
When is Planning Decidable?∗

Kutluhan Erol Dana S. Nau† V. S. Subrahmanian‡

kutluhan@cs.umd.edu nau@cs.umd.edu vs@cs.umd.edu

Computer Science Department
University of Maryland
College Park, MD 20742

Abstract

In this paper, we show conditions under
which planning is decidable and undecidable.
Our results on this topic solve an open prob-
lem posed in (Chapman 1987), and clear up
some difficulties with his undecidability the-
orems.

1 Introduction

Much planning research has been motivated, in one
way or another, by the difficulty of producing complete
and correct plans. For example, abstraction (Sacerdoti
1974, Charniak & McDermott 1985, Nilsson 1980, Tate
et al. 1990) and task reduction (Sacerdoti 1975, Char-
niak & McDermott 1985, Tate et al. 1990) were devel-
oped in an effort to make planning more efficient, and
concepts such as deleted-condition interactions were
developed to describe situations which make planning
difficult.

Here we examine how the decidability of domain-
independent planning depends on the nature of the
planning operators. We consider planning problems
in which the current state is a set of ground atoms,
and each planning operator is a STRIPS-style opera-
tor consisting of three lists of atoms: a precondition
list, an add list, and a delete list. Our results can be
summarized as follows:

1. If function symbols are allowed or if the language
contains infinitely many constant symbols, then
determining, in general, whether a plan exists

∗This work was supported in part by NSF Grant NSFD
CDR-88003012 to the University of Maryland Systems Re-
search Center, as well as NSF grants IRI-8907890 and IRI-
9109755.

†Also in the Systems Research Center and the Institute
for Advanced Computer Studies.

‡Also in the Institute for Advanced Computer Studies

is undecidable (more specifically, semidecidable)1.
This is true even if we have no delete lists and
the precondition list of each operator contains at
most one (non-negated) atom. If no function sym-
bols are allowed and only finitely many constant
symbols are allowed, then plan existence is de-
cidable, regardless of the presence or absence of
delete lists.

2. The above results resolve an open problem stated
by Chapman in (Chapman 1987): whether or not
planning is undecidable if the initial state is finite.
If the initial state is finite and the language has
finitely many ground terms, then the general plan-
ning problem is decidable, but if the initial state is
finite and the language has infinitely many ground
terms, then planning is undecidable in general.

3. Chapman’s Second Undecidability The-
orem states that “planning is undecidable even
with a finite initial situation if the action repre-
sentation is extended to represent actions whose
effects are a function of their situation” (Chap-
man 1987). This theorem, as stated, is mislead-
ing. Whether or not planning is undecidable has
nothing to do with whether or not the operators
have conditional effects—instead, planning is de-
cidable if and only if the language contains finitely
many ground terms.

Section 2 contains the basic definitions. Section 3 con-
tains the decidability and undecidability results, and
Section 4 compares and contrasts them with Chap-
man’s results. Section 5 contains concluding remarks.
For proofs of the theorems, the reader is referred to
(Erol et al. 1991).

2 Preliminaries

Throughout this section, we let L be an ordinary first-
order language generated by finitely many constant,

1The formal definition of the plan existence problem is
given at the end of the section entitled “Preliminaries.”

a
b c

Fig. 1: Initial
configuration

b
c

Fig. 2: Goal
configuration

function and predicate symbols. L has an infinite num-
ber of variable symbols together with the usual logical
symbols.

A state is a set of ground atoms. Intuitively, a state
tells us which ground atoms are currently true. Thus,
if a ground atom A is in state S, then A is true in state
S; if B /∈ S, then B is false in state S. Thus, a state
is simply an Herbrand interpretation for the language
L, and hence each formula of first-order logic is either
satisfied or not satisfied in S according to the usual
first-order logic definition of satisfaction.

We consider a STRIPS-style planning operator α to be
a 4-tuple (Name(α), Pre(α), Add(α), Del(α)), where

1. Name(α) is a syntactic expression of the form
α(X1, . . . , Xn) where each Xi is a variable symbol
of L;

2. Pre(α) is a finite set of literals, called the precon-
dition list of α, whose variables are all from the
set {X1, . . . , Xn};

3. Add(α) and Del(α) are both finite sets of atoms
(possibly non-ground) whose variables are taken
from the set {X1, . . . , Xn}. Add(α) is called the
add list of α, and Del(α) is called the delete list of
α.

