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1. Introduction

In order to apply AI planning systems to complex real-world planning problems,

here are some of the challenges that must be addressed:

1. The need for the planning system to interact with external information sources

[CHWE95]. This problem tends to be complicated by the fact that the in-

formation sources are frequently heterogeneous and not necessarily central-

ized. For example, in an information integration project developed for the
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US Army, the information sources included a US Army route planner over

free terrain [BS94], a variety of US Army logistics data including special-

ized Oracle and nested multi-record TAADS data [SRM98], a variety of US

Army simulation data from a massive program called JANUS, Training and

Instrumentation Command, a face recognition program, and so forth.

2. The need to perform mixed symbolic/numeric reasoning. For example,

[NSE98] describes the need to reason about a variety of numeric and symbolic

conditions in order to do manufacturing planning and to plan declarer play

in the game of bridge.

3. The need to coordinate multiple agents. For example, in planning the move-

ment of a cargo container from its point of origin to its ultimate destination,

a number of agents might participate in the control of the container: agents

that load ships, higher level managers that react to unusual incidents, and

so forth. The container agent would need to take these into account in plan

development.1

Although a variety of approaches have been proposed for several of these

challenges, none of them has yet been completely solved—and no current theory

of planning addresses all of these challenges simultaneously.

The formalism described in this paper is intended to address all of the above

challenges simultaneously, by integrating the SHOP planning system with the

IMPACT multi-agent environment. While SHOP [NCLMA99] is a very efficient

stand-alone HTN planner, the multi-agent platform IMPACT [SBD+00,ESP99]

provides facilities for interacting with heterogeneous, distributed information

sources (including arbitrary legacy and/or specialized data structures or exter-

nal databases), combining symbolic and numerical information, and coordinating

multiple agents. In this paper, we define A-SHOP (an agentized version of SHOP),

and show how to realize it as an IMPACT agent (see Figure 2 in Section 3). This

makes it possible for other IMPACT agents to communicate with A-SHOP and let

it solve their own planning problems.

Although we have developed our formalism only for SHOP, we believe that

a similar approach could be used to integrate other AI planners into IMPACT as

well. The main new results in this paper are as follows:

1 In this paper, we only consider the case where the other agents are information sources (rather

than other planning agents). We intend to address the coordination of multiple planning

agents in our future work.
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• the definition of the A-SHOP planning algorithm, an agentized version of

SHOP that runs in the IMPACT environment;

• the formulation of the conditions needed for A-SHOP to be sound and com-

plete;

• proofs that A-SHOP is sound and complete if those conditions are met.

In addition, we are working on an implementation of our formalism, for an appli-

cation domain involving military logistics planning (work currently in progress).

This is an example of a domain where the SHOP-IMPACT framework can be

very useful: information about the different assets is not centralized; and the in-

formation sources are heterogeneous, comprising different database management

systems (DBMS).

This paper is organized as follows. In Section 2 we review HTN planning,

the planning approach that SHOP is based on. In Section 3 we briefly introduce

IMPACT, a platform for agents collaborating together. Section 4 contains the

definition of A-SHOP (Figure 2 illustrates how to turn A-SHOP into a planning

agent shop within IMPACT). Section 5 contains our main theorems, which estab-

lish the soundness and completeness of A-SHOP with respect to certain conditions

on the code calls—conditions that were already well studied in IMPACT. Finally,

we discuss related work in Section 7 and conclude with Section 8. The appendix

contains detailed definitions of those concepts that could not be covered in the

main part of the paper.

2. HTN Planning in SHOP

HTN planning [Sac77,Tat77,Wil88,CT91] is an AI planning methodology that

creates plans by task decomposition. This is a process in which the planning

system decomposes tasks into smaller and smaller subtasks, until primitive tasks

are found that can be performed directly.

SHOP (see <http://www.cs.umd.edu/projects/shop/> and [NCLMA99,

NMAC+01]) is a domain-independent Hierarchical Task Network (HTN) planning

algorithm. However, one difference between SHOP and most other HTN planning

algorithms is that SHOP plans for tasks in the same order that they will later

be executed. Planning for tasks in the order that those tasks will be performed

makes it possible to know the current state of the world at each step in the

planning process, which makes it possible for SHOP’s precondition-evaluation
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mechanism to incorporate significant inferencing and reasoning power, including

the ability to call external programs to reason about preconditions. This makes

SHOP ideal as a basis for integrating planning with external information sources,

such as the IMPACT framework as described in this paper.

In order to do planning in a given planning domain, SHOP needs to be given

knowledge about that domain. SHOP’s knowledge base contains operators and

methods. Each operator is a description of what needs to be done to accomplish

some primitive task, and each method is a prescription for how to decompose

some complex task into a totally ordered sequence of subtasks, along with various

restrictions that must be satisfied in order for the method to be applicable. More

than one method may be applicable to the same task, in which case there will be

more than one possible way to decompose that task.

Given the next task to accomplish, SHOP chooses an applicable method,

instantiates it to decompose the task into subtasks, and then chooses and instan-

tiates other methods to decompose the subtasks even further. If the constraints

on the subtasks prevent the plan from being feasible, SHOP will backtrack and

try other methods.

As an example, Figure 1 shows two methods for the task of traveling from

one location to another: travelling by air, and travelling by taxi. Travelling by air

involves the subtasks of purchasing a plane ticket, travelling to the local airport,

flying to an airport close to our destination, and travelling from there to our

destination. Travelling by taxi involves the subtasks of calling a taxi, riding in it

to the final destination, and paying the driver.

Note that each method’s preconditions are not used to create subgoals (as

would be done in action-based planning). Rather, they are used to determine

whether or not the method is applicable. For example, in Figure 1, the travel-by-

air method is only applicable for long distances, and the travel-by-taxi method

is only applicable for short distances.

Now, consider the task of travelling from the University of Maryland to

MIT. Since this is a long distance, the travel-by-taxi method is not applicable,

so we must choose the travel-by-air method. As shown in Figure 1, this decom-

poses the task into the following subtasks: (1) purchase a ticket from Baltimore-

Washington International (BWI) airport to Logan airport, (2) travel from the

University of Maryland to BWI, (3) fly from BWI airport to Logan airport, and

(4) travel from Logan airport to MIT. For the subtasks of travelling from the

University of Maryland to BWI and traveling from Logan to MIT, we can use
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Figure 1. Two methods for traveling, and a plan generated from those methods.

the travel-by-taxi method to produce additional subtasks as shown in Figure 1.

Here are some of the complications that can arise during the planning pro-

cess:

• The planner may need to recognize and resolve interactions among the sub-

tasks. For example, in planning how to travel to the airport, we might want

to make sure we will arrive at the airport in time to catch the plane. To make

the example in Figure 1 more realistic, the information needed to enforce this

constraint could be specified as part of SHOP’s methods and operators.

