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ABSTRACT 

The discovery that the minimax decision rule performs poorly in some games has sparked 
interest in possible alternatives to minimax. Until recently, the only games in which minimax was 
known to perform poorly were games which were mainly of theoretical interest. However, this 
paper reports results showing poor performance of minimax in a more common game called kalah. 
For the kalah games tested, a non-minimax decision rule called the product rule performs 
significantly better than minimax. 

This paper also discusses a possible way to predict whether or not minimax will perform 
well in a game when compared to product. A parameter called the rate of heuristic flaw (rhf) has 
been found to correlate positively with the. performance of product against minimax. Both analyti­
cal and experimental results are given that appear to support the predictive power of rhf. 

1. Introduction 

Since the discovery of pathological games [3,4], two questions have attracted a fair amount 
of research interest. First, is it beneficial to search deeper in various real games? Second, since 
game tree pathology occurs when using the well known minimax back-up rule in some games, are 
there alternatives that might do better? 

Pearl [7 ,8] suggested that one should consider the product rule as a way to combine values 
from an evaluation function. Nau, Purdom, and Tzeng [5] did some experiments and found that 
in a class of board splitting games, product almost always performed better than minimax and 
that the product rule avoided pathology. But so far, poor performance of minimax relative to 
other decision rules has not been observed in games people actually play. By the results of experi­
ments on a more common game called kalah, Slagle and Dixon [10] found that a decision pro­
cedure called "M & N" performed significantly better than minimax. However, the M & N rule 
has a great resemblance to minimax. 

Underlying the above questions is a more fundamental issue: Why does minimax perform 
well in many games, and why does it perform poorly in some others? 

Avoidance of sibling dependencies [6] and avoidance of traps [8] have been proposed. to be 
causes of peculiarities such as game tree pathology and the better performance of non-minimax 
back-up rules in some games. But these two characteristics have more to do with the structure of 
the game tree itself than they have to do with the heuristics being used. 

Abramson's studies [1] on board splitting games showed that one can avoid pathology by 
improving the heuristics. Apparently this improvement of heuristics can be credited to the 
existence and detection of "traps." 

1 This work was supported in part by an NFS Presidential Young Investigator Award to Dana S. 
Nau, with matching funds provided by IBM, General Motors, and Martin Marietta; and by NSF 
grant NSFD CDR-85-00108. 
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This paper explores the issues of trap avoidance and sibling dependencies on the game of 
kalah and two modifications of kalah. By means of Monte Carlo studies on these games, th,ree 
interesting results have been observed: 

(1) On the average, the product rule performs better than minimax on the kalah games tested. 

(2) For the games tested, a parameter called the rate of heuristic flaw appears to be a good 

(3) 

predictor of whether minimax will do better than the product rule. 

For the games tested, the existence of traps correlates negatively with the performance of 
minimax playing against product - a result that appears to conflict with what one might 
predict from Pearl's and Abramson's studies. 

2. A parameter for game tree measurement 

2.1. The rate of heuristic flaw 

Let G be a zero sum, perfect information game between two players called max and min, 
and assume that G has no ties. Let e(.) be a static evaluation function for G. If n is a board posi­
tion in G, let Win(n) and Loss(n) denote the events that n is a forced win for max or forced loss 
for max respectively. 

Consider two board positions, m and n. If 

e(m) 2: e(n), 
then e suggests that m is no worse than n. But an exhaustive search of the game tree may reveal 
that m is worse than n. More precisely, it may turn out that 

Loss(m) and Win(n). 

In this case, the evaluation function has failed to give a correct opinion about m and n. An event 
like this is called a heuristic flaw. The rate of heuristic flaw, denoted by rhf, is defined to be the 
quantity 

Pr{Win(n) I Loss(m) & e(m) 2: e(n)}. 

In practice, we will usually impose the restriction that m and n are at the same depth of the game 
tree, or even more strongly, that m and n are siblings. As indicated by the experiments in Section 
3, rhf appears to be useful for measuring static evaluators in relation to back-up rules and deci­
sion making. 