Observe that atoms and negated atoms may occur in
the precondition list, but negated atoms may not occur
in either the add list or the delete list.

A planning domain is a pair P = (S0,O), where S0

is the initial state and O is a finite set of operators.
A goal is an existentially closed conjunction of atoms.
A planning problem is a triple P = (S0,O, G), where
(S0,O) is a planning domain and G is a goal.

Example 1 (Blocks World) Consider
a blocks-world domain containing three blocks a, b, c,
along with Nilsson’s “stack”, “unstack”, “pickup”, and
“putdown” operators (Nilsson 1980). Suppose the ini-
tial and goal configurations are as shown in Figs. 1 and
2. This domain can be represented as follows:

• Language. The language L contains a supply of
variable symbols X1, X2, . . . , and three constant
symbols a, b, c to represent the three blocks. L
contains a binary predicate symbol “on”, unary
predicate symbols “ontable”, “clear”, and “hold-
ing”, and a 0-ary predicate symbol “handempty”.
Operator names, such as “stack”, “unstack”, etc.,
are not part of L.

• Operators. The “unstack” operator is the fol-
lowing 4-tuple (the “stack”, “pickup”, and “put-
down” operators are defined analogously):

Name : unstack(X1, X2)
Pre {on(X1, X2), clear(X1), handempty()}

Del : {on(X1, X2), clear(X1), handempty()}
Add : {clear(X2), holding(X1)}

• Planning Domain. The planning domain is
(S0,O), where S0 and O are as follows:

S0 = {clear(a), on(a, b), ontable(b),
clear(c), ontable(c), handempty()};

O = {stack, unstack, pickup, putdown}.

• Planning Problem. The planning problem is
(S0,O, G), where G = {on(b, c)}.

Let P = (S0,O) be a planning domain, α be an
operator in O whose name is α(X1, . . . , Xn), and θ
be a substitution that assigns ground terms to each
Xi, 1 ≤ i ≤ n. Suppose that the following conditions
hold:

{Aθ|A is an atom in Pre(α)} ⊆ S;
{Bθ|¬B is a negated literal in Pre(α)} ∩ S = ∅;
S′ = (S − (Del(α)θ)) ∪ (Add(α)) θ.

Then we say that α is θ-executable in state S, resulting
in state S′. This is denoted symbolically as S

α,θ=⇒ S′.

Suppose P = (S0,O) is a planning domain and G
is a goal. A plan that achieves G is a sequence
S0, . . . , Sn, Sn+1 of states, a sequence α0, . . . , αn of
planning operators, and a sequence θ0, . . . , θn of sub-
stitutions such that

S0
α0,θ0=⇒ S1

α1,θ1=⇒ S2 · · ·
αn,θn=⇒ Sn+1 (1)

and G is satisfied by Sn, i.e. there exists a ground
instance of G that is true in Sn. The length of the
above plan is n.

We will often say that (1) above is a plan that achieves
G.

Let P = (S0,O) be a planning domain or P =
(S0,O, G) be a planning problem; and let L be the
language of P. Then:

1. O (and thus P) is positive if for all α ∈ O, Pre(α)
is a finite set of atoms (i.e. negations are not
present in Pre(α)).

2. O (and thus P) is deletion-free if for all α ∈ O,
Del(α) = ∅.

3. O (and thus P) is context-free if for all α ∈ O,
|Pre(α)| ≤ 1, i.e., Pre(α) contains at most one
atom.

4. O (and thus P) is side-effect-free if for all α ∈ O,
|Add(α) ∪ Del(α)| ≤ 1, i.e., α has at most one
postcondition.

5. L (and thus P) is function-free if L contains no
function symbols.

plan existence is the following problem: “given as
input, a planning problem P = (S0,O, G), is there
a plan in P that achieves G?” It is important to
note that in this formulation, planning is undecidable
if there is no algorithm that halts on all possible input
values of S0, O and G. The fact that certain specific
planning domains are decidable does not mean that
the general planning problem, where arbitrary plan-
ning domains may occur in the input, is decidable.