• In the example in Figure 1, it was always obvious which method to use. But

in general, more than one method may be applicable to a task. If it is not

possible to solve the subtasks produced by one method, SHOP will backtrack

and try another method instead.

3. IMPACT

The IMPACT project (see [ESP99,SBD+00] and http://www.cs.umd.edu/

projects/impact/) aims at developing a powerful and flexible, yet easy to han-

dle framework for the interoperability of distributed heterogeneous sources of

information. The following points are of special interest for our integration of

SHOP with IMPACT:

• IMPACT’s methodology for transforming arbitrary software (legacy code) into

an agent has been developed.

• Each agent has certain actions available. Agents act in their environment

according to their agent program and a well defined semantics.

• IMPACT Agents are built on top of arbitrary software code (Legacy Data).

• Each agent continually undergoes the following cycle:
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Figure 2. (1) SHOP as a planning agent in IMPACT. (2) An Agent in IMPACT.

(1) Get messages by other agents. This changes the state of the agent.

(2) Determine (based on its program, its semantics and its state) for each

action its status (permitted, obliged, forbidden, . . . ). The agent ends up

with a set of status atoms.

(3) Based on a notion of concurrency, determine the actions that can be exe-

cuted and update the state accordingly.

A complete description of all these notions is out of scope of this paper, but the

appendix contains some formal definitions. In the following, we concentrate only

on those notions that are essential to understand the integration of SHOP in

IMPACT.

Before explaining an agent in detail, we need to make some comments about

the general architecture. In IMPACT agents communicate with other agents

through the network. Not only can they send out (and receive) messages from

other agents, they can also ask the server to find out about services that other

agents offer. For example a planning agent (like shop), confronted with a par-

ticular planning problem, can find out if there are agents out there with the

data needed to solve the planning problem; or agents can provide shop with

information about relevant legacy data.

One of the main features of IMPACT is to provide a method (see [SBD+00])

for agentizing arbitrary legacy code, i.e. to turn such legacy code into an agent.
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In order to do this, we need to abstract from the given code and describe its main

features. Such an abstraction is given by the set of all datatypes and functions

the software is managing. We call this a body of software code and denote it by

S = (TS ,FS). FS is a set of predefined functions which makes access to the data

objects managed by the agent available to external processes.

For example, in many applications a statistics agent is needed. This agent

keeps track of distances between two given points and the authorized range or ca-

pacity of certain vehicules. These information can be stored in several databases.

Another example is the supplier agent. It determines through its databases

which vehicles are accessible at a given location.

At any given point t in time, the state of an agent, denoted OS(t), is the set

of all data objects that are currently stored in the relations the agent handles—

the types of these objects must be in the base set of types in TS . In the two

examples just mentioned, the state of the statistics agent consists of all tuples

stored in the databases it handles. The state of the supplier agent is the set of

all tuples describing which vehicles are accessible at a given location.

We also assume that agents can send and receive messages. There is there-

fore a special datastructure, the message box, part of each agent. This message

box is just one of those types. Thus a state change occurs already when a message

is received. A state, O, can be seen as the union of the states of all agents in the

environment.

To perform logical reasoning on top of third party data structures (which

are part of the agent’s state) and code, the agent must have a language within

which it can reason about the agent state. We therefore introduce the concept

of a code call atom, which is the basic syntactic object used to access multiple

heterogeneous data sources.

Definition 1 (Code Calls (cc)). Suppose S =def (TS ,FS) is some software

code, f ∈ FS is a predefined function with n arguments, and d1, . . . , dn are

objects or variables such that each di respects the type requirements of the i’th

argument of f . Then, S : f (d1, . . . , dn) is a code call. A code call is ground if all

the di’s are objects.

We often identify software code S with the agent that is built on top of it.

This is because an agent really is uniquely determined by it.
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A code call executes an API function and returns as output a set of objects

of the appropriate output type. Going back to our two agents introduced above,

statistics may be able to execute the code calls statistics : distance(locFrom, locTo),

statistics : authorRange(CargoPL), and statistics : authorCapacity (CargoPL). The

supplier agent may execute the following code call: supplier : cargoPlane(locFrom).

What we really need to know is if the result of evaluating such code calls is

contained in a certain set or not (for a precise description of the results of the

code calls just mentioned we refer to Section C in the Appendix). To do this,

we introduce code call atoms. These are logical atoms that are layered on top of

code calls. They are defined through the following inductive definition.

Definition 2 (Code Call Atoms (in(X, cc))). If cc is a code call, and X is

either a variable symbol, or an object of the output type of cc, then in(X, cc)

and not in(X, cc) are code call atoms. not in(X, cc) succeeds if X is not in the

set of objects returned by the code call cc.

Code call atoms, when evaluated, return boolean values, and thus may be thought

of as special types of logical atoms. Intuitively, a code call atom of the form

in(X, cc) succeeds if X can be set to a pointer to one of the objects in the set of

objects returned by executing the code call.

As an example, the code call atom in(f22, supplier : cargoPlane(collegepark))

tells us that the particular plane “f22” is available as a cargo plane in College

Park.

Often, the results of evaluating code calls give us back certain values that

we can compare. Based on such comparisons, certain actions might be fired or

not. To this end, we need to define code call conditions. Intuitively, a code

call condition is a conjunction of code call atoms, equalities, and inequalities.

Equalities, and inequalities can be seen as additional syntax that “links” together

variables occurring in the atomic code calls.

The following definition expresses this intuition.

Definition 3 (Code Call Conditions (ccc)). A code call condition χ is de-

fined as follows:

1. Every code call atom is a code call condition.

2. If s, t are either variables or objects, then s = t is a code call condition.
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3. If s, t are either integer/real valued objects, or are variables over the inte-

gers/reals, then s < t, s > t, s ≥ t, s ≤ t are code call conditions.

4. If χ1, χ2 are code call conditions, then χ1 &χ2 is a code call condition.

A code call condition satisfying any of the first three criteria above is an atomic

code call condition.

We are now coming to the very heart of the definition of an agent: its agent

program. Such a program consists of rules of the form:

Opα(t1, . . . , tm)←Op1β1(. . .), . . . ,Opnβn(. . .),

ccc1, . . . , cccr,

where α, β1, . . . βn are actions (the agent can execute), Op1, . . . ,Opn describe the

status of the action (obliged, forbidden, waived, doable) and ccci are code call

conditions to be evaluated in the actual state.

Thus, Opi are operators that take actions as arguments. They describe the

status of the arguments they take. Here are some examples of actions: (1) to

load some cargo from a certain location, (2) to fly a plane from a certain location

to another location, (3) to unload some cargo from a certain location. The action

status atom Fload (resp. Dofly) means that the action load is forbidden (resp.

fly should be done). Actions themselves are terms, only with an operator in front

of them they become atoms.