It is apparent that the smaller rhf is, the better e can be expected to be. In the extreme 
case, if 

· 

Pr{Win(n) I Loss(m) & e(m) 2: e(n)} = 0, 

then e is practically a perfect evaluator, in the sense that a player who uses e will always move to 
forced win nodes whenever they exist. This is made precise in the following theorem, whose proof 
appears in [2]. 

Theorem 1. Suppose we have 

Pr{Win(n) I Loss(m) & e(m) � e(n) & Tip(m) & Tip(n)} = 0, 

where Tip(m) denotes the event that m is a tip node of the the search tree for the current board 
position. Then by moving to the position with the highest minimax value if it is max's move, 
max will move to a forced win node with probability 1 when it exists. (An analogous statement 
holds when it is min's move.) 

2.2. Minimax versus product 

Now, let us compare the minimax back-up rule with the product rule. For simplicity, 
assume that the game tree is binary. Assume further that it is max's move at some node c, and 
let m and n be the children of c. Then 
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Thus, 

Pr{Win(c)} 

= Pr{Win(m) or Win(n)} 

= Pr{Win(m)} + Pr{Loss(m)} Pr{Win(n) I Loss(m)}. 

. Pr{Win( c) I e(m) :::: e(n)} 

= Pr{Win(m) or Win(n) I e(m) � e(n)} 

= Pr{Win(m) I e(m) :::: e(n)} + Pr{Loss(m) I e(m) � e(n)} Pr{Win(n) I Loss(m) & e(m) � e(n)} 

= Pr{Win(m) I e(m) � e(n)} + Pr{Loss(m) I e(m) � e(n)} rhf. (1) 

In general, rhf can take on any value between 0 and 1. But when e(m) > e(n), Loss(m) 
presumably makes Win(n) less likely. Thus we can assume 

0 :$ Pr{Win(n) I Loss(m) & e(m) :::: e(n)} :$ Pr{Win(n) I e(m) � e(n)} 

which is 

0 :=:; rhf � Pr{Win(n) I e(m) � e(n)}. 

Suppose on one extreme that rhf is close to zero. Then fr(>m (1) we have 

Pr{Win(c) I e(m) :::: e(n)} � Pr{Win(m) I e(m) � e(n)}, 

which says that the strength of m is a good representation of the the strength of c. This suggests 
that in this case one would prefer the minimax back-up rule. 

The opposite extreme occurs when sibling nodes are independent, i.e., when the event that a 
node is a win or loss has no effect on whether its siblings are wins or losses. In this case, 

rhf = Pr{Win(n) I Loss(m) & e(m) � e(n)} = Pr{Win(n) I e(nt) :::: e(n)}. 

Thus, if e(m) and e(n) are good approximations of Pr{Win(m) I e(m) :::: e(n)} and Pr{Win(n) I 
e(m) � e(n)}, then from (1), 

Pr{Win(c) I e(m) :::: e(n)} 

= e(m) + (1 - e(m)) e(n) 

= 1 - (1 - e(m)) (1 - e(n)), 

which is precisely the formula for the product rule described in [7 ,8]. This suggests that in this 
case the product rule would be preferred. 

According to the naive derivations above, we would expect that minimax will perform better 
compared to product when rhf is small, and that product will perform better when rhf is large. 
Whether or not this is the case is tested in Section 3 using the game of kalah and two 
modifications of kalah. 

3. Simulation results 

This section describes the results of Monte Carlo experiments on some classes of kalah 
games and modified kalah games. 

A detailed description of the game of kalah can be found in [9]. For the purpose of under­
standing the results in this section, the reader should know that kalah is a moderately complex 

game, perhaps on a par with checkers [9], and that the object of the game is to capture stones 
from a board. Certain kinds of moves may result in a right to move again for the current player, 
and other moves may result in a capture of a large number of stones. Also, the game ends prema­
turely if one player has no move. 
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By taking away some of these rules one can get several interesting modifications of kalah. 

(1) One can allow a game to continue even when one player has no move, by allowing him to 
skip a move. We call this game "n<rpremature kalah." 

(2) One can disallow g<ragains. We call this game "n<rg<ragain kalah." 