3 Decidability and Undecidability
Results

In this section, we show that logic programming is es-
sentially the same as planning without delete lists.
This is established by showing how to transform a
deletion-free planning domain into a logic program
such that for all goals G, the goal G is achievable
from the planning domain iff the logical query that
G represents is provable from the corresponding logic
program.2 As a consequence of this equivalence, we
can use results on the complexity of logic programs
and deductive databases to demonstrate the following
results:

• plan existence is undecidable, even if all opera-
tors have at most one precondition, and regardless
of whether the operators have delete lists and/or
negative preconditions.

• plan existence is decidable if our first-order lan-
guage contains no function symbols and is finitely
generated (in particular, this means that only
finitely many constants are present in the lan-
guage). The presence or absence of delete lists
does not affect the decidability result.

2This should be intuitively true, anyway, but the for-
mal establishment of this equivalence is necessary before
attempting to apply results from logic programming and
deductive databases to planning problems. An important
point to note is that we will only be considering truth in
Herbrand models (cf. Shoenfield 1967) in this paper. It
doesn’t make much sense to consider non-Herbrand models
for planning problems because the domains of such models
often contain objects that do not occur in the language. In
the case of blocks world, for instance, this corresponds to
assuming (inside the model) that there are blocks on the
table that cannot be referred to in the language. Obvi-
ously, this is not relevant to planning. Thus, when we talk
of logical consequences of programs, we will be referring
to those sentences that are true in all Herbrand models of
the program. For function-free languages, this condition
is well known to yield decidability of logical consequence
(Plaisted 1984, Vardi 1982).

• When our planning domain P = (S0,O) is fixed
in advance, then the problem “given goal G, does
there exist a plan that achieves G?” may still
be undecidable depending on P. The presence or
absence of delete lists does not affect this result.

We now proceed to establish the equivalence between
logic programming and planning without delete lists.
Subsequently, we show how to do away with delete lists
when function symbols are absent.

If P is deletion-free, then the logic program translation
of an operator α ∈ O, denoted by LP(α), is the set of
clauses

LP(α) = {(∀)(A ← B1 & . . .& Bn) | A ∈ Add(α)},

where Pre(α) = {B1, . . . , Bn}. The logic program
translation of P = (S0,O), denoted LP(P), is the set
of clauses

LP(P) = S0 ∪
⋃

α∈O
LP(α).

Remark 1 Note that if we consider planning domains
P = (S0,O) where S0 is infinite, then LP(P) would
contain infinitely many unit clauses. The infinite na-
ture of LP(P) will turn out to be irrelevant when
P = (S0,O) contains no operators that have nega-
tions in their preconditions. This irrelevance is due to
the compactness theorem for first-order logic.

Lemma 1 Suppose that P = (S0,O) is any positive,
deletion-free planning domain, and

S0
α0,θ0=⇒ S1

α1,θ1=⇒ S2 · · ·
αn,θn=⇒ Sn+1

is a plan that achieves some goal G (we really don’t
care what G is as far as this lemma is concerned).
Then:

1. S0 ⊆ S1 ⊆ S2 · · · ⊆ Sn+1.

2. If operator α is θ-executable in state Sj , then α
is θ-executable in state Sk for all k ≥ j.

If P = (S0,O) is a positive deletion-free planning do-
main, then LP(P) is a pure (i.e., negation-free) logic
program. The following theorem shows that achiev-
ability of a goal G in P is identical to provability of G
from LP(P).

Theorem 1 (Equivalence Theorem) Suppose P =
(S0,O) is a positive, deletion-free planning domain and
G is a goal. Then there is a plan to achieve G from P
iff LP(P) |= G.

Corollary 1 (Semi-Decidability Results)

1. {G | G is an existential goal such that there is a
plan to achieve G from P = (S0,O)} is a recur-
sively enumerable subset of the set of all goals.