In IMPACT, actions are very much like STRIPS operators: they have pre-

conditions and add and delete-lists (see appendix). The difference to STRIPS is

that these preconditions and lists consist of arbitrary code call conditions, not

just of logical atoms.

If we compare IMPACT actions with SHOP’s methods, we easily notice that

IMPACT actions correspond to fully instantiated methods, i.e. no subtasks.

Figure 2 illustrates that the agent program together with the chosen se-

mantics SEM and the state of the agent determines the set of all status atoms.

However, the doable actions among them might be conflicting and therefore we

have to use the chosen concurrrency notion to finally determine which actions can

be concurrently executed. The agent then executes these actions and changes its

state.

The IMPACT framework has been extended to incorporate time ([DKS01]),

probabilities ([DNS00]), beliefs ([DSP00]), and also mechanisms to merge many

code calls together so that they can be more efficiently executed ([DOS00]).
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4. A-SHOP: The IMPACT Version of SHOP

To plan with external information sources, A-SHOP’s domain representation in-

cludes explicit calls to the IMPACT agents to enquire about their current states

and to modify their states as we will explain now.

4.1. A-SHOP’s Domain Definitions

The first step is to modify the atoms in SHOP’s preconditions and effects, so that

SHOP’s preconditions will be evaluated by IMPACT’s code call mechanism and

the effects will change the state of the IMPACT agents. This is a fundamental

change in the representation of SHOP. In particular, it requires replacing SHOP’s

methods and operators with agentized methods and operators. These are defined

below.

Definition 4 (Agentized Method: (AgentMeth hχ t)). An agentized

method is an expression of the form (AgentMeth hχ t) where h (the method’s

head) is a compound task, χ (the method’s preconditions) is a code call condition

and t is a totally ordered list of subtasks, called the task list.

The primary difference between definition of an agentized method and the

definition of a method in SHOP is as follows. In SHOP, preconditions were logical

atoms, and SHOP would infer these preconditions from its current state of the

world using Horn-clause inference. In contrast, the preconditions in an agentized

method are IMPACT’s code call conditions rather than logical atoms, and A-SHOP

(the agentized version of SHOP defined in the next section) does not use Horn-

clause inference to establish these preconditions but instead simply invokes those

code calls, which are calls to other agents (which may be Horn-clause theorem

provers or may instead be something entirely different).

Definition 5 (Agentized Operator: (AgentOp hχadd χdel)). An agentized

operator is an expression of the form (AgentOp hχadd χdel), where h (the head)

is a primitive task and χadd and χdel are lists of code calls (called the add- and

delete-lists). The set of variables in the tasks in χadd and χdel is a subset of the

set of variables in h.

As an example, Figure 3 shows a method for our application to military

logistics planning. The method indicates how to transport a cargo that has a
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certain weight between two locations. The method calls the statistics agent

three times, in order to evaluate the distance between two geographic locations,

the authorized range of a certain aircraft type (the authorized range is lower

than the real distance that the aircraft can fly), and the authorized capacity of

an aircraft (the amount of weight the aircraft can carry). The method calls the

supplier agent to evaluate the cargo planes that are available at a location.

Head:

AirTransport(LocFrom, LocTo, Cargo, CargoWeight)

Preconditions:

in(CargoPL, supplier : cargoPlane(locFrom))&

in(Dist, statistics : distance(locFrom, locTo))&

in(DCargoPL, statistics : authorRange(CargoPL))&

Dist ≤ DCargoPL&

in(CCargoPL, statistics : authorCapacity (CargoPL))&

CargoWeight≤ CCargoPL&

Subtasks:

load (Cargo, locFrom)

fly(Cargo, locFrom, LocTo)

unload(Cargo, locTo)

Figure 3. Agentized method for a military logistics problem.

The primary difference between the definition of an agentized operator and

the definition of an operator in SHOP is that in an agentized operator, the el-

ements of the add list and delete list are lists of code call rather than atoms.

As described in the next section this has several consequences for how A-SHOP

reasons about its current state of the world.

4.2. The A-SHOP Algorithm

The second step of the integration is to modify SHOP’s HTN planning al-

gorithm to use IMPACT. The modified algorithm, which we call the A-SHOP

algorithm, is shown in Figure 4. Given a list t of tasks to achieve, and a collec-

tion D of agentized methods and operators, A-SHOP looks at the first task in the

list. If that task is primitive (Step 3), then A-SHOP looks for a simple plan con-
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procedure A-SHOP(t,D)

1. if t = nil then return nil

2. t := the first task in t; R := the remaining tasks

3. if t is primitive and a simple plan for t exists then

4. q := simplePlan(t)

5. return concatenate(q, A-SHOP(R,D))

6. else if t is non-prim. ∧ there is a reduction of t then

7. nondeterministically choose a reduction:

Nondeterministically choose an agentized method,

(AgentMeth h χ t), with µ the most general

unifier of h and t and substitution θ s.t.

χµθ is ground and holds in IMPACT’s state O.

8. return A-SHOP(concatenate(tµθ, R),D)

9. else return FAIL

10. end if

end A-SHOP

procedure simplePlan(t)

11. nondeterministically choose agent. operator

op = (AgentOp h χadd χdel) with ν the most

general unifier of h and t s.t. h is ground

12. monitoring : apply(op ν)

13. return op ν

end A-SHOP

Figure 4. A-SHOP, the agentized version of SHOP.

sisting of a single operator (Step 4), and then calls itself recursively to examine

the remaining tasks (Step 5), the function concatenate simply concatenates the

plan q with the next plan that is obtained by the recursive call). If the task is

compound and reducible (step 6), then A-SHOP applies an agentized method to

produce subtasks (steps 7-8).

Unlike SHOP (which would apply an operator by directly inserting and

deleting atoms from an internally-maintained state of the world), A-SHOP needs

to reason about how the code calls in an operator will affect the states of other

agents. One might think the simplest way to do this would be simply to tell these

agents to execute the code calls and then observe the results, but this would not

work correctly. Once the planning process has ended successfully, A-SHOP will
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return a plan whose operators can be applied to modify the states of the other

IMPACT agents—but A-SHOP should not change the states of those agents during

its planning process because this would prevent A-SHOP from backtracking and

trying other operators.

Thus in Step 12, SHOP does not issue code calls to the other agents directly,

but instead communicates them to a monitoring agent. The monitoring agent

keeps track of all operators that are supposed to be applied, without actually

modifying the states of the other IMPACT agents. When A-SHOP queries for a

code call cc = S : f (d1, . . . , dn) in χ to evaluate a method’s precondition (Step 7),

the monitoring agent examines if cc has been affected by the intended modifica-

tions of the operators and, if so, it evaluates cc. If cc is not affected by application

of operations, IMPACT evaluates cc (i.e., by accessing S). The list of operators

maintained by the monitoring agent is reset everytime a planning process begins.

