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Abstract

This paper presentsour initia effortsto develop asystematic
approach for assessing the similarity of solid models based
on how they will be manufactured. The goal of this work
isto devel op methods that, given a solid mode representing
the design of a new product, query a product information
database (of solid models, associated manufacturing plans,
and rel ated attributes) and i dentify existing designswith man-
ufacturing plans similar to some reasonabl e plan for the new
design—or useful as a starting point for creation of a new
plan for the new design.

Our approach is based on the automatic generation (from
CAD models) of graph structuresthat contain manufacturing
information (in the form of manufacturing features). We are
developing ways to measure similarity among these graph
structures, so that given the graph structures corresponding
to two different designs, we can tell how similar or different
they are. The similarity measure will be used as a basis for
indexing and retrieving similar designs from databases. An
implementation of our approach is discussed.

We believe our work isafirst step in producing computer-
generatableand computer-interpretabl e similarity assessment
techniques that will be useful for applications such as vari-
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ant and hybrid variant/generative process planning systems,
indexing schemes for large part inventories, access methods
for “smart catalogs,” and for performing component searches
through product catalogs and on the Internet.

1 Introduction

Computer-Aided Design and solid modeling have become
essential elements in modern design and manufacturing.
Computer-interpretable models of product information are
ubiquitousin all phases of the product life-cycle. The abil-
ity to efficiently save, index, and retrieve solid models and
CAD data has become critica in a wide range of applica
tions, including variant process planning systems, indexing
schemesfor large part inventories, access methodsfor “ smart
catalogs,” and for performing component searches through
product catalogs and on the Internet. In particular, we are
interested in the following closely related problems:

¢ given acollection of designs, which ones are similar to
each other—and how similar are they?

o givenadesign—or aset of characteristicsfor what kinds
of designsweareinterested in—howto find and retrieve
similar designs from a database?

Current approaches to these problemsinvolve either compli-
cated geometric comparisons that do not measure similarity
according to criteria relevant for important application do-
mains such as manufacturing, or the use of ssmple indexing
and classification schemes such as GT codes that do not
incorporate enough product information to allow detailed
comparisons of similarity among complex designs.

As a solution to these problems, we are developing an
approach based on the use of abstract graph-based represen-
tations of designs. In particular, we are devel oping ways to
create design signatures—graph structuresthat represent sig-
nificant design attributesand significant rel ationshi psamong



Figure 1: Desirable properties of a similarity measure in different application areas.

Design property Area of application

function conceptua design, performance analysis

shape conceptua and detailed design, design for assembly (DFA)
tolerances detailed design, DFA, design for manufacture (DFM)
material detailed design, performance analysis, DFA, DFM

manufacturing methods

process planning, DFM, performance analysis

these design attributes. We are a so devel oping waysto mea-
sure similarity among these graph structures, so that given
the graph structures corresponding to two different designs,
we can tell how similar or different they are. The similarity
measure will be used as a basis for indexing and retrieving
similar designs from databases.

The specific relationships and attributes that are used—as
well as the specific criteria for similarity among designs—
will depend on the particular application domain at hand. In
the current paper, we give examples involving design at-
tributes, relationships, and similar measurements that are
relevant in the application domain of process planning for
machined parts.

Section 2 describes what a similarity measure is, and dis-
cusses previouswork. Section 3 outlines our approach, and
Section 4 gives exampl esfrom the domain of machined parts.
Section 5 discusses the experimental validation of the ap-
proach, and Section 6 contains concluding remarks.

2 Measuring Similarity

2.1 Intention
Some of thedesirable propertiesfor asimilarity measure are:

o It should reflect those notions of similarity that will be
useful intheapplicationdomaininwhichitisto be used.
For example, Figure 1 shows some of the properties of
a design that may be important in different application
aress.

¢ It should provide a way to index designs for quick re-
trieval from a database. For example, if we are de-
veloping a new design, we may want to retrieve (from
a database) the closest possible existing design, or a
number of “relatively close” existing designs.

o Itshouldbe“open.” Inother words,it should bepossible
to tuneit for a particular application by changing some
of the details of what it means for two designs to be
similar, and still be able to use the same approach and
same algorithms.

