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abstract. In this paper we investigate a formalism for solving plan-
ning problems based on ordered task decomposition using Answer Set
Programming (ASP). Our planning methodology is an adaptation of
Hierarchical Task Network (HTN) planning, an approach that has led
to some very efficient planners. The ASP paradigm evolved out of the
stable semantics for logic programs in recent years and is strongly re-
lated to nonmonotonic logics. It also led to various very efficient imple-
mentations (Smodels, DLV ). While all previous approaches for using
ASP for planning rely on action-based planning, we consider for the
first time a formulation of HTN planning as described in the SHOP
planning system and define a systematic translation method from
SHOP’s representation of a planning problem into a logic program
with negation. We show that our translation is sound and complete:
answer sets of the logic program obtained by our translation corre-
spond exactly to the solutions of the planning problem. Our approach
does not rely on a particular system for computing answer sets and
serves several purposes. (1) It constitutes a means to evaluate ASP
systems by using well-established benchmarks from the planning com-
munity. (2) It makes the more expressive HTN planning available in
ASP. (3) When our approach is implemented on ASP solvers, its time
requirement appears to grow no faster than roughly proportional to
that of a dedicated HTN planning system (SHOP). (4) It outper-
forms the transformation of an STRIPS-style planning problem into
ASP proposed in [Son et al., 2001]. The particular relevance of that
transformation method to our work is that, in their work, [Son et al.,
2001] proposed to use a form of control knowledge to speed up the
classical planning process. In this paper, we show that HTN control
knowledge provides more time-efficient transformations compared to
the control strategies presented in [Son et al., 2001].
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1 Introduction

In the past few years, the availability of fast nonmonotonic systems based
on logic programming (LP) made it possible to attack problems from other,
non-LP areas, by translating these problems into logic programs and run-
ning a fast prover on them. One of the first such systems was Smodels
[Niemelä and Simons, 1996] and one of the early applications [Dimopoulos
et al., 1997] was to transform planning problems in a suitable way and to
run Smodels on them (see also [Dix et al., 2001]).

Since then, additional systems with different properties for dealing with
logic programs have become available: DLV [Eiter et al., 1998], XSB [Chen
and Warren, 1996; Rao et al., 1997], to cite the most well-known. In addition,
the paradigm of Answer Set Programming (ASP) has emerged (put forth in
[Niemelä, 1999; Marek and Truszczyński, 1999], see also [Apt et al., 1999]).
It is based on two key ideas: (1) to solve problems by computing models
for logic programs rather than by evaluating queries against logic programs
(as used to be done in conventional logic programming), (2) to tackle the
problems located on the second level of the polynomial hierarchy, which seem
well suited for the machinery of answer sets. In particular, many planning
problems fit in this picture.

In this paper, we investigate how to formulate and solve HTN planning
problems using nonmonotonic logic programs under the ASP semantics.
HTN planning is an AI-planning paradigm in which the goals of the plan-
ner are defined in terms of activities (tasks) and the planning process is
performed by using the techniques of task decomposition.

HTN planning was first proposed more than 25 years ago [Sacerdoti,
1990; Tate, 1977]. Historically, most of the HTN planning research has fo-
cused on specific application domains. Examples include production-line
scheduling [Wilkins, 1988], crisis management and logistics [Currie and
Tate, 1991; Tate et al., 1994; Biundo and Schattenberg, 2001], planning
and scheduling for spacecraft [Aarup et al., 1994; Estlin et al., 1997],
equipment configuration [Agosta, 1995], manufacturability analysis [Heb-
bar et al., 1996; Smith et al., 1997], evacuation planning [Muñoz-Avila et
al., 2001], and the game of bridge [Smith et al., 1998a; 1998b]. However,
there are several domain-independent HTN planning systems, such as Non-
lin [Tate, 1977], Sipe-2 [Wilkins, 1990], O-Plan [Currie and Tate, 1991;
Tate et al., 1994], UMCP [Erol et al., 1994], SHOP [Nau et al., 1999],
ASHOP [Dix et al., 2003; 2002], and SHOP2 [Nau et al., 2001].

In this work, we focus on the SHOP planning system, which is a domain-
independent HTN planning system that is built around a concept called
ordered task decomposition. In particular:
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• We describe a systematic translation method Trans(·) which transforms
HTN planning problems as formalised in SHOP into logic programs with
negation. Our basic goal is that an appropriate semantics of the logic
program captures the solutions (plans) of the planning problem.

• We establish soundness and completeness results for our method: answer
sets of the transformation are in one-to-one correspondence with solutions
of the original planning problem.

• We propose to use established benchmarks for planning problems as
benchmarks for testing ASP systems, by transforming the former using
our translation into logic programs.

• Although we describe our transformation using the syntax of the Smodels
software, our translation does not depend on the system used. We have
implemented our approach using Smodels and DLV . We present several
experimental comparisons between these systems and the SHOP planning
system.

• We demonstrate that our method outperforms the transformation of a
classical (i.e., STRIPS-style) planning problem into ASP proposed in
[Son et al., 2001] by a factor of 40-100. The particular relevance of that
transformation method to our work is that, in their work, [Son et al.,
2001] proposed to use a form of control knowledge to speed up the clas-
sical planning process. In this paper, we show that HTN control knowl-
edge provides more time-efficient transformations compared to the control
strategies presented in [Son et al., 2001].

• We investigate on how grounding affects the performance. It seems that
systems allowing for unbound variables (without grounding) are better
suited and would come closer in performance to SHOP than current ASP
systems.

We have created a website where all our formalisations can be downloaded
in a form ready to run on DLV and Smodels: <http://www.cs.umd.edu/
users/ukuter/ASP_Planning/>. This site will be maintained and new ex-
amples will be added as we progress in our research.

1.1 Organisation
This paper is organised as follows. In the next section, we present the ap-
proaches in the literature which, we believe, are directly related to our ef-
forts. In Section 3, we describe the HTN planning paradigm and the SHOP
planning system. In Section 4, we present our causal theory for HTN plan-
ning and our translation method for transforming HTN planning problems
into logic programs with negation. Section 5 contains our results. Our main
theorem is that our translation method is correct and complete with re-
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spect to SHOP. We also present a variety of experimental results along
with some discussions on the sources of complexity. In particular, we com-
pare the performance of DLV and Smodels on planning benchmarks. Finally,
we conclude with Section 6 and provide our future research directions.

2 Related Work

The published literature includes many efforts at formulating actions in logic
programs and solving planning problems by using formulations such as [Gel-
fond and Lifschitz, 1998; Turner, 1997; Lifschitz, 1999; 2002]. [Gelfond and
Lifschitz, 1998] describes three different action description languages that
formalise theories of actions. These languages provide means to implement
that formalisms as logic programs to solve planning problems effectively and
efficiently [Lifschitz, 1999; Giunchiglia and Lifschitz, 1998]. The C language
consists of general templates to define actions that have preconditions and
effects. [McCain and Turner, 1997] presents a language for causal theories.
They have also developed a system called Ccalc, which is a model checker
for the language of causal theories translated from propositions in the C
action language using rewrite rules [McCain, 1999]. The idea in all these
works is to represent a given computational problem by a logic program
whose models correspond to the solutions for the original problem. This
idea was the main inspiration for the work presented here.

[Eiter et al., 2002] proposes a declarative language, called the K language,
for planning with incomplete information. The K language makes it possible
to describe transitions between knowledge states that describes the agent’s
knowledge about the world. Knowledge states may be incomplete, compared
to the actual states of the world. This language is implemented as a front-
end to the DLV logic programming system. [Eiter et al., 2003] describes
a language Kc, which extends the language K for dealing with the action
costs during planning. In particular, the language Kc can express planning
problems with optimality criteria, such as computing the shortest or the
least-cost plans.

[Baral et al., 2002] presents a language about actions using causal laws
to reason in probabilistic settings and solves the planning problems in
such settings. The language resembles similarities to those described above,
but the action theory incorporates probabilities and probabilistic reasoning
techniques—as described in [Pearl, 1988]—to solve the planning problems
with uncertainty.

[Dimopoulos et al., 1997] presents a framework for encoding planning
problems in logic programs with negation-as-failure. In this work, the idea is
almost the same as ours, that is, the models of the logic program correspond
to the plans. However, this work incorporates ideas from planners such as
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GraphPlan and SATplan, and it does not consider any sort of search-control
knowledge in the logic-program encodings. In this respect, our approach is
completely different.

[Son et al., 2001] discusses solving planning programs by logic programs.
The difference between this work and the one described in [Dimopoulos et
al., 1997] is that [Son et al., 2001] incorporates domain-dependent control
knowledge to improve the performance of the planning. In this respect the
work is similar to HTN planning. However, the encoding is conceptually
different from HTN planning: it exploits domain constraints to define the
ordering relationships between the actions, and uses these constraints to
prune the search for correct sequence of actions to solve a planning problem.
This technique does not eliminate an action in a state if it is applicable in
that state and it satisfies the input constraints, although that action is not
part of any solution for the input planning problem. In HTN planning,
on the other hand, the search-control knowledge eliminates actions from
consideration for the states that the planner visits during its search, which
provides better search control.

3 Hierarchical Task Network (HTN) Planning

HTN planning is like classical planning in that each state of the world is
represented by a set of atoms, and each action corresponds to a deterministic
state transition. However, HTN planners differ from classical planners in
what they plan for, and how they plan for it.

The purpose of an HTN planner is to produce a sequence of actions that
perform some activity or task . The description of a planning domain includes
a set of operators similar to those of , and also a set of methods, each of
which is a prescription for how to decompose a task into its subtasks (smaller
tasks). Within a domain, the description of a planning problem contains an
initial state. Instead of a goal formula, however, there is a partially ordered
set of tasks to accomplish.

Planning proceeds by decomposing tasks recursively into smaller and
smaller subtasks, until primitive tasks, which can be performed directly us-
ing the planning operators, are reached. For each task, the planner chooses
an applicable method, instantiates it to decompose the task into subtasks,
and then chooses and instantiates other methods to decompose the sub-
tasks even further. If the constraints on the subtasks or the interactions
among them prevent the plan from being feasible, the planning system will
backtrack and try other methods.

HTN planning has been proved to be more expressive than classical [Erol
et al., 1996]. Moreover, HTN planning algorithms have been experimen-
tally proved to be more efficient than their action-based counterparts. This
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is because the domain knowledge and the notion of decomposing a task
network while satisfying the given constraints enable the planner to focus
on a much smaller portion of the search space than is typically searched
by procedures. Due to their ability to generate plans very efficiently, HTN
planners are used in a large variety of real-world applications [Wilkins, 1990;
Currie and Tate, 1991; Nau et al., 2003].

3.1 HTN planning using Ordered Task Decomposition (OTD)

In this paper, we are interested in a special case of HTN planning,
namely HTN planning with Ordered Task Decomposition (OTD). This
special case was first introduced in the SHOP system [Nau et al., 1999;
2000]. The difference between SHOP and most other HTN-planning algo-
rithms is that SHOP plans for tasks in the same order that they will later be
executed. Planning for tasks in the order that those tasks will be performed
makes it possible to know the current state of the world at each step in the
planning process, which reduces the complexity of reasoning by eliminating
a great deal of uncertainty about the world. This makes it easy to incorpo-
rate substantial inferencing and reasoning power into the planning system,
including the ability to call external programs and the ability to perform
numeric computations.

In order to do planning in a given planning domain, SHOP needs to be
given knowledge about that domain. SHOP’s knowledge base contains op-
erators and methods. Each operator is a description of what needs to be
done to accomplish some primitive task, and each method is a prescription
for how to decompose some compound (abstract) task into a totally ordered
sequence of subtasks, along with various restrictions that must be satisfied
in order for the method to be applicable. More than one method may be ap-
plicable to the same task, in which case there will be more than one possible
way to decompose that task. Given the next task to accomplish, the SHOP
algorithm nondeterministically chooses an applicable method, instantiates
it to decompose the task into subtasks, and then chooses and instantiates
other methods to decompose the subtasks even further. The deterministic
implementation of the SHOP algorithm uses depth-first backtracking: if the
constraints on the subtasks prevent the plan from being feasible, then the
implementation will backtrack and try other methods.

As an example, Figure 1 shows two methods for the task of travelling from
one location to another: travelling by air, and travelling by taxi. Travelling
by air involves the subtasks of purchasing a plane ticket, travelling to the
local airport, flying to an airport close to our destination, and travelling
from there to our destination. Travelling by taxi involves the subtasks of
calling a taxi, riding in it to the final destination, and paying the driver.



Planning in ASP using OTD 7

Methods

buy ticket(ax, ay) travel(x, ax) fly(ax, ay) travel(ay, y)

travel by air

get-taxi ride-taxi (x,y) pay-driver

travel by taxi

Task

long travel-distance

short travel-distance
Precon-

ditions

Subtasks

travel(UMD, MIT)
buy ticket(BWI, Logan)
travel(UMD, BWI)

get taxi
ride taxi(UMD, BWI)
pay driver

fly(BWI, Logan)
travel(Logan, MIT)

get taxi
ride taxi(Logan, MIT)
pay driver

travel(x,y)

Figure 1. Travel planning example.