The apply function applies the operators and creates copies of the state of the

world. Depending on the underlying software code, these changes might be easily

revertible or not. In the latter case, the monitoring agent has to keep track of

the old state of the world.

Like the original SHOP algorithm [NCLMA99], A-SHOP performs ordered

task decomposition. This means that the task list t is totally ordered, the tasks

need to be achieved in that same order, and SHOP always plans for the tasks

in that same order. Like SHOP, A-SHOP needs to create partial plans, reason

about the intermediate states of those partial plans, those partial plans might

do, and backtrack if necessary to construct other partial plans. In SHOP, all

of this is done inside the planning algorithm. However A-SHOP cannot do all

of it internally because of the necessity of communicating with other agents to

get information about the current state. In general, A-SHOP’s preconditions will

contain code calls to other agents, and the operators in its plans will contain

code calls to other agents. Since A-SHOP may need to backtrack, it needs to

reason about what the consequences will be of those code calls without actually

telling the other agents to execute those code calls. To accomplish this, A-SHOP

simulates calling the other agents by sending those code calls to a monitoring

agent, monitoring (Steps 7 and 12).

This is the key point of the integration of SHOP in the IMPACT multi-agent

environment: AI planners traditionally evaluate preconditions in a state, assumed

to be internal to the planner. This assumption may be infeasible in many real-

world situations. In A-SHOP, instead, the preconditions are evaluated externally
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by IMPACT agents.
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Figure 5. Data flow in (a) SHOP and (b) A-SHOP.

4.3. Realizing shop

The third step is to create an IMPACT agent, called shop, that acts as a

planning agent and performs the A-SHOP algorithm. To accomplish this, we can

use the general-purpose agentizing algorithm described in [SBD+00]. This enables

A-SHOP to communicate with other IMPACT agents and vice-versa. Basically,

the agentizing algorithm outputs a protocol that presents the procedure calls of

the software in a standardized format that allows other agents to communicate

with it. For the particular situation of a planning system, the protocol includes

a call to a procedure that receives as input a problem description and outputs a

solution plan (please refer to [SBD+00] for a detailed discussion of the algorithm).

5. Soundness and Completeness

An important question for any planning algorithm is whether all solution plans

produced by the algorithm are correct (i.e., soundness of the algorithm) and

whether the algorithm will find solutions for solvable problems (i.e., complete-

ness of the algorithm). Soundness and completeness proofs of classical planners
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assume that the preconditions can be evaluated relative to the current state. In

SHOP, for example, the state is accessed to test whether a method is applicable,

by examining whether the method’s preconditions are valid in the current state.

Normally it is easy to guarantee the ability to evaluate preconditions, because the

states typically are lists of predicates that are locally accessible to the planner.

However, if these lists of predicates are replaced by code call conditions, this is

no longer the case.

Code call conditions are statements in a logical language referring to arbi-

trary software functions. As an example, we consider a software package math

which provides several functions to deal with integers. The code call math : geq(X)

enumerates all integers greater or equal to X. This cc is not executable, because it

is not ground. Only if the variable X is assigned a certain value, the code call can

be executed. A syntactical condition to ensure this is safeness (see appendix).

But safeness is not enough! Consider the code call

in(X, math : geq(25))&

in(Y, math : square(X))& Y ≤ 2000,

which constitutes all numbers that are less than 2000 and that are squares of an

integer greater than or equal to 25.

Clearly, over the integers there are only finitely many ground substitutions

that cause this code call condition to be true. Furthermore, this code call condi-

tion is safe. However, its evaluation may never terminate. The reason for this is

that safety requires that we first compute the set of all integers that are greater

than 25, leading to an infinite computation.

Thus in general, we must impose some restrictions on code call conditions

to ensure that they are finitely evaluable. This is precisely what the condition

of strongly safeness does for the code-call conditions. Intuitively, by requiring

that the code call condition is safe, we are ensuring that it is executable and by

requiring that it is strongly safe, we are ensuring that it will only return finitely

many answers.

Note that the problem of deciding whether an arbitrary code call execution

terminates is undecidable (and so is the problem of deciding whether a code call

condition χ holds in O). Therefore we need some input of the agent designer

(or of the person who is responsible for the legacy code the agent is built upon).

The information needed is stored in a finiteness table (see Definition 13). This

information is used in the purely syntactic notion of strong safeness. It is a
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compile-time check, an extension of the well-known (syntactic) safety condition

in databases.

Lemma 6 (Evaluating Agentized Operators).

LetO be a state, (AgentMeth hχ t) an agentized method and (AgentOp h′ χadd χdel)

an agentized operator. If the precondition χ is strongly safe wrt. the variables in

h, the problem of deciding whether χ holds in O can be algorithmically solved.

If the add and delete-lists χadd and χdel are strongly safe wrt. the variables in

h′, the problem of applying the agentized operator to O can be algorithmically

solved.

Proof: This follows immediately from results in Chapter 12 of [SBD+00].

Theorem 1 (Soundness, Completeness).

Let O be a state and D be a collection of agentized methods and operators. If

all the preconditions in the agentized methods and add and delete-lists in the

agentized operators are strongly safe wrt. the respective variables in the heads,

then A-SHOP is correct and complete.

Proof: See Appendix E.

6. Implementation

A version of IMPACT is running on a Windows platform. This version has been

built primarily in JAVA. The implementation of IMPACT uses a pre-existing soft-

ware package developed at the University of Maryland called WebHermes [Ada97]

which supports execution of code call conditions over a wide variety of data

structures and software packages. These currently include (or have included

in the past), relational database management systems (Oracle, Ingres, Dbase,

Paradox), an object oriented system (ObjectStore), a multimedia system called

MACS [BMS95], a video information system called AVIS [ACC+96], a geographic

data structure called a PR-quadtree, arbitrary flat files (as long as their schemas

are specified), a US Army route planner over free terrain [BS94], a variety of US

Army logistics data including specialized Oracle and nested multirecord TAADS

data [SRM98], a variety of US Army simulation data from a massive program
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called JANUS deployed by the Simulation, Training and Instrumentation Com-

mand, a face recognition program, and so on.

The complete version of SHOP is built in LISP and includes the abil-

ities to do Horn-clause inferencing and to make calls to the LISP evalua-

tor. The former one is used to infer conditions from the current state and

the latter one is used to add expressiveness during planning. For example,

SHOP can compute numerical expressions. SHOP can be downloaded from

<http://www.cs.umd.edu/projects/shop/>. To facilitate the integration of

SHOP in IMPACT, we re-implemented SHOP in java. The java version of SHOP

includes neither the Horn clause evaluator nor the calls to the LISP evaluator.