2. Given any recursively enumerable collection X of
ground atoms (which, of course, are goals), there
is a positive deletion-free planning domain P =
(S0,O) such that {A | A is a ground atom such
that there is a plan to achieve A from P} = X

3. If we restrict P to be positive and deletion-free,
then plan existence is strictly semi-decidable.

Corollary 2 The problem “given a positive deletion-
free planning domain P = (S0,O), is the set of goals
achievable from P decidable?” is Π0

2-complete.

Corollary 3 If we restrict P to be positive, deletion-
free, and context-free, then plan existence is still
strictly semi-decidable.

Corollary 4 Suppose P = (S0,O) is a fixed posi-
tive, deletion-free planning domain. Then the prob-
lem: “given a goal G, does there exist a plan to achieve
G?” is decidable iff the set of goals provable from
LP(P) is decidable.

Theorem 1 holds only when P is positive. The reason
for this is that if P is not positive, then LP(P) is a logic
program that may contain negation in its body. Logic
programming interprets negation in LP(P) as “failure
to prove”, which is different than the interpretation of
negation in the planning domain P. Intuitively, nega-
tion in logic programming says “conclude ¬p if it is
impossible to prove p”. The corresponding notion of
negation in planning would be “conclude ¬p if there
is no plan to achieve p” which is much stronger than
saying “p is false in the current state.” Thus, if P is
not positive, then in some cases G will be achievable in
P but LP(P) |= G will be false. To see this, consider
the following example:

Example 2 Consider the planning domain P =
(S0,O) that contains the two operators α1, α2 de-
scribed below:

Pre(α1) = {¬b}, Add(α1) = {a}
Pre(α2) = {c}, Add(α2) = {b}

Suppose our initial state is the state {c}. Clearly, there
is a plan to achieve a by simply executing operation
α1 in the initial state.

Now consider LP(P), which is the logic program:

a ← ¬b
b ← c
c ←

The set of atoms provable from this program accord-
ing to logic programming (all major semantics for logic
programs agree on this) is {b, c}, i.e. a cannot be ob-
tained even though our planning domain admits a plan
that achieves a.

Lemma 2 Suppose I is a decidable Herbrand inter-
pretation, i.e. I is a decidable set of ground atoms,
and G is a goal. Then

1. The problem “is goal G true in interpretation I?”
is semi-decidable.

2. If the language L is known to be function free,
then the above problem is decidable.

Theorem 2 (Decidability
of Deletion-Free, Function-Free Planning) If we
restrict P to be deletion-free and function-free, then
plan existence is decidable.

Theorem 3 (Theorem on Infinite Initial States)
plan existence is semi-decidable if we restrict P =
(S0,O) to be positive and deletion-free, and S0 to be
a decidable set of ground atoms of language L (even
though S0 may be infinite).

We now show that when L contains no function sym-
bols, we can do away with delete lists. The idea is
intuitively the same as that of Green (Green 1969,
Nilsson 1980) (vis-a-vis the famous “Green’s formu-
lation of planning”), with one difference: Green intro-
duces function symbols even if the original language
contained none: we introduce new constants. When
the language is function-free, only finitely many new
constants are included.

Theorem 4 (Eliminating Delete Lists) Suppose
P is a function-free planning domain. Then there is
a positive deletion-free planning domain P′ = (S′

0,O′)
such that for each goal G ≡ (∃)(A1& . . .&An), there is
a goal G′ ≡ (∃)(A′

1& . . .&A′
n&poss(S)), where “poss”

is a new unary predicate symbol and for all 1 ≤ i ≤ n,
if Ai ≡ p(t1, . . . , tn), then A′

i ≡ p(t1, . . . , tn, S) where
S is a variable symbol. Furthermore, G is achievable
from P iff G′ is achievable from P′.

An important point to note is that even though delete
lists may be removed, the size of P′ is much larger
than P.

Theorem 5
(Decidability of Function-Free Planning) If we
restrict P to be function-free, then plan existence
is decidable.

4 Chapman’s Undecidability Results

To date, the best-known results on decidability and
undecidability in planning systems are those of (Chap-
man 1987). However, there is a certain amount of con-
fusion about what Chapman’s undecidability results
actually say, because some of his assumptions become
clear only after a careful reading of the paper. To clar-
ify the meaning of Chapman’s undecidability results,
we now compare and contrast his results with ours.