Note that each method’s preconditions are not used to create subgoals (as
would be done in ). Rather, they are used to determine whether or not
the method is applicable: thus in Figure 1, the travel by air method is only
applicable for long distances, and the travel by taxi method is only applicable
for short distances. Now, consider the task of travelling from the University
of Maryland to MIT. Since this is a long distance, the travel by taxi method
is not applicable, so we must choose the travel by air method. As shown in
Figure 1, this decomposes the task into the following subtasks: (1) purchase
a ticket from Baltimore-Washington International (BWI) airport to Logan
airport, (2) travel from the University of Maryland to BWI, (3) fly from
BWI airport to Logan airport, and (4) travel from Logan airport to MIT.
For the subtasks of travelling from the University of Maryland to BWI and
travelling from Logan to MIT, we can use the travel by taxi method to
produce additional subtasks as shown in Figure 1.

Here are some of the complications that can arise during the planning
process:

• The planner may need to recognise and resolve interactions among the
subtasks. For example, in planning how to travel to the airport, one needs
to make sure one will arrive at the airport in time to catch the plane. To
make the example in Figure 1 more realistic, such information would need
to be specified as part of SHOP’s methods and operators.

• In the example in Figure 1, it was always obvious which method to use.
But in general, more than one method may be applicable to a task. If it
is not possible to solve the subtasks produced by one method, SHOP will
backtrack and try another method instead.

3.2 HTN-planning with OTD: Syntax and Semantics
We use the same definitions for variable and constant symbols, predicate
symbols, and terms, as in the SHOP planning system [Nau et al., 1999;
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2000]. Our definitions for logical atoms, states, tasks, task networks, axioms,
operators, and methods are adapted from SHOP.

Following the notation used in SHOP, we will write logical atoms us-
ing the format (name t1t2 . . . tn), where name is a predicate symbol, and
t1, t2, . . . , tn are terms. In SHOP we can classify the atoms into three kinds:

• Rigid Atoms: These are atoms whose truth values never change during
planning. These atoms appear in states, but do not appear in the effects
of planning operators nor in the heads of Horn clauses.

• Primary Atoms: These atoms can appear in states and in the effects of
planning operators, but cannot appear in the heads of Horn clauses.

• Secondary Atoms: These are the ones whose truth values are inferred
rather than being stated explicitly. They can appear in the heads of Horn
clauses, but cannot appear in states nor in the effects of planning opera-
tors.

Now, we define the states and the axioms as in SHOP:

DEFINITION 1 (States (S), Axioms (AX )). A state S is a set of ground
primary atoms. An axiom is an expression of the form

a ← l1, . . . , ln,

where a is a secondary atom and the l1, . . . , ln are literals that constitute
either primary or secondary atoms.

Axioms need not be ground. We assume that the set of axioms does not
contain cycles through negation.1

SHOP starts with a state S and modifies this state by taking into account
the delete and add lists of the operators in the plan. Axioms are used only
to check whether the preconditions of methods are satisfied. A precondition
might not be explicitly satisfied (in the sense that the atom in question is
contained in S), but might be caused by S and the axioms AX . The precise
definition of this relation “caused by” is given as follows and extended in
Subsection 4.

DEFINITION 2 (Literal caused by (S,AX )). A literal l is caused by
(S,AX ) if l is true in all answer sets of S ∪ AX .

Because of our assumption on AX , the set of axioms constitutes a strat-
ified logic program which has exactly one answer set. This ensures that any

1This is just to ensure that a unique stable model always exist and thus the state is
always complete (see the next definition). Without this condition, our approach is still
complete but no more correct wrt. SHOP: SHOP does not terminate while our translation
still gets meaningful results.
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state described by the stable model of S ∪ AX is complete: any literal is
either caused or its negation is caused.

In order to check which literals follow from (S,AX ), SHOP uses an ax-
iomatic inference procedure. To discuss this procedure, we need to make
a distinction between the abstract SHOP algorithm and the SHOP imple-
mentation. On one hand, the abstract SHOP algorithm is nondeterministic
and it makes no commitment to what inference procedure is used for check-
ing whether literals follow from (S,AX ). The completeness proof for SHOP
[Nau et al., 2000] says that if the inference procedure is complete, then
SHOP is complete (i.e., if a planning problem has a solution, then at least
one of SHOP’s execution traces will find a solution).

On the other hand, the SHOP implementation uses an inference pro-
cedure that does a depth-first search similar to the one in Prolog. This
inference procedure is complete only if the axioms satisfy some restrictions
similar to those needed in Prolog (no positive cycles, no cycles through
negation).2 However, all the axioms AX we are dealing with in this paper
are of this sort. In fact, checking causality for these simple instances can be
done in linear time.

A task is an expression of the form (name t1t2 . . . tn), where name (the
task’s name) is a task symbol, and t1, t2, . . . , tn (the task’s arguments) are
terms. A ground task is a task that has no variables in its arguments. A task
can be either primitive (if it is to be accomplished directly in the world)
or compound (if it is to be decomposed into other tasks). We use a prefix
? to denote a variable (such as ?x and ?y) and ! to denote the name of a
primitive task. For example, to tell the planner that getting a taxi, riding
in it, and paying the driver are primitive tasks, we would give them names
like !get-taxi, !ride-taxi, and !pay-driver. Tasks using these names
are (!get-taxi ?x), (!ride-taxi ?x ?y), or (!pay-driver ?x ?y).

A task list is a list of tasks, like the following:

((!get-taxi ?x) (!ride-taxi ?x ?y) (!pay-driver ?x ?y)))

A ground task list is a task list that consists of only ground tasks, like the
following:

((!get-taxi umd) (!ride-taxi umd mit) (!pay-driver umd mit)))

An operator specifies how to accomplish a primitive task by modifying
the current state of the world by removing every atom in its delete list and
by adding every atom in its add list.

2In addition, the SHOP implementation also computes its task decompositions using
a depth-first search. Thus, in order to achieve completeness, the HTN methods also need
to satisfy a similar acyclicity restriction.
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DEFINITION 3 (Operator: (Op h εdel εadd) ). An operator is an expres-
sion of the form (Op h εdel εadd), where h (the head) is a primitive task
and εadd and εdel are lists of primary atoms (called the add- and delete-lists,
respectively). The set of variables in the atoms in εadd and εdel must be a
subset of the set of variables in h.3

As an example, here is a possible implementation of the get-taxi oper-
ator from Figure 1:

(:Op (!get-taxi ?x)
((taxi-called-to ?x))
((taxi-standing-at ?x)))

Operators are used in decomposition of primitive tasks during planning:

DEFINITION 4 (Decomposition of Primitive Tasks). Let t be a prim-
itive task, and let Op = (Op h εdel εadd) be an operator. Suppose that θ is
a unifier for h and t. Then the ground operator instance (Op)θ is applicable
to t, in which case we define the decomposition of t by Op to be (Op)θ.

The decomposition of a primitive task by an operator results in a ground
instance of that operator – i.e., it results in an action that can be applied
in a state of world. We now define the result of such an application:

DEFINITION 5 (Plans, result(S,π)). A plan is a list of heads of ground
operator instances.4 A plan π is called a simple plan if it consists of the
head of just one ground operator instance.

Given a simple plan π = (h), we define result(S, π) to be the set

S \ εdel ∪ εadd

obtained by deleting from S all atoms in εdel and by adding all ground
instances of atoms in εadd.

If π = (h1, h2, . . . , hn) is a plan and S is a state, then the result
of applying π to S is the state result(S, π) = result(result(. . . (result
(S, h1), h2), . . .), hn).

In SHOP, a method specifies a possible way to accomplish a compound
task. The set of methods relevant for a particular compound task can be
seen as a recursive definition of that task.

3Unlike the operators used in , ours have no preconditions. Preconditions are not
needed for operators in our formulation, because they occur in the methods that invoke
the operators.

4In Definition 8, we will require that in any planning domain, every planning operator
must have a unique name. This is sufficient to guarantee that every plan specifies an
unambiguous sequence of operator instances.



Planning in ASP using OTD 11

DEFINITION 6 (Method: (Meth h ρ t) ). A method is an expression
of the form (Meth h ρ t) where h (the method’s head) is a compound
task, ρ (the method’s preconditions) is a conjunction of literals and t is a
totally-ordered list of subtasks, called the decomposition list of the method.
The set of variables that appear in the decomposition list of a method
must be a subset of the variables in h (the head of the method) and ρ (the
preconditions of the method). 5

Here is a possible implementation of the travel-by-taxi method from
the same figure:

(:Meth (travel ?x ?y)
((smaller-distance ?x ?y))
((!get-taxi ?x) (!ride-taxi ?x ?y) (!pay-driver ?x ?y)))

Let m = (Meth h ρ t) be a method. Note that there may be variables
in ρ that do not appear in the head h of the method m. These variables
are called the unbound variables of m. During planning, these variables are
grounded when the method is used for the decomposition of a compound
task, as described below.

DEFINITION 7 (Decomposition of Compound Tasks). Let t be a com-
pound task, S be the current state, Meth = (Meth h ρ t) be a method,
and AX be an axiom set. Suppose that θ is a unifier for h and t, and that
θ′ is a unifier such that all literals in (ρ)θθ′ are caused wrt. S and AX (see
Definition 2).

Then, the ground method instance (Meth)θθ′ is applicable to t in S, and
the result of applying it to t is the ground task list r = (t)θθ′. The task list
r is the decomposition of t by Meth in S.

Note that the decomposition of a compound task by a method does not
change the state of the world. The result of such a decomposition is a ground
task list that needs to be further decomposed until we get a list of only
ground operator instances — i.e., a plan.

DEFINITION 8 (Planning Domain Descriptions and Problems). A
planning domain description D is a triple consisting of (1) a set of axioms,
(2) a set of operators such that no two operators have the same head, and
(3) a set of methods.

5This restriction is needed to ensure that our programs do not violate the safeness
restrictions of the ASP systems we are using. However, the restriction has no effect on the
expressivity of our formalism. Any method that does not satisfy the restriction can easily
be translated into an equivalent method that does satisfy the restriction, by introducing
a dummy precondition that can always be satisfied.



12 Jürgen Dix and Ugur Kuter and Dana Nau

A planning problem is a triple (S, t,D), where S is a state, t=
(t1, t2, . . . , tk) is a ground task list, and D is a planning domain descrip-
tion.

We now define a solution of a planning problem.

DEFINITION 9 (Solutions). Let P = (S, t,D) be a planning problem and
π = (h1, h2, . . . , hn) be a plan. Then, π is a solution for P ,6 if any of the
following is true:

• Case 1: t and π are both empty, (i.e., k = 0 and n = 0);
• Case 2: t = (t1, t2, . . . , tk), t1 is a ground primitive task, (h1) is the

decomposition of t1, and (h2 . . . hn) solves (result(S, (h1)), (t2, . . . , tk),D);
• Case 3: t = (t1, t2, . . . , tk), t1 is a ground compound task, and

there is a decomposition (r1 . . . rj) of t1 in S such that π solves
(S, (r1, . . . , rj , t2, . . . , tk),D).

The planning problem (S, t,D) is solvable if there is a plan that solves it.

One important issue that we want to point out about this definition is
that the SHOP formalism does not require the tasks to be ground. This and
the restriction in Definition 6, are both necessary in the formalism of our
translation method, simply because, otherwise, the logic programs that are
generated by our translation would contain rules that violate the safeness
conditions that are imposed by current ASP systems. However, this is a
mild restriction and can always be ensured by adding dummy predicates.

It will be very helpful for the main proof of Theorem 30 to introduce the
notion of a search ree. The successful paths of this tree correspond to the
solutions of the planning problem.

DEFINITION 10 (Search Tree for Trans(·)).
Given a planning problem (S, t,D), we define the search tree for (S, t,D)
as follows. Nodes of the tree are triples of the form 〈S ′, tcaused, t′〉, where
S ′ is a state, tcaused is an ordered list of ground primitive tasks, and t′ is a
(possibly empty) ordered list of ground (compound or primitive) tasks.

The start node consists of the triple 〈S, ∅, t〉. Leaf nodes are those of
the form 〈S, tcaused, ∅〉. Branches ending in such leaves are called successful.
Given a node 〈S ′, tcaused, t′〉 with t′ &= ∅, its children are defined as follows:

• If the first task in t′ is primitive and there is an operator in D for it, then
there is exactly one child 〈S!, t!

caused, t
!〉. t!

caused is the old list tcaused

plus this first task appended. S! is obtained by modifying S ′ according
to the add and delete lists of the operator. t! is t′ with the first element
6Or equivalently, we say that π solves P , or π achieves t from S in D (we will omit

the phrase “in D” if the identity of D is obvious).
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<S, {}, {t1, t2, t3, …, tk} > 

m1(t1) m3(t1)

<S, {}, {t111, t112, …, t11n, t2, t3, …,}> m2(t1) <S, {}, {t131, t132, …,}>

m1(t111) m2(t111)                            <S, {}, {t121, t122, …,}> 

<S, {}, {t1111, t1112, t112, …}> …      …
o(t1111) o(t121)

<S, {}, {t1111, t1112, t112, …}>

…        <result(S, o(t121)), {t121}, {t122, t12, …}>

<result(S, o(t1111)), {t1111}, {t1112, t112, …}>
m1(t122)

… …
… … FAILURE!

… …
<result(result(…(result(result(S, o(t1111)), …), …), {t1111, ….}, {ti}>

o(ti)

    <result(result(…(result(result(S, o(t1111)), …), …),  {t111, …., ti}, {}> …
SUCCESS!