However, such things could easily be added through the use of the IMPACT frame-

work, without needing any modifications to the current JAVA implementation of

SHOP. In particular, we could take an arbitrary theorem prover and agentize it

using IMPACT methods. The agent could then be called using an appropriate

code-call condition ([SBD+00] describes a step by step process to agentize a pro-

gram and incorporate it as an agent into IMPACT). The same can be done for

evaluations. In particular, a mathematical agent, math, is currently available in

IMPACT to evaluate some numerical expressions.

A difficulty that we found in implementing the A-SHOP algorithm is that

rules defining agents in IMPACT are not recursive over time: they do not

formalize statements of the form If some code calls are executed at time t then

some other facts hold true at time t+1. In fact, the basic framework of IMPACT

does not even express statements of the form If something is true at time t then

something else should be true at time t + 1. Such an extension is described

in [DKS01].

In our version of IMPACT, the status set is computed for a particular point

in time t. Thus while agent rules are recursive, they always determine a status

set for a single time point. This status set together with a particular evaluation

strategy determines the set of actions to be executed. Agent rules do not describe

the effects of these actions.

This made it necessary to define four agents to implement the A-SHOP

algorithm:

• Ashop. This is the agent that all other agents access to generate a plan.

It receives a message with a domain and a list of tasks and returns a plan

achieving all tasks if such a plan exists or returns failure if no such plan exists.
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ASHOP ReduceTask CCondition Monitoring

D t plan code
call

instantiation

(1)

(4)

(5)

Other IMPACT Agents and Information Sources

(2) (3)

Figure 6. Interactions between the agents implementing the A-SHOP algorithm.

• ReduceTask. Selects the next task to be reduced and performs a single reduc-

tion step by selecting either a method or an operator.

• CCCondition. Evaluates a code call condition (i.e., a list of code calls).

• Monitoring. Maintains a list of actions to be executed. If a code call

S : f (d1, . . . , dn) is to be evaluated, it looks at its action list to determine

if the code call can be answered as a result of its actions. If not it queries the

code call to the information source S.

Figure 6 describes how these four agents interact. First, a message request-

ing a plan is (1) received by the Ashop agent. This message contains a domain,

D, and a list of tasks, t, to be achieved. Ashop initializes some variables and

(2) passes them to ReduceTask together with t and D. If the first task, t, in t

is compound, it selects a method whose head matches t and (3) passes its pre-

conditions to CCCondition. CCCondition iterates over the preconditions (4)

passing one by one to Monitoring for evaluation. If t is primitive, it selects

an operator whose head matches t and (5) passes the instantiated operator to

Monitoring to update its action list.

Steps (1) and (2) are executed once in every planning episode. Step (3) is

executed for each selected method. Step (4) is executed for every code call in the

method’s preconditions and Step (5) is executed for each selected operator.

We plan to conduct experiments in a simplified version of planning for Non-

combatant evacuation operations (NEO’s). NEO’s are are conducted to assist

the U.S.A. Department of State (DoS) with evacuating noncombatants, nonessen-

tial military personnel, selected host-nation citizens, and third country nationals

whose lives are in danger from locations in a host foreign nation to an appro-

priate safe haven. They usually involve the swift insertion of a force, temporary

occupation of an objective (e.g., an embassy), and a planned withdrawal after

mission completion. NEO’s are often planned and executed by a Joint Task Force
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(JTF), a hierarchical multi-service military organization, and conducted under an

American Ambassador’s authority. Force sizes can range into the hundreds and

involve all branches of the armed services, while the evacuees can number into the

thousands. More than ten NEO’s were conducted within the past decade. Pub-

lications describe NEO doctrine, case studies [Sie91], and more general analyses

(e.g., [S.92]).

In our experiments we use a knowledge base that we developed for NEO

planning. Its plans concern performing a rescue mission where troops are grouped

and transported between an initial location (the assembly point) and the NEO

site (where the evacuees are located). Once the troops arrive to the NEO site,

evacuees are re-located in a safe haven. Planning involves selecting possible pre-

defined routes, consisting of four segments each. The planner must also choose

means of transportation for each segment. The knowledge base included six agen-

tized operators and 22 agentized methods. There are five information sources,

one for each location, which include the assembly point and the NEO site. The

other locations are: the ISB (intermediate staging base, where the troops are or-

ganized previous to accessing the NEO site), the FAARP (where logistics equip-

ment is grouped) and the Safe Haven (where the evacuees are re-located once

the operation ends). These information sources contain information about the

corresponding locations, including: (1) which assets are available, (2) what are

the meterological conditions and (3) information about enemy presence in that

area.

Different agentized methods are triggered depending on the particular in-

formation maintained in an specific location. For example, selecting an agentized

method taking the air transport to re-locate the evacuees between the NEO Site

and the Safe Haven requires that (1) the NEO Site and the Safe Haven have air-

ports, (2) that sufficinet airplanes are available at the NEO Site and (3) that the

methereological conditions in the NEO Site and the Safe Haven are appropriate.

Each of these requirements is expressed in several code calls, in which each of the

information sources is queried to establish if the requirements are met.

7. Related Work

Most AI planning systems are unable to evaluate numeric conditions at all. A few

can evaluate numeric conditions using attached procedures (e.g., SIPE [Wil88],

O-Plan [CT91], TLplan [BK00] and SHOP [NCLMA99]), but the lack of a formal
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semantics for these attached procedures makes it more difficult to guarantee

soundness and completeness. Integer Programming (IP) models appear to have

excellent potential as a uniform formalism for reasoning about complex numeric

and symbolic constraints during planning, and some work is already being done

on the use of IP for reasoning about resources [Köh98,KW99,WW99]. However,

that work is still work in progress, and a number of fundamental problems still

remain to be solved.

Approaches for planning with external information sources typically have in

common that the information extracted from the external information sources is

introduced in the planning system through built-in predicates [EWD+92,GEW94,

Kno96,FW97]. For example, a modified version of UCPOP uses information gath-

ering goals to extract information from the external information sources [Kno96].

The information gathering goals are used as preconditions of the operators. The

primary difficulty with this approach is that since it is not clear what the seman-

tic of the built-in predicates is, this makes it difficult to guarantee soundness and

completeness.

Distributed problem-solving (eg. [DS83]) has been the focus of research for

many years. With the advances in agent research [WJ95], attention has been

driven towards the coordination of the decision making process between multiple

agents. However, much work is still needed in developing well-founded reasoning

and negotiating techniques, in particular in environments in which the agent must

constantly be on the lookout for changes (see [dDJW99] for a recent survey). An

interesting approach is the RETSINA project [PKP+00,PSS00]. In RETSINA each

agent can do its own planning, as each agent is equipped with a special planning

component in its internal architecture. In contrast to this, we have chosen that

one special planning agent, shop, does the planning upon request from other

agents.

