
COMPARISON OF THE MINIMAX AND PRODUcT
BACK-UP RULES IN A VARIETY OF GAMES!

Ping-Chung Chi2

Computer Science Department
University of Maryland
College Park, MD 20742

Dana S. Nau3

Computer Science Department, and
Institute for Advanced Computer Studies

University of Maryland
College Park, MD 20742

ABSTRACT
This paper describes comparisons of the minimax back-up rule and
the product back-up rule on a wide variety of games, including P­
games, G-games, three-hole kalah, othello, and Ballard's incremental
game. In three-hole kalah, the product rule plays better than a
minimax search to the same depth. This is a remarkable result, since
it is the first widely known game in which product has been found to
yield better play than minimax. Furthermore, the relative perfor­
mance of minimax and product is related to a parameter called the
rate of heuristic fiaw (rhf). Thus, rhf has potential use in predicting
when to use a back-up rule other than minimax.

1 A condensed version of this paper, entitled "Comparing Minimax and Product in a
Variety of Games", appears in Proc. AAAI-87.

2 This work has been supported in part by a Systems Research Center fellowship.

S This work has been supported in part by the following sources: an NSF Presidential
Young Investigator Award to Dana Nau, NSF NSFD CDR-85-o0108 to the University of
Maryland Systems Research Center, IBM Research, and General Motors Research La­
boratories.

451

1. INTRODUCTION

The discovery of pathological games [Nau, 1980] has sparked
interest in the possibility that various alternatives to the minimax
back-up rule might be better than minimax. For example, the pro­
duct rule (originally suggested by Pearl [1981, 1984)), was shown by
Nau, Purdom, and Tzeng [1985] to do better than minimax in a class
of board splitting games.

Slagle and Dixon [1970J found that a back-up procedure called
"M & N" performed significantly better than minimax. However, the
M & N rule closely resembles minimax. Until recently, poor perfor­
mance of minimax relative to back-up rules significantly different
from minimax has not been observed in commonly known games such
as blah.

This paper presents the following results:
(1) For a wide variety of games, a parameter called the rate of

heuristic fiaw appears to be a good predictor of how well minimax
performs against the product rule. These games include three­
hole kalah, othello, P-games, G-games, and possibly others. This
suggests that rhf may serve not only as a guideline for whether it
will be worthwhile to consider alternatives to minimax, but also
as a way to relate other characteristics of game trees to the per­
formance of minimax and other back-up rules.

(2) In studies of three-hole kalab, the product rule played better than
a minimax search to the same search depth. This is the first
widely known game in which product has been found to play
better than minimax. The product rule stilI has a major draw­
back: no tree-pruning algorithm has been developed for it, and
no correct pruning algorithm for it can conceivably do as much
pruning as the various pruning algorithms that exist for minimax.
However, the performance of the product rule in kalah suggests
the possibility of exploiting non-minimax back-up rules to
achieve better performance in other games.

2. DEFINITIONS

By a game, we mean a two person, zero sum, perfect information
game having a finite game tree. All of the games studied in this paper
satisfy this restriction.

452

Let G be a game between two players called max and min. To
keep the discussion simple, we assume that G has no ties, but this res·
triction could easily be removed. If n is a board position in G, let u(.)
be the utility function defined as

{

I if n is a forced win node
u(n) = 0 if n is a forced loss node.

We consider an evaluation function to be a function from the set,
of all possible positions in G into the elosed interval [0,1]. If e is an
evaluation function and n is a node of G, then the higher the value
e(n), the better n looks according to e. We assume that every evalua­
tion function produces perfect results on terminal game positions (i.e"
ern) = u(n) for terminal nodes).