Figure 2. Search Tree for (S, t,D). Edge labellings mi(t) (resp. o(t)) repre-
sent a method (resp. an operator) application to a task t, which is compound
(resp. primitive).

deleted. The edge to this child is labelled with the name of this first task.
If the first task in t′ is primitive and there is no operator, then there is
no child and the branch is marked with Failure.

• If the first task in t′ is compound, and there exist method instances appli-
cable to it (according to Definition 7), then each such method instance mi

leads to a child node 〈S, tcaused, ti〉 the edge to which is labelled with mi.
ti is obtained from t′ by replacing the first task by the subtasks accord-
ing to mi. If the first task in t′ is compound, and there are no methods
applicable to it, then the branch is marked Failure.

We define the task-depth of a node and its edges as follows. The start
node gets task-depth 0. Whenever a method is used to extend a node, the
children nodes keep the same task-depth. When an operator is applied, and
thus a task is moved from t′ into tcaused then the task depth of the child
node is incremented by one. Obviously, the task depth of a node is the size
of the list of tasks in tcaused.

Such a tree (or a part thereof) is depicted in Figure 2. Note that there can
be different paths (corresponding to the application of different methods)
that finally lead to the same plans (as a list of the heads of ground instances
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of operators).

DEFINITION 11 (Solution Set of a Planning Problem: Sol(S, t,D)). Let
P = (S, t,D) be a planning problem, and suppose T is the search tree for
P . Then, Sol(S, t,D) is a multi set : it contains exactly the ordered lists
tcaused in the leaf nodes that are reached by the successful paths of T .

We also say T represents Sol(S, t,D). Note that Sol(S, t,D) may contain
more than one copy of the same plan.

4 Encoding HTN planning in Nonmonotonic Logic
Programming

Our approach of encoding HTN planning problems as logic programs is
based on SHOP’s representation of a planning problem as described in the
last section. We now present the first steps of a causal theory of HTN
planning based on that formalism. This theory serves as an intermediate
step and a motivation for our translation methodology, which is given in
the next subsection. We conclude this section with the formalisation of a
particular example.

4.1 Causal Theory for HTN Planning
In this section we prepare the ground for our translation in the next sub-
section. We give some definitions of a causal theory for HTN planning in a
SHOP-like ordered task decomposition.

DEFINITION 12 (Causable Literals). Let S be a state, and let D be a
planning domain description. A literal l is causable wrt. (S,D) if it is caused
by (S,AX ) (according to Definition 2), where AX is the set of axioms in
D.

A conjunction of literals is causable wrt. (S,D) if every literal in the
conjunct is causable wrt. (S,D) (according to the Definition 2).

DEFINITION 13 (Causable Tasks). Let S be a state, and let D be a
planning domian description. The definition of an ordered list of ground
tasks to be causable wrt. (S,D) comes in three steps.

1. The empty list [ ] is causable wrt. (S,D).

2. An ordered list of ground primitive tasks t1, . . . , tn is causable wrt.
(S,D) if for each ti, there exists an operator (Op h εdel εadd) ∈ D
and there is a unifier θ such that ti = (h)θ.

3. An ordered list of ground tasks t1, . . . , tj , . . . , tn, where tj is a ground
compound task and all tasks t1, . . . , tj−1 are ground primitive tasks,
is causable wrt. (S,D) if the following holds:
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• There exists a method (Meth h ρ {tj1 , . . . , tjm}) ∈ D for tj , and
there is a unifier θ such that tj = (h)θ; and

• There exists a unifier θ′ such that the preconditions list (ρ)θθ′ is
causable wrt. (result(S, (t1, . . . tj−1)),D); and

• The ordered decomposition list

(t1, . . . , tj−1, (tj1)θθ
′, . . . , (tjm)θθ′, tj+1, . . . tn)

is causable wrt. (S,D).

Note that this is a recursive definition. The condition in the last part
(compound tasks) eventually ends when there are only primitive tasks left,
and thus the second part (primitive tasks) can be applied. The notion of
literals being causable is used to make sure that the appropriate methods
(used to decompose the task tj) can be applied in the current state.

Using this causal theory as an intermediate step, we developed a system-
atic translation method for mapping planning problems to logic programs
with negation which we illustrate in the subsequent section. The next the-
orem states the equivalence of the original SHOP planning framework as
presented in the last section with the notion of causable tasks just intro-
duced.

THEOREM 14.
Let P = (S, t,D) be a planning problem. Then, there is a solution to P if
and only if the task list t is causable wrt. (S,D).

Proof. Rather than giving a full proof using structural induction, we give
a detailed proof sketch from which the full proof can be easily worked out.

The proof starts by recursively constructing the solution of an HTN
planning problem (S, t,D) and showing the causal relationships based on
our causal theory at the same time.

Suppose there exists a solution to (S, t,D). If t is empty, then (S, t,D)
contains exactly one plan, namely the empty plan. This is because of the
fact that there will be no tasks to be accomplished—thus, no task to be
causable . If t is not empty, and consists of primitive tasks only, then there
must be operators for all these tasks and thus, by Definition 13 (2nd step),
t is causable wrt. (S,D).

We now reduce the general case to the case where only primitive tasks
occur. Let t be non-empty, and assume it contains compound tasks. Then
we recursively carry out the task decompositions (see Definition 7) until we
reach a list of ground primitive tasks. This is possible because a solution
exists (this solution is given by the final list of primitive tasks). Note that
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there might exist different such lists, corresponding to different choices of
decompositions via methods. But this list is causable according to the second
part of Definition 13 (primitive tasks).

Now, according to the third part of Definition 13, we can recursively
replace the primitive tasks with the compound tasks they were induced
from (via methods) and we get the result that all the intermediate ordered
lists obtained in that way themselves are causable wrt. (S,D). Note that
the conditions in the third part of Definition 13 correspond exactly to the
notion of the decomposition of a compound task (Definition 7).

Therefore, it follows from the recursive construction above that if a list
of ground tasks t is achieved according to our planning theory, it must be
causable as well.

The proof of the converse is similar. Once a list of ground tasks t is
causable wrt. (S,D), we can find a list of primitive tasks that is causable.
This list is obtained by certain decompositions, and these decompositions
constitute a solution of the planning problem. !

4.2 Encoding Planning Problems as Logic Programs
In this section, we present our translation method for encoding planning
problems as logic programs with ASP semantics. Our translation method
is a general technique that is independent from the implementation details
and syntactic requirements of the any underlying ASP system. Note that
there are several differences between the syntactic requirements of the ASP
systems. In this respect, the presentation in this section is given in a more
conceptual level in general; however, where necessary, we adapted the syntax
of Smodels.7

Translating a planning problem (S, t,D) to its logic program counterpart
requires encoding the initial state and the state transition characteristics of
SHOP, the goal tasks and the ordered task decomposition technique in
SHOP, and the domain description including the axioms, the operators,
and the methods, which are given in the description of a planning problem.
For this reason, we describe our translation method in several steps such
that each step encodes a part of the complete translation corresponding to
the components of a planning problem as described above. Combining these
steps yield a complete logic program in ASP semantics that is capable of

7However, note that when implementing our translation methodology, one must ad-
dress the syntax requirements of the underlying system that is being used. In this paper,
we concentrated on the two ASP systems Smodels and DLV , so we made system-specific
syntactic changes to the conceptual description of our translation method during the
implementation in these systems. Our complete implementation of planning examples for
both DLV and Smodels are available at <http://www.cs.umd.edu/users/ukuter/ASP_
Planning/>.
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solving planning problems in the way that SHOP does.
We now present our main definition:

DEFINITION 15 (Trans((S, t,D)): Translation for the Planning Prob-
lem). Let P = (S, t,D) be a planning problem. The logic program
Trans((S, t,D)) that solves P is defined as

Trans((S, t,D)) = Trans(⊥) ∪ Trans(S) ∪ Trans(t)
∪ Trans(AX ) ∪ Trans(OP) ∪ Trans(F) ∪ Trans(MET H),

where

• Trans(⊥) is the logic program segment that marks the successful termi-
nation of the planning process,

• Trans(S) is the logic program segment that encodes the initial state S,
• Trans(t) is the logic program segment that encodes the goal task list t,
• Trans(AX ) is the logic program segment that encodes the axioms given

in the domain description D,
• Trans(OP) is the logic program segment that encodes the operator de-

scriptions given in D, and
• Trans(F) is the logic program segment that encodes the state-transition

characteristics of SHOP, and
• Trans(MET H) is the logic program segment that encodes the method

descriptions given in D.

In the following subsections, we give the definitions for the logic program
segments mentioned above.

The Time Line
In order to be able to keep track of different states of the world in an answer
set of a logic program, we attached a time variable that will occur in many
predicates in our translation. The domain of a time variable is a time line,
which is a set of integers {0, 1, . . . , τ}, where τ is called the end point of the
time line.

Given a planning problem P = (S, t,D), we need to know τ in advance
in order for our translation methodology to work. P does not specify this
information since SHOP does not need a notion of time line during planning
— the search process naturally differentiates different states of the world.
One way to determine a correct value for τ is an incremental approach.
That is, we start with τ = 0, use our translation to produce the logic
program Trans((S, t,D)), and generate the answer sets of Trans((S, t,D)).
Then, we increment τ , and repeat the whole process until no new answer
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sets are generated by Trans((S, t,D)). Note that, using this approach, we
eventually generate all of the possible answer sets of Trans((S, t,D)), as
shown in Theorem 30.

An alternative approach would be as follows. Let Sol(S, t,D) be the set
of solutions of P , as in Definition 11. Then, we define τ as

τ = max{|π| : π ∈ Sol(S, t,D)},

where |π| denotes the size of the solution π. Note that we can find the set
Sol(S, t,D) by solving P using SHOP.

We use time variables in various rules in our translation, so before going
into the details of the translation, we believe that the following points are
worth noting:

1. As described above, we assume that planning starts at time point 0
(see Definitions 16 and 19).

2. Planning proceeds by selecting a task to be accomplished next (see
Definition 19. The rules about taskTBA and causable are given in
Definition 17). Note that the task to be decomposed may be either
primitive or compound.

3. The time variable T is incremented only when the task to be decom-
posed is a primitive task and there is an operator for it (a simple
reduction) in the domain description provided as a part of the plan-
ning problem (see Definition 18).

This means that, in general, there may be more than one task that
is selected and decomposed at a particular time point T . However,
among these tasks, there is only one primitive task at any particu-
lar point in time. For example, consider Figure 2. Task t1 is a com-
pound task and so are t111 and t1111 (obtained by respective meth-
ods). So taskTBA(t1, 0), taskTBA(t111, 0), taskTBA(t1111, 0) are all
true (resp. hold in a stable model). Only after the primitive task t1111
has been accomplished by an operator is the time incremented by 1.

4. As a result of this formulation, the task depth in the search tree cor-
responds to the value of the time variable T .

Encoding the Initial State
SHOP’s initial state is a set of ground atoms. In this respect, given a plan-
ning problem (S, t,D), the logic program encoding for the initial state S is
defined as follows:



Planning in ASP using OTD 19

DEFINITION 16 (Trans(S): Translation for Initial State).
Given a planning problem (S, t,D), for each ground atom a ∈ S, the logic
program Trans(S) contains the rule

in state(a, 0) : −

where 0 indicates the initial time.

Encoding the Goal Task(s)

Given a planning problem (S, t,D), where S is the initial state, t is a ground
task list, and D is a domain description for this planning problem, the aim
of the planning process is to find a plan that accomplishes all of the (goal)
tasks in t from the initial state S in the order they are given (according
to Definition 8). A task is accomplished if and only if it is causable with
respect to the initial state and the domain description given in the planning
problem, and this is due to the Definition 13 and a direct consequence of
Theorem 14.

In this respect, planning proceeds by selecting a task as the “current
task” – i.e., the task that the planner will try to accomplish next. In the
logic programs produced by our translation, this is encoded by using a
special predicate defined as follows:

DEFINITION 17 (Tasks To Be Accomplished). Given a planning prob-
lem (S, t,D), we define a special predicate taskTBA n for each possi-
ble task (e.g. primitive or compound) such that if the task that needs
to be decomposed at time T is h ≡ (nameh arg1 arg2 . . . argN ) then
taskTBA n(nameh, arg1, arg2, . . . , argN , T ) denotes this fact and n is a
natural number which equals N + 2 (n is the number of arguments of this
predicate).

As an example, if the task to be accomplished is travelling from
UMD to MIT denoted as (travel umd mit), then we use the predicate
taskTBA 4(travel, umd, mit, T ) to denote this fact. For the sake of clarity,
we will use the shorthand notation taskTBA(h, T ) in the rest of the paper.

We define the fact that whether a task is causable as follows:

DEFINITION 18 (CAUSABLE). Given a ground task t, we define
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CAUSABLE(t, Ts, Ta) as follows:





false if t is a primitive task and
there is no operator for it in D,

false if t is a compound task and
there is no method for it in D,

taskTBA(t, Ts) and Ta = Ts + 1 if t is a primitive task and
there is an operator for it in D,

causable(t, Ts, Ta) if t is a compound task and
there is a method for it in D.

where Ts denotes the time when the task t was selected to be decomposed
and Ta denotes the time when t is actually accomplished (i.e., Ta is the time
when t is caused).