First Undecidability Theorem. Chapman’s first
undecidability theorem (Chapman 1987, pp. 370–371)
says that all Turing machines with their inputs may
be encoded as planning problems in the TWEAK rep-
resentation, and hence planning is undecidable. Our
results compare and contrast with this result in the
following respects:

1. Chapman assumes that “an infinite set of con-
stants ti are used to represent the tape squares”
(Chapman 1987, p. 371), but in his discussion of
the result, he points out that this set of constants
is recursive.
Our language L contains only finitely many con-
stants, but it may contain function symbols. This
is essentially the same as having a recursive set
of constants, because the function symbols can be
used to generate countably many ground terms.
Thus in this respect, our result doesn’t differ from
Chapman’s first undecidability theorem.

2. Chapman uses an infinite initial state to prove his
result. In particular, “there must be countably
many successor propositions to encode the topol-
ogy of the tape (and also countably many contents
propositions to make all but finitely many squares
blank)” (Chapman 1987, p. 371). He also says
(Chapman 1987, p.344):

This result is weaker than it may appear
. . . the proof uses an infinite (though re-
cursive) initial state to model the con-
nectivity of the tape. It may be that if
problems are restricted to have finite ini-
tial states, planning is decidable. (This
is not obviously true though. There are
infinitely many constants, and an action
can in effect “gensym” one by referring
to a variable in its post-conditions that
is not mentioned in its preconditions.)

We now describe how our results solve the open
problem posed in the above quote.
First, our Corollary 1 shows that if the language
contains infinitely many ground terms, then plan-
ning is undecidable even if initial states are fi-
nite. This is true regardless of whether the infinite
number of ground terms occurs because infinitely
many constants are present in the language as is
the case with (Chapman 1987), or because there
are finitely many constants together with finitely
many function symbols, as is true in our case.
Second, our result Theorem 5 shows that if
the language contains only finitely many ground
terms, then planning is decidable. Planning with
only finitely many ground terms in the language
makes a lot of sense, because it applies to all do-
mains where a finitely bounded number of “enti-
ties” are being manipulated (the usual formula-
tion of the blocks world is one such example). We

can make the number of these entities large, but
as long as we keep it finite, these results apply.

3. Our Corollaries 1 and 3 demonstrate that plan-
ning with infinitely many terms is undecidable in
general even if every planning operator contains
no delete lists, at most one positive precondition,
and no negative preconditions. Chapman’s result
(Chapman 1987, p. 371) is more restrictive: he
needs four preconditions, and he explicitly uses
negative post-conditions, which is equivalent to
having delete lists.

Second Undecidability Theorem. The statement
of Chapman’s second undecidability theorem is that
“planning is undecidable even with a finite initial state
if the action representation is extended to represent
actions whose effects are a function of their input sit-
uation” (Chapman 1987, p. 373). From his discussion
on p. 371, it appears that Chapman is referring to the
following kind of conditional operator:

Name: α(...)
if Pα then add Aα and delete Dα

else add A′
α and delete D′

α

where P is a set of literals, and Aα, Dα, A′
α, and D′

α
are sets of atoms.

A careful reading of Chapman’s proof makes it clear
that there is an additional assumption. In his proof,
he makes use of operators that increment and decre-
ment two counters, but there is no upper bound on
the value of those counters—and thus it is necessary
that the language contain infinitely many terms. But
if there are infinitely many terms, then our Corollary 1
shows that planning is undecidable even with ordinary
STRIPS-style planning operators.

On the other hand, suppose that the language con-
tains only finitely many terms, but that there are con-
ditional operators of the kind described above. Let α
be any one of these conditional operators, and suppose
that Pα = {p1, p2, . . . , pn}. We now define an equiv-
alent set of STRIPS-style operators {αN |N ⊆ Pα},
none of which has conditional effects.

α∅ is the following operator:
Name : α0(. . .)

Pre : Pα

Add : Aα

Del : Dα

For every nonempty set N ⊆ P , αN is the following
operator:

Name : αi(. . .)
Pre : {¬pi|pi ∈ N} ∪ (P − N)

Add : A′
α

Del : D′
α

The set of “unconditional” operators {αN |N ⊆ P} is
equivalent to α, in the sense that S

α,θ=⇒ S′ if and only
if there is exactly one αi that is θ-executable in S, and
S

αi,θ=⇒ S′.