(3) One could disallow captures. However, we do not consider this game here, because it takes 
too much computer time to search the entire game tree to get precise measurements of 
parameters such as the rate of heuristic flaw. 
From the analyses in Section 2, we would expect that the larger rhf is, the better product 

will perform compared with minimax. To test the relevance of this hypothesis, Monte Carlo 
experiments were carried out for kalah, n<rpremature kalah, and n<rg<ragain kalah. 

Since the winner of a kalah game is the player who gets the most stones, the evaluation 
function used in these games was the "kalah advantage," i.e., the difference of the numbers of 
stones acquired by ma:z: and min. This is one of the evaluation functions used by Slagle and 
Dixon[lOJ. 

Using a method for generating random games similar to the method used by Slagle, 1000 
game boards were generated. These boards were for kalah games with 3 bottom holes, each hole 
containing at most 6 stones. They were used as initial boards for all three kinds of kalah games. 

In order to estimate rhf in a game, recall that by definition, 

rhf = Pr{Win(n) I Loss(m) & e(m) � e(n)} 

= Pr{Win(n) & Loss(m) & e(m) 2::: e(n)} / Pr{Loss(m) & e(m) 2::: e(n)}. 

Therefore, rhf can be estimated by estimating Pr{Win(n) & F} and Pr{F} where F is the event 
"Loss(m) & e(m) 2:: e(n)." 

To estimate Pr{Win(n) & F} and Pr{F}, we randomly made 4 moves into the game for each 
of the 1000 initial boards. Among the children of the boards thus generated, tallies were made for 
the occurrences of "Win(n) & F" and the occurrences of F. The quotient of these two numbers 
was used as the estimation of rhf under the restriction that m and n are siblings. The simulation 
results are given in the following: 

Game Type Number of Times 

kalah 
n<rpremature kalah 
n<rg<ragain kalah 

F Occurs 
905 
947 

1083 

Number of Times 
F & Win(n) Occurs 

238 
218 
320 

Estimation of rhf 

0.263 
0.230 
0.295 

From these data, we are 95% confident (by a one-tailed hypothesis testing) in accepting that rhf 
is higher in kalah than in n<rpremature kalah. More careful analyses about the methods used for 
estimating rhf and interpretations of the results are given in [2]. 

Of the three types of games, n<rg<ragain kalah has the largest rhf and no-premature kalah 
has the least rhf. By our hypothesis, we would expect product to perform better on no-g<ragain 
kalah and ordinary kalah than on no-premature kalah. 

To test whether this is actually the case, the same 1000 boards were used as initial boards 
for contests between minimax and product at search depths varying from 2 to 7 (for depth 1 both 
back-up .rules are the same). Each initial board was used twice, once with minimax moving first 
and once with product moving first. From the outcomes of each pair of games thus played, it was 

determined which player had a better performance. For each pair of games, if one player won 
both games in the pair, then that player was considered to perform better on that pair. If neither 
player won both games in the pair, then the pair was not considered. 
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To save computing time, the computer program did not necessarily examine all 1000 games 
in every contest. Instead, it stopped whenever at least 100 critical pairs (where the two players 
performed unevenly) were found and a significant difference in the performance of the two players 
was reached. The simulation results can be summarized in the following three tables. The 
significance figures were obtained with one-tailed hypothesis testing, with the null hypothesis that 
the two players were performing equally well. 

Consider the values of the percentage of pairs of games where minimax does better. They 
should be about 50% if the �he null hypothesis is true. Each significance figure in the table gives 
the probability that the observed deviation from 50% could have arisen by chance if the null 
hypothesis is true. Thus, the smaller the significance figure is, the less believable is the null 
hypothesis that minimax and product perform equally well. 