211 Group Technology

Group Technology (GT) is probably the oldest and the
most popular type of approach to classifying designs. The

basic idea—to make “parts of similar shape on specially
grouped machines’ [2]—and the consequent need for some
way of classifying designs according to their manufacturing
requirements—isan old technique, and some references to it
can befound as early as1925. However, only after the works
of Mitrofanov [9] and Opitz[10] did it become very popular.

Inthelast 35years, many classification schemes have been
developed, with emphasisin thedifferent areas of design and
manufacturing. In each case the basic idea is to capture
critical design and manufacturing attributes of a part in an
alphanumeric string, or GT code, that isassigned to that part.

Thetypical GT code [6] consistsof two typesof positions.
In one case, a position describes some global property of the
design such as material, size, type, functionality, etc., and its
meaning iscompletely independent of what valuesare stored
elsewhere. In the other case, a position represents some
detailsthat are relevant only for certain types of designs, and
thusits meaning depends on the values of other positions.

GT classification schemes are essentialy tables and rules
that help a designer determine the GT code of a part from a
drawing manually. One can use a database of the GT codes
for design retrieval, variant process planning, and other man-
ufacturing applications. Sincethe 1980'sseverd researchers
(e.g.,[14, 15]) have worked on automating this manual pro-
cess for classes of machined parts.

GT qualifies as an open method—one checks previous
coding work, selects appropriate criteria and construct new
codes relevant to the particular domain of designs. Using
guestion trees to define the code provides an efficient way
to build an indexing scheme. One issue is the relevance of
GT methodsto specific real world design retrieva problems.
As it has been used during the last 35 years it works—but
it has an inherited drawback: describing designs as short
strings creates a coarse classification scheme. Moreover,
from the beginning GT coding was intended to be human
interpretable, hence the typical questions describe somewhat
subjective human impressions of 2D drawings. This has
caused difficulty in automating the generation of GT codes.

2.1.2 Geometric Approachesto Measuring Similarity

Another possible basis for classifying designsis to use ge-
ometric properties of solid and CAD models. Most of to-
day’s CAD/CAM systems use either constructive or bound-
ary modelsto represent solids.



The use of CSG trees as away to classify designs has two
appealing characteristics. the analogy between volumetric
CSG primitivesand the volumes of material removed by ma-
chining operations, and the ready availability of CSG trees
as abasic representational scheme in several geometric mod-
elers. However, the approach suffers from two drawbacks.
First, the CSG representation for a design is not unique and
arobust method for computing a unique CSG representation
for a design has not yet been found (many believe that such
a method ssimply cannot be found [8]). Second, the CSG
primitives that would be involved in such a representation
do not necessarily correspond to the manufacturing opera-
tions that would be used to manufacture the design—and
thus the classification might not be very useful for manufac-
turing practice. Asfar as we know, no methods to measure
similarity on the basis of CSG trees were devel oped.

Wysk et a [16] have described a similarity measure for
solids based on properties of their boundary representations.
The approach involvesrepresenting a polyhedral approxima:
tion of a solid using a graph, in which the nodes correspond
to faces of a solid and have labels capturing the faces ori-
entation and area, and the edges correspond to the adjacency
relation between solid faces, and are labeled by the corre-
sponding solid angles. To compare two solids they use a
sophisticated algorithm to take the graphs of these solids and
map them into each other in such way that the area and ori-
entation of corresponding nodesare as close aspossible. The
results of such mapping are expressed as a real number in a
range from O to 1. Asanew measure of “relaxed" geometri-
cal similarity their work looks very interesting, but there are
severa difficulties to be overcome beforeit can be useful as
a classification scheme for manufacturing:

¢ Initscurrent form, the method worksonly with polyhe-
dral objects—any non-planar faces of the designs must
first be replaced with planar approximations. This may
cause difficulty in classifying solids with a significant
number of cylindrical or sculptured surfaces.

o Themeasure of similarity isnot symmetrical (similarity
between solids A and B is not equal to the similarity
between B and A). Thiswill cause difficultiesinusing it
as the basis for atraditional database indexing scheme,
since such schemes assume a symmetrical measure.

e In its current form, the method does not incorporate
(or reflect) manufacturing considerations, such as ap-
proachability, fixturing, and operation interference, and
we do not see any obviousway to add them.
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During last several years, anumber of effortshave been made
to develop agorithms to examine CAD designs and extract
features that correspond to manufacturing operations. This
creates an opportunity for a third kind of approach to mea-
suring the similarity of CAD designs: to automatically gen-

erate representations of them based on their manufacturing
features, and compare the similarity of these feature-based
representations. Such an approach isthe subject of thispaper.