If m is a node of G, then the depth d minimax and product values
of mare

1
e(m) if depth(m)= d or m is terminal

M(m,d) = minn M(n) if min has the move at m

maxn M(n) if max has the move at m

j
e(m) if depth(m)= d or m is terminal

J(m,d) = IIn J(n) if min has the move at m

1- IIn (1-(n)) if max has the move

where n is taken over the set of children of m.
Let m and n be any two nodes chosen at random from a uniform

distribution over the nodes at depth d of G. Let t .(m,n) (and
J-.(m,n)) be whichever of m and n looks better (or worse, respectively)
according to e, Thus if e(m) > e(n), then t .(m,n) = m and -1-.(m,n)
= n. If e(m) = e(n), we still assign values to t .(m,n) and -1-.(m,n),
but the assignment is at random, with the following two possibilities
each having probability 0.5:
(1) t .(m,n) = m and -1-.(m,n) = n;
(2) t .(m,n) = nand -1-.(m,n) = m.

Since e may make errors, exhaustive search of the game tree may
reveal that t .(m,n) is worse than -1-.(m,n), i.e., that

u(t .(m,n)) < u(-1-.(m,n)).

In this case, a heuristic flaw has occurred: the evaluation function
has failed to give a correct opinion about m and n. The rate of

453

heuristic flaw at depth d, denoted by rhf(d), is defined to be the quan­
tity

Pr[u(t e(m,n)) < u(.j.e(m,n))].

3. THEORETICAL CONSIDERATIONS

3.1. First Hypothesis

Consider a minimax search terminating at depth d of a game tree.
If rhf(d) is small, it is intuitiyely apparent that this search should per­
form quite well. The question is whether it will perform better than
some other back-up rule.

For simplicity, assume that the game tree is binary. Assume
further that it is max's move at some node c, and let m and n be the
children of c. Let d be the depth of m and n. Then

(1) Pr[u(c)=l] = Pr[u(t e(m,n))=l or u(.j.e(m,n))--:-l]
= Pr[u(t e(m,n))"':'-l] + Pr[u(.j.e(m,n))>u(t Jm,n))]
"" Pr[u(t e(m,n))=l]+ rhf(d).

The smallest possible value for rhf(d) is zero. If rhf(d) is close to
zero, then from (1) we have

Pr[u(c)=l] "" Pr[u(t e(m,n))=l],

which says that the utility value of c is closely approximated by the
utility value of its best child. But according to the minimax rule, the
minimax value of c is the minimax value of the best child. This sug­
gests that in this case one might prefer the minimax back-up rule to
other back-up rules.

Consider the case when rhf is large. In general, rhf can take on
any value between 0 and 1. But if e is a reasonable evaluation func­
tion, and if t e(m,n) is a forced loss, this should make it more likely
that .j.e(m,n) is also a forced loss. Thus, we assume that

Pr[u(.j.e(m,n)) . 1 I u(t e(m,n))=O] < Pr[u(.j.e(m,n))=l].

Thus since u(.) must be either 0 or 1,

rhf = Pr[u(.j.e(m,n))=l & u(t e(m,n))=O]
< Pr[u(t e(m,n))=O] Pr[uUe(m,n))=l].

Suppose rhf is large, I.e.,

454

rhf ,,:; Pr[u(t .(m,n))=O] Pr[uU.(m,n))=l].

Then from (1),
Pr[u(c)=l] ,,:; Pr[u(t .(m,n))=l]

+ Pr[u(t .(m,n))=O] Pr[uU.(m,n))=l].

Thus, if eft .(m,n)) and e(./..(m,n)) are good approximations of
Pr[u(t .(m,n))=l] and Pr[u(./..(m,n))=l], then

Pr[u(c)=l]":; eft .(m,n)) + (1- eft .(m,n))) e(./..(m,n))
= 1- (1- eft .(m,n))) (1- e(./..(m,n))),

. which is precisely the formula for the product rule given in Section 2.
This suggests that when rhf is large, the product rule might give !\
better backup value for c.

From the above considerations, we may form ,the following
hypothesis.