In the definition above, causable(t, Ts, Ta) is a shorthand notation for the
predicate causable n(namet, arg1, arg2, . . . , argN , Ts, Ta) in which the sym-
bol n = N +3 denotes the number of arguments of the predicate causable n.
For the sake of clarity, we will use causable(t, Ts, Ta) in the rest of the paper.

We are now ready to define the logic program segment that encodes the
goal task list of a given planning problem.

DEFINITION 19 (Trans(t): Translation for Goal Tasks).
Given a planning problem (S, t,D), let t = h1, h2, . . . , hn be the ordered
sequence of ground tasks. Then, Trans(t) is the logic program that contains
one rule for each ground task hi, where i = 1, 2, . . . , n, as follows:

1. Case 1: i = 1,
taskTBA(h1, 0) : −

2. Case 2: Otherwise,

taskTBA(hi, Ti) : − CAUSABLE(hi−1, Ti−1, Ti), Ti ≥ Ti−1.

Note that if there exists only one goal task to be accomplished for the
problem in hand, then only defining the first rule will suffice. Definition 19
enforces the fact that a goal task hi is designated as the current task to be
accomplished if the previous goal task hi−1 in t is causable. This is a direct
consequence of our Theorem 14.

The planning process terminates successfully when all of the goal tasks
are accomplished (i.e., caused) in the order they are given in the planning
problem. The following definition is given to encode the successful termina-
tion of the planning process.
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DEFINITION 20 (Trans(⊥): Successful Termination). Given a planning
problem (S, t,D), the logic program segment Trans(⊥) that encodes the
successful termination of the planning process (i.e., the fact that a solution
to the given planning problem is found) is defined as follows:

plan found : − CAUSABLE(hn, Tn, Tn+1), Tn+1 ≥ Tn.
plan found : − not plan found.

where hn is the last goal task in t, Tn denotes the time at hn is decomposed
by a simple reduction for it (see Definition 7), and Tn+1 is the time at which
hn is causable (accomplished).

These two rules together state that if the last goal task is causable then
there is a plan (solution) for the planning problem (S, t,D) as a result of
Definition 19. Otherwise, there is none.

Encoding the Axioms
We now define the logic program segment that encodes the axioms of a
domain description. We start with notion of translation for a literal.

DEFINITION 21 (Translation for Literals).
Given a literal, l, we define C(l, T ), the translation of l at time T , as

C(l, T ) :=
{

in state(a, T ) if l = a is a positive literal,
not in state(a, T ) otherwise.

DEFINITION 22 (Trans(AX ): Translation for Axioms).
Given a planning problem (S, t,D), Trans(AX ) is the logic program seg-
ment that contains the following rules: for all “ a ← l1, . . . , ln ” ∈ AX ,

in state(a, T ) : − C(l1, T ), C(l2, T ), . . . , C(ln, T ),

where C(li, T ) is the translation of the literal li, as defined in Definition 21
above.

Encoding the Operators and the State Transitions
SHOP uses the operator descriptions in D in decomposition of primitive
tasks that needs to be accomplished during planning. In the translation, the
logic program segment that encodes the operators in D is given as follows:

DEFINITION 23 (Trans(OP): Translation for Operators).
Given a planning problem (S, t,D), for all Op ∈ OP, Trans(Op) is the logic
program that contains the following rules: for all a ∈ Del(Op):

out state(a, T + 1) : − taskTBA(h, T ).
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and for all a ∈ Add(Op):

in state(a, T + 1) : − taskTBA(h, T ).

where h is a primitive task – i.e., the ground head of the operator that is
used in the decomposition of h.

Note that these two rules encode the delete- and the add-lists of the
operator respectively. The result of a decomposition of a primitive task by
an operator application is a new state of the world, which is generated by
deleting all of the atoms that are in the delete-list of that operator from the
current state and by adding all of the atoms that are in the add-list of that
operator to the current state.

An operator only describes the change it causes to occur in the current
state. The planner is still responsible for keeping track of the other facts
that remain unchanged after an operator application. This is known as the
famous Frame Problem in AI Planning. In the translation, the logic program
segment that addresses the frame problem is defined as follows:
DEFINITION 24 (Trans(F): Keeping Track of the State S).
The logic program segment Trans(F) that encodes the frame axiom is de-
fined as follows:

in state(A, T + 1) : − in state(A, T ), not out state(A, T + 1).

Note that the state of the world in SHOP consists of only positive ground
primary atoms. Basically the above rule states that if a positive ground
atom, a, is initially true, then it should be true in the next state unless it
has been marked as to be deleted during the transition from the current
state to the next state.

Encoding the Methods
SHOP uses the method descriptions in D in decompositions of compound
tasks that need to be accomplished during planning. Before proceeding with
the definition of the logic program segment that encodes the methods in D,
we give the following definition:
DEFINITION 25 (Methods for a Compound Task). Given a planning prob-
lem (S, t,D) and a compound task h ≡ (nameh arg1 arg2 . . . argN ), we
define a special predicate method n i(nameh, arg1, arg2, . . . , argN , T ) for
each method mi ∈ D whose head unifies with h. The symbol n in the predi-
cate name denotes the number of arguments of the predicate, i.e. n = N +2.

For purposes of clarity, we will use the following shorthand notations
in the rest of this paper: Given a planning problem (S, t,D) and a com-
pound task h, if there is only one method m whose head unifies with
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h in D then we will use method(h, T ) to refer to m, instead of the
method n 1(nameh, arg1, arg2, . . . , argN , T ) predicate as defined above. If
there are more than one methods mi for h then we will use the notation
methodi(h, T ) for each such method mi.

We present the translation for methods of SHOP in four steps: (1) the
translation for the nondeterministic choice of applying alternative meth-
ods to a particular compound task; (2) the translation for evaluating the
preconditions of a method in order to decide whether it is applicable to a
particular compound task; (3) the translation for the task decomposition
specified by a method; and (4) the translation for the accomplishment of a
particular task by a method. Given a SHOP method, if the translations in
these four steps are performed, then we produce a logic program segment,
Trans(MET H), which is the ASP encoding of that method.

DEFINITION 26 (Translation for Encoding Alternative Methods). Given
a planning problem P = (S, t,D), let h be a compound task that needs
to be accomplished in the solution of P . Suppose D contains N methods
whose heads unify with h; namely, m1, m2, . . . , mN . Then, the logic program
segment that encodes the nondeterministic choice of which method to apply
to the task h is as follows: for i, j = 1, . . . , N ,

methodi(h, T ) : −
∧

i #=j not methodj(h, T ),
taskTBA(h, T ).

Intuitively, the rules in Definition 26 enforce the translation to create
N different answer sets for N possible method applications to the task h.
This is due to the fact that each such method specifies a different way to
decompose the task h, and therefore, the planner can find different solutions
due to each such method.

Next, we present the translation for evaluating the preconditions of each
such method. Note that if the precondition of the method is not satisfied in
the state of the world, then the method cannot be applied to the task h.

DEFINITION 27 (Translation for Precondition Evaluations). Let h be a
compound task that needs to be accomplished, mi be a method whose head
unifies with h, and ρ be the preconditions of mi. Then, we have two steps:

1. Let p ∈ ρ be a precondition of m and χ1, χ2, . . . , χf be the unbound
variables in p such that if f = 0 then p has no such variables. Suppose
that Rj denotes the range of χj in p – i.e., Rj is the set of all possible
instantiations of χj in the world. Then, for each unbound variable χj

of p, we create new variable symbols χj,k such that j = 1, . . . , f and
k = 1, . . . , |Rj |.
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2. For each precondition p ∈ ρ,

• if p does not contain unbound variables, then we have

checked state(p, T ) : − C(p, T ),methodi(h, T ).

where C(p, T ) is as defined in Definition 21.
• Otherwise, we have

checked state(p(χ1,1, χ2,1, . . . , χf,1), T ) : −
methodi(h, T ), in state(p(χ1,1, χ2,1, . . . , χf,1), T ),
not checked state(p(χ1,1, χ2,1, . . . , χf,2), T ),
...
not checked state(p(χ1,1, χ2,1, . . . , χf,|Rf |), T ),
...
not checked state(p(χ1,1, χ2,|R2|, . . . , χf,|Rf |), T ),
not checked state(p(χ1,2, χ2,1, . . . , χf,1), T ),
...
not checked state(p(χ1,|R1|, χ2,|R2|, . . . , χf,|Rf |), T ),∧f

j=1 χj,1 ! = χj,2 ! = . . . ! = χj,|Rj |.

where χ1, χ2, . . . , χf are the unbound variables in p.

Intuitively, the rules of Definition 27 create an answer set for each possible
instantiation of the unbound variables of mi in the world. This is due to
the fact that SHOP creates an instance of mi for each instantiation of the
unbound variables in mi, and decomposes the task h with each such method
instance. In order for our translation to be correct, we need to simulate this
behavior of SHOP in our translation since ASP systems do not provide such
semantics, to the best of our knowledge.

Note that for each precondition p ∈ ρ, there must be at least one answer
set in which both methodi(h, T ) and checked state(p, T ) are true for the
method mi to be applicable to the task h in the current state of the world
(denoted by the time variable T ). If there is no such answer set then it
means that mi is not applicable to h.

Now that we have established the rules for checking the applicability of
mi to h, we are ready to give the definition for the decomposition of the
task h by mi.
DEFINITION 28 (Translation for Method Decomposition). Let h be a
compound task that needs to be accomplished, and let mi be a method
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that is applicable to h. Then, the decomposition of h by mi is encoded by
the following rules:

taskTBA(t1, T ) : − methodi(h, T ),∧
p∈ρ checked state(p, χ1, χ2, . . . , χf , T ).

taskTBA(t2, T2) : − methodi(h, T ),∧
p∈ρ checked state(p, χ1, χ2, . . . , χf , T ),

CAUSABLE(t1, T, T2),
T2 ≥ T.

...
...

...
taskTBA(tn, Tn) : − methodi(h, T ),∧

p∈ρ checked state(p, χ1, χ2, . . . , χf , T ),
CAUSABLE(tn−1, Tn−1, Tn),
Tn ≥ Tn−1.

where χ1, . . . , χf are the unbound variables of the precondition p, and
t1, . . . , tn are the subtasks of m –i.e., the ordered list of tasks in the de-
composition list of m.

The translation in Definition 28 encodes the fact that the decomposition
of each subtask tk can only be done if the previous subtask tk−1 has been
already accomplished – i.e. tk−1 has been already CAUSABLE. The only
exception is the first task, which is decomposed if and only if the particular
method, h, has been chosen to be applied to the current task in the planning
process. This property is encoded by using the CAUSABLE(tk, Tk, Tk+1)
construct for each subtask tk (see Definition 18). The time point Tk denotes
the time when the current task is decomposed and Tk+1 denotes the time
when it is accomplished – i.e. causable. By this way, we can identify the
exact place where a specific task is causable in the entire search tree.

Finally, we have the definition of the accomplishment of a task by a
particular method.
DEFINITION 29 (Translation for Accomplishment of Compound Tasks).
Let h be a compound task that needs to be accomplished, let mi be a method
that is applicable to h, and suppose that h has been already decomposed
into its subtasks tk specified by the decomposition list of mi. Then, the ac-
complishment (i.e., causation) of h by the method mi is encoded as follows:

causable(h, T, Tn+1) : − methodi(h, T ),∧
p∈ρ checked state(p, χ1, χ2, . . . , χf , T ),

CAUSABLE(tn, Tn, Tn+1),
Tn+1 ≥ Tn.

where χ1, . . . , χf are the unbound variables of the precondition p of m.
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Intuitively, h is accomplished (i.e., caused) when/if the last subtask in its
decomposition by mi is accomplished (i.e., caused.) This is a direct conse-
quence of Theorem 14.

Note that some of the rules given Definitions 26 and 27 could also be
encoded into disjunctive rules, which seems to be conceptually simpler. How-
ever, not all ASP systems do handle disjunctions. Therefore, we decided to
use non-disjunctive rules. At this point, we refer to the discussion in sub-
section 5.2.

4.3 A Translation Example: An Elevator Domain
One of the planning domains in the AIPS-2000 planning competition was
the Miconic-10 Elevator domain. In order to accommodate the representa-
tional power of different planning systems, several different versions of this
domain were used in the competition. The simplest version, which we will
call Miconic-10-simtest,8 has the following specifications: (1) the planner
simply has to generate plans to serve a group of passengers of whom the
origin and destination floors are given, and (2) there are no constraints such
as satisfying space requirements of passengers or achieving optimal elevator
controls.

Below, we describe how to use the techniques in the previous section to
translate an HTN version of the domain into an ASP encoding. For the
sake of simplicity and clarity, we present our translation methodology on a
simplified and modified version of this problem domain in Smodels syntax.
The SHOP axioms, operators, and methods for this problem domain are
shown in Figures 3, 4, and 5, respectively. Our complete encodings of the
original Miconic-10-simtest domain for both DLV and Smodels are available
at <http://www.cs.umd.edu/users/ukuter/ASP_Planning/>.