3 Approach

3.1 EquivalenceHierarchy

Suppose we are given a class of designs D, and want to
measure thesimilarity of variousdesignsinD. Wewill judge
the similarity of two designs d and d’ by examining various
properties of these designs—things that are either specified
explicitly in the design, or can be deduced by examining it.
One example (although certainly not the only one!) would
be the kinds of propertiesthat one might examinein order to
computea GT coding scheme.

If the set of properties we are examining is P =
{p1,p2, ..., pn}, thenwewill use p;(d) to denote the value
of the property p; for the design d. For each property p;, we
can define an equivalence relation F; such that F;(d, d’) is
trueif and only if p; (d) = p;(d’). For example, if p;(d) isthe
material from which d isto be made, then Z;(d, d') will be
trueonly if d and d’ are to be made from the same materid.

Givenadesign d, supposewewant tofind designsinD that
are “relatively similar” to d, or find the design that is “most
similar” to d. For such atask, we need away to measure the
similarity of two designs along some numeric scale—so that
we can say, for example, that d ismoresimilar to d’ thanitis
to d”’. Below, we define away to construct such a measure
from the equivalencerelations { £; } defined above.

Let Ro betheequivalencere ationwhose only equivalence
classisD itsdf;andfori=1,...,n,la

R, =EiN.. . NE;;

i.e, Ri(d,d) is true only if Eq(d,d"), Ex(d,d), ...,
F;(d,d') are dl true. Then for each ¢, every equivaence
class of R;y1 is asubset of some equivalence class of R;;
i.e, if Riya(d,d’) istrue, then R;(d, d’) will aso be true.
Thus H = {Rq, ..., R,} is asequence of equivalence re-
lations that make progressively more detailed distinctions
among designs. We call I an equivalence hierarchy.

If d and &’ be two designs in D, then we define their
measure of similarityto be

M(d,d") = thelargest 7 such that R;(d, d’) istrue.

If M(d,d") = i for some ¢, then we say that d and d’ are
i-dmilar. If disadesign, D C D isaset of designs, and d*
isadesignin D, then we say that d* is closest to d among
thedesignsin D if for every designd’ € D,

M(d*,d) > M(d', d).

3.2 Classfication Trees
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Figure 2: An example of a classification tree. Note that the
measure of similarity of any pair of designs is the depth of
their deepest common ancestor—for example, M (do, d1) =
3, M(do, dz) = 2, and M(do, dg) =1

Let H = {Ro,..., Rx} be an equivalence hierarchy over
some class of designs D, and let D be acollection of designs
such that D C D. Then the classification tree for D under
H isthetree T" whose nodes are al of the designsin D and
all of the equivalence classes of all of therelationsin H; and
whose edges are the following:

o for each ¢ > 0 and each equivalence class I of R;, an
edge between F and the equivaence class of R;_; that
containsit;

o foreach designin D, an edge between D and theequiv-
adenceclass of Ry, that containsit.

As an example, suppose that D consists of four designs
{do, d1, d>, d3}, and H consists of four equivalence relations
Ro, i1, R2, R3whoseequivaence classes areasfollows: g
and R; each haveasingleequivalenceclasswhichis D itsalf;
Ry'sequivalence classes are {do, d1, d2} and {d3}; and R3's
equivaence classes are {do, d1}, {d2}, and {d3}. Then the
classification tree for D under H isas shownin Figure 2.
Note that 7" has the following properties:

1. for each ¢, the equivalence classes of R; are dl at depth
i of thetree;

2. theleaves of 7" are all a depth k + 1 and are al of the
designsin D;

3. for each equivaence class F, the designs of D that are
in E are the leaves of the subtree below £;

4. for any two designsd, d’ € D, M(d, d’) isthe depth of
their deepest common ancestor in 7.

Such a tree can support the quick performance of queries
such asthe following:

o If wewant to find all designsin D that are i-similar to
some design d in D, they will be consist of all leaves
bel ow the ancestor of d at levd i of thetree. Theamount
of time required to do thiswill be O((k — i)n), where
n isthe number of designsthat are i-similar to d.

o If we want to find all designsin D that are closest to
some design d in D, they will be represented by al
leaves below the deepest ancestor of d that has more
than one child. The amount of time required to do this
will be O(kn), where n is the number of designs that
are closest to d.