PLACA (PLAnning Communicating Agents) is an agent-oriented language

[Tho93,Tho94]. PLACA adds two mechanisms to the agent’s state : (consistent)

list of intentions and a list of (consistent) plans. Intentions are adopted via

commands expressed in the PLACA language. Plans are created by an external

plan generator to meet these intentions. In A-SHOP the intensions are indicated

in the tasks to be achieved and the A-SHOP planning algorithm perform a task

decomposition process that results in the plans achieving those tasks (i.e., meeting

the intentions).

AgentSpeak(L) [Rao96] is a Believe-Desire-Intention (BDI) language and, like



Dix, Muñoz-Avila, Nau, Zhang / IMPACTing SHOP 21

PLACA, capable of expressing beliefs, commitments and communications between

agents. However, AgentSpeak(L) provides operational and proof-theoretic seman-

tics and does not provide any planning features. In this paper we demonstrated

A-SHOP’s operational semantics by showing that it is sound and complete.

3APL ([HBdHM99]) is a general agent programming language the opera-

tional semantics of which is based on transition systems. It inherits quite a lot of

regular programming constructs from imperative programming, such as recursive

procedures but is built upon clear formal semantics. As a very general agent

programming language, it is much more general than IMPACT’s agent programs.

However, there is no specialized planning component available. Certainly, plan-

ning algorithms might be implemented in this language, but there is no particular

support for that. It has been shown that various languages such as AgentSpeak(L)

or ConGolog can be easily embedded in 3APL.

8. Conclusion

We have developed A-SHOP, a modified version of the SHOP planning algorithm

that takes advantage of the capabilities provided by the IMPACT multi-agent envi-

ronment. A-SHOP can plan with heterogeneous, distributed information sources,

combine symbolic and numerical information, and interact with multiple agents.

In the A-SHOP algorithm, SHOP’s preconditions, add-lists and delete-lists

are replaced with code call conditions. IMPACT’s code call conditions provide

both well-defined syntax and a well-defined semantics. This has enabled us to

show that A-SHOP is sound and complete provided that the code calls are strongly

safe.

Using the methodology outlined in [SBD+00], it is straightforward to turn

A-SHOP into a planning agent shop.

A-SHOP, like most AI planners, normally constructs entire plans before

beginning plan execution. In a multi-agent setting, it would be desirable to have

the ability to interleave planning with plan execution. In the current A-SHOP

algorithm, this could be accomplished by giving A-SHOP a set of methods and

operators that tell it to produce a high-level plan (p1, . . . , pk) in which each pi is

itself a call to A-SHOP. However, since this approach is somewhat ad hoc, one of

our topics for future work is to develop an extension to the A-SHOP formalism

that explicitly interleaves planning with plan execution.

Note that unlike most AI planning algorithms, A-SHOP does not have any
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information about its state stored locally. However, we could if needed simulate

having a local state by simply defining an agent that manages the state and hav-

ing all code call conditions refer to that agentized state. Intermediate approaches

such as Knoblock’s [Kno96], which updates the current state by gathering infor-

mation from external sources, can also be subsumed in our integration: again we

could have an specialized agent managing the partial state of the world.

A-SHOP’s use of IMPACT’s code call atoms allows us to address the chal-

lenges stated in the introduction:

• Mixed symbolic/numeric reasoning. Notice that the precondition of the

method shown in Figure 3 supposes a combination symbolic and numeric rea-

soning. On one hand, this method is used as a means for decomposing the

task

AirTransport (LocFrom, LocTo, Cargo, CargoWeight),

which is essentially a symbolic process. On the other hand, some of its precon-

ditions are numerical comparisons (i.e., Dist ≤ DCargoPL). This is a simple

illustration of a greater potential: by decoupling the evaluation of precondi-

tions from the planning process itself we are gaining flexibility. Specialized

agents performing complex numerical calculations can be plugged in.

• Distributed, heterogeneous information sources. One important effect

of integrating A-SHOP within IMPACT is that it allows A-SHOP to gather

information from distributed, heterogeneous information sources without re-

quiring knowledge about how and where these resources are located. For

example, in the method shown in Figure 3, determining the statistics of a cer-

tain airplane might simply require access to a local database, but determining

if any such airplanes are available in a certain location might require access to

a remotely located spreadsheet.

It is interesting to note that according to a recent study, handling resources

separately from the planning process can improve the performance of planning

systems [SK99]. We have not yet examined whether such an improvement

occurs in A-SHOP (as opposed to SHOP), but we hope to be able to examine

it in the future.

• Coordination of multiple agents. Every time A-SHOP does a code call,

a request to contact an external agent is made. The IMPACT multi-agent

environment coordinates this process. In principle, this could be used not only
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to communicate between A-SHOP and the other agents, but also to coordinate

multiple versions of A-SHOP itself. We have not yet implemented multiple

copies of A-SHOP running concurrently, but we hope to do so in the near

future.
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Appendix

A. IMPACT

The following definition specifies what a solution of a code call condition is.

Intuitively, code call conditions are evaluated against an agent state—if the state

of the agent changes, the solution to a code call condition may also undergo a

change.
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Definition 7 (Code Call Solution). Suppose χ is a code call condition in-

volving the variables X =def {X1, . . . , Xn}, and suppose S =def (TS ,FS , CS) is

some software code. A solution of χ w.r.t. TS in a state OS is a legal assignment

of objects o1, . . . , on to the variables X1, . . . , Xn, written as a compound equation

X := o, such that the application of the assignment makes χ true in state OS .

We denote by Sol(χ)TS ,OS (omitting subscripts OS and TS when clear from

the context), the set of all solutions of the code call condition χ in state OS ,

and by O Sol(χ)TS ,OS (where subscripts are occasionally omitted) the set of all

objects appearing in Sol(χ)TS ,OS

Here is the notion of an action as used in IMPACT.

Definition 8 (Action; Action Atom). An action α consists of six compo-

nents:

Name: A name, usually written α(X1, . . . , Xn), where the Xi’s are root variables.

Schema: A schema, usually written as (τ1, . . . , τn), of types. Intuitively, this

says that the variable Xi must be of type τi, for all 1 ≤ i ≤ n.

Action Code: This is a body of code that executes the action.

Pre: A code-call condition χ, called the precondition of the action, denoted by

Pre(α) (Pre(α) must be safe modulo the variables X1,. . . ,Xn);

Add: a set Add(α) of code-call conditions;

Del: a set Del(α) of code-call conditions.

We close with the definition of action atom. An action atom is a formula

α(t1, . . . , tn), where ti is a term, i.e., an object or a variable, of type τi, for all

i = 1, . . . , n.

What is the difference with this approach and the classical AI framework?

