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Abstract

This paper presents our initial efforts to develop a systematic
approach for assessing the similarity of solid models based
on how they will be manufactured. The goal of this work
is to develop methods that, given a solid model representing
the design of a new product, query a product information
database (of solid models, associated manufacturing plans,
and related attributes) and identify existing designs with man-
ufacturing plans similar to some reasonable plan for the new
design—or useful as a starting point for creation of a new
plan for the new design.

Our approach is based on the automatic generation (from
CAD models) of graph structures that contain manufacturing
information (in the form of manufacturing features). We are
developing ways to measure similarity among these graph
structures, so that given the graph structures corresponding
to two different designs, we can tell how similar or different
they are. The similarity measure will be used as a basis for
indexing and retrieving similar designs from databases. An
implementation of our approach is discussed.

We believe our work is a first step in producing computer-
generatable and computer-interpretable similarity assessment
techniques that will be useful for applications such as vari-�This work is supported in part by NSF grants NSF EEC 94-02384, IRI-
9306580, and DDM-9201779, by ARPA grant DABT63-95-C-0037 and
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Technologiesand Bentley Systems. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the funders.yCurrent position: Visiting Research Engineer, Engineering Design Re-
search Center, Carnegie Mellon University, 5000 Forbes Avenue,Pittsburgh,
PA 15213-3980

ant and hybrid variant/generative process planning systems,
indexing schemes for large part inventories, access methods
for “smart catalogs,” and for performing component searches
through product catalogs and on the Internet.

1 Introduction

Computer-Aided Design and solid modeling have become
essential elements in modern design and manufacturing.
Computer-interpretable models of product information are
ubiquitous in all phases of the product life-cycle. The abil-
ity to efficiently save, index, and retrieve solid models and
CAD data has become critical in a wide range of applica-
tions, including variant process planning systems, indexing
schemes for large part inventories, access methods for “smart
catalogs,” and for performing component searches through
product catalogs and on the Internet. In particular, we are
interested in the following closely related problems:� given a collection of designs, which ones are similar to

each other—and how similar are they?� given a design—or a set of characteristics for what kinds
of designs we are interested in—how to find and retrieve
similar designs from a database?

Current approaches to these problems involve either compli-
cated geometric comparisons that do not measure similarity
according to criteria relevant for important application do-
mains such as manufacturing, or the use of simple indexing
and classification schemes such as GT codes that do not
incorporate enough product information to allow detailed
comparisons of similarity among complex designs.

As a solution to these problems, we are developing an
approach based on the use of abstract graph-based represen-
tations of designs. In particular, we are developing ways to
create design signatures—graph structures that represent sig-
nificant design attributes and significant relationships among



Figure 1: Desirable properties of a similarity measure in different application areas.

Design property Area of application
function conceptual design, performance analysis
shape conceptual and detailed design, design for assembly (DFA)
tolerances detailed design, DFA, design for manufacture (DFM)
material detailed design, performance analysis, DFA, DFM
manufacturing methods process planning, DFM, performance analysis

these design attributes. We are also developing ways to mea-
sure similarity among these graph structures, so that given
the graph structures corresponding to two different designs,
we can tell how similar or different they are. The similarity
measure will be used as a basis for indexing and retrieving
similar designs from databases.

The specific relationships and attributes that are used—as
well as the specific criteria for similarity among designs—
will depend on the particular application domain at hand. In
the current paper, we give examples involving design at-
tributes, relationships, and similar measurements that are
relevant in the application domain of process planning for
machined parts.

Section 2 describes what a similarity measure is, and dis-
cusses previous work. Section 3 outlines our approach, and
Section 4 gives examples from the domain of machined parts.
Section 5 discusses the experimental validation of the ap-
proach, and Section 6 contains concluding remarks.

2 Measuring Similarity

2.1 Intention

Some of the desirable properties for a similarity measure are:� It should reflect those notions of similarity that will be
useful in the application domain in which it is to be used.
For example, Figure 1 shows some of the properties of
a design that may be important in different application
areas.� It should provide a way to index designs for quick re-
trieval from a database. For example, if we are de-
veloping a new design, we may want to retrieve (from
a database) the closest possible existing design, or a
number of “relatively close” existing designs.� It should be “open.” In other words, it should be possible
to tune it for a particular application by changing some
of the details of what it means for two designs to be
similar, and still be able to use the same approach and
same algorithms.