Table 1. Results of contests of minimax against product in-kalah: 

Search Number of Number of pairs Percentage of pairs Significance Conclusion 
depth pairs minimax does better minimax does better 

2 101 27 26.7% <0.1% product is better 
3 101 66 65.3% 0.1% minimax is better 
4 101 39 38.6% 1.1% product is better 
5 271 141 52.0% 25.1% not significant 
6 101 42 41.6% 4.6% product is better 
7 114 48 42.1% 4.6% product is better 

Table 2. Results of contests of minimax against product in no-premature kalah: 

Search Number of Number of pairs Percentage of pairs Significance Conclusion 
depth pairs minimax does better minimax does better 

2 108 63 58.3% 4.2% minimax is better 
3 101 85 84.2% <0.1% minimax is better 
4 249 136 54.6% 7.2% not. significant 
5 101 80 79.2% <0.1% minimax is better 
6 101 64 63.4% 1.9% minimax is better 
7 101 71 70.3% <0.1% minimax is better 

Table 3. Results of contests of minimax against product in no-go-again kalah: 

Search Number of Number of pairs Percentage of pairs Significance Conclusion 
depth pairs minimax does better minimax does better 

2 101 32 31.7% <0.1% product is better 
3 103 43 41.7% 4.7% product is better 
4 105 44 41.9% 4.9% product is better 
5 114 48 42.1% 4.6% product is better 
6 101 34 33.7% <0.1% product is better 
7 101 40 39.6% 1.8% product is better 

Some interesting observations can be made on the data shown above: 

(1) At a confidence level of 95%, we accept that product performs better than mm1max at 
search depths 2, 4, 6, and 7 in the game of kalah. Only at depth 3 is product significantly 
worse than minimax. So, product appears to be superior to minimax at most search depths 
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(2) 

(3) 

(4) 

(5) 

in this class of kalah games. 

At a confidence level of 95%, vie accept that minimax performs better at every search depth 
except 4 in no-premature kalah. 
At the same confidence level, we accept that product performs better at every search depth 
in no-go-again kaiah. 

The performance of product against minimax correlates positively with the rhf values for 
the three types of kalah games - a result that matches our prediction about rhf values. 
Another interesting observation is that the performimce of product relative to minimax 
changes dramatically from ordinary kalah to no-premature kalah. The only causative factor 
that we can single out at this point is the existence of premature endings of ordinary kalah 
as compared to no-premature kalah. It appears that the existence of premature endings in 
this case contributed to a higher rhf value and also made product to perform better relative 
to minimax. 

4. Conelusions and further speeulations 

The results of our study are summarized below: 

(1) Product plays better than minimax at most search depths in the game of kalah with three 
bottom holes. And it appears that product performs even better in no-go-again kalah. This 
is a remarkable result, since it is the first time product has been found to be better than 
minimax in a game people play. 

(2) In our experiments, the rate of heuristic flaw appears to be a good predictor of how well 
minimax will perform in comparison to product. One could argue that for most real games it 
may be computationally intractable to measure this parameter, since one would have to 
search the entire game tree. But one can generally make intuitive estimates of rhf without 
searching the entire game tree.· 
For example, consider the game of cliess. Imagine two game boards, A and B, which are 
identical except that in board A, White has one more knight than in B. One would usually 
be confident in saying that if A is a forced loss for White, B will also be a forced loss for 
White. So, no matter what value is given to the knight by the evaluation function, the abil­
ity to tell that A is better than B in this case certainly would make rhf smaller. 

(3) From Pearl's and Abramson's studies, one would expect that by introducing traps into a 
game, one may improve the performance of minimax compared to product. But our results 
in kalah and modifications of kalah seemed to be the other way around. In our results, the 
better performance of product was correlated with the higher value of rhf, which might be 
credited to the existence of premature endings in ordinary kalah as compared to no­
premature kalah. 
Our results match the naive arguments of Section 2.2 surprisingly well. This may happen 

partly because the branching factors of the game trees simulated are usually 2 or 3, and Section 
2.2 assumed a branching factor of 2. More studies need to be done for higher branching factors. 
The following questions still are open: Are there other accessible and relevant parameters that 
could be used to predict the performance of minimax and other decision rules? How might these 
predictors be related to game tree pathology? What will happen if one uses decision rules other 
than minimax or product? 

The studies of this paper suggest the possibility of answering these and other questions by a 
combination of intuitive arguments, Monte Carlo experiments and variations of game playing 
rules. 
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