In our modified elevator example, there is only one person to be trans-
ported in a five floor building. The elevator starts its operation at the ground
floor. Our passenger is at the top floor and wants to go down to the ground
floor. The elevator can move between any two floors in one step; however,
this movement can be either slow or fast, depending on the distance between
those floors. The fast movement of the elevator depends on the amount of
energy available to it. The elevator has initially enough energy for such
movements. However, a fast movement decreases the total energy of the ele-
vator by a specific amount. More specifically, a fast movement between two
adjacent floors consumes one unit of energy. Unlike fast movements, slow
movements do not require energy. The elevator always makes slow move-
ments when it is empty, in order to conserve energy.

8We use this name because the domain is available at <http://www.informatik.
uni-freiburg.de/~koehler/elev/simtests.tar.gz>.
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Now, we will describe the basics of the translation process step by step
as described in the previous section.

Prelude
We have to formulate all of the possible atoms that can ever be used dur-
ing the planning process. Due to the fact that each variable in Smodels
semantics must have a range of values, we must also define type predicates
in our translation as described in the previous section. In a SHOP domain
description, we do not need to make these definitions about the set of all
possible atoms and tasks, nor about the type predicates.

In our elevator example, we have the following rules for specifying the
possible atoms:

atom(boarded(P )) : − person(P ).
atom(goal(P )) : − person(P ).
atom(lift at(F )) : − floor(F ).
atom(destination(P, F )) : − person(P ), f loor(F ).
atom(on floor(P, F )) : − person(P ), f loor(F ).
atom(on lift(P )) : − person(P ).
atom(total energy(E)) : − energy levels(E).

And also the following rules for the type predicates such as:

time(0..10) : −
person(p0) : −
floor(0..4) : −
energy levels(0..10) : −

Note that we define the time line of our logic program to be the set
{0, 1, . . . , 10}. This definition is just for illustrative purposes in this example.
Normally, we use one of the two techniques for defining the time lines, as
described in the previous section.

Encoding the Initial State
The logic program segment Trans(S) consists of the following rules to spec-
ify the initial state in our encoding of the elevator example:

in state(lift at(0), 0) : −
in state(goal(p0), 0) : −
in state(on floor(p0, 4), 0) : −
in state(destination(p0, 0), 0) : −
in state(total energy(10), 0) : −

As it can be seen from these rules, they specify certain ground atoms to
be in the initial state of the planner (Definition 16 in the previous section).
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;; SHOP Axioms for the simplified Miconic-10-simtest Domain.
(:- (can-move-fast ?floor1 ?floor2)

((> ?floor1 ?floor2)(total energy ?energy)
(≥ (- ?floor1 ?floor2) ?energy))

(:- (can-move-fast ?floor1 ?floor2)
((≤ ?floor1 ?floor2)(total energy ?energy)
(≥ (- ?floor2 ?floor1) ?energy)))

(:- (floorDiff ?floor1 ?floor2 ?d)
((> ?floor1 ?floor2)(assign ?d (- ?floor1 ?floor2)))

(:- (floorDiff ?floor1 ?floor2 ?d)
((≤ ?floor1 ?floor2)(assign ?d (- ?floor2 ?floor1))))

Figure 3. Examples of the SHOP axioms for the simplified version of
Miconic-10-simtest planning domain.

The last argument for each in state(A, T ) predicate is the time T at which
the atom A holds. As mentioned before, we define the starting time of the
planning process to be 0.

The frame axiom Trans(F) is as follows:

in state(A, T + 1) : − time(T ), atom(A), in state(A, T ),
not out state(A, T + 1).

Encoding the Goal Task(s).

Suppose we have a single goal task to accomplish, namely the task of trans-
porting our passenger. Then, the logic program segment Trans(t) will en-
code this task via the following rule:

taskTBA(transport person, p0, 0) : −

This rule specifies that our goal task to be accomplished at the beginning
of planning process is the task (transport person p0) — i.e., the task of
transporting the person p0.

Encoding the Axioms

Suppose that we have the axioms shown in Figure 3. The intended meaning
of these axioms is to decide whether the elevator can make a fast movement
between the specified two floors. The criteria for this decision is that if the
distance between the two floors is greater than or equal to the total energy
of the elevator, then it can move fast between these two floors. The encoding
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;; SHOP Operators for the simplified Miconic-10-simtest Domain.
(:operator (!markServed ?person)

((goal ?person))
())

(:operator (!moveSlow ?floor1 ?floor2)
((lift at ?floor1))
((lift at ?floor2)))

(:operator (!moveFast ?floor1 ?floor2 ?old ?new)
((lift at ?floor1)(total energy ?old))
((lift at ?floor2)(total energy ?new))

(:operator (!board ?person ?floor)
((on ?person ?floor))
((on lift ?person)))

(:operator (!debark ?person ?floor)
((on lift ?person))
((on ?person ?floor)))

Figure 4. Examples of the SHOP operators for the simplified version of
Miconic-10-simtest planning domain.

of this axiom as the logic program segment Trans(AX ) is straightforward:

in state(can move fast(F1, F2), T ) : − time(T ), f loor(F1),
f loor(F2), energy level(E),
in state(total energy(E), T ),
F1 > F2, F1− F2 ≥ E.

in state(can move fast(F1, F2), T ) : − time(T ), f loor(F1),
f loor(F2), energy level(E),
in state(total energy(E), T ),
F1 ≤ F2, F2− F1 ≥ E.

in state(floorDiff(F1, F2, F1− F2), T ) : − time(T ), f loor(F1),
f loor(F2), F1 > F2.

in state(floorDiff(F1, F2, F2− F1), T ) : − time(T ), f loor(F1),
f loor(F2), F1 ≤ F2.

Encoding the Operators
Suppose that in the domain description of our elevator example, we have
the planning operators shown in Figure 4.

The first operator in Figure 4 is for the primitive task of marking a person
served. This operator basically removes the (goal ?person) atom from the
state of the world, which means that the goal of transporting the person
?person has been achieved. Note that this operator does not add any atoms
to the state of the world. The second operator is for the primitive task of
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moving the elevator slowly from one floor to another. It simply deletes the
(lift at ?floor1) atom from the state, which describes the location of the
elevator before it started its move, and adds the atom (lift at ?floor2),
which describes the location of the elevator after it completed its move. The
third operator is for the primitive task of moving the elevator fast. Note
that this operator also changes the total amount of energy that the elevator
has. The fourth and the fifth operators are for boarding a person to the
elevator and for debarking a person from the elevator, respectively.

In our translation, the markServed operator is encoded by a single rule:

out state(goal(P ), T + 1) : − time(T ), person(P ),
taskTBA 3(markServed, P, T ).

The encoding of the moveSlow operator corresponds the following:

out state(lift at(F1), T + 1) : − time(T ), f loor(F1), f loor(F2),
taskTBA 4(moveSlow, F1, F2, T ).

in state(lift at(F2), T + 1) : − time(T ), f loor(F1), f loor(F2),
taskTBA 4(moveSlow, F1, F2, T ).

The moveFast, board, and debark operators are encoded similarly.

Encoding the Methods
We have the following four methods in our domain description: We have
two methods for fast transporting the person from his/her original floor to
his/her destination floor. The first method is for the case in which the eleva-
tor and the person are on the same floor, so the person can be immediately
boarded to the elevator and transported to his/her destination. The second
method is for the case in which the elevator and the person are not on the
same floor; the elevator must be first moved to the floor of the person so
that the person can be transported. Figure 5 shows the SHOP specification
of these two methods.

We have also two methods for slow transportation of the person, similar
to the ones described above. The two groups of methods – i.e., the first two
and the second two – correspond to a branching (i.e, backtracking choice)
point in the planner’s search space, in which different branches may possibly
lead to different solution plans. However, the first two methods cannot both
yield to a solution due to the way their preconditions are defined. The same
is true for the second two as well.

According to Definition 26, the translation of the nondeterministic choice
among these four methods is the following set of rules, which correspond to
the same branching point in the search space. Here, we only give the rule(s)
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;; SHOP Methods for the simplified Miconic-10-simtest Domain.
;; Method for FAST transporting a person when the lift is at the same floor
;; as him/her.
(:method (transport person ?person)
;; preconditions
((lift at ?floor1)(on ?person ?floor1)(destination ?person ?floor2)
(total energy ?old)(can move fast ?floor1 ?floor2)
(floorDiff ?floor1 ?floor2 ?d)(assign ?new (- ?old ?d)))

;; decomposition task list
((!board ?person ?floor1) (!moveFast ?floor1 ?floor2 ?old ?new)

(!debark ?person ?floor2) (!markServed ?person)))

;; Method for FAST transporting a person when the lift is not at the same floor
;; as the person.
(:method (transport person ?person)
;; preconditions
((lift at ?floorX)(on ?person ?floor1)(destination ?person ?floor2)
(total energy ?old)(can move fast ?floor1 ?floor2)
(floorDiff ?floor1 ?floor2 ?d)(assign ?new (- ?old ?d)))

;; decomposition task list
((!moveSlow ?floorX ?floor1)(!board ?person ?floor1)
(!moveFast ?floor1 ?floor2 ?old ?new)(!debark ?person ?floor2)
(!markServed ?person)))

Figure 5. Examples of the SHOP methods for the simplified version of
Miconic-10-simtest planning domain.

for the first method; the others are almost identical.

method 3 1(transport person, P, T ) : −
time(T ), person(P ), taskTBA 3(transport person, P, T ),
notmethod 3 2(transport person, P, T ),
notmethod 3 3(transport person, P, T ),
notmethod 3 4(transport person, P, T ).

We now describe the encoding for evaluting the preconditions of this
method. For that matter, we need to encode the rules given by Defini-
tion 27 for every precondition of this method. As an example, consider the
first precondition, which is (lift at ?floor1) (see Figure 5). This precon-
dition has only one unbound variable; namely, ?floor1. Then according to
Definition 27, we have the following rule:

checked state(lift at(F1, T ) : − method 3 1(transport person, P, T ),
in state(lift at(F1), T ).
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Note that, although ?floor1 is an unbound variable, we did not create
new variable symbols for it and did not use the first rule given in Defini-
tion 27. The reason for this is that the elevator can be at one and only one
floor at any time in this domain.

The rules for the other preconditions are almost identical to the one
above, so we do not give them here due to space limitations (for a complete
encoding of this domain, see <http://www.cs.umd.edu/users/ukuter/
ASP_Planning/>). This finishes our encoding of the precondition evalution
for the first method of Figure 5.

The following rules encode the decomposition list of this method:

taskTBA 4(board, P, F1, T ) : −
floor(F1), f loor(F2), person(P ), energy level(Old), number(D),
time(T ), checked state(lift at(F1), T ), checked state(on(P, F1), T ),
checked state(destination(P, F2), T ),
checked state(total energy(Old), T ),
checked state(can move fast(F1, F2), T ),
checked state(floorDiff(F1, F2,D), T ),
method 3 1(transport person, P, T ).

taskTBA 6(moveFast, F1, F2, Old,Old−D, T2) : −
floor(F1), f loor(F2), person(P ), energy level(Old), number(D),
time(T ), time(T2), checked state(lift at(F1), T ),
checked state(on(P, F1), T ), checked state(destination(P, F2), T ),
checked state(total energy(Old), T ),
checked state(can move fast(F1, F2), T ),
checked state(floorDiff(F1, F2,D), T ),
method 3 1(transport person, P, T ),
causable 5(board, P, F1, T, T2), T2 ≥ T.

taskTBA 4(debark, P, F2, T3) : −
floor(F1), f loor(F2), person(P ), energy level(Old), number(D),
time(T ), time(T2), time(T3), energy level(New),
checked state(lift at(F1), T ), checked state(on(P, F1), T ),
checked state(destination(P, F2), T ),
checked state(total energy(Old), T ),
checked state(can move fast(F1, F2), T ),
checked state(floorDiff(F1, F2,D), T ),
method 3 1(transport person, P, T ),
causable 7(moveFast, F1, F2, Old, New, T2, T3), T3 ≥ T2.
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taskTBA 3(markedServed, P, T4) : −
time(T ), time(T3), time(T4), person(P ), f loor(F1), f loor(F2),
energy level(Old), number(D),method 3 1(transport person, P, T ),
checked state(lift at(F1), T ), checked state(on(P, F1), T ),
checked state(destination(P, F2), T ),
checked state(total energy(Old), T ),
checked state(can move fast(F1, F2), T ),
checked state(floorDiff(F1, F2,D), T ),
causable 5(debark, P, F2, T3, T4), T4 ≥ T3.

The rules for the decomposition list of the method define the successor
subtasks with the order they were specified in that method. Note that in
the formalism for HTN planning with Ordered Task Decomposition, the
ordering of the subtasks enforces the fact that a subtask t can be selected
as the current task for decomposition only if all of the subtasks preceding
t are accomplished successfully. This is achieved in our translation by the
causable properties of the tasks (see Definition 13).

Note also that although the first method of Figure 5 has an unbound
variable ?new, we have not encoded this variable as an unbound variable in
our rules. This is due to the fact that this variable is used in the method
for storing the energy that is left after the elevator moves fast between two
levels, and we can encode this as we did in the head of the second rule above.
In fact, SHOP’s assign statement serves the same purpose; it was a design
choice in SHOP to handle these cases in the preconditions of a method
using an assign statement, rather than handling them in the arguments of
the subtasks as we did in our encodings.

At this point, we want to emphasise again that the translation method
presented in the previous section is a general technique; one can make several
optimisations and modifications during actual implementation.