2.1.1 Group Technology

Group Technology (GT) is probably the oldest and the
most popular type of approach to classifying designs. The

basic idea—to make “parts of similar shape on specially
grouped machines” [2]—and the consequent need for some
way of classifying designs according to their manufacturing
requirements—is an old technique, and some references to it
can be found as early as 1925. However, only after the works
of Mitrofanov [9] and Opitz [10] did it become very popular.

In the last 35 years, many classification schemes have been
developed, with emphasis in the different areas of design and
manufacturing. In each case the basic idea is to capture
critical design and manufacturing attributes of a part in an
alphanumeric string, or GT code, that is assigned to that part.

The typical GT code [6] consists of two types of positions.
In one case, a position describes some global property of the
design such as material, size, type, functionality, etc., and its
meaning is completely independent of what values are stored
elsewhere. In the other case, a position represents some
details that are relevant only for certain types of designs, and
thus its meaning depends on the values of other positions.

GT classification schemes are essentially tables and rules
that help a designer determine the GT code of a part from a
drawing manually. One can use a database of the GT codes
for design retrieval, variant process planning, and other man-
ufacturing applications. Since the 1980’s several researchers
(e.g.,[14, 15]) have worked on automating this manual pro-
cess for classes of machined parts.

GT qualifies as an open method—one checks previous
coding work, selects appropriate criteria and construct new
codes relevant to the particular domain of designs. Using
question trees to define the code provides an efficient way
to build an indexing scheme. One issue is the relevance of
GT methods to specific real world design retrieval problems.
As it has been used during the last 35 years it works—but
it has an inherited drawback: describing designs as short
strings creates a coarse classification scheme. Moreover,
from the beginning GT coding was intended to be human
interpretable, hence the typical questions describe somewhat
subjective human impressions of 2D drawings. This has
caused difficulty in automating the generation of GT codes.

2.1.2 Geometric Approaches to Measuring Similarity

Another possible basis for classifying designs is to use ge-
ometric properties of solid and CAD models. Most of to-
day’s CAD/CAM systems use either constructive or bound-
ary models to represent solids.



The use of CSG trees as a way to classify designs has two
appealing characteristics: the analogy between volumetric
CSG primitives and the volumes of material removed by ma-
chining operations, and the ready availability of CSG trees
as a basic representational scheme in several geometric mod-
elers. However, the approach suffers from two drawbacks.
First, the CSG representation for a design is not unique and
a robust method for computing a unique CSG representation
for a design has not yet been found (many believe that such
a method simply cannot be found [8]). Second, the CSG
primitives that would be involved in such a representation
do not necessarily correspond to the manufacturing opera-
tions that would be used to manufacture the design—and
thus the classification might not be very useful for manufac-
turing practice. As far as we know, no methods to measure
similarity on the basis of CSG trees were developed.

Wysk et al [16] have described a similarity measure for
solids based on properties of their boundary representations.
The approach involves representing a polyhedral approxima-
tion of a solid using a graph, in which the nodes correspond
to faces of a solid and have labels capturing the faces’ ori-
entation and area, and the edges correspond to the adjacency
relation between solid faces, and are labeled by the corre-
sponding solid angles. To compare two solids they use a
sophisticated algorithm to take the graphs of these solids and
map them into each other in such way that the area and ori-
entation of corresponding nodes are as close as possible. The
results of such mapping are expressed as a real number in a
range from 0 to 1. As a new measure of “relaxed" geometri-
cal similarity their work looks very interesting, but there are
several difficulties to be overcome before it can be useful as
a classification scheme for manufacturing:� In its current form, the method works only with polyhe-

dral objects—any non-planar faces of the designs must
first be replaced with planar approximations. This may
cause difficulty in classifying solids with a significant
number of cylindrical or sculptured surfaces.� The measure of similarity is not symmetrical (similarity
between solids A and B is not equal to the similarity
between B and A). This will cause difficulties in using it
as the basis for a traditional database indexing scheme,
since such schemes assume a symmetrical measure.� In its current form, the method does not incorporate
(or reflect) manufacturing considerations, such as ap-
proachability, fixturing, and operation interference, and
we do not see any obvious way to add them.