If wewant tofind al designsin D that are i-similar or closest
tosomedesign d thatisnotin D, we can do so by inserting d
into the tree 7', and then using one of the methods described
above,

3.3 Design Signatures

Supposewe aregiven aset D of designs stored in adatabase,
and want to create an equivalence hierarchy and a classi-
fication tree as described above. To do this, we will need
to decide what design properties we consider relevant, and
devise appropriate ways to store and retrieve the property
valuesfor each design in the database.

Someof theproperti esthat wemay wishtorepresent—e.g.,
themateria fromwhichthedesignwill bemade, or whether it
isarotational or prismatic part—may be “global” properties
of thedesign that are similar to the kindsof design properties
usedin GT coding schemes, and can berepresented by attach-
ing asimplelist of tagsto the design in the database. Other
propertiesthat we might wish to represent—for example, the
tolerance constraints associated with various manufacturing
operations—may be difficult to represent without referring
to specific portions of the design’s geometry. In some cases
it may be convenient to represent this information as a set
of annotationsto the CAD model—but in other cases amore
abstract representation of the design may be needed. For
such purposes, we propose to use what we will call a design
signature: a graph structure contai ning nodes that represent
various attributes of the design, and edges that are labeled to
represent various rel ationshipsamong those attributes.

The specific attributes and rel ationships among them will
depend the particular application domain at hand. As an
example, suppose we are interested in process planning for
machined metal parts. In this case, to represent information
about the machining operationsto be used to create adesign,
some of the nodes in the design signature might correspond
to the tool-swept volumes for various machining operations
that might be used in machining the part; and some of there-
| ati onships among those nodes might correspond to notions
of inteference among those operations. Although it might
not be immediately obviousto the reader how to derive such
information directly from the CAD model, Section 4.1 dis-
cusses ways to do this.

In many application domains, testing for similarity among
two different designsmay often require performing subgraph-
isomorphism tests on their signature graphs. As another ex-
amplefrom the machining domain, if we aregiven adesignd
andwant tofind adesign d’ that hasasimilar processplan, we
may want to look for a one-to-one correspondence between



thefeaturesin d’ sfeature-based model and thefeaturesind”’s
feature-based model.> Sincethe graph isomorphism problem
can be quite difficult computationally, it may be quite useful
to keep the feature-based model as simple as possible, by
omitting unnecessary detail. However, if we dothis, then the
feature-based model may lack some of the detail needed for
more detailed comparisons later on.

The above considerations suggest that for each design d,
we may wish to have several different signatures, each rep-
resenting d at a different level of abstraction, so that we can
use the more detailed signatures to represent the informa-
tion needed for detailed comparisons of d with other designs,
and the more abstract signatures for less detailed compar-
isons. Although creating these design signatures may be
time-consuming, we will only need do it once for each de-
sign d; and once we have done it, we will be able to use
the results again and again, each time we need to perform a
comparison between d and some other design d'.

More specifically, suppose our equivaence hierarchy is
H ={Ro,...,Rp},withR; = R;_1 A E; foreachi > 0.
Then to represent each design d we might use a sequence of
designsignaturesS1(d), . . ., Si(d), where S;(d) isthesigna-
turethat we will use to compute the equivalencerelation ;.
In general, F;,1 will need to make more detailed compar-
isons between d and d’ than £; does. If we can make these
comparisons using the same signature graph then S;1(d)
and S;(d) will beidentical; otherwise S;+1(d) will be more
detailed than S;(d).

The most detailed signature for d is the signature Sy (d),
which we will call d’s basic signature. To generate the
signatures Sy _1, Sg—1, - - -, So, wewill usually start with the
basi c signatureand usevariouspruning heuristicsthat remove
nodes and edges to produce simpler and simpler signature
graphs. The precise nature of these heuristics depends on the
specific manufacturing domain.

4 An Example

In the previous section, we described an approach for repre-
senting design information and using it to classify designs.
Because the approach is quite general, our description was
rather abstract. To make the idea more concrete and show
how it might be useful in practical domains, we now describe
aspecificinstantiationof thisapproach, in aprototypesystem
for classifying machined parts for use in process planning.
For a more detailed description, see [1].