Hypothesis 1. Suppose we are given a game and several different
evaluation functions for that game. When an evaluation function is
used that has a small rhf value, minimax should perform better
against product than it does when an evaluation function is used th!\t
has a large rhf value.

%minimax wins agains product

minimax r
wins most.
games

0.5

p~oduct 1
WIllS most
games

:~
n~~n

fhf

FIGURE 1: Possible curves for Hypotheses 1 & 2

455

3.2. More Considerations

Hypothesis 1 suggests that, in general, the percentage of wins
obtained by minimax against the product rule should decrease mono­
tonically as rhf increases. Therefore, if we plot this percentage
against rhf, we should get a curve similar to one of the curves (A, B,
C) drawn in Figure 1. For curve A, minimax is always better than
product. For Curve C, product is always better than minimax. For
Curve B, minimax is better when rhf is small and product is better
when rhf is large. Which one of these will more likely be the case?

To answer this question, consider the extreme case where
rhf(d) " O. In this case, whenever m and n are two nodes at depth d of
G,

Pr[u(t e(m,n)) < u(.).e(m,n))] = O.

Therefore, since there are only a finite number of nodes at depth d,
there is a value kE(O,l) such that for every node m at depth d,

u(m) = 1 if and only if elm) ~ k.

By mathematical induction, it follows that forced win nodes will
always rec('ive minimax values larger than forced loss nodes, so a
player using a minimax search will play perfectly.

u=o
P~.16

u=l
P~.12

nIl n12 n21 n22

u=o u=O u=O u=l
e=.4 e=.4 e=.2 e=.6

FIGURE 2: A case where product makes the wrong choice.

But if the product rule is used rather than the minimax rule, then
the search will not always result in perfect play. For exampie, con­
sider the tree shown in Figure 2. By looking at the four leaf nodes, it
is evident that rhf=O when k=O.5. Thus, a minimax search at node

456

n would result in a correct decision. However, a product rule search
would result in incorrectly choosing the forced loss node nl. This sug­
gests that when rhf is small, the minimax rule should perform better
than the product rule.

On the other hand, consider an evaluation function e which
returns correct values on terminal nodes, but on nonterminal nodes
returns values that are completely unindicative of the true value of a
node. This would happen if e always returned the same value (say,
0.5), or if e returned independent identically distributed random
values. If e is used in games where the branching factor is not con­
stant, the product rule will tend to choose nodes where one has a
wider choice of moves than one's opponent. In this case, it is plausi­
ble that the product rule will do slightly better than the minimax
rule.

The above arguments are by no means conclusive, but they sug­
gest the following hypothesis:

Hypothesis 2. The minimax rule performs better than the product
rule when rhf is small, and worse than the product rule when rhf is
large.

According to Hypothesis 2, Curve B in Figure 1 is the correct one,
rather than Curves A and C.

4. EMPffiICAL CONSIDERATIONS

To test Hypotheses 1 and 2, we have examined five different
classes of games. This section describes the results which have been
obtained for these games. For descriptions of the rules of these
games, see the Appendix.

4.1. G-Games

A G-game is a board-splitting game investigated in [Nau, 1983],
where two evaluation functions ej and e2 were used to compare the
performance of minimax and product. The product rule did better
than minimax when ej was used, and product did worse than minimax
when e2 was used.

457

% minimax wins against product

o Experimental

0.5 -----------t u

o

rhl

FIGURE 3: Some data points for G-games

It can be proven that for every depth d, rhf(d) is higher using e1
than it is using e2• The two data points for e1 and e2 can thus be
plotted as shown in Figure 3. Thus, these results support both
Hypotheses 1 and 2.

4.2. Ballard's Experiments

Ballard [1983] used a class of incremental games with uniform
branching factor to study the behavior of minimax and non-minimax
back-up rules. One of the non-minimax back-up rules was a
weighted combination of the computational schemes used in the
minimax and product rules. Among other results, he claimed that
"lowering the accuracy of either max's or min's static evaluations, or
both, serves to increase the amount of improvement produced by a
non-minimax strategy." Thus, product did better against minimax
when the less accurate evaluation functions were used.