Replacing each conditional operator by the equiva-
lent set of unconditional operators produces a plan-
ning domain whose language has finitely many ground
terms—and according to Theorem 5, planning is de-
cidable for such domains.

From the above, it follows that the statement of Chap-
man’s Second Undecidability Theorem is misleading.
His proof of undecidability has nothing to do with
whether the operators are conditional—it instead de-
pends on the fact that his planning domain requires
an infinite number of terms.

5 Conclusion

The primary aim of this paper has been to examine the
decidability of planning with STRIPS-style planning
operators (i.e., operators comprised of preconditions,
add lists, and delete lists).

Our primary result is that planning is decidable if and
only if the language has finitely many ground terms.
This relates in several ways to Chapman’s work (Chap-
man 1987):

1. It solves an open problem posed in (Chapman
1987), regarding the decidability of planning with
a finite initial state. The answer depends on
whether the language has finitely many ground
terms.

2. It shows that one of the results in (Chapman
1987) is misleading. The undecidability of plan-
ning with STRIPS-style operators has nothing to
do with the presence or absence of conditional ef-
fects. If the language has finitely many ground
terms, then planning is decidable even if the op-
erators have conditional effects. If the language
has infinitely many ground terms, then planning
is undecidable even if no operators have no con-
ditional effects, no delete lists, and no negative
preconditions.

References

H.A. Blair. “Canonical Conservative Extensions of
Logic Program Completions,” Proc. 4th IEEE Sym-
posium on Logic Programming, 1989, pp. 154–161.

Eugene Charniak and Drew McDermott. Introduction
to Artificial Intelligence. Addison-Wesley, Reading,
MA, 1985.

D. Chapman. “Planning for Conjunctive Goals,” Ar-
tificial Intelligence 32, 1987, pp. 333-377.

K. Erol, D. S. Nau, and V. S. Subrahmanian. “Com-
plexity, Decidability and Undecidability Results for
First-Order Planning,” submitted for journal publica-
tion, 1991.

C. Green. “Application of Theorem-Proving to Prob-
lem Solving,” Proc. IJCAI-69, 1969.

Naresh Gupta and Dana S. Nau. “Complexity results
for blocks-world planning,” Proc. AAAI-91, 1991.
Honorable mention for the best paper award.

Naresh Gupta and Dana S. Nau, Artificial Intelligence,
accepted for publication, 1992.

N. J. Nilsson 1980. Principles of Artificial Intelligence.
Tioga, Palo Alto, 1980.

Earl D. Sacerdoti. “Planning in a hierarcy of abstrac-
tion spaces.” In James Allen, James Hendler, and
Austin Tate, editors, Readings in Planning, pages 98–
108. Morgan Kaufman, 1990. Originally appeared in
Artificial Intelligence 5 (1974), 115–135.

D.A. Plaisted. “Complete Problems in the First-Order
Predicate Calculus,” Jour. Computer and Systems
Sciences 29 (1984), pp. 8–35.

Earl D. Sacerdoti. “The nonlinear nature of plans.”
In James Allen, James Hendler, and Austin Tate, ed-
itors, Readings in Planning, pages 206–214. Morgan
Kaufman, 1990. Originally appeared in Proc. IJCAI-
75.

J. Sebelik and P. Stepanek. “Horn Clause Programs
for Recursive Functions.” In K. Clark and S.-A. Tarn-
lund, editors, Logic Programming, pp. 325–340, Aca-
demic Press, 1980.

J. Shoenfield. Mathematical Logic, Academic Press,
1967.

A. Tate, J. Hendler, and M. Drummond. “A review
of AI planning techniques.” In James Allen, James
Hendler, and Austin Tate, editors, Readings in Plan-
ning, pages 26–49. Morgan Kaufman, 1990.

M. Vardi. “The Complexity of Relational Query Lan-
guages,” Proc. 14th ACM Symp. on Theory of Com-
puting, San Francisco, 1982, pp. 137–146.