4.1 Manufacturing Features

There have been several attemptsto arrive at precise defini-
tionsfor manufacturing features. Most haveinvolvedtheuse

1Although our graphs have labels on the edges and nodes, graph iso-
morphism is nearly the same as for ordinary unlabeled graphs. The only
differenceisthat we require corresponding edgesand nodesto havethe same
labels.

of form features: local geometric configurations on a manu-
factured part that have some engineering significance during
the part’slifetime.

The approach we adopt isto use a particular kind of form
feature that we cal a machining feature, that corresponds
directly to the volume of space swept by the cutting tool in
a machining operation. To perform a machining operation,
onesweepsthe cutting tool along sometrajectory. Thisswept
volume can be divided into two parts: the removal volume,
which isthe volume of material that isto be removed by the
machining operation; and the accessibility volume, which is
the non-cutting portion of thetool -swept volume[4, 12]. The
machining features described below represent the removal
volume and the approach direction.

A feature type is a parameterized volumetric template M
that represents the removal volume of a particular type of
machining operation. Aninstance, f, of amachining feature
is created by a particular machining operation with a single
cutting tool in one tool setup.? M represents the idealized
featuretemplateand f isaparticular example of an operation
that can occur with respect to some part. We will sometimes
use the term machining feature to refer to afeature type, and
sometimes to refer to afeature instance; the meaning should
be clear from context. A primary machining featureisone
that contains as much of the stock as possible without inter-
secting withthe part, and aslittlespace as possibleoutsidethe
stock; our reasons for using primary features are discussed
in[4].

In generdl, there may be severa alternativeinterpretations
of the part as different collectionsof machining features, each
interpretation corresponding to a different way of manufac-
turing it. A feature-based model is a set of feature instances
that models a single, unique interpretation of the part. The
feature recognition problem is defined as follows: given a
collection of machining features, M = {M1, M, ... M;},a
part P, and apiece of stock S, find the set F of instances of
featuretypesfrom M recognized from P and S. Thefeature
set F isafinite set of features; the set being composed of the
union of the aternative feature-based models for the part.

Techniques exist for automatically extracting machining
features from CAD models. For this purpose, we are em-
ploying the trace-based approach developed by Regli et al.
[11, 12] to obtain drilling and milling features from solid
models. In this approach, the initial workpiece, S, is rep-
resented as a solid model of raw stock material to be acted
upon by a set of machining operations. The machined part
isasolid object, represented by a solid model of the part P,
to be produced as a result of a finite set of machining oper-
ations. The delta volume is the regularized difference [5] of
the initial workpiece and the part: A = S —* P. A trace
corresponds to the information contributed to P and A by
an instance of afeature f of type M and provides sufficient

2In practice, f, when considered with respect to a particular set of man-
ufacturing resources, may map to several individual machining operations
(i.e., such as drill-ream-borefor aparticular drilling feature).



- L =
T H o
.

ES

M Tz M

-k

Figure 3: A prismatic part that can be manufactured using milling and drilling operations, and the machining features extracted
fromits CAD model. DO through D9 aredrilling features, and A/ 0 through M 17 are milling features. There are aso ten other
drilling features DO’ through D9’ that are not shown here; these features have the same remova volumes as DO through D9
but the opposite approach directions.



information for calculating the parameters of f. Given P
and S, the output of the recognition system is a finite set of
machining features making up the feature set for P and S.
An example appearsin Figure 3.

4.2 Badc Signature

To represent machining features in the basic signature, we
use a graph whose nodes correspond to features and whose
edges correspond to relationships among the features, with
label's on the nodes and the edges giving various parameters
that may be useful for classification purposes. It istempting
to try to represent as many feature parameters as possible—
but without further experimentation it is impossible to say
which feature parameters will be the most useful. In our
prototype system we have chosen to represent only those
feature parameters that are obviously important or are easy
to calculate,

4.2.1 NodeParameters

Here are some of the parameters for al features that we
represent in the basic signature. All of this information is
caculated directly from the CAD model and the feature in-
formation:

o what type of featureitis(i.e.,, milling feature or drilling
feature);

¢ the possible approach directions for machining the fea-
ture, and the depth of the material removal volumefrom
each direction;

o thefaces of the stock that the feature touches;
o thefeature’s maximal possible cutting-tool radius;

¢ whether or not thefeature ismandatory (i.e., whether or
not it removes some volume of materia that isremoved
by no other features).