2.1.3 Feature-Based Similarity

During last several years, a number of efforts have been made
to develop algorithms to examine CAD designs and extract
features that correspond to manufacturing operations. This
creates an opportunity for a third kind of approach to mea-
suring the similarity of CAD designs: to automatically gen-

erate representations of them based on their manufacturing
features, and compare the similarity of these feature-based
representations. Such an approach is the subject of this paper.

3 Approach

3.1 Equivalence Hierarchy

Suppose we are given a class of designs D, and want to
measure the similarity of various designs inD. We will judge
the similarity of two designs d and d0 by examining various
properties of these designs—things that are either specified
explicitly in the design, or can be deduced by examining it.
One example (although certainly not the only one!) would
be the kinds of properties that one might examine in order to
compute a GT coding scheme.

If the set of properties we are examining is P =fp1; p2; : : : ; png, then we will use pi(d) to denote the value
of the property pi for the design d. For each property pi, we
can define an equivalence relation Ei such that Ei(d; d0) is
true if and only if pi(d) = pi(d0). For example, if pi(d) is the
material from which d is to be made, then Ei(d; d0) will be
true only if d and d0 are to be made from the same material.

Given a design d, suppose we want to find designs inD that
are “relatively similar” to d, or find the design that is “most
similar” to d. For such a task, we need a way to measure the
similarity of two designs along some numeric scale—so that
we can say, for example, that d is more similar to d0 than it is
to d00. Below, we define a way to construct such a measure
from the equivalence relations fEig defined above.

LetR0 be the equivalence relation whose only equivalence
class is D itself; and for i = 1; : : : ; n, letRi = E1 ^ : : :^Ei;
i.e., Ri(d; d0) is true only if E1(d; d0); E2(d; d0); : : : ;Ei(d; d0) are all true. Then for each i, every equivalence
class of Ri+1 is a subset of some equivalence class of Ri;
i.e., if Ri+1(d; d0) is true, then Ri(d; d0) will also be true.
Thus H = fR0; : : : ; Rng is a sequence of equivalence re-
lations that make progressively more detailed distinctions
among designs. We call H an equivalence hierarchy.

If d and d0 be two designs in D, then we define their
measure of similarity to beM (d; d0) = the largest i such that Ri(d; d0) is true.

If M (d; d0) = i for some i, then we say that d and d0 arei-similar. If d is a design, D � D is a set of designs, and d�
is a design in D, then we say that d� is closest to d among
the designs in D if for every design d0 2 D,M (d�; d) �M (d0; d):
3.2 Classification Trees



equivalence classes of R0 

equivalence classes of R1

equivalence classes of R2

equivalence classes of R3

individual designsd0 d1 d2 d3

Figure 2: An example of a classification tree. Note that the
measure of similarity of any pair of designs is the depth of
their deepest common ancestor—for example, M (d0; d1) =
3, M (d0; d2) = 2, and M (d0; d3) = 1.

Let H = fR0; : : : ; Rkg be an equivalence hierarchy over
some class of designsD, and let D be a collection of designs
such that D � D. Then the classification tree for D underH is the tree T whose nodes are all of the designs in D and
all of the equivalence classes of all of the relations inH; and
whose edges are the following:� for each i > 0 and each equivalence class E of Ri, an

edge between E and the equivalence class of Ri�1 that
contains it;� for each design inD, an edge between D and the equiv-
alence class of Rk that contains it.

As an example, suppose that D consists of four designsfd0; d1; d2; d3g, and H consists of four equivalence relationsR0; R1; R2; R3 whose equivalence classes are as follows: R0

andR1 each have a single equivalence class which isD itself;R2’s equivalence classes are fd0; d1; d2g and fd3g; and R3’s
equivalence classes are fd0; d1g, fd2g, and fd3g. Then the
classification tree for D under H is as shown in Figure 2.