Since Ballard's paper does not include definitions of the evaluation
functions he used, we cannot determine their rhf values. However, rhf
is basically a measure of evaluation function accuracy-so we can feel
reasonably certain that the less accurate evaluation functions had
higher rhf values. This suggests that Ballard's results for minimax
versus the product rule can be plotted as the data points labeled
"Experimental" in Figure 4. Furthermore, as pointed out in Section
3, it can be proven that on the average, minimax performs better
than product when rhf = O. This gives us the data point labeled
"Math" in Figure 4. These data points support both Hypotheses 1

458

and 2.

% minimax wins against product

Math
.----c./

Experimental

0.5 --------/f-----
o

rhf

FIGURE 4: Some data points from Ballard's experiments

4.3 Othello

Teague [1985] did experiments on the game of othello, using both
a "weak evaluation" and a "strong evaluation." The weak evaluation
was simply a piece count, while the strong one incorporated more
knowledge about the nature of the game. According to Teague's
study, minimax performed better than product 82.8% of the time
with the strong evaluation, but only 63.1% of the time with the weak
evaluation.

It would be difficult to measure the rhf values for othello, because
of the immense computational overhead of determining whether or
not playing positions in othello are forced wins. However, since rhf is
a measure of the probability that an evaluation function assigns
forced win nodes higher values than forced loss nodes, it seems clear
that the stronger an evaluation function is, the lower its rhf value
should be. Thus, we can feel reasonably certain that Teague's results
for minimax versus the product rule can be plotted as the data points
labeled "Experimental " in Figure 5. This suggests support for
Hypothesis 1. However, it says nothing about Hypothesis 2, because
we do not know whether or not the product rule might out--perform
minimax for evaluation functions with sufficiently large rhf values.

459

% minimax wins against product

o 0

0.5 --+1-- -- ------
Experimental

rhf

FIGURE 5: Some data points for othello

4.4. P-Games

TABLE 1: Simulation results for P-p'ames of denth 11.
% wins for % wins for

Search minimax minimax
denth usinQ' el usinQ' e2

2 51.0% 52.1%
3 52.5% 51.8%
4 49.9% 50.3%
5 50.7% 49.3%
6 46.2% 48.1%
7 46.7% 48.4%
8 44.9% 48.6%
9 47.2% 50.0%

A P-game is a board-splitting game whose game tree is a com­
plete binary tree with random independent assignments of "win" and
"loss" to the terminal nodes. P-games have been shown to be patho­
logical when using a rather obvious evaluation function el for the
games [Nau, 1982]-and in this case, the minimax rule performs more
poorly than the product rule [Nau, Purdom, and Tzeng, 1985]. How­
ever, pathology in P-games disappears when a stronger evaluation
function, e2, is used [Abramson, 1985].

460

It can be proven that e2 has a lower rhf than e1. Both e1 and e2
return values between 0 and 1, and the only difference between e1 and
e2 is that e2 can detect certain kinds of forced wins and forced losses
(in which case it returns 1 or 0, respectively).

Let m and n be any two nodes. If e2(i e2(m,n)) = 0, then it must
also be that e2(-l-e2(m,n)) = o. But it can be shown that e2(x) = 0
only if x is a forced loss. Thus u(./.e2(n, m))=O, so there is no heuristic
flaw. It can also be shown that e2(x) = 1 only if x is a forced win.
Thus if e2(i e2(m,n)) = 1, then uti e2(m,n))=1, so there is no heuristic
flaw.

% minimax wins against product

Math
....-c./

Experimental

0.5 - m_ ---/l-m
o

fhl

FIGURE 6: Some data points for P-games

Analogous arguments hold for the cases where e2(./.e2(m,n)) = 0

or e2(./.e2(m,n)) = 1.
The cases described above are the only possible cases where e2

returns a different value from e1. No heuristic flaw occurs for e2 in
any of these cases, but heuristic flaws do occur for e1 in many of these
cases. Thus, the rhf for e2 is less than the rhf for e1.