For drilling features, we aso represent the tip angle of the
cutting tool (calculated by examining the conical face that
thetool creates in the design) and rel ationshi ps between fea-
tures and design. For milling features, we represent various
information about the profile swept by the milling tool.

4.2.2 Edgelabes

In general, we use edges between features to represent in-
teractions among the features that may affect how they will
be machined. Currently, the only kind of interaction we rep-
resent between two features is whether they intersect.® If
two features intersect, we represent various properties of the
intersection, such as the ones described bel ow.

3In future work, we intend to include interactions that result from toler-
ancing constraints such as datum dependencies, and interactions that result
from how the workpiece will be fixtured.

P

Figure4: An example of a critical intersection between two
drilling features.

(8) non-critical intersection (b) critical intersection
Figure5: Examplesof intersectionsbetweenadrilling feature
and amilling feature.

We will say that a feature intersection is critical if it can
create manufacturing precedence constraints among the ma
chining operations used to create the intersecting features or
if it will require some special processing (such asfacing oper-
ations) that woul d not otherwisebe needed; otherwisewewil|
say that it is non-critical. To decide whether an intersection
iscritical, we use severa criteriabased upon manufacturing
heuristicsfrom [3, 18]. Here are simplified versions of some
of our criteria

¢ Any volumetric intersection between two milling fea-
tures is non-critical. Rationale: the milling features
found by our feature extraction module are guaranteed
to be accessible for machining, and thus there are no
approachability constraints for milling features.

¢ An intersection of two orthogonal drilling features is
critical if one of the drilling operations can create a
workpiece such as the one shown in Figure 4, in which
thesecond drilling operationrequiresthedrill bit to enter
the material through a surface that is non-orthogonal or
incomplete. Otherwiseit isnon-critical.

o If thereisan intersection between a milling feature and
adrilling feature in which the milling feature can create
aworkpiece in which thedrill bit would enter a surface
that is non-orthogonal or incompl ete, then the intersec-
tioniscritica; otherwiseit is non-critical. See Figure5
for examples.



In addition to critical and non-critica intersections, there
are several other properties that we represent, such as the
following:

o If two features have exactly the same remova volume,
then we call them siblings. We represent this because
one would not normally want to machine both of these
features.

o If two features have the same approach direction, then
we say that they are setup-compatible. We represent
thisbecause (provided that various other restrictionsare
satisfied), one can machine them during the same setup,
which may be important for minimizing the number of
setupsin the process plan.

o If two drilling features have the same radius and their
length-to-diameter ratios fall within certain intervals,
then we say that they are tool-compatible. We represent
this because it may be possible to make them using the
same drilling tool, which may be important for mini-
mizing the number of tool changes in the process plan.

o If two features f; and f; have the same approach di-
rections and neither is a subset of the other, but f;'s
approach face is contained within f;, then we will say
that that f; isachildof f;. Intuitively, this corresponds
to the precedence ordering that one would usually use
in practice.

4.2.3 Example

Figure 6 shows a simplified version* of the basic signature
for the design shown in Figure 3. Each edge is labeled with
an“N” if theintersectionisnon-critical, andwitha“C” if itis
critical. Whenever onefeatureisachild of another, thereisa
directed edge from the parent to the child, labeled witha“P”.
Whenever one feature contains another, there is a directed
edge from the larger feature to the smaller one, labeled with
an“S’. Whenever two features are identical except for their
approach directions, the edge is drawn in bol dface.

4.3 Buildinga Signature Sequence

To represent design d a various levels of abstrac-
tion, we would like to create a sequence of signatures
{Sk(d),...,S1(d)} for use in computing the equivalence
relations Ry, . . ., Ry, respectively; where S, isthe most de-
tailed basic signature and for each 7, S;_1 is either exactly
equal to S; or ismore abstract.

There are severa ways to make a signature graph more
abstract. Due to space constraints we cannot describe them
in detail here, but here are some simple examples:

4 To keep the figures simple, we have omitted all nodes other than those
that represent machining features, all node parameters other than the type of
machining operation to be used, and all edge labels other than critical and
non-critical interferences.