Note that T has the following properties:

1. for each i, the equivalence classes of Ri are all at depthi of the tree;

2. the leaves of T are all at depth k + 1 and are all of the
designs in D;

3. for each equivalence class E, the designs of D that are
in E are the leaves of the subtree below E;

4. for any two designs d; d0 2 D, M (d; d0) is the depth of
their deepest common ancestor in T .

Such a tree can support the quick performance of queries
such as the following:� If we want to find all designs in D that are i-similar to

some design d in D, they will be consist of all leaves
below the ancestor of d at level i of the tree. The amount
of time required to do this will be O((k � i)n), wheren is the number of designs that are i-similar to d.

� If we want to find all designs in D that are closest to
some design d in D, they will be represented by all
leaves below the deepest ancestor of d that has more
than one child. The amount of time required to do this
will be O(kn), where n is the number of designs that
are closest to d.

If we want to find all designs inD that are i-similar or closest
to some design d that is not inD, we can do so by inserting d
into the tree T , and then using one of the methods described
above.

3.3 Design Signatures

Suppose we are given a set D of designs stored in a database,
and want to create an equivalence hierarchy and a classi-
fication tree as described above. To do this, we will need
to decide what design properties we consider relevant, and
devise appropriate ways to store and retrieve the property
values for each design in the database.

Some of the properties that we may wish to represent—e.g.,
the material from which the design will be made, or whether it
is a rotational or prismatic part—may be “global” properties
of the design that are similar to the kinds of design properties
used in GT coding schemes, and can be represented by attach-
ing a simple list of tags to the design in the database. Other
properties that we might wish to represent—for example, the
tolerance constraints associated with various manufacturing
operations—may be difficult to represent without referring
to specific portions of the design’s geometry. In some cases
it may be convenient to represent this information as a set
of annotations to the CAD model—but in other cases a more
abstract representation of the design may be needed. For
such purposes, we propose to use what we will call a design
signature: a graph structure containing nodes that represent
various attributes of the design, and edges that are labeled to
represent various relationships among those attributes.

The specific attributes and relationships among them will
depend the particular application domain at hand. As an
example, suppose we are interested in process planning for
machined metal parts. In this case, to represent information
about the machining operations to be used to create a design,
some of the nodes in the design signature might correspond
to the tool-swept volumes for various machining operations
that might be used in machining the part; and some of the re-
lationships among those nodes might correspond to notions
of inteference among those operations. Although it might
not be immediately obvious to the reader how to derive such
information directly from the CAD model, Section 4.1 dis-
cusses ways to do this.

In many application domains, testing for similarity among
two different designs may often require performing subgraph-
isomorphism tests on their signature graphs. As another ex-
ample from the machining domain, if we are given a design d
and want to find a design d0 that has a similar process plan, we
may want to look for a one-to-one correspondence between



the features in d’s feature-based model and the features in d0’s
feature-based model.1 Since the graph isomorphism problem
can be quite difficult computationally, it may be quite useful
to keep the feature-based model as simple as possible, by
omitting unnecessary detail. However, if we do this, then the
feature-based model may lack some of the detail needed for
more detailed comparisons later on.

The above considerations suggest that for each design d,
we may wish to have several different signatures, each rep-
resenting d at a different level of abstraction, so that we can
use the more detailed signatures to represent the informa-
tion needed for detailed comparisons of dwith other designs,
and the more abstract signatures for less detailed compar-
isons. Although creating these design signatures may be
time-consuming, we will only need do it once for each de-
sign d; and once we have done it, we will be able to use
the results again and again, each time we need to perform a
comparison between d and some other design d0.

More specifically, suppose our equivalence hierarchy isH = fR0; : : : ; Rkg, with Ri = Ri�1 ^ Ei for each i > 0.
Then to represent each design d we might use a sequence of
design signaturesS1(d); : : : ; Sk(d), where Si(d) is the signa-
ture that we will use to compute the equivalence relation Ei.
In general, Ei+1 will need to make more detailed compar-
isons between d and d0 than Ei does. If we can make these
comparisons using the same signature graph then Si+1(d)
and Si(d) will be identical; otherwise Si+1(d) will be more
detailed than Si(d).

