
HTN Planning: Complexity and Expressivity*
Kutluhan Erol James Hendler Dana S. Nau

kutluhan@cs.umd.edu hendler@cs.umd.edu nau@cs.umd.edu

Computer Science Department,
Institute for Systems Research and Institute for Advanced Computer Studies

University of Maryland, College Park, MD 20742

Abstract
Most practical work on AI planning systems during the
last fifteen years has been based on hierarchical task
network (HTN) d ecomposition, but until now, there
has been very little analytical work on the properties
of HTN planners. This paper describes how the com-
plexity of HTN planning varies with various conditions
on the task networks.

networks are required to be totally ordered, and (3)
whether variables are allowed. From this table, we can
draw the following conclusions:

Introduction
In AI planning research, planning practice (as embod-
ied in implemented planning systems) tends to run far
ahead of the theories that explain the behavior of those
systems. There is much recent analysis of the proper-
ties of total- and partial-order planning systems us-
ing STRIPS-style planning operators-but STRIPS-
style planning systems were developed more than 20
years ago, and most of the practical work on AI plan-
ning systems during the last fifteen years has been
based on hierarchical task network (HTN) decomposi-
tion (e.g., NOAH(Sacerdoti, I999), NONLIN(Tate, I999),
sIPE(Wilkins, 1988), and DEVISER(Vere, 1983)).

HTN’s are more expressive than STRIPS-style op-
erators. This contradicts the idea, held by some re-
searchers, that HTN’s are just an “efficiency hack.”
HTN planning is undecidable under even a very se-
vere set of constraints. In particular, it is undecid-
able even if no variables are allowed, as long as there
is the possibility that a task network can contain two
non-primitive tasks without specifying the order in
which they must be performed.
In general, what restrictions we put on the non-
primitive tasks has a bigger effect on complexity
than whether or not we allow variables, or require
tasks to be totally ordered.

Until now, there has been very little analytical work
on the properties of HTN planners. One of the primary
obstacles impeding such work has been the lack of a
clear theoretical framework explaining what a HTN
planning system is, although two recent papers (Yang,
1990; Kambhampati et al., 1992) have provided impor-
tant first steps in that direction. A primary goal of our
current work is to correctly define, analyze, and expli-
cate features of the design of HTN planning systems.

1.

2.

3

4

5

To achieve decidability, it is sufficient to place re-
strictions either on non-primitive tasks or on the or-
dering of tasks. If either restriction is removed indi-
vidually, planning remains decidable, but removing
both simultaneously makes planning undecidable.
If there are no restrictions on non-primitive tasks,
then whether or not we require tasks to be totally
ordered has a bigger effect (namely, decidability vs.
undecidability) than whether or not we allow vari-
ables. But in the presence of restrictions on non-
primitive tasks, whether or not we allow variables
has a bigger effect than whether or not we require
tasks to be totally ordered.

Our work has progressed far enough that we can do
complexity analyses of HTN planning similar to anal-
yses which Erol et ad. (1992) performed for planning
with STRIPS-style operators. In particular, Table 1
shows how the complexity of telling whether a plan
exists depends on the following factors: (1) restric-
tions on the existence and/or ordering of non-primitive
tasks in task networks, (2) whether the tasks in task

asks of TN Planning
Qverview

To provide an intuitive feel for HTN planning, here is a
deliberately oversimplified description. The “Details”
section gives a more precise description.

The input to the planner consists of the following:

*This work was supported in part by NSF Grant NSFD o An initial “task network” d representing the problem
CDR-88003012 to the Institute for Systems Research, and to be solved. A task network is a set of “tasks” rep-
NSF grant IRI9306580 and ONR grant N00014-91-J-1451 resenting things that need to be done. Each task is a
to the Computer Science Department. task name along with a list of arguments, which may

Task Network 1123

From: AAAI-94 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved.

Complexity of HTN Planning
Restrictions on Must every HTN be Are variables allowed?
non-primitive tasks tot ally ordered? no Yes

no Undecidable Undecidablep
none Yes in EXPTIME; PsPAcE-hard in DEXPTIME; EXPSPACE-hard
“regularity” a doesn’t matter PSPACE-COmpkk EXPSPACE-complete
no non-primitive no NP-complete NP-complete
tasks Yes Polynomial time NP-complete
“At most one non-primitive task, which must follow all primitive tasks.
PEven if the planning domain is fixed in advance.