¢ Remove some |labels or replace them with more general
ones. The rules for doing this depend heavily on the
particular domain, and probably cannot be generalized.
One example would be to drop labels specifying some
of the geometric details of features, such as the profile
of amilling feature or the tip angle of adrilling feature.

o Findtwo nodeswiththe same basic parameters such that
oneisa child of the other. Replace them with a single
node having the same basic parameters, edges, and edge
labelsasthe original two nodes. For example, in Figure
7, My is achild of My, and both are milling features
with similar parameters, so we could replace them with
a single node that is connected to al of the nodes that
Mo and M, were connected to.

o Find subgraphs that are similar, and remove al but one
of these subgraphsfrom the signature graph. For exam-
ple, in the signature Si(da) of Figure 8, the subgraph
whose node set is { Do, D1, Mo} is similar to the sub-
graph whose node set is {D», D3, M1}, so we could
remove one of these subgraphs.

o Find a group of unconnected nodes that have the same
basic parameters, and replace them with a single node
having the same parameters, edges, and edge labels as
theold nodes. For example, in Figure 9, thetwo milling
feature My and M are identical except for their loca
tions, so we could replace them with a single node that
is connected to both D0 and D1.

4.4 Comparing Signatures

To compare two designs d and d’ in the worst case—when
they are geometrically equal—we have to perform » isomor-
phism checks, where » isthe number of different signatures
in the signature sequence. At first glance, this might seem
prohibitively expensive, since the best known algorithm for
checking graph isomorphism takes exponentia time in the
worst case. However, in our experiments our approach gen-
erally performed quitewell, for the reasons described bel ow:

1. Thegenera approach for checkingisomorphismisquite
simple[7]: compare parameters describing graphs as a
whole (number of nodes and edges, average degree of
the node, etc.), then partition al nodes of each graph
into groups so that any possi ble mapping between graph
vertices will map all nodes of any group into all nodes
of the corresponding group, and then apply brute-force
methods to all nodes with respect to these groups.

For “classical” undirected graphs without |abels on the
edges, it is usually impossible to partition the nodes
into small groups—but in constrast, our heavily labeled
nodes and edges usually permitted our partition algo-
rithm to achieve very good granularity, so that the fol-
lowing brute-force stage usually did not require very
much time in our experiments.
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Figure6: A simplified version (see footnote 4) of the basic signature of the design shown in Figure 3.



(a) adesign d; (c) adesign d;
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(b) d1’s machining features

(d) d2’s machining features

DO MO D2
DO| N |D2 N

NP
M0 N
N

N N D1 M 1 D3
D1 D3 N N

(e) smplified versions (see footnote 4) of the basic signatures Sy, (d1) and Sj (d2)

Figure 7: Two similar designs d; and d,. If wereplace My and M; with asingle nodethat is connected to all of the nodes that
Mo and M7 were connected to, the resulting signature Sy, _1(d2) isisomorphicto Sy (d1).



(8) adesign ds

(d) d4’s machining features

N M 0
N
N DO [ N NP D2
M0 DO V2
N N
NP N D1 [ NP/ 'NID3
M1 D1 wil— N

(e) smplified versions (see footnote 4) of the basic signatures Sy, (ds) and Sj (da)

Figure8: Two similar designsds and d,. If weremove either thenodes Dy, D1, Mg or nodes D, D3, M1, theresulting signature
Sk—1(da4) isisomorphicto Sy (ds).
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(8) adesign ds (c) adesign dg

(d) dg’s machining features

MO MO M1
N N N N
DO D1 DO D1

(e) smplified versions (see footnote 4) of the basic signatures Sy, (ds) and Sy (de)

Figure 9: Two similar designs ds and dg. If we replace My and M; with a single node that is connected to both D0 and D1,
then the resulting signature Sy, _1(de) isisomorphic to Sy (ds).



The partition algorithm itself is quite expensive (rough
estimation gives O(v®logv), where v is a number of
nodes in the graph), but the partitions only need to be
computed oncefor each signaturegraph duringitsentire
lifetime—thereafter, they can be stored aong with the
signature graph and retrieved as needed. Thus, thetime
complexity of the partition algorithm is less important
than it would be otherwise.

2. Signaturegraphspermit significantly moresophisticated
methods to check that they can be isomorphic. For
“classical” graphs, usually one can check only such pa-
rameters of the graph as the number of nodes with dif-
ferent degrees, but for signature graphs such statistics
can be collected about each type of label and al of their
combinationsif necessary.

