 The P and PRep equations are consistent for all h ∈ H.

Proof. We can prove this by using the definition of P, found in Section 5, and the definition of PRep

found above. We will simply consider what happens for arbitrary hα and v when performing innovation,
observation, and exploitation actions.

Recall that X(h) returns the number of exploit moves available to an agent with history h. For ease
of exposition, we will assume without loss of generality that the first action learned by hα has label 1, the
second has label 2, etc. Thus M = {1, . . . , X(h)}, while {1, . . . , µ} \ M = {X(h) + 1, . . . , µ}.

Innovation actions An innovation action always returns information on a new action, so both sides of
Equation 21 are clearly 0 in this case. If X(h) = |R| = µ, both sides of Equation 22 are also 0 since no new
actions can be innovated. Thus, we will assume X(h) = |R| < µ. We now have

µ∑
m=X(h)+1

P(h ◦ (Inv, (m, v))|h, Inv,S) = (µ − X(h))
πInv(v|r)
µ − X(h)

= πInv(v|r)

and

PRep(newaction(R, v)|R, r, Inv,S) = πInv(v|r)

which are clearly equivalent. Hence, P and PRep are consistent on hα when a = Inv.
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Observation actions This section of the proof is mostly trivial, given the assumptions we have made about
πObs. The left side of Equation 21 is

X(h)∑
m=1

P(h ◦ (Obs, (m, v))|h,Obs,S) =

X(h)∑
m=1

πObs(m, v|h,S)

which tells us the probability of observing one of the actions already seen in our current history. The right
side is

|R|∑
m=1

PRep(updaction(R, v,m)|R, r,Obs,S) =

|R|∑
m=1

πObs(m, v|R, r,S)

Since we assume that πObs(m, v|R, r,S) tells us the probability of observing action m in the repertoire,∑|R|
m=1 πObs(m, v|R, r,S) also tells us the probability of observing any of the actions we have already seen.

Therefore, Equation 21 holds for observation actions.
For Equation 22, the left side is

µ∑
m=X(h)+1

P(h ◦ (Obs, (m, v))|h,Obs,S) =

µ∑
m=X(h)+1

πObs(m, v|h,S)

which tells us the probability of observing an action we have not yet seen. The right side is

PRep(newaction(R, v)|R, r,Obs,S) = πObs(v|R, r,S)

Since we assume that πObs(v|R, r,S) gives us the probability of observing a new action, Equation 22 also
holds for observation actions. Hence, P and PRep are consistent on hα when a = Obs.

Exploitation actions Exploiting an action never gives us information about a new action, so both sides of
Equation 22 are 0 when we exploit. Thus, we need only consider Equation 21.

We will consider two cases. In the first case, the action we choose to exploit has changed since we last
saw it, so v is a new value. We then have

X(h)∑
m=1

P(h ◦ (Xm, (m, v))|h,Xm,S) =

X(h)∑
m=1

r∑
j=lastm

c( j)π(v, j)
r∏

i= j

1 − c(i)

where lastm is the last round number on which we obtained any information about the m-th action.
Similarly, since exploiting never increases the size of a repertoire, we have

|R|∑
m=1

PRep(updaction(R, v,m)|R, r,Xm,S) =

|R|∑
m=1

r∑
j=r−γm

c( j)π(v, j)
r∏

i= j

(1 − c(i))

Since |R| = X(h) and lastm = r − γm by definition, Equation 21 holds when the action we exploit changes.
Next, we consider the case where the action we choose to exploit has not changed. In this case, we have

X(h)∑
m=1

P(h ◦ (Xm, (m, v))|h,Xm,S) =

X(h)∑
m=1

 r∏
j=lastm

(1 − c( j)) +

r∑
j=lastm

c( j)π(v, j)
r∏

i= j

1 − c(i)


and

|R|∑
m=1

PRep(updaction(R, v,m)|R, r,Xm,S) =

|R|∑
m=1

 r∏
j=r−γm

(1 − c( j)) +

r∑
j=r−γm

c( j)π(v, j)
r∏

i= j

(1 − c(i))


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which are also equivalent. Therefore, Equation 21 also holds when the action we exploit does not
change.