The most detailed signature for d is the signature Sk(d),
which we will call d’s basic signature. To generate the
signatures Sk�1; Sk�1; : : : ; S0, we will usually start with the
basic signature and use various pruning heuristics that remove
nodes and edges to produce simpler and simpler signature
graphs. The precise nature of these heuristics depends on the
specific manufacturing domain.

4 An Example

In the previous section, we described an approach for repre-
senting design information and using it to classify designs.
Because the approach is quite general, our description was
rather abstract. To make the idea more concrete and show
how it might be useful in practical domains, we now describe
a specific instantiationof this approach, in a prototypesystem
for classifying machined parts for use in process planning.
For a more detailed description, see [1].

4.1 Manufacturing Features

There have been several attempts to arrive at precise defini-
tions for manufacturing features. Most have involved the use

1Although our graphs have labels on the edges and nodes, graph iso-
morphism is nearly the same as for ordinary unlabeled graphs. The only
difference is that we require correspondingedges and nodes to have the same
labels.

of form features: local geometric configurations on a manu-
factured part that have some engineering significance during
the part’s lifetime.

The approach we adopt is to use a particular kind of form
feature that we call a machining feature, that corresponds
directly to the volume of space swept by the cutting tool in
a machining operation. To perform a machining operation,
one sweeps the cutting tool along some trajectory. This swept
volume can be divided into two parts: the removal volume,
which is the volume of material that is to be removed by the
machining operation; and the accessibility volume, which is
the non-cutting portion of the tool-swept volume [4, 12]. The
machining features described below represent the removal
volume and the approach direction.

A feature type is a parameterized volumetric template M
that represents the removal volume of a particular type of
machining operation. An instance, f , of a machining feature
is created by a particular machining operation with a single
cutting tool in one tool setup.2 M represents the idealized
feature template and f is a particular example of an operation
that can occur with respect to some part. We will sometimes
use the term machining feature to refer to a feature type, and
sometimes to refer to a feature instance; the meaning should
be clear from context. A primary machining feature is one
that contains as much of the stock as possible without inter-
secting with the part, and as littlespace as possible outside the
stock; our reasons for using primary features are discussed
in [4].

In general, there may be several alternative interpretations
of the part as different collections of machining features, each
interpretation corresponding to a different way of manufac-
turing it. A feature-based model is a set of feature instances
that models a single, unique interpretation of the part. The
feature recognition problem is defined as follows: given a
collection of machining features,M = fM1;M2; : : :Mjg, a
part P , and a piece of stock S, find the set F of instances of
feature types fromM recognized fromP and S. The feature
set F is a finite set of features; the set being composed of the
union of the alternative feature-based models for the part.

Techniques exist for automatically extracting machining
features from CAD models. For this purpose, we are em-
ploying the trace-based approach developed by Regli et al.
[11, 12] to obtain drilling and milling features from solid
models. In this approach, the initial workpiece, S, is rep-
resented as a solid model of raw stock material to be acted
upon by a set of machining operations. The machined part
is a solid object, represented by a solid model of the part P ,
to be produced as a result of a finite set of machining oper-
ations. The delta volume is the regularized difference [5] of
the initial workpiece and the part: ∆ = S �� P . A trace
corresponds to the information contributed to P and ∆ by
an instance of a feature f of type M and provides sufficient

2In practice, f , when considered with respect to a particular set of man-
ufacturing resources, may map to several individual machining operations
(i.e., such as drill-ream-bore for a particular drilling feature).



Figure 3: A prismatic part that can be manufactured using milling and drilling operations, and the machining features extracted
from its CAD model. D0 through D9 are drilling features, and M0 throughM17 are milling features. There are also ten other
drilling features D00 through D90 that are not shown here; these features have the same removal volumes as D0 through D9
but the opposite approach directions.



information for calculating the parameters of f . Given P
and S, the output of the recognition system is a finite set of
machining features making up the feature set for P and S.
An example appears in Figure 3.

4.2 Basic Signature

To represent machining features in the basic signature, we
use a graph whose nodes correspond to features and whose
edges correspond to relationships among the features, with
labels on the nodes and the edges giving various parameters
that may be useful for classification purposes. It is tempting
to try to represent as many feature parameters as possible—
but without further experimentation it is impossible to say
which feature parameters will be the most useful. In our
prototype system we have chosen to represent only those
feature parameters that are obviously important or are easy
to calculate.