Item Classical AI Our framework

State O Set of logical atoms Data structures

Prec Logical formula Code call condition

Add/Del set of ground atoms Code call condition

Impl. Via add/delete lists Via arbitrary code

Reas. Via add/del lists Via add/del lists

States in classical AI planning are physically modified by union-ing the cur-

rent state with items in the add list, and then deleting items in the delete list.
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In contrast, the add-list and the delete-list in our framework plays no role what-

soever in the physical implementation of the action. The action is implemented

by its associated action code. The agent uses the preconditions, add list, and the

delete list to reason about what is true/false in the new state.

Definition 9 (Status Atom/Status Set). If α(~t) is an action, and Op ∈

{P,F,W,Do ,O}, then Opα(~t) is called a status atom. If A is a status atom,

then A,¬A are called status literals. A status set is a finite set of ground status

atoms.

Intuitively, Pα means α is permitted, Fα means α is forbidden, Doα means α

is actually done, Oα means α is obliged, and Wα means that the obligation to

perform α is waived.

Definition 10 (Agent Program).An agent program P is a finite set of rules

of the form

A←χ&L1 & . . . &Ln

where χ is a code call condition and L1, . . . , Ln are status literals.

The semantics of agent programs are described in [ESP99,ES99,SBD+00].

B. Termination of Code Calls

Note that the following definitions underlying strongly safeness are important for

the general case, when an agent is built upon arbitrary code. For most appli-

cations, like our military logistics domain, the safety requirement is completely

sufficient.

As already mentioned, strongly safeness is a condition to ensure that code

calls are not only evaluable, but that they generate only finitely many answers

(they eventually terminate) [ESR00]. Now given an arbitrary function, the prob-

lem of deciding whether its range is finite or not is well-known to be undecidable.

Therefore we need help from the system designer. The key notion is the following.

Definition 11 (Binding Pattern). Suppose we consider a code call S : f (a1, . . . , an)

where each ai is of type τi. A binding pattern for S : f (a1, . . . , an) is an n-tuple

(bt1, . . . , btn) where each bti (called a binding term) is either:
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1. A value of type τi, or

2. The expression [ denoting that this argument is bound to an unknown value.

We require that the agent developer must specify a finiteness predicate that may

be defined via a finiteness table having two columns—the first column is the name

of the code call, while the second column is a binding pattern for the function in

question. Intuitively, suppose we have a row of the form

〈S : f (a1, a2, a3), ([, 5, [)〉

in the finiteness table. Then this row says that the answer returned by any code

call of the form S : f (−, 5,−) is finite. In other words, as long as the second

argument of this code call is 5, the answer returned is finite, irrespective of the

values of the first and third arguments. Clearly, the same code call may occur

many times in a finiteness table with different binding patterns.

Definition 12 (Ordering on Binding Patterns). We say a binding pat-

tern (bt1, . . . , btn) is equally or less informative than another binding pattern

(bt′1, . . . , bt
′
n) if, by definition, for all 1 ≤ i ≤ n, bti ≤ bt′i.

We will say (bt1, . . . , btn) is less informative than (bt′1, . . . , bt
′
n) if and only

if it is equally or less informative than (bt′1, . . . , bt
′
n) and (bt′1, . . . , bt

′
n) is not

equally or less informative than (bt1, . . . , btn). If (bt′1, . . . , bt
′
n) is less informative

than (bt1, . . . , btn), then we will say that (bt1, . . . , btn) is more informative than

(bt′1, . . . , bt
′
n).

Suppose now that the developer of an agent specifies a finiteness table

FINTAB. The following definition specifies what it means for a specific code

call atom to be considered finite w.r.t. FINTAB.

Definition 13 (Finiteness). Suppose FINTAB is a finite finiteness table , and

(bt1, . . . , btn) is a binding pattern associated with the code call S : f (· · ·). Then

FINTAB is said to entail the finiteness of S : f (bt1, . . . , btn) if, by definition,

there exists an entry of the form 〈S : f (. . .), (bt′1, . . . , bt
′
n)〉 in FINTAB such that

(bt1, . . . , btn) is more informative than (bt′1, . . . , bt
′
n).

Definition 14 (Strong Safety). A safe code call condition χ = χ1 & . . . &χn

is strongly safe w.r.t. a list ~X of root variables if, by definition, there is a
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permutation π witnessing the safety of χ modulo ~X such that for each 1 ≤ i ≤ n,

χπ(i) is strongly safe modulo ~X, where strong safety of χπ(i) is defined as follows:

1. χπ(i) is a code call atom.

Here, let the code call of χπ(i) be S : f (t1, . . . , tn) and let the binding pattern

S : f (bt1, . . . , btn) be defined as follows:

(a) If ti is a value, then bti = ti.

(b) Otherwise ti must be a variable whose root occurs either in ~X or in χπ(j)

for some j < i. In this case, bti = [.

Then, χπ(i) is strongly safe if, by definition, FINTAB entails the finiteness of

S : f (bt1, . . . , btn).

2. χπ(i) is s 6= t.

In this case, χπ(i) is strongly safe if, by definition, each of s and t is either

a constant or a variable whose root occurs either in ~X or in χπ(j) for some

j < i.

3. χπ(i) is s < t or s ≤ t.

In this case, χπ(i) is strongly safe if, by definition, t is either a constant or a

variable whose root occurs either in ~X or somewhere in χπ(j) for some j < i.

4. χπ(i) is s > t or s ≥ t.

In this case, χπ(i) is strongly safe if, by definition, t < s or t ≤ s, respectively,

are strongly safe.

Algorithms to check strong safety are developed in [SBD+00].

C. Example of an Application Domain

Military logistics planning is an example of a domain where the SHOP-IMPACT

framework can be very useful. In particular with respect to logistics planning

for the US Armed Forces: first, information about the different assets is not cen-

tralized, second, the information sources are heterogeneous, comprising different

database management systems (DBMS).

Figure 7 shows some of the code-calls for this application. The first three

code-calls access the agent statistics and return the distance between two ge-

ographic locations, the authorized range of a certain aircraft type (the autho-

rized range is lower than the real distance that the aircraft can fly), and the
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authorized capability (in metric tunes) of an aircraft. The last code-call accesses

the agent supplier and returns the cargo planes that are available at a location.

statistics : distance(loc1, loc2)

statistics : authorRange(aircraft)

statistics : authorCapacity (aircraft)

supplier : cargoPlane(loc)

Figure 7. Code-calls in the military logistics domain.

Figure 3 illustrates a simple agentized method which mounts a cargo in

an airplane provided that the airplane has the adequate range and capacity. Al-

though simple, the capability to access remote information, reason on the different

numbers provides prompt and accurate information and may decide between the

success and failure of an operation.

D. Planning

In what follows, a state denotes the union of the states of all IMPACT agents.

Definition 15 (Application of agentized operator).