We have now shown that P and PRep are consistent on arbitrary hα when a ∈ {Inv,Obs,Xi} and for
arbitrary v. Therefore, P and PRep are consistent for all hα. �

B.0.4 Repertoire-based Strategies

Repertoires can be used to more compactly define a strategy. We let a repertoire-based strategy s be a
function from repertoires to actions. Such a strategy can be represented more compactly than the history-
based strategies used earlier in this paper, since there are fewer possible repertoires than there are possible
histories. In any history hα, a repertoire-based strategy s chooses the action associated with repertoire
CreateRepertoire(h).

We can use the PRep functions to define a formula that determines the EPRU for any repertoire-based
strategy s. EPRUalt(s,R, r | G,S) is a recursive function for calculating the expected per-round utility of s:

EPRUalt(s,R, r | G,S)

=
∑
a∈A

∑
v∈V

[PRep(newaction(R, v)|R, r, a,S)×

(EVexp(r,U((a, (−, v)))) + EPRUalt(s, newaction(R, v), r + 1 | G,S))

+

|R|∑
m=1

PRep(updaction(R, v,m)|R, r, a,S)×

(EVexp(r,U((a, (−, v)))) + EPRUalt(s, updaction(R, v,m), r + 1 | G,S))]

where A is the set of possible actions and V is the set of possible action values.
However, like EPRUalt(s, h | G,S), EPRUalt(s,R, r | G,S) contains infinite recursion and is therefore not

computable. We will deal with this problem as we did in Section 6.1, by introducing a depth-limited version.
For ease of exposition we will introduce two ”helper” functions

EPRUk
altnew

(s,R, r, a, v | G,S)

= PRep(newaction(R, v)|R, r, a,S)×

[EVexp(r,U((a, (−, v)))) + EPRUk−1
alt (s, newaction(R, v), r + 1 | G,S)]

and

EPRUk
altupd

(s,R, r, a, v | G,S)

=

|R|∑
m=1

PRep(updaction(R, v,m)|R, r, a,S)×

[EVexp(r,U((a, (−, v)))) + EPRUk−1
alt (s, updaction(R, v,m), r + 1 | G,S)]

Now we can define

EPRUk
alt(s,R, r | G,S) =


0, if k = 0,∑

a∈A

∑
v∈V

(EPRUk
altnew

(s,R, r, a, v | G,S) +

EPRUk
altupd

(s,R, r, a, v | G,S)), otherwise.

A proof that this formulation is equivalent to the version of EPRUk
alt from Section 6.1 follows.
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Theorem 5 For all histories hα, all repertoire-based strategies s, and all k ≥ 0, if s′ is a function from
histories to actions where s′(h) = s(CreateRepertoire(h)) and r = |hα|, then EPRUk

alt(s,R, r | G,S) =

EPRUk
alt(s′, h | G,S).

Proof. We can prove this by using induction on k. For our base case, we will use k = 0, since
EPRU0

alt(s,R, r | G,S) = EPRU0
alt(s′, h | G,S) = 0 by definition.

For the inductive step, we will assume that Theorem 5 holds for some k ≥ 0, and show that it also holds
for k + 1. Recall from Section 6.1 that, in this case

EPRUk+1
alt (s′, h | G,S) =

∑
t∈T

P(h ◦ t|h, s(h),S)(EVexp(r,U(t)) + EPRUk
alt(s′, h ◦ t | G,S))

Since T is simply the set of all action-percept pairs, we can instead write this as

EPRUk+1
alt (s′, h | G,S) =∑

a∈A

∑
v∈V

[
µ∑

m=1

P(h ◦ (a, (m, v))|h, s(h),S)

(EVexp(r,U((a, (m, v)))) + EPRUk
alt(s′, h ◦ (a, (m, v)) | G,S))]

where A is the set of possible actions and V the set of possible values. We also have14

EPRUk+1
alt (s,R, r | G,S) =∑

a∈A

∑
v∈V

[PRep(newaction(R, v)|R, r, a,S)

(EVexp(r,U((a, (−, v)))) + EPRUk
alt(s, newaction(R, v), r + 1 | G,S))

+

|R|∑
m=1

PRep(updaction(R, v,m)|R, r, a,S)

(EVexp(r,U((a, (−, v)))) + EPRUk
alt(s, updaction(R, v,m), r + 1 | G,S))]

Recall from Lemma 6 that P and PRep are consistent on hα. We can combine this with our inductive
hypothesis to show that the bracketed portions of the two equations above are equal.