4.2.1 Node Parameters

Here are some of the parameters for all features that we
represent in the basic signature. All of this information is
calculated directly from the CAD model and the feature in-
formation:� what type of feature it is (i.e., milling feature or drilling

feature);� the possible approach directions for machining the fea-
ture, and the depth of the material removal volume from
each direction;� the faces of the stock that the feature touches;� the feature’s maximal possible cutting-tool radius;� whether or not the feature is mandatory (i.e., whether or
not it removes some volume of material that is removed
by no other features).

For drilling features, we also represent the tip angle of the
cutting tool (calculated by examining the conical face that
the tool creates in the design) and relationships between fea-
tures and design. For milling features, we represent various
information about the profile swept by the milling tool.

4.2.2 Edge Labels

In general, we use edges between features to represent in-
teractions among the features that may affect how they will
be machined. Currently, the only kind of interaction we rep-
resent between two features is whether they intersect.3 If
two features intersect, we represent various properties of the
intersection, such as the ones described below.

3In future work, we intend to include interactions that result from toler-
ancing constraints such as datum dependencies, and interactions that result
from how the workpiece will be fixtured.

Figure 4: An example of a critical intersection between two
drilling features.

(a) non-critical intersection (b) critical intersection

Figure 5: Examples of intersections between a drilling feature
and a milling feature.

We will say that a feature intersection is critical if it can
create manufacturing precedence constraints among the ma-
chining operations used to create the intersecting features or
if it will require some special processing (such as facing oper-
ations) that would not otherwise be needed; otherwise we will
say that it is non-critical. To decide whether an intersection
is critical, we use several criteria based upon manufacturing
heuristics from [3, 18]. Here are simplified versions of some
of our criteria:� Any volumetric intersection between two milling fea-

tures is non-critical. Rationale: the milling features
found by our feature extraction module are guaranteed
to be accessible for machining, and thus there are no
approachability constraints for milling features.� An intersection of two orthogonal drilling features is
critical if one of the drilling operations can create a
workpiece such as the one shown in Figure 4, in which
the second drilling operation requires the drill bit to enter
the material through a surface that is non-orthogonal or
incomplete. Otherwise it is non-critical.� If there is an intersection between a milling feature and
a drilling feature in which the milling feature can create
a workpiece in which the drill bit would enter a surface
that is non-orthogonal or incomplete, then the intersec-
tion is critical; otherwise it is non-critical. See Figure 5
for examples.



In addition to critical and non-critical intersections, there
are several other properties that we represent, such as the
following:� If two features have exactly the same removal volume,

then we call them siblings. We represent this because
one would not normally want to machine both of these
features.� If two features have the same approach direction, then
we say that they are setup-compatible. We represent
this because (provided that various other restrictions are
satisfied), one can machine them during the same setup,
which may be important for minimizing the number of
setups in the process plan.� If two drilling features have the same radius and their
length-to-diameter ratios fall within certain intervals,
then we say that they are tool-compatible. We represent
this because it may be possible to make them using the
same drilling tool, which may be important for mini-
mizing the number of tool changes in the process plan.� If two features fi and fj have the same approach di-
rections and neither is a subset of the other, but fi’s
approach face is contained within fj , then we will say
that that fi is a child of fj . Intuitively, this corresponds
to the precedence ordering that one would usually use
in practice.

4.2.3 Example

Figure 6 shows a simplified version4 of the basic signature
for the design shown in Figure 3. Each edge is labeled with
an “N” if the intersection is non-critical, and with a “C” if it is
critical. Whenever one feature is a child of another, there is a
directed edge from the parent to the child, labeled with a “P”.
Whenever one feature contains another, there is a directed
edge from the larger feature to the smaller one, labeled with
an “S”. Whenever two features are identical except for their
approach directions, the edge is drawn in boldface.

4.3 Building a Signature Sequence

To represent design d at various levels of abstrac-
tion, we would like to create a sequence of signaturesfSk(d); : : : ; S1(d)g for use in computing the equivalence
relationsRk; : : : ; R1, respectively; where Sk is the most de-
tailed basic signature and for each i, Si�1 is either exactly
equal to Si or is more abstract.