We tested the performance of minimax against the product rule
using e1 and e2, in binary P-games of depths 9, 10, and 11, at all pos­
sible search depths. For each combination of game depth and search
depth, we examined 3200 pairs of games. The study showed that for
most (but not all) search depths, minimax achieved better perfor"
mance when using the evaluation function that had the smaller rhf
value. For example, Table 1 shows that this is the case for P-games
of depth 11, for all search depths except 3 and 5. This supports

461

Hypothesis 1.
These results also support Hypothesis 2. For example, in P­

games of depth 11 with search depth larger than 5, we get the graph
sketched in Figure 6.

4.5. Kalah

Slagle and Dixon [1969] states that "Kalah is a moderately com­
plex game, perhaps on a par with checkers." But if a smaller-than­
normal kalah playing board is used, the game tree is small enough
that one can search all the way to the end of the game tree. This
allows one to determine whether a node is a forced win or forced loss.
Thus, rhf can be estimated by measuring the number of heuristic
flaws that occur in a random sample of games. By playing minimax
against product in this same sample of games, information can be
gathered about the performance of minimax against product as a
function of rhf. To get a smaller-than-normal playing board, we used
three-hole kalah (i.e., a playing board with three bottom holes instead
of the usual six), with each hole containing at most six stones.

One obvious evaluation function for kalah is the "kalah advan­
tage" used by Slagle and Dixon [1969]. We let ea be the evaluation
function which uses a linear scaling to map the kalah advantage into
the interval [0,1].4 If f(m,2) is computed using ea(m), the resulting
value is generally more accurate than ea(m). Thus, weighted averages
of ea(m) and P(m,2) can be used to get evaluation functions with dif­
ferent rhf values:

e:'(m) = w ea(m) + (1-w) f(m,2),

for w between °and 1.
We measured rhf(4), and played minimax against product with a

search depth of 2, using the following values for w: 0, 0.5, 0.95, and
1. This was done using 1000 randomly generated initial game boards
for three-hole kalah. For each game board and each value of w, two
games were played, giving each player a chance to start first. The
results are summarized in Table 2.

4 A preliminary study of rhf [Chi & Nau, 1986] compared minimax to the product rule
using ea in three different variants of kalah. This study, which used a somewhat dif­

ferent definition of rhf than the one used here, motivated the more extensive studies re­
ported in the current paper.

462

Note that the lowest rhf was obtained with w = 0.5. This sug­
gests that a judicious combination of direct evaluation with tree
search might do better than either individually. This idea needs to be
investigated more fully.

TABLE 2: Simulation results for kalah

w rhf(4) % games won % games won
bv nroduct bv minimax

1 0.135 63.4% 36.6%
0.95 0.1115 55.5% 44.5%
0 0.08 53.6% 46.4%
0.5 0.0765 51.2% 48.8%

Note also that product performs better than mllllmax with all
four evaluation functions. 5 This suggests that the product rule might
be of practical value in kalah and other games. Also, the performance
of product against minimax increases as rhf increases. As shown in
Figure 7, this provides support for both Hypotheses 1 and 2.

% minimax wins against product

Math
.--c./

0.5
00 Experimental

00

rhl

FIGURE 7: Some data points for kalah

5 Table 2 shows results only for search depth 2. We examined depth 2 to 7 and product
rule played better than minimax in all of them except with less statistical significance for
depth 3 and 6.

463

5..P-GAMES WITH VARYING RHF

Section 4 shows that in a variety of games, mlmmax performs
better against product when rhf is low than when rhf is high. How­
ever, since the number of data points gathered for each game is rather
small, the relationship between rhf and the performance of minimax
versus product is still not entirely clear. To investigate further the
relationship between rhf and performance of minimax versus product,
we did a detailed Monte Carlo study of the performance of minimax
against product on binary P -games, using an evaluation function
whose rhf could be varied easily.