Recall that when a repertoire encounters a new action, it does not store the action number m for that
action. Thus, for any pair m and m′ that are not already in hα, we know that CreateRepertoire(h◦(a, (m, v))) =

CreateRepertoire(h ◦ (a, (m′, v))) = newaction(R, v). Therefore, by our inductive hypothesis

EPRUk
alt(s′, h ◦ (a, (m, v)) | G,S) = EPRUk

alt(s, newaction(R, v), r | G,S)

for all m not already in hα. Notice that, by definition, there are µ − X(h) values of m that are not already in
hα. If we assume without loss of generality that the first action learned in hα has label 1, the second has label
2, etc., then we can define βnew to be the quantity P and PRep are multiplied by when we learn something
new:

βnew = EVexp(r,U((a, (−, v)))) + EPRUk
alt(s′, h ◦ 〈a, X(h) + 1, v〉 | G,S)

= EVexp(r,U((a, (−, v)))) + EPRUk
alt(s′, h ◦ 〈a, X(h) + 2, v〉 | G,S)

. . .

= EVexp(r,U((a, (−, v)))) + EPRUk
alt(s′, h ◦ (a, (µ, v)) | G,S)

= EVexp(r,U((a, (−, v)))) + EPRUk
alt(s, newaction(R, v), r | G,S)

14Recall that function U simply calculates the utility of performing the given action, and does not depend on the action number.
Thus U(a,m, v) = U(a,−, v) for any legal m.
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Similarly, the inductive hypothesis also tells us that

EPRUk
alt(s′, h ◦ (a, (m, v)) | G,S) = EPRUk

alt(s, updaction(R, v,m), r | G,S)

for all m that are already in hα. Thus, we can also define βm to be the quantity P and PRep are multiplied by
when we update our information on action m:

βm = EVexp(r,U((a, (−, v)))) + EPRUk
alt(s′, h ◦ (a, (m, v)) | G,S)

= EVexp(r,U((a, (−, v)))) + EPRUk
alt(s, updaction(R, v,m), r | G,S)

for m = 1, . . . , X(h).
We can now rewrite EPRUk+1

alt (s′, h | G,S) and EPRUk+1
alt (s,R, r | G,S) as

EPRUk+1
alt (s′, h | G,S) =

∑
a∈A

∑
v∈V

[
µ∑

m=X(h)+1

P(h ◦ (a, (m, v))|h, s(h),S)βnew

+

X(h)∑
m=1

P(h ◦ (a, (m, v))|h, s(h),S)βm]

and

EPRUk+1
alt (s,R, r | G,S) =

∑
a∈A

∑
v∈V

[PRep(newaction(R, v)|R, r, a,S)βnew

+

|R|∑
m=1

PRep(updaction(R, v,m)|R, r, a,S)βm]

Equations 21 and 22 tell us that regardless of the values of a and v,

µ∑
m=X(h)+1

P(h ◦ (a, (m, v))|h, s(h),S) = PRep(newaction(R, v)|R, r, a,S)

and

X(h)∑
m=1

P(h ◦ (a, (m, v))|h, s(h),S) =

|R|∑
m=1

PRep(updaction(R, v,m)|R, r, a,S)

Therefore, EPRUk+1
alt (s′, h | G,S) = EPRUk+1

alt (s,R, r | G,S). This completes the induction. �

B.0.5 Repertoire-Based Algorithm

Now that we have a formula for computing the EPRU of a repertoire-based strategy, and we know that using
repertoires rather than histories to calculate EPRU gives us the same results, we can update our algorithm
to use repertoires. The new algorithm will be almost identical to Algorithm 1, except that using repertoires
rather than histories will allow us to reduce our number of recursive calls by half. Let R′Obs be the set of
repertoires for which PRep(R′Obs|R, r,Obs) > 0, and define R′Inv and R′Xi

similarly. Note that, if R contains m
different actions,

R′Obs ⊆ R′Inv ∪

m⋃
i=1

R′Xi
(23)
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Algorithm 4 Produce strategy s that maximizes EPRUk
alt(s,R | G,S), given initial repertoire R, and set of

possible utility values V .
Strat(R,r, k,V ,S)