There are several ways to make a signature graph more
abstract. Due to space constraints we cannot describe them
in detail here, but here are some simple examples:

4 To keep the figures simple, we have omitted all nodes other than those
that represent machining features, all node parameters other than the type of
machining operation to be used, and all edge labels other than critical and
non-critical interferences.

� Remove some labels or replace them with more general
ones. The rules for doing this depend heavily on the
particular domain, and probably cannot be generalized.
One example would be to drop labels specifying some
of the geometric details of features, such as the profile
of a milling feature or the tip angle of a drilling feature.� Find two nodes with the same basic parameters such that
one is a child of the other. Replace them with a single
node having the same basic parameters, edges, and edge
labels as the original two nodes. For example, in Figure
7, M1 is a child of M0, and both are milling features
with similar parameters, so we could replace them with
a single node that is connected to all of the nodes thatM0 and M1 were connected to.� Find subgraphs that are similar, and remove all but one
of these subgraphs from the signature graph. For exam-
ple, in the signature Sk(d4) of Figure 8, the subgraph
whose node set is fD0; D1;M0g is similar to the sub-
graph whose node set is fD2; D3;M1g, so we could
remove one of these subgraphs.� Find a group of unconnected nodes that have the same
basic parameters, and replace them with a single node
having the same parameters, edges, and edge labels as
the old nodes. For example, in Figure 9, the two milling
feature M0 and M1 are identical except for their loca-
tions, so we could replace them with a single node that
is connected to both D0 and D1.

4.4 Comparing Signatures

To compare two designs d and d0 in the worst case—when
they are geometrically equal—we have to perform r isomor-
phism checks, where r is the number of different signatures
in the signature sequence. At first glance, this might seem
prohibitively expensive, since the best known algorithm for
checking graph isomorphism takes exponential time in the
worst case. However, in our experiments our approach gen-
erally performed quite well, for the reasons described below:

1. The general approach for checking isomorphism is quite
simple [7]: compare parameters describing graphs as a
whole (number of nodes and edges, average degree of
the node, etc.), then partition all nodes of each graph
into groups so that any possible mapping between graph
vertices will map all nodes of any group into all nodes
of the corresponding group, and then apply brute-force
methods to all nodes with respect to these groups.

For “classical” undirected graphs without labels on the
edges, it is usually impossible to partition the nodes
into small groups—but in constrast, our heavily labeled
nodes and edges usually permitted our partition algo-
rithm to achieve very good granularity, so that the fol-
lowing brute-force stage usually did not require very
much time in our experiments.
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Figure 6: A simplified version (see footnote 4) of the basic signature of the design shown in Figure 3.



(a) a design d1 (c) a design d2

(b) d1’s machining features

(d) d2’s machining features
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Figure 7: Two similar designs d1 and d2. If we replace M0 and M1 with a single node that is connected to all of the nodes thatM0 and M1 were connected to, the resulting signature Sk�1(d2) is isomorphic to Sk(d1).



(a) a design d3 (c) a design d4

(b) d3’s machining features

(d) d4’s machining features
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Figure 8: Two similar designs d3 and d4. If we remove either the nodesD0; D1;M0 or nodesD2; D3;M1, the resulting signatureSk�1(d4) is isomorphic to Sk(d3).



(a) a design d5 (c) a design d6

(b) d5’s machining features

(d) d6’s machining features
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Figure 9: Two similar designs d5 and d6. If we replace M0 and M1 with a single node that is connected to both D0 and D1,
then the resulting signature Sk�1(d6) is isomorphic to Sk(d5).



The partition algorithm itself is quite expensive (rough
estimation gives O(v3 log v), where v is a number of
nodes in the graph), but the partitions only need to be
computed once for each signature graph during its entire
lifetime—thereafter, they can be stored along with the
signature graph and retrieved as needed. Thus, the time
complexity of the partition algorithm is less important
than it would be otherwise.

2. Signature graphs permit significantly more sophisticated
methods to check that they can be isomorphic. For
“classical” graphs, usually one can check only such pa-
rameters of the graph as the number of nodes with dif-
ferent degrees, but for signature graphs such statistics
can be collected about each type of label and all of their
combinations if necessary.