Let an agentized operator op = (AgentOp hχadd χdel) be given. Applying op to

a state O, denoted by result(O, op), results in a new state O ′ in which:

• for each code call S : f (d1, . . . , dn) in χadd, f(d1, . . . , dn) is added to the state

of S;

• for each code call S : f (d1, . . . , dn) in χdel, f(d1, . . . , dn) is removed from the

state of S.

Notice that during the planning process of the A-SHOP algorithm, operators are

not applied in the sense of the previous definition. Instead, the monitoring

agent keeps track of all operators that are supposed to be applied, without ac-

tually modifying the state of the IMPACT agents. When A-SHOP queries for a

code call cc = S : f (d1, . . . , dn) in χadd to evaluate a method’s precondition, the

monitoring agent examines if cc has been affected by the intended modifications

of the operators and, if so, it evaluates cc. If cc is not affected by application of
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operations, IMPACT evaluates cc (i.e., by accessing S). If the planning process

ends successfully, the operators are applied as indicated in the previous definition.

Definition 16 (Plans).A plan is a list of heads of ground agentized operator

instances. If P = (p1p2 . . . pn) is a plan andO is a state, then the result of applying

P to O is the state result(O, P ) = result(result(. . . (result(O, p1), p2), . . .), pn).

Definition 17 (Simple reductions).Let t be a task, O be a state, and m =

(AgentMeth hχ t) be an agentized method. Suppose that u is a unifier for h

and t, and that v is a unifier that unifies each atom in χu with some atom in O.

Then the agentized method instance (mu)v is applicable to t in O, and the result

of applying it to t is the task list r = (tu)v. The task list r is a simple reduction

of t by m in O.

Definition 18 (Domains and problems).

A domain representation is a set of agentized operators and methods. A planning

problem is a triple (O, t,D), where O is a state, t= (t1t2 . . . tk) is a task list,

and D is a domain representation. Suppose (O, t,D) is a planning problem and

P = (p1p2 . . . pn) is a plan. Then we say that P solves (O, t,D), or equivalently,

that P achieves t from O in D (we will omit the phrase “in D” if the identity of

D is obvious) if any of the following is true:

Case 1: t and P are both empty, (i.e., k = 0 and n = 0);

Case 2: t1 is a primitive task, p1 is a simple plan for t1, (p2 . . . pn) achieves

(t2 . . . tk) from result(O, p1);

Case 3: t1 is a compound task, and there is a simple reduction (r1 . . . rj) of t1 in

O such that P achieves (r1 . . . rjt2 . . . tk) from O.

The planning problem (O, t,D) is solvable if there is a plan that solves it.

E. Proof of the Main Theorem

Theorem 2 (Soundness of A-SHOP).

Let O be a state, D be a collection of agentized methods and operators and let

t be a list of tasks. Let all the preconditions in the agentized methods and add

and delete-lists in the agentized operators are strongly safe wrt. the respective
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variables. Furthermore suppose one of the nondeterminstic traces of A-SHOP

(O, t,D) returns a plan P . Then P solves the planning problem (O, t,D).

Proof: We first notice that steps 7 and 12 always terminate: this follows from

Lemma 6 (it is exactly where we need the assumptions about strongly safeness

of the operators involved). All other steps terminate trivially.

The proof is by induction on n, where n is the number of times A-SHOP is

called.

Base case (n = 1): In this case A-SHOP does not call itself recursively, so it

must return at step 1.

Thus t = nil and P = nil, so from Case 1 of the definition of “achieves”, P

achieves t in O.

Induction step: Let n > 1, and suppose that the theorem is true for every

m < n. There are two cases:

Case 1. A-SHOP returns P at step 5. Let t, R,and q be as computed in steps

2–4 of A-SHOP. Then R = (t1t2 . . . ti) for some i. Let (p1p2 . . . pj) be the

plan returned by the recursive call to A-SHOP (R,D) in step 5. From the

induction assumption it follows that (p1p2 . . . pj) achieves (t1t2 . . . ti) in the

state result(O, p). But t is a primitive task and p is a simple plan for t in

O. Thus from Case 2 of the definition of “achieves,” the plan (pp1p2 . . . pj)

achieves the task list t = (tt1t2 . . . ti) in O.

Case 2. A-SHOP returns P at step 8. Let t and R be as computed in step 2 of

A-SHOP. Then R = (t1t2 . . . ti) for some i. Let R′ be the simple reduction

of tchosen in step 7 of A-SHOP. We know that R′ = (r1r2 . . . rj) for some j

and P = (p1p2 . . . pk) for some k. From the induction assumption we know

that (p1p2 . . . pk) achieves (r1r2 . . . rjt1t2 . . . ti) in O. Thus from Case 3 of

the definition of “achieves,” P achieves t = (tt1t2 . . . ti) in O.

Theorem 3 (Completeness of A-SHOP).

Suppose that the planning problem (O, t,D) is solvable, i.e. there exists a se-

quence of ground instantiations of operators h1, . . . , hn from D satisfying the

task list t. Then at least one of the nondeterministic traces of A-SHOP(O, t,D)

returns a plan.
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Proof: As in the last theorem, we notice that steps 7 and 12 in A-SHOP always

terminate (Lemma 6). All other steps terminate trivially.

For every plan P that solves (O, t,D), let P ’s solution depth be the length

of P plus the total number of simple reductions needed to produce P from t.

Let the minimum solution depth of (O, t,D) be the smallest solution depth of

any plan that solves it. The proof is by induction on n, where n is the minimum

solution depth of t.

Base case (n = 0): In this case, t = nil and P = nil , so A-SHOP returns P at

step 1.

Induction step: Let n > 1, and suppose that the theorem is true for every

m < n. There are two cases:

Case 1. t = (t1t2 . . . tk) for some k, and t1 is primitive. Then there must be

at least one simple plan p for t1 for which the minimum solution depth of

(result(O, p), (t2 . . . tk),D) is n−1, for otherwise the minimum solution depth

of (O, t,D) could not be n. At step 6, one of the nondeterministic traces of

A-SHOP recursively invokes A-SHOP(result(O, p), (t2 . . . tk),D). From the

induction assumption, this recursive invocation of A-SHOP returns a plan

(p1p2 . . . pk). Thus at step 6, A-SHOP returns (pp1p2 . . . pk).

Case 2. t = (t1t2 . . . tk) for some k, and t1 is non-primitive. Then there

must be at least one simple reduction R = (r1r2 . . . rj) for t1 such that

the minimum solution depth of (O, (r1r2 . . . rjt2 . . . tk),D) is n− 1, for oth-

erwise the minimum solution depth for (O, t,D) could not be n. At step

11, one of the nondeterministic traces of A-SHOP recursively invokes A-

SHOP(O, (r1r2 . . . rjt2 . . . tk),D). From the induction assumption, this re-

cursive invocation of shop returns a plan (p1p2 . . . pk). Thus at step 6, A-

SHOP returns (p1p2 . . . pk).