1: if k = 0 then
2: return 0
3: end if
4: Let Umax = 0
5: Let smax = null
6: Let UObs = 0
7: for each action a ∈ {X1, · · · ,Xµ, Inv} do
8: Let Utemp = 0
9: Let stemp = null

10: for each value v ∈ V do
11: Let t = 〈v, 1〉
12: if ∃i : (a = Xi) then Let R′ = age(R \ {〈vi, γi〉}) ∪ t and p = PRep(R′|R, r,Xi,S)
13: else Let R′ = age(R) ∪ t and p = PRep(R′|R, r, Inv,S)
14: Let pObs = PRep(R′|R, r,Obs,S)
15: if p + pObs > 0 then
16: Let {S ′,U′} = Strat(R′, r + 1, k − 1,V,S)
17: if pObs > 0 then UObs = UObs + pObs · U′

18: if p > 0 then
19: stemp = stemp ∪ S ′

20: if ∃i : (a = Xi) then Utemp = Utemp + p · (EVexp(r, v) + U′)
21: else Utemp = Utemp + p · U′

22: end if
23: end if
24: end for
25: if Utemp > Umax then
26: Umax = Utemp
27: smax = stemp ∪ 〈R, a〉
28: end if
29: end for
30: if UObs > Umax then
31: Umax = UObs
32: smax = stemp ∪ 〈R,Obs〉
33: end if
34: return {smax,Umax}

In other words, since repertoires do not need to remember what actions our agent performed, choosing
X1 produces the same repertoire as choosing Obs and observing action 1. Similarly, choosing Inv and Obs
can also produce the same repertoires, if both actions happen to tell us about the same action. However, there
is no action we could encounter through observing that we could not encounter through either innovating
or exploiting. Therefore, if we save the results of the recursive calls to calculate the utility of Inv and
X1, . . . ,Xm, we can compute the utility of Obs without any additional recursion. This cuts the branching
factor of our algorithm in half, from (2m + 2)v to (m + 1)v, which reduces the size of the search tree by a
factor of 2k for search depth k, without any impact on accuracy. Algorithm 4 is the complete algorithm.
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C Number of Cultaptation Strategies

In Cultaptation as defined on the tournament web site, each game includes 10,000 rounds, 100 agents, 100
exploitation actions, and the actions Inv and Obs. Let S be the set of all pure Cultaptation strategies, and
S ′ be the set of all strategies such that the first 100 moves are Inv, and all subsequent moves are exploitation
actions. Then any lower bound on S ′ is a loose lower bound on S .

Suppose an agent uses a strategy in S ′. If it survives for the first 100 rounds of the game, it will learn
values for all 100 of the exploitation actions. There are 100! different orders in which these actions may be
learned, and for each action there are 100 possible values; hence there are 100100 possible combinations of
values. Thus after 100 Inv moves, the number of possible histories is 100! × 100100. All subsequent moves
by the agent will be exploitations; and it is possible (though quite unlikely!) that the agent may live for the
remaining 9, 900 rounds of the game. Thus each of the above histories is the root of a game tree of height
2 × 9, 900. In this game tree, each node of even depth is a choice node (each branch emanating from the
node corresponds to one of the 100 possible exploitation actions), and each node of odd depth is a value
node (each branch emanating from the node corresponds to one of the 100 different values that the chosen
action may return). Since there are 100! × 100100 of these game trees, the total number of choice nodes is

100! ∗ 100100
9899∑
d=0

(1002)d > 9.3 × 1039953.

If we use the conventional game-theoretic definition that a pure strategy s must include a choice of action at
each choice node, regardless of whether the choice node is reachable given s, then it follows that

|S ′| > 1009.3×1039953
.

If we use the definition used by game-tree-search researchers, in which a pure strategy only includes a choice
of action at each choice node that is reachable given s, then the number of reachable choice nodes given s is

100! ∗ 100100
9899∑
d=0

100d > 9.4 × 1020155,

so

|S ′| > 1009.4×1020155
.
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