3. Intheprocess of signature sequence comparison we be-
gin by comparing the most abstract graphs S1(d) and
S1(d"), and only compare the most complex graphs
Si(d) and S (d') at the very end. Even if we end up
checking al of Sy, ..., Sk, in theworst case thistakes
the same big-O time as if we had checked only Si. In
most cases we will find that S; (d) # S(j(d")) for some
J < k, and exit without ever checking the basic signa-
ture S. This saves a great dedl of time: in the worst
case it takes exponentialy lesstimeto check So, . . ., S
than to check Sj.

Furthermore, we can often do much better thantheworst
case, because we can speed up the brute-force stage of
checking each signature S; using the information about
nodes mapping obtai ned during the i somorphism check
of the more abstract signature .S; _ 1.

5 Validation

To validate anew classification system, we wanted show that
for areasonabl e collection of realistic objects, the techniques
correctly and efficiently (1) find identical objects and (2)
return reasonably intuitive estimations of similarity between
different objects.

Onemajor obstacleisthelack of agenerally availablelarge
and varied data set of CAD models for mechanical designs.
A further complication is the lack of an agreed-upon stan-
dard for what it means to be similar from the manufacturing
point of view—answers vary depending on the individual to
whom the question is posed. Hence, large-scale validation
was not possible and we chose to perform controlled exper-
iments to determine how well the prototype system operates
on reasonable exampl es.

To perform our study, we used a collection of solidstaken
from the NIST Design, Process Planning, and Assembly
Repository® and employed the experimental F-Rex [11, 12]

SAvailableatht t p: / / www. parts. ni st. gov.

feature recognizer previously developed at the University of
Maryland at College Park.

The prototype system used few feature parameters, but
gtill was able to identify identical designs and its estima-
tions of similarity well corresponded to the design families.
The experiments, once pre-processing was performed, ran in
moderate user-time and we did not observe that any compu-
tational bottleneckswere created by theisomorphism checks.
Interestingly as well, we noticed that the approach worked
even on those parts where the F-Rex feature recognizer had
difficulty or produced spuriousresults. We believe that later
versions of the implementation can be enhanced through us-
ing the design features in the CAD model and integration
with acommercially tested features tool.

6 Conclusions

This paper has described our approach for automatically as-
sessing thesimilarity of CAD models. Our approachinvolves
automatically generating graph structures called design sig-
natures (abstract representations of the design that contain
informationthat isrel evant to some application domain), and
waysto examinethedesign signaturesto determinesimilarity
among designs.

The approach isintended to be genera inthe sense that the
samebasicideascould beused in several different application
domains. However, theinformation represented inthe design
signatures, aswell asthe criteriafor judging the similarity of
design signatures, is heavily domain-specific.

Asan example of aparticul ar application domain, we have
focused on process planning for machined parts. Inthisprob-
lem domain, we have found it useful to use design signatures
inwhich much of theinformation consists of volumetric fea-
tures that correspond to machining operations, along with
various relationships among those features. There are sev-
eral reasons why such information is useful in the process
planning domain:

e since it corresponds to basic operations in the process
plan, it will let us devel op measures of design similarity
that are useful for retrieving designs that have similar
process plans;

e Since a number of well known techniques exist for ex-
tracting machining features from CAD models[13, 17]
(for example, we use the technique described in [12]),
it is possibleto generate the design signatures automat-
ically.

Our futurework has two basic directions.

o We intend to extend the theoretical basis and agorith-
mic work, by devel oping new definitionsof equivaence
relations upon design signatures and new methods of
signature simplification. We intend to implement these
definitionsand algorithmsto providea useful similarity



measure for machined parts and a practica classifica-
tion and retrieval system based upon thismeasure. The
latter will require paying close attention to engineering
domain knowledge such as the details of various man-
ufacturing processes and the corresponding geometric
features, and developing ways to represent feature in-
teractionsthat result fromtol erancing and fixturing con-
straints.

We are developing ways to “dice’” design signatures
into pieces that are meaningful from the point of view
of process planning. Thiswill allow usto use our clas-
sification techniques to measure the similarity of these
design dices rather than designs as awhole. We intend
tousethisasthebasisfor ahybridvariant/generativeap-
proach to process planning, that retrieves design slices
from adatabase and and combinesthem together toform
process plans for new designs.
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