For each node n, let r(n) be a random value, uniformly distributed
over the interval [0,1]. The evaluation function eWis a weighted aver­
age of u and r:

eW(n) = w urn) + (l-w) r(n).

When the weight w = 0, eW is a completely random evaluation.
When w = 1, eWprovides perfect evaluations. For 0 :'S w < 0.5, the
relationship between wand eeWis approximately linear (as shown in
Figure 8). For w ;.; 0.5, rhf = 0 (i.e., eWgives perfect performance
with the minimax back-up rule).

rhl

0.236

0.0 '---------~~ W

0.0 .0.5

FIGURE 8: The relationship between
wand rhf for e w.

In the Monte Carlo study, 8000 randomly generated initial game
boards were used, and w was varied between 0 and 0.5 in steps of

464

0.01. For each initial board and each value of w, two games were
played: one with minimax starting first, and one with product start­
ing first. Both players were searching to depth 2. Figure 9 graphs the
fraction of games won by minimax against product, as a function of
rhf. Notice that minimax does significantly better than product when
rhf is small, and product does significantly better than minimax when
rhf is large.6 Thus, in a general sense, Figure 9 supports our
hypotheses about rhf.

But Figure 9 also demonstrates that the relationship between rhf
and the performance of minimax against product is not always mono"
tone, and may be rather complex. There are several reasons for this;
two of them are described below.

% minimax wins against product

0.0

0.533

0.5

0.474

L----------~rhf

0.236

FIGURE 9: Performance of minimax against

product using e W as rhf varies.

First, the definition of rhf uses the same notion of a "correct
move" as the minimax rule does-and thus we would expect it to be a
good predictor of the performance of minimax. However, the relation­
ship between rhf and the performance of the product rule is not as
clear. For further studies, it would be advisable to try to formulate a
parameter that predicted more closely the performance of the product
rule, and use both it and rhf in predicting the performance of
minimax versus product.

Second, the argument (in Section 3.2) that the product rule
should do better than the minimax rule for extremely high rhf values

6 Furthermore, the poor performance of minimax when rhf is large corroborates previous
studies which showed that product did better than minimax in P-games using a different
evaluation function [Nau,Purdom, and Tzeng, 1985].

465

applies only to games of variable branching factor. Since P-games
have a constant branching factor, we can prove mathematically that
when the evaluation function returns random values, both the product
rule and the minimax rule play randomly, resulting in the circled data
point in Figure 9.

6. CONCLUSIONS AND SPECULATIONS

The results presented in this paper are summarized below:
(1) Theoretical considerations suggest that for evaluation functions

with low rhf values, minimax should perform better against pro­
duct than it does when rhf is high. Our investigations on a
variety of games confirm this conjecture.

(2) In the game of kalah with three bottom holes, the product rule
plays better than a minimax search to the same search depth.
This is the first widely known game in which product has been
found to yield better play than minimax.
Previous investigations have proposed two hypotheses for why

minimax might perform better in some games than in others:
dependence/independence of siblings [Nau, 1982] and detection/non­
detection of traps [Pearl, 1984]. Since sibling dependence generally
makes rhf lower and early trap detection always makes rhf lower,
these two hypotheses are more closely related than has previously
been realized.

One could argue that for most real games it may be computation­
ally intractable to measure" rhf, since one would have to search the
entire game tree. But since rhf is closely related to the strength of an
evaluation function, one can generally make intuitive comparisons of
rhf for various evaluation functions without searching the entire game
tree. This becomes evident upon examination of the various evalua­
tion functions discussed earlier in this paper.