Now, we are ready to give the rule for accomplishment of the task of
transporting the person via the method encoded above:

causable 4(transport person, P, T, T5) : −
time(T ), time(T4), time(T5), person(P ), f loor(F1), f loor(F2),
energy level(Old), number(D),method 3 1(transport person, P, T ),
checked state(lift at(F1), T ), checked state(on(P, F1), T ),
checked state(destination(P, F2), T ),
checked state(total energy(Old), T ),
checked state(can move fast(F1, F2), T ),
checked state(floorDiff(F1, F2,D), T ),
causable 4(markedServed, P, T4, T5), T5 ≥ T4.
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5 Results: Theory and Practice
In this section, we present our theoretical results on the correctness and
completeness of our translation method. These results in soundness and
completeness theorems are for the resulting logic programs under the an-
swer set semantics for planning problems. We also describe in detail the
experiments we have undertaken. All the detailed formalisations as well
as more implementation related information can be obtained from <http:
//www.cs.umd.edu/users/ukuter/ASP_Planning>.

5.1 Soundness and Completeness
Our first theorem states that our translation indeed corresponds to HTN
planning as done in SHOP. Soundness and completeness are the two im-
portant requirements for any planning system. Soundness means that all
of the plans that are generated by the planner are actually true solu-
tions to the given planning problem; that is, no plan, which is not solu-
tion to the problem, should be generated. Completeness means that the
planning system must be able to generate all of the possible plans (solu-
tions) for the given planning problem. A more formal treatment and the
fact that SHOP is sound and complete is contained in [Nau et al., 2000;
1999].

Let Trans(·) be the translation method described in the previous section.
Given any HTN planning problem described in SHOP’s formalism, we are
interested in the relationship between the solutions to the problem and the
models (or answer sets) of Trans(·).
THEOREM 30 (Trans(·) and HTN planning using OTD). Given a plan-
ning problem (S, t,D), where S is the initial state, t is the list of
ground tasks to be accomplished and D is the domain description, let
Trans((S, t,D)) be the corresponding logic program with negation. We as-
sume that the set of axioms in D does not contain any cycles through nega-
tion. Furthermore, let Sol(S, t,D) be the set of solutions as defined in Def-
inition 11. Then,

1. Sol(S, t,D) = ∅ if and only if Trans((S, t,D)) has no answer sets.

2. If Sol(S, t,D) &= ∅, then the following holds:

(a) For every plan P ∈ Sol(S, t,D), there is an answer set of
Trans((S, t,D)) and a sequence of primitive tasks t0, t1, . . . , tn,
such that the predicates taskTBA(ti, i) that are true in this an-
swer set and the ti correspond exactly to the steps pi in P .

(b) For every answer set of Trans((S, t,D)) there is a sequence of
primitive tasks t0, . . . , tn, such that the predicates taskTBA(ti, i)
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are true in this answer set, and this sequence constitutes a plan
[t0, . . . , tn] ∈ Sol(S, t,D).

Proof. The proof is in three steps:

Step 1: We take a close look at the search tree, introduced in Def-
inition 10, which gives a formal and handy description of the causal
theory introduced in Section 4. Through Theorem 14, this search tree
is linked with our planning problem as introduced in Definition 8.

Step 2: Here we list some facts about the rules used in the translation
Trans(·). They will be used in the next step.

Step 3: We show by induction the precise relationship between
branches in the search tree and the existence of stable models and
the predicates true in them.

We now give the details of the steps.

Step 1
It is immediate that the 2nd entry in the triple 〈S ′, tcaused, t′〉 represents the
caused tasks (as defined in Definition 13): they are all ground and primitive.
The operators that are applied to these tasks are the markings on the edges
above that node 〈S ′, tcaused, t′〉. There are also edges marked by methods:
they just denote which method has been used in the process to decompose
the first compound task in the 3rd entry of the node immediately above it.

As long as the 3rd entry t′ is not yet empty, the tree is expanded until a
successful branch is built up. Of course, it can also lead to (1) a dead end:
the final node might be unsuccessful, or (2) it might never end and the same
methods are applied and lead to longer and longer lists of tasks in t′.

By the very construction of the tree and by the Definition 13, we have
the following

t is causable wrt. (S,D)
if and only if

there is a successful branch for the tree for 〈S, ∅, t〉.

Moreover, comparing the definition of the tree with the original definition
of a planning problem, we get that all the plans π ∈ Sol(S, t,D) are ob-
tained by traversing the successful branches and putting together the edge
labellings that correspond to the operator applications (note that these are
the ground instances of primitive tasks, i.e., the actions in our plan).



36 Jürgen Dix and Ugur Kuter and Dana Nau

Step 2
We now show formally the relation of the tree to the stable models of
Trans((S, t,D)). Several things are worth noticing before we give the formal
proof.

1. All the predicates used in Trans((S, t,D)) carry as last argument a
time variable T . This is used, informally, to denote the time when this
predicate is active. In a stable model where taskTBA(t1, 5) holds, this
is interpreted as task t1 is to be accomplished at time 5. Similarly,
method3(h, 7) means that the third method for the task h is selected
to decompose h at time 7.

2. The first task at time 0 is h1 in t′ (forced by Definition 19) in all
stable models of Trans((S, t,D)).

3. The state predicates represent the current state at any point in time:
in state(a, 5) means that atom a is true at time 5, out state(a, 5)
means that a is not true at time 5. Note that the initial state is
encoded in Definition 16, and all changes (when operators are applied)
are formalised in Definition 23: out state(.) is responsible for the delete
lists. The checked state predicate uses the state predicates to check
whether the preconditions of a method are satisfied in the state at
time T .

4. The first part of Trans((S, t,D)) defined in Definition 26 ensures the
following: in all stable models of Trans((S, t,D)), for all time points
T , exactly one of the methods m1, . . . ,mN that are applicable to the
current task is selected at time T to decompose it. This is because
stable models are minimal.

5. We note that the taskTBA predicate can be true for several tasks
at a particular time point. Suppose we have a stable model of
Trans((S, t,D)) where taskTBA(t, 5) holds and t is a compound
task. Suppose further that a method m is selected to decompose t
(i.e. method(t, 5) holds in that stable model), and that the precondi-
tions of m are true in the current state so t can be decomposed into
t1, t2. Then, because of the first rule in Definition 28, taskTBA(t1, 5)
is true as well. If t1 were a compound task and a method decomposes
it into other tasks, then the first of these tasks would again be the
current task at time 5. This goes on as long as a primitive task is
found (which would also be true at time 5). In that case, there are no
rules of the form in Definition 26 available (since these rules are only
stated for compound tasks). Then the time T is incremented by one,
due to the 2nd case in the definition of CAUSABLE.
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6. causable(h, T1, Tn+1) informally means that the task h is caused at
time point Tn+1 using a method, which was decomposed at time T1.
Such a predicate is true in a stable model only if there is a path on
the search tree in which h has been decomposed and its subtasks have
all been caused.

7. Note that the two rules mentioning the predicate plan found (see
Step 5. above) ensure that either there is at least one stable model (in
which the causable predicate is true) or there are no stable models at
all (because there is a negative cycle). This is the only place where
there is a potential cycle through negation which could lead to the
nonexistence of stable models.

Step 3
Let us consider the translation Trans∗((S, t,D)), which is exactly like
Trans((S, t,D)), except that the clause plan found : −not plan found
is not included. Note that this is the only cycle through negation in
Trans((S, t,D)) which can be the cause of nonexistence of stable models.
The other two places where there are potential conflicts are in Trans(AX )
and in Trans(MET H) (via the checked state predicates and the method
predicates in 1.). However, we explicitly assumed that AX is free of cycles
through negation, and it can be easily seen that the complete instantiation
of the checked state predicates is also stratified. Also the rules for the meth-
ods ensure that if the taskTBA predicate is true, there are always stable
models (there are only even cycles through negation).

It is trivial (but tedious) to show formally by induction on the length of
a path in the search tree that the following holds:

1. If path is a path in the search tree for (S, t,D), then there is an answer
set Ans of Trans∗((S, t,D)) such that the following holds:

(a) For all tasks t and time point i: taskTBA(t, i) holds in Ans if
and only if task t (compound or not) occurs as the first task in
t′ at a node of task-depth i.

(b) For all tasks t and time points i: methodj(t, i) holds in Ans if
and only if methodj is the labelling of an edge at task-depth i of
the path, for every j = 1 . . . N .

(c) For all tasks h and time points i, e, f : causable(h, e, f) holds in
Ans if and only if the following holds:

• the task h has been decomposed at the path at task-depth
e, and
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• all h’s successor tasks tj are causable at time points g such
that e ≤ g ≤ f (i.e. causable(tj , ·, gj) holds in Ans for all
successor tasks tj of h, where we have e ≤ gj ≤ f).

(d) For all atoms a and time point i: in state(a, i) holds in Ans if and
only if a is true in the state represented by the node of task-depth
i in the path.

2. If Ans is an answer set of Trans∗((S, t,D)), then there is a path in
the search tree for (S, t,D) such that the above properties 1(a)–1(d)
hold.

Note that the above formulation includes the situation where the plan-
ning problem has no solution. In that case, there is no successful path in
the search tree. But there still might be infinite paths. These are gener-
ated because tasks are decomposed without being replaced, eventually, by
primitive tasks. So even for those paths, there are corresponding stable mod-
els (in which the time variable T is unbounded). Of course, the predicate
plan found does not hold in these stable models. Thus, if we include the rule
plan found : −not plan found, then we get the desired result: successful
branches exist if and only if there exist stable models. !

COROLLARY 31 (Soundness and Completeness of Trans(·)). The answer
sets of Trans((S, t,D)) correspond exactly to the plans in Sol (S,t,D). There
is a bijection between these two sets and each plan in Sol (S,t,D) can be
reconstructed from its corresponding answer set in Trans((S, t,D)) and vice
versa.

COROLLARY 32 (Soundness and Completeness of Trans(·) wrt SHOP).
If the axioms AX in D do not contain any (positive or negative) cycles, then
the answer sets of Trans((S, t,D)) correspond exactly to the plans computed
by SHOP.

The corollary follows easily from the theorem and the fact that SHOP
itself has been shown to be a sound and complete planner.

Note that the only reason why we assume the axiomatic theory in D
is free of cycles is because the SHOP implementation cannot handle such
axioms. In principle, such axioms would cause no problem for the abstract
SHOP procedure, which makes no commitment about what kind of inference
procedure to use. The soundness and completeness result for the abstract
SHOP procedure [Nau et al., 1999; 2000] says something like “if the infer-
ence procedure is sound and complete, then so is the planning procedure.”
However, in the inference procedure used in the implementation of SHOP,
SHOP would go into an infinite loop even for simple axioms like a ← a.
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So our overall result (all plans returned by SHOP are also obtained using
our ASP framework) still holds, even without this assumption. In fact, our
method computes plans that an ideal version of SHOP would compute as
well. It is thus complete for such a version of SHOP.

5.2 Experimental Study
In our experiments, we used the following three different planning domains:

The Simple-Travel Domain This domain is one of the domains included
in the distribution of the SHOP planning system. The scenario for the
domain, as described in [Nau et al., 1999; 2000], is that we want to
travel from one location to another in a city. We have three locations:
downtown, uptown, and park. There are two possible means of trans-
portation: by taxi and by bus. Taxi travel involves hailing the taxi,
riding to the destination and paying the driver $1.50 plus $1.00 for
each mile travelled. Bus travel involves hailing the bus, paying the
driver $1.00, and riding to the destination. Thus, different plans are
possible depending on the weather conditions, the distance between
our current location and the one we want to go, and how much money
we have.

The Miconic-10-simtest Domain This is the domain as described in
Section 4.3. It is contained in a series of benchmarks <http://www.
informatik.uni-freiburg.de/~koehler/elev/elev.html> and it
was recently used not only to measure the performance of various plan-
ners but also for other translation methods from planning problems
into ASP (see http://www.fcs.nmsu.edu/~tson/asp_planner/>.

The Zeno-Travel Domain The Zeno-Travel problem was one of the do-
mains that were introduced as recent benchmarks in International
Planning Competition (IPC-2002).9 This domain involves transport-
ing people around in planes, using different modes of movement: fast
and slow. There were four versions of this domain in the competi-
tion; namely STRIPS, NUMERIC, SIMPLE-TIME, and TIME. In the
NUMERIC version, aircrafts consume fuel at different rates accord-
ing to the mode of travel. Using a small set of symbolic fuel levels,
the SIMPLE-TIME version manages to combine the benefits of fast
travel (shorter journey times) with the associated costs (higher fuel
consumption) that must be balanced with the cost of refuelling to
arrive at time-efficient plans. In the TIME version, the domain uses

9IPC-2002 was organised within the Sixth International Conference on AI Planning
and Scheduling 2002 (AIPS-2002). For more information on AIPS-2002 and IPC-2002,
please see <http://www.dur.ac.uk/d.p.long/competition.html>.
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Table 1. Comparison between our Smodels encoding of Miconic-10-simtest
and the encoding described in [Son et al., 2001]. In this table, ”no solution”
means that the computer used in these experiments ran out of memory.