3. In the process of signature sequence comparison we be-
gin by comparing the most abstract graphs S1(d) andS1(d0), and only compare the most complex graphsSk(d) and Sk(d0) at the very end. Even if we end up
checking all of S1; : : : ; Sk, in the worst case this takes
the same big-O time as if we had checked only Sk. In
most cases we will find that Sj(d) 6= S(j(d0)) for somej < k, and exit without ever checking the basic signa-
ture Sk. This saves a great deal of time: in the worst
case it takes exponentially less time to check S0; : : : ; Sj
than to check Sk.

Furthermore, we can often do much better than the worst
case, because we can speed up the brute-force stage of
checking each signature Si using the information about
nodes mapping obtained during the isomorphism check
of the more abstract signature Si�1.

5 Validation

To validate a new classification system, we wanted show that
for a reasonable collection of realistic objects, the techniques
correctly and efficiently (1) find identical objects and (2)
return reasonably intuitive estimations of similarity between
different objects.

One major obstacle is the lack of a generally available large
and varied data set of CAD models for mechanical designs.
A further complication is the lack of an agreed-upon stan-
dard for what it means to be similar from the manufacturing
point of view—answers vary depending on the individual to
whom the question is posed. Hence, large-scale validation
was not possible and we chose to perform controlled exper-
iments to determine how well the prototype system operates
on reasonable examples.

To perform our study, we used a collection of solids taken
from the NIST Design, Process Planning, and Assembly
Repository5 and employed the experimental F-Rex [11, 12]

5Available at http://www.parts.nist.gov.

feature recognizer previously developed at the University of
Maryland at College Park.

The prototype system used few feature parameters, but
still was able to identify identical designs and its estima-
tions of similarity well corresponded to the design families.
The experiments, once pre-processing was performed, ran in
moderate user-time and we did not observe that any compu-
tational bottlenecks were created by the isomorphism checks.
Interestingly as well, we noticed that the approach worked
even on those parts where the F-Rex feature recognizer had
difficulty or produced spurious results. We believe that later
versions of the implementation can be enhanced through us-
ing the design features in the CAD model and integration
with a commercially tested features tool.

6 Conclusions

This paper has described our approach for automatically as-
sessing the similarity of CAD models. Our approach involves
automatically generating graph structures called design sig-
natures (abstract representations of the design that contain
information that is relevant to some application domain), and
ways to examine the design signatures to determine similarity
among designs.

The approach is intended to be general in the sense that the
same basic ideas could be used in several different application
domains. However, the information represented in the design
signatures, as well as the criteria for judging the similarity of
design signatures, is heavily domain-specific.

As an example of a particular application domain, we have
focused on process planning for machined parts. In this prob-
lem domain, we have found it useful to use design signatures
in which much of the information consists of volumetric fea-
tures that correspond to machining operations, along with
various relationships among those features. There are sev-
eral reasons why such information is useful in the process
planning domain:� since it corresponds to basic operations in the process

plan, it will let us develop measures of design similarity
that are useful for retrieving designs that have similar
process plans;� Since a number of well known techniques exist for ex-
tracting machining features from CAD models [13, 17]
(for example, we use the technique described in [12]),
it is possible to generate the design signatures automat-
ically.

Our future work has two basic directions.� We intend to extend the theoretical basis and algorith-
mic work, by developing new definitions of equivalence
relations upon design signatures and new methods of
signature simplification. We intend to implement these
definitions and algorithms to provide a useful similarity



measure for machined parts and a practical classifica-
tion and retrieval system based upon this measure. The
latter will require paying close attention to engineering
domain knowledge such as the details of various man-
ufacturing processes and the corresponding geometric
features, and developing ways to represent feature in-
teractions that result from tolerancing and fixturing con-
straints.� We are developing ways to “slice” design signatures
into pieces that are meaningful from the point of view
of process planning. This will allow us to use our clas-
sification techniques to measure the similarity of these
design slices rather than designs as a whole. We intend
to use this as the basis for a hybridvariant/generative ap-
proach to process planning, that retrieves design slices
from a database and and combines them together to form
process plans for new designs.
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