There are several problems with the definition and use of rhf.
Since it is a single number, rhf is not necessarily an adequate
representation for the behavior we are trying to study. Furthermore,
since the definition of rhf is tailored to the properties of minimax, it is
not necessarily the best predictor of the performance of the product
rule. Thus, the relationship between rhf and the performance of
minimax versus product can be rather complex (as was shown in Sec­
tion 5). Further study might lead to better ways of predicting the
performance of minimax, product, and other back-up rules.

466

APPENDIX

A. P-Games and G-Games (adapted from [Nan 1983])

A P-game is played between two players. The playing board for
the game is a list of 2)/ elements (we use J./= 10). Each element is
either -lor 1. The value of each element is determined before the
beginning of the game by making it a 1 with some fixed probability p
and a -1 otherwise, independent of the values of the other elements.
In order to give each side a reasonable chance of winning, we use
. "1';-

P = (3-
2

5) >::; 0.382.

(+I -1 +1 +I -1)

A
(+I -1 +I +1) H +I +I -1)

1\/\
(+1 -1 +I) H +1 +I) (+I +I -1)

AAA
(+I -1) (-1 +I) (+1 +I) (+I -1)

/\ 1\ /\ 1\
(+1) H) (+1) (+I) H)

FIGURE 10: A game graph for a G-game of dept~ 4. The initial

board appears at the root. Max, as the second player, has a forced

win in this particular game graph, as indicated by the solution

graph drawn in double lines.

To make a move in the game, the first player removes either the
left half of the list (the first 2)/-1 elements) or the right half (the last
2)/-1 elements). His opponent then removes the left or right half of
the remaining part of the list. (The rules can be generalized for
branching factors greater than 2, but we are concerned only with the
binary case.) Play continues in this manner with each player selecting
the left or right haJf of the remaining part of the list until a single

467

element remains. If this element is a 1, then the player who made the
last move wins; otherwise his opponent wins.

The game tree for a P-game is a full binary game tree of depth k.
Thus the same player always has the last move no matter wha~

course the game takes.
In games such as chess and checkers the game graph is not a tree,

since several different nodes may have some of the same children.
The G-games described below also have this property.

The playing board for a G-game is a list of k+ 1 elements, where
k> 0 is an integer. The playing board is set up by randomly assigning
each element the value 1 with probability r or the value -1 otherwise,
for some fixed r (we use r=1/2). A move (for either player) consists
of removing a single element from either end of the list (see Fig. 10).
As with the P-games, the game ends when only one element is left. If
it is a 1, then Max (the player who moved last) wins; otherwise Min
wins.

B. Ballard's Experiments

In order to compare different search strategies, Ballard generated
random game trees of depth 8, branching factor 4, and search depth
2, using a method given by Fuller et al. [1983]. This method involved
assigning values to the arcs of the game tree, then computing a value
for each leaf by summing the values on all arcs to it from the root. In
particular, the arc values were taken independently from a uniform
distribution over the set {O,1,..,100}. The static values of a node
were defined to be the sum of the arc values on the path from the
root to the node.

C. Othello

Since othello is a widely known game, the description of its rules
is skipped here. The reader is referred to [Hasagawa, 1977).

468

holes owned by min

max's f;\
blah V

G)G)G)G)G)G)
~

G)G)G)G)G)G)
holes owned by max

f;\ min's
Vkalah

FIGURE 11: The starting position for a kalah game with six bot­
tom holes and three stones in each hole.

D. Kalah (adapted from [Slagle & Dixon, 1969])

Figure 11 shows the starting position for three--in-a-hole kalah,
and Figure 12 shows a sequence of possible moves. A player wins if he
gets more than half the stones in his kalah.

To make a move, a player first picks up all the stones in one of
his holes. He then proceeds counterclockwise around the board, put­
ting one stone in each hole, including his own kalah, but skipping his
opponent's kalah until all the picked-up stones are gone. What hap­
pens next depends on where the last stone lands. There are three
alternatives. If the last stone lands in the player's own kalah, he
makes another move. This is called a "go again." The second alterna­
tive is called a "capture." If the last stone lands in an empty hole
owned by the player, then all the stones in the opponent's hole
directly opposite is captured by the player. The player places all the
captured stones and his own last stone in his kalah, and the opponent
moves next. The third alternative is the simplest case. If the last
stone lands so that neither a go-again nor a capture occurs, then the
opponent moves next.