Problem Trans(·) [Son et al., 2001]
S1-0 0.160 8.29
S2-0 1.160 73.41
S3-0 4.450 162.24
S4-0 12.790 964.01
S5-0s1 44.090 no solution
S5-0s2 44.490 no solution
S6-0 46.300 no solution

numbers to encode fuel consumptions, dependent on distances, and
speeds to calculate travel times in each travel mode. This version is
essentially the domain used to illustrate the Zeno planning system de-
veloped by Penberthy and Weld [<http://www.cs.washington.edu/
ai/zeno.html>]. In our experiments we used the STRIPS version of
the domain.

We describe our experiments in the following subsections. In these ex-
periments, we used the Smodels system v2.27 (which is available at <http:
//www.tcs.hut.fi/Software/smodels/>) and the DLV system (available
at <http://www.dbai.tuwien.ac.at/proj/dlv/>). For the experiments
in the Smodels system, we used lparse v1.0.11 as a grounding front-end.
We ran our experiments on an HP Notebook PC with an AMD 900Mhz
Processor and 256MB RAM running Linux RedHat v7.2 operating system.
In all of our experiments, we were finding all of solutions to each planning
problem.

Note that we also redid the experiments of [Son et al., 2001] on our
machine so that fair comparisons could be done. All of our source codes
are available at <http://www.cs.umd.edu/users/ukuter/ASP_Planning/
>. In our experiments on the Simple-Travel Domain using our method to-
gether with DLV , we got a speed-up of two orders of magnitude compared
to Smodels.

Comparing our method with [Son et al., 2001]
This section describes our comparison of the time performance of the logic
programs produced by using our translation methodology with that of the
logic-program encodings presented in [Son et al., 2001].

Note that the encodings proposed in [Son et al., 2001] do not produce
actual HTN encodings. Instead, they make use of only a few properties



Planning in ASP using OTD 41

of HTNs, in order to implement some control knowledge in logic programs
that perform classical . In their paper, Son et al. showed that employing that
control knowledge has improved the time performance of the logic program
that encodes an action-based planner.

For our experimental comparison, we had to be very careful about how
we wrote our HTN formulation of the planning domain. If two different for-
mulations of a planning problem perform differently, then there are several
different ways in which this can occur:

• The two formulations may be based on different ways of conceptualising
the problem. For example, one formulation might involve reasoning about
the movement of the elevator and where it needs to go next, and another
formulation might involve reasoning about the movement of the people
and where they need to go next. These two problem formulations would
produce very different search spaces.

• The two different formulations may use basically the same tasks, and use
them to mean basically the same thing. However, one formulation may
take less time because it has lower overhead, or because it does a better
job of deciding which tasks should actually be generated and explored.

For our experiments, we did not want to use a different conceptual repre-
sentation than the one used by [Son et al., 2001], because we wanted our
experiments to test the performance of the two different approaches, not our
ability to devise a clever conceptual representation! Thus, we were careful to
write our HTN formulation of Miconic-10-simtest so that we used basically
the same conceptual representation that they did.

The problems that we used in these experiments are from http://www.
cs.nmsu.edu/~tson/asp_planner>. Table 1 shows both our results and
the results from [Son et al., 2001], which were also obtained on the Smodels
system.

In our experiments, the logic programs produced by our translation
methodology were about 1.5 to 2 orders of magnitude faster than the logic
programs produced by the methodology described in [Son et al., 2001]. In
addition, our encoding was able to solve problems for which the encoding in
[Son et al., 2001] ran out of memory. In this respect, these results confirm
the fact that a SHOP-like HTN planning approach is a much more effec-
tive way for solving planning problems if a good set of HTN methods is
available, because the HTN methods constrain the size of the search space.
They also illustrate that our translation method provides a way to produce
efficient HTN-logic programs with ASP semantics to solve planning prob-
lems compared to action-based encoding methodologies in the style of [Son
et al., 2001].
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Table 2. Comparing Smodels and DLV on the Simple-Travel Domain
Problem Smodels DLV DLV grounding+Smodels
P1 3.430 0.050 0.040+0.020
P2 3.330 0.050 0.050+0.020
P3 3.190 0.030 0.030+0.000
P4 3.340 0.070 0.060+0.010
P5 3.410 0.060 0.050+0.030
P6 3.230 0.030 0.030+0.010
P7 3.340 0.050 0.050+0.010
P8 3.260 0.040 0.040+0.010
P9 3.230 0.040 0.040+0.010
P10 3.410 0.070 0.050+0.000
P11 3.340 0.050 0.040+0.000
P12 3.250 0.020 0.030+0.010
P13 3.410 0.070 0.060+0.010
P14 3.350 0.060 0.050+0.020
P15 3.270 0.030 0.030+0.000
P16 3.380 0.060 0.050+0.010
P17 3.300 0.050 0.050+0.010
P18 3.260 0.030 0.030+0.000

Comparing Smodels and DLV using planning benchmarks
We believe that our translation methodology provides more efficient logic
programs with ASP semantics if the system on which those programs are
implemented allows the usage of unbound variables in the programs, or,
at least, produces an intelligent grounding. Otherwise, the system tries to
make every rule ground in the input program, which decreases the efficiency
of planning by causing a combinatorial explosion in the size of the search
space.

As we described earlier, neither Smodels nor DLV is designed to work
on the logic programs with unbound variables. However, DLV ’s grounding
differs from that of Smodels, and is generally believed to be more intelligent
and smaller in size. Also, DLV is based on deductive database techniques
and we expected a better handling of unbound variables. To test this hy-
pothesis, we applied our translation methodology to our elevator and trav-
elling examples. While testing this hypothesis, one must note the way the
Smodels system solves a problem. Smodels uses a front-end called lparse
to preprocess the programs in order to get them grounded. After the pro-
grams are grounded, the Smodels ASP solver solves the ground program
itself. Therefore, the problems solved in this system may not reflect the ac-
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Table 3. Comparison of Smodels and DLV using Trans(·) on the Miconic-
10-simtest Domain

Problem Smodels DLV DLV grounding+Smodels
S1-0 0.160 0.040 0.030+0.010
S2-0 1.160 0.060 0.050+0.010
S3-0 4.450 0.080 0.010+0.090
S4-0 12.790 0.260 0.100+0.530
S5-0s1 44.090 0.640 0.080+1.540
S5-0s2 44.490 0.680 0.090+1.840
S6-0 46.300 0.980 0.170+3.560

tual performance of the ASP solver. To accommodate this issue, we also
designed a set of experiments in which we used DLV to produce groundings
of the programs. These groundings were then given to Smodels. The aim
in these experiments was to determine the effect of grounding done by the
front-end lparse on the overall performance of the Smodels system.

Tables 2 and 3 show our results on the Simple-Travel and Miconic-10-
simtest problems. We compared our encodings using Smodels with lparse
for grounding, DLV , and Smodels with DLV for grounding. These results
suggest that our programs are much faster on DLV than on Smodels using
lparse for grounding. One possible reason for this behavior is as follows. In
Smodels we have to define type predicates for each variable in the problem
domain description as well as all possible ground instances of the atoms that
can ever be used in the planning process. The result is that as the number of
variables and the number of their possible instantiations increase, the time
performance of the logic program decreases. However, we do not have such
constraints in DLV .

In order to test the effect of grounding in two systems, we have also
designed the following experiments. We used DLV to produce the ground
programs, and fed these into Smodels, instead of using lparse for grounding.
The result is that the overall performance of Smodels is increased to almost
that of DLV on the Simple-Travel problems. Note that the last column in
Table 2 contains the sum of (1) the time for producing the grounded version
by DLV , and (2) the time it takes for Smodels to produce the solution based
on this grounding.

We observed similar behaviour between the two systems for our elevator
problems. As can be seen in Table 3, DLV performed better than Smodels
not only in direct comparison, but also when Smodels used the grounding
obtained by DLV . The reasons behind the differences in the performance of
both DLV and Smodels on the problems in Miconic-10-simtest and Simple-
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Travel domains are twofold: (1) the number of solutions for a problem, and
(2) the task depth – i.e., the length of a solution. In Simple-Travel domain,
the hardest problems has only 3 solutions, whereas the hardest problem in
Miconic-10-simtest domain has 120 solutions. Furthermore, the length of
the solutions in Simple-Travel domain is at 4 — i.e., there are 4 steps in the
longest plan found in this domain. However, in Miconic-10-simtest domain,
we have solutions with 20 actions in them. This means that the search trees
that correspond to Miconic-10-simtest problems are much larger than the
ones that correspond to Simple-Travel problems. As a result, our programs
required much more time to find all of the solutions for the problems in
Miconic-10-simtest domain than they required for Simpe-Travel problems.

Note that, in Miconic-10-simtest problems, the performance of Smodels
using DLV ’s groundings is not as good as that of DLV on the same problems.
One possible explanation for DLV ’s dominance in performance over Smodels
on these problems is that the implemented search heuristics for the guess-
and-check method in DLV are better suited for planning problem such as
the ones in these experiments.

The above results led us to investigate more about the performances of
the ASP solvers (without the grounding part) of the two systems. To do this,
we designed a new set of experiments using the Zeno-Travel domain, which
was introduced as a benchmark problem in the recent AIPS-2002 planning
competition. These experiments involved harder problems than the previous
ones: the hardest one (e.g. p25 in Table 4) has over 20000 solutions (i.e stable
models), whereas no problem in Tables 2 and 3 has more than 120 models. In
these experiments, we compared the performance of Smodels using lparse
for grounding with that of Smodels using ground programs produced by
DLV . Therefore, we were able to investigate the performances of the ASP
solvers implemented in the two systems.

The results for these experiments are shown in Table 4. Smodels using
lparse for grounding was only able to solve the first two problems, and on
those problems its performance was about an order of magnitude worse
than that of DLV . Smodels with lparse was unable to solve the rest of the
problems because lparse ran out of memory. Table 4 also shows the time it
takes for DLV to ground the problems. As it can be seen, DLV performs
better than Smodels, even when Smodels is using the grounding produced
by DLV . These results clearly indicate the difference in model generation
algorithms implemented in the two systems. According to these results, we
can conclude that DLV is better suited for the encodings of planning with
ordered task decomposition.

Note that on the hardest problems, namely P22-P25, of Zeno Travel,
Smodels could not find a solution (Table 4). This was not because the
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Table 4. Comparison of Smodels and DLV on the Zeno-Travel Domain. In
this table, ”no solution” means that the computer used in these experiments
ran out of memory.

Problem DLV DLV grounding+Smodels
P1 0.590 0.510+0.330
P2 0.670 0.590+0.330
P3 0.410 0.380+0.060
P4 0.320 0.290+0.040
P5 0.490 0.490+0.080
P6 0.360 0.350+0.040
P7 16.440 14.340+35.210
P8 26.180 22.630+85.390
P9 38.390 36.160+76.860
P10 27.220 24.840+52.730
P11 30.370 28.150+55.550
P12 22.930 20.930+21.310
P13 16.560 14.920+22.650
P14 18.230 16.240+66.310
P15 17.020 14.960+38.190
P16 78.060 70.880+152.190
P17 66.300 62.450+62.75
P18 85.000 81.370+194.940
P19 146.030 139.700+138.240
P20 168.630 163.660+329.940
P21 120.080 117.160+106.330
P22 2025.16 1578.69+no solution
P23 4275.25 4236.60+no solution
P24 3612.96 3462.32+no solution
P25 4619.24 4585.35+no solution

ASP solver itself could not solve the problems, but the ground programs
generated by DLV were too big for Smodels’s front-end lparse to parse and
convert them into the input syntax required by Smodels. On these problems,
lparse ran out of memory and the operating system killed its process.

Influence of using disjunctions

Finally, we did another set of experiments to find out the influence of using
disjunctions in our transformation. In Definition 26 we used a set of rules
to represent nondeterministic choice of methods. Conceptually, these rules
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Table 5. Comparison of Smodels and DLV on the Simple-Travel Domain
using disjunctions

Problem Smodels DLV DLV grounding+Smodels
P1 3.640 0.050 0.050+0.010
P2 3.560 0.050 0.030+0.000
P3 3.360 0.030 0.030+0.000
P4 3.590 0.080 0.060+0.010
P5 3.610 0.050 0.050+0.000
P6 3.500 0.030 0.030+0.000
P7 3.580 0.050 0.050+0.020
P8 3.480 0.040 0.030+0.010
P9 3.430 0.030 0.030+0.000
P10 3.560 0.050 0.050+0.010
P11 3.550 0.040 0.030+0.010
P12 3.450 0.020 0.010+0.000
P13 3.570 0.060 0.050+0.020
P14 3.550 0.050 0.050+0.020
P15 3.470 0.030 0.030+0.000
P16 3.580 0.050 0.050+0.010
P17 3.460 0.040 0.040+0.010
P18 3.510 0.030 0.030+0.000

can be much more easily formulated by just one disjunctive rule:

method1(h, T ) ∨method2(h, T ) ∨ . . . ∨methodN (h, T )
← taskTBA(h, T ).

Tables 5 and 6 show the results. While disjunctions pay off for the sim-
pler problem (times are slightly better), they do not pay off for the harder
Zeno-Travel problems. We do not have an explanation for this yet. We had
expected that since DLV is especially designed to deal with disjunctions, it
would perform better when using disjunctions than when we coded them
into equivalent non-disjunctive versions.

Comparison with SHOP
Encouraged by the performances of the logic programs produced by our
translation, we prepared a set of experiments to compare the time per-
formances of our logic-program encodings on both the Simple-Travel and
Zeno-Travel examples with those of the SHOP planning system itself.