469

starting position

max starts with a move

min makes a go-again move

min goes again

03333330
333333

03333341
333304

t

.j.

1 440334 1
333304

.j.

2500334 1
443304

max makes a capture move 25003045
054404

t
FIGURE 12: The first few moves of a kalah game, played on the
board shown in Figure 11. Each time a move is made, the place from
where the stones were moved is marked with an arrow (t or .j.).

There are two conditions which end the game. If a player gets
more than half of the stones in his kalah, the game is over and he is
the winner. If all the holes owned by one player, say min, become
empty (even if it is not his turn to move), then all the stones remain­
ing in max's holes are put in max's kalah and the game is over. In
either case the winner is the player who has more stones in his kalah
at the end of the game.

Since we considered games with no ties, we added a new rule in
our simulations. If right after a move, the player acquires exactly half
of the stones, then he is the winner. It is obvious that with the addi­
tion of this new rule, that the game of kalah has no ties.

REFERENCES
[Abramson, 1985]

Abramson, B., "A Cure for Pathological Behavior in Games
that Use Minimax," First Workshop on Uncertainty and Probabil­
ity in AI (1985).

470

[Ballard, 1983]
Ballard, B. W., "Non-Minimax Search Strategies for Minimax
Trees: Theoretical Foundations and Empirical Studies," Tech.
Report, Duke University, (July 1983).

[Chi & Nau, 1986]
Chi, P. and Nau, D. S., "Predicting the Performance of Minimax
and Product in Game Tree Searching," Second Workshop on
Uncertainty and Probability in AI (1986).

[Fuller et al. 1973]
Fuller, S. H., Gaschnig, J. G., Gillogly, J. J. "An analysis of the
alpha-beta pruning algorithm," Dept. of Computer Science
Report, Carnegie-Mellon University (1973).

[Hasagawa, 1977]
Hasagawa, G., How to Win at Othello, Jove Publications, Inc.,
New York (1977).

[Nau,1980]
Nau, D. S., "Pathology on Game Trees: A Summary of
Results," Proc AAAI-80, pp. 102-104 (1980).

[Nau, 1982]
Nau, D. S., "An Investigation of the Causes of Pathology in
Games," Artificial Intelligence Vol. 19 pp. 257-278 (1982).

[Nau, 1983]
Nau, D. S., "On Game Graph Structure and Its Influence on
Pathology," Internat. Jour. of Comput. and Info. Sci. Vol.
12(6) pp. 367-383 (1983).

[Nau, Purdom, and Tzeng, 1985]
Nau, D. S., Purdom, P. W., and Tzeng, C. H., "An Evalua­
tion of Two Alternatives to Minimax;" First Workshop on
Uncertainty and Probability in AI, (1985).

[pearl, 1981]
Pearl, J., "Heuristic Search Theory: Survey of Recent Results,"

Proc. IJCAI-81., pp. 554-562 (Aug. 1981).
[Pearl, 1984]

Pearl, J., Heuristics, Addison-Wesley, Reading, MA (1984).
[Slagle & Dixon, 1969]

Slagle, J. R. and Dixon, J. K., "Experiments with Some Pro­
grams that Search Game Trees," JACM Vol. 16(2) pp. 189-207
(April 1969).

[Slagle & Dixon, 1970]
Slagle, J. R. and Dixon, J. K., "Experiments with the M & N
Tree-Searching Program," CACMVol. 13(3) pp. 147-154

471

[Teague, 19851
Teague, A. H., "Backup Rules for Game Tree Searching: A
Oomparative Study," Master's Thesis, University of Maryland
(1985).