Tables 7 and 8 augment our results from Tables 2 and 3 to include com-
parisons with SHOP on the Simple-Travel and Miconic-10-simtest domains.
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Table 6. Comparison of Smodels and DLV on the Zeno-Travel Domain with
disjunctions

Problem DLV DLV grounding+Smodels
P1 0.600 0.510+0.340
P2 0.650 0.620+0.310
P3 0.410 0.410+0.070
P4 0.330 0.310+0.040
P5 0.520 0.490+0.080
P6 0.380 0.370+0.050
P7 19.390 14.420+34.790
P8 29.990 22.720+84.950
P9 43.150 35.630+75.690
P10 30.960 24.630+53.670
P11 34.170 27.920+56.080
P12 25.220 20.890+20.590
P13 18.530 14.620+22.550
P14 20.540 16.060+70.750
P15 19.460 14.880+39.430
P16 89.050 70.640+150.000
P17 73.030 62.540+63.600
P18 90.510 81.300+194.900
P19 162.110 142.210+133.450
P20 171.910 164.510+335.090
P21 121.900 120.060+106.680

For the Simple-Travel domain, the comparison is inconclusive, because the
amount of time taken by SHOP was too small for us to measure accurately.
For the Miconic-10-simtest domain, the time needed by our program using
DLV was about 1 to 2 orders of magnitude more than the time needed by
SHOP.

The results of our experiments on the Zeno-Travel Domain can be seen
at Table 9. In most cases, the time needed by our program using DLV was
2.5 to 3.5 orders of magnitude more than SHOP.

The experimental results are encouraging in several ways:

• To the best of our knowledge, this is the first time that an ASP-based
approach has been able to do this well on planning problems of this
calibre. Our ASP programs were slower than SHOP, but this is to be
expected since SHOP, and also its successor SHOP2, are known to be
efficient planning systems. For example, SHOP2 was one of the fastest
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Table 7. Comparison of Smodels and DLV with SHOP on the Simple-Travel
Domain

Problem Smodels DLV DLV grounding+Smodels SHOP
P1 3.430 0.050 0.040+0.020 0.000
P2 3.330 0.050 0.050+0.020 0.000
P3 3.190 0.030 0.030+0.000 0.000
P4 3.340 0.070 0.060+0.010 0.000
P5 3.410 0.060 0.050+0.030 0.000
P6 3.230 0.030 0.030+0.010 0.000
P7 3.340 0.050 0.050+0.010 0.000
P8 3.260 0.040 0.040+0.010 0.000
P9 3.230 0.040 0.040+0.010 0.000
P10 3.410 0.070 0.050+0.000 0.000
P11 3.340 0.050 0.040+0.000 0.000
P12 3.250 0.020 0.030+0.010 0.000
P13 3.410 0.070 0.060+0.010 0.000
P14 3.350 0.060 0.050+0.020 0.000
P15 3.270 0.030 0.030+0.000 0.000
P16 3.380 0.060 0.050+0.010 0.000
P17 3.300 0.050 0.050+0.010 0.000
P18 3.260 0.030 0.030+0.000 0.000

planning systems in the AIPS-2002 planning competition http://www.
laas.fr/aips/.

• Consider the “performance ratio” for our programs, i.e., the ratio of the
amount of time they require to the time required by SHOP. If the average-
case time complexity of our programs were worse than that of SHOP, then
we would expect their performance ratio to get worse with increasing
problem size. In our experiments, the performance ratio did not seem to
get worse with increasing problem size.
Although there is not enough data to say so conclusively, this suggests
that the average-case time complexity of our programs may be roughly
the same as that of SHOP. This gives reason to hope that future im-
provements in our programs and in ASP solvers may make it possible to
get performance competitive with planning systems such as SHOP.

• In the HTN formulation of the Miconic-10-simtest domain, the average
branching factor (the average number of subtasks of each task) is smaller
than in the Zeno Travel domain. The performance ratio for our programs
is about two orders of magnitude better in the Miconic-10-simtest do-
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Table 8. Comparison of Smodels and DLV using Trans(·) with SHOP on
the Miconic-10-simtest Domain
Problem Smodels DLV DLV grounding SHOP (DLV / SHOP)

+Smodels Ratio
S1-0 0.160 0.040 0.030+0.010 0.000 -
S2-0 1.160 0.060 0.050+0.010 0.010 6
S3-0 4.450 0.080 0.010+0.090 0.000 -
S4-0 12.790 0.260 0.100+0.530 0.020 13
S5-0s1 44.090 0.640 0.080+1.540 0.060 10.67
S5-0s2 44.490 0.680 0.090+1.840 0.060 11.33
S6-0 46.300 0.980 0.170+3.560 0.090 10.89

main than in the Zeno Travel domain. As explained later in Section 6, a
likely explanation is that the ASP systems are creating ground instances
of clauses that are irrelevant for the planning process, because the num-
ber of such irrelevant ground instances grows combinatorially with the
branching factor.
If this hypothesis is correct, then it may be possible to improve the perfor-
mance of our ASP systems—possibly by several orders of magnitude—if
we can avoid creating the ground instances. In the near future, we will
test our system on more planning domains and compare our approach
with other well-known planning systems. We are also planning to imple-
ment our approach on two systems, namely the XSB system ([Rao et al.,
1997]) and the front-end software developed by P. Bonatti for Smodels
([Bonatti, 2001b; 2001a]), both of which can handle unbound variables,
unlike DLV and Smodels.

6 Conclusions and Future Research Directions
In this paper, we have described a way to encode HTN planning problems
into logic programs under the answer set semantics. This transformation is
not only sound and complete, but it also corresponds closely to HTN plan-
ning systems which generate plans by using ordered task decompositions.
Previous encodings (as first introduced in [Dimopoulos et al., 1997]) either
consider only or they take a special view of HTN planning (as constraint-
based planning in [Son et al., 2001]).

In general, STRIPS-style preconditions do not have enough expressive
power to provide the amount of control that is needed for efficient plan-
ning. It is not hard to formulate examples of planning problems for which a
STRIPS-style representation of the problem will have a much larger search
space than the search space than can be achieved with a more expressive
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Table 9. Comparison of DLV with SHOP on the Zeno-Travel Domain
Problem DLV SHOP Performance Ratio

(DLV / SHOP)
P1 0.590 0.000 -
P2 0.670 0.010 67.00
P3 0.410 0.000 -
P4 0.320 0.010 32.00
P5 0.490 0.000 -
P6 0.360 0.000 -
P7 16.440 0.020 822.00
P8 26.180 0.030 872.67
P9 38.390 0.070 548.43
P10 27.220 0.040 680.50
P11 30.370 0.030 1012.34
P12 22.930 0.020 1146.50
P13 16.560 0.060 276.00
P14 18.230 0.020 911.50
P15 17.020 0.020 851.00
P16 78.060 0.090 867.34
P17 66.300 0.060 1105.00
P18 85.000 0.070 1214.29
P19 146.030 0.120 1216.92
P20 168.630 0.130 1297.15
P21 120.080 0.100 1200.80
P22 2025.16 3.050 663.99
P23 4275.25 12.250 349.00
P24 3612.96 7.980 452.75
P25 4619.24 12.860 359.19

representation such as SHOP’s HTNs, or the temporal-logic control rules
used in TLplan [Bacchus and Kabanza, 2000] and TALplanner [Kvarnström
and Doherty, 2001]. The practical result of this is that SHOP and TLplan
and TALplanner have been able to solve far more planning problems than
STRIPS-style planning systems and have been able to solve them in sev-
eral orders of magnitude less time in extensive empirical comparisons across
dozens of planning domains [Nau et al., 1999; Bacchus and Kabanza, 2000;
Bacchus, 2001; Fox and Long, 2002].

To test our approach, we have used it to create both Smodels and DLV
logic programs, for three different AI planning domains: the Miconic-10-
simtest domain, the Simple-Travel Domain, and the Zeno-Travel domain.
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Here is a summary of our experimental results and what we believe they
signify:

HTN vs. action-based In our experiments, our Smodels logic programs
clearly outperformed the corresponding ones described in [Son et al.,
2001], which are based on answer set semantics. Our programs took
several orders of magnitude less time to solve planning problems, and
they solved several problems that were inaccessible to the based ASP
systems. This is due largely to the HTN-style control knowledge that
our translation methodology encodes into the logic programs. HTN
planning is more expressive than [Erol et al., 1996], and in particu-
lar, the domain description for an HTN formulation of a domain can
include domain-specific knowledge about how to carry out the plan-
ning process—knowledge that cannot be expressed in an action-based
formalism. To develop this domain-specific knowledge can take a sig-
nificant amount of human effort, but it can enable the planning system
to search a much smaller search space than the search space explored
by action-based formalisms.

DLV vs. Smodels In our experiments on the Simple-Travel Domain us-
ing our method together with DLV , we got a speed-up of two orders
of magnitude compared to Smodels. We believe one of the reasons for
this is that Smodels requires type predicates to be defined as an input,
which creates combinatorially many ground instances of the clauses
in the logic program. For any given problem instance, most of these
clauses are likely to be irrelevant. But our experiments also revealed
that the grounding of Smodels is not the only source responsible for
this behaviour. By using the grounding obtained from DLV and then
running Smodels, we still got a performance of Smodels that does not
compete with DLV .

SHOP vs ASP In our experiments, our logic-program encodings were
not competitive with SHOP. That is not particularly surprising, since
SHOP is a state-of-the-art HTN planning system. However, we find
it quite interesting and encouraging that in our experiments, the time
requirement for our logic-program encodings did not seem to grow any
faster than proportional to SHOP’s time requirement.

We believe that most of the difference in performance is due to the
grounding mechanism underlying ASP systems. In order to run our
logic-program encoding of an HTN domain, both DLV and Smodels
must first ground the program. This can generate many ground in-
stances for the rules that correspond to the methods. For example,



52 Jürgen Dix and Ugur Kuter and Dana Nau

suppose that a method m corresponds to r different rules, that the
number of unground variables in each rule is c, and that the number
of possible values for each variable is k. Then there will be rkc ground
instances for the rules. Now, suppose we are trying to accomplish a
task t that is unified with a method m. Then in DLV and Smodels,
the branching factor of the search space may potentially be as high
as rkc in the worst case. At the same node of the search space, the
branching factor for SHOP will typically be much less, because SHOP
will be able to use method instances that are only partially ground.
Furthermore, if there are p different predicate symbols in the domain
description, then there will be pkc ground instances of the frame axiom
for the domain. SHOP will not have any of these instances because it
does not need the frame axiom.
If the difference in performance is because of the reasons described
above, then we should be able to get a great improvement in perfor-
mance by using systems like XSB. We have just started investigating
this aspect.

We emphasise the fact that our method does not use any particular fea-
tures of the engine for computing answer sets. Obviously, taking advantage
of the particular search method of Smodels, or the bottom-up evaluation
of DLV , it would be possible to write even more efficient translations. But
our aim is to develop a translation that is independent of the underlying
nonmonotonic engine.

As a byproduct, we believe our method can be easily used as a way
to transfer benchmarks from the planning community to benchmarks for
comparing nonmonotonic systems based on computing answer sets. This
is because our method does not rely on the features of a particular ASP
system. In the near future, there are several additional investigations that
we would like to perform:

• We want to test the benchmarks on the XSB system, a Prolog system
which not only allows function symbols but also unbound variables at the
same time. These are features that neither Smodels nor DLV provide. We
believe that we can get a competitive planning system once we can apply
our translation into a nonmonotonic system with these two features.

• In all of our experiments, we were finding all of solutions to each planning
problem. However, in most planning domains, one just wants to find a
single solution (hopefully a near-optimal one). In SHOP, finding a single
solution takes exponentially less time than finding all solutions. Whether
it takes exponentially less time for our logic-program encodings is an open
question, and we would like to run additional experiments to find out.
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• We are also planning to compare our method with Smodels equipped with
a front-end to allow for (restricted use of) unbound variables ([Bonatti,
2001b; 2001a]). The latter system has been developed by Piero Bonatti
and is a front-end system that can be added to any system computing
answer sets and based on grounding. This would also allow for compar-
isons of systems with built-in grounding to those who do not require this
(but are, in general, slower). Again, we believe that serious benchmarks
from the planning community can help a lot to evaluate nonmonotonic
systems.

Our overall aim is to investigate to what extent state-of-the-art nonmono-
tonic theorem provers can compete with dedicated planners (in particular
those based on HTN) and what lessons we can learn from the different
translation methods. We expect that optimal translations (if they exist)
depend on the particular application area. Developing a methodology to
determine or classify such domains seems to us to be worthwhile.
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Alternative Logic Programming Paradigm. In Apt et al. [1999], pages 375–398.

[McCain and Turner, 1997] N. McCain and H. Turner. Causal Theories of Action and
Change. In Proceedings of the 14th National Conference on Artificial Intelligence
(AAAI-97), pages 460–465, Menlo Park, CA, 1997. AAAI Press.

[McCain, 1999] N. McCain. Using Causal Calculator with the C Input Language. Tech-
nical report, University of Texas at Austin, 1999.
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SHOP: Planning with Ordered Task Decomposition. Technical Report CS TR 4157,
University of Maryland, 2000.

[Nau et al., 2001] D.S. Nau, Y. Cao, A. Lotem, H. Muñoz-Avila, and S. Mitchell. Total-
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