0

0

be variables or constants. Some tasks are “primi-
tive” (i.e., they can be performed directly), and oth-
ers are “non-primitive” (i.e., the planner needs to
figure out how to perform them). Task networks
also include constraints on the tasks, which may re-
strict how some of the variables can be bound, the
order in which the tasks are to be performed, etc.
A set of “operators” Op telling the effects of each
primitive task (action).
A set of “methods” Me telling how to perform var-
ious non-primitive tasks. Each method is a pair
m=(t,d), h t w ere is a task and d is a task network.
It says one way to achieve t is to perform the tasks
specified in the network d (provided that this can be
done in a way that satisfies all the constraints).

Planning proceeds by starting with the the initial
task network d, and doing the following steps repeat-
edly, until no non-primitive tasks are left: find a non-
primitive task ti in d and a method m = (t, d’) in M
such that t unifies with u. Then modify d by “re-
ducing” u (i.e., replace u with the tasks in d’, and
incorporate the constraints of d’ into d). Once no non-
primitive tasks are left in d, the next problem is to find
a totally-ordered ground instantiation a of d that sat-
isfies all of the constraints. If this can be done, then tr
is a successful plan for the original problem.

In practice, HTN planning also has several other as-
pects. In particular, functions are often provided which
can “debug” partially reduced task networks to elimi-
nate potential problems. These “critic” functions are
used to handle ordering constraints, resource limits,
and to provide domain-specific guidance. The formal-
ization described in (Erol ef al., 1994a) explains critics
and the relationship between these and the constraints
described above. For the purposes of this paper, the
critics do not affect worst-case behavior, and thus we
will omit this detail.

Details
Our language C for HTN planning is a first-order lan-
guage with some extensions. The representations of
the world and the actions in HTN planning is very sim-
ilar to those of STRIPS-style planning. Thus, L contains
a set C of constant symbols that represent the objects,
and a set P of predicate symbols that represent the

relations among the objects. L also contains a set F
of primitive task symbols which represent the actions.
We use constructs called operators to associate effects
to primitive task symbols. We define a plan as a se-
quence of ground primitive tasks, and we designate the
initial state of the world by a list of ground atoms.

The fundamental difference between STRIPS-style
planning’ and HTN planning is the representation of
“desired change” in the world. HTN planning re-
places STRIPS-style “goals” with tasks and task net-
works (which we later show are more powerful). There
are three types of tasks:

Goal tuslcs, like goals in STRIPS, are properties we
wish to make true in the world (for example, having
a new house).
Primitive tusks are the tasks we can directly achieve
by executing the corresponding action, such as mov-
ing a block, or turning a switch on.
Compound tusks denote desired changes that involve
several goal tasks and primitive tasks; e.g., build-
ing a house requires many other tasks to be per-
formed (laying the foundation, building the walls,
etc.). Compound tasks allows us to represent “de-
sired changes” that can not be represented as a single
goal task or primitive task. As an example, the com-
pound task of “building a house” is different from the
goal task of “having a house,” since buying a house
would achieve the goal task, but not the compound
task. As another example, the compound task of
making a round trip to New York cannot easily be
expressed as a single goal task, because the initial
and final states would be the same.

Formally, the vocabulary of HTN language c is a tuple
(V, 6, P, F, T, N), where V = {or, ~2, . . ,} is an infinite
set of variable symbols, C is a finite set of constant
symbols, P is a finite set of predicate symbols, F is
a finite set of primitive task symbols, T is a finite set
of compound task symbols, and N = (121, n2,. . .) is

‘We use the term %TRIPS-style” planning to refer to
any planner (either total- or partial-order) in which the
planning OperatOrS are STRIPS-Style operators (i.e., opera-
tors consisting of three lists of atoms: a precondition list,
an add list, and a delete list). These atoms are normally
assumed to contain no function symbols.

1124 Planning and Scheduling

((721 : uchieve[cZeur(u~)])(n~ : achieve[cZear(v2)])
(723 : do[mo+h, ~3, ~2)])

(nl -(n3) A (n2 -4 n3> A (nl, cZea+l), n3)

A(n2, clear(v2), n3) A (on(w v3), 723)

A l(Vl = 2)~) A +Q = 113) A -4~2 = ~13))

121:
clear(vu1)

123:

do[move(vl, ~3, v2)1

Figure 1: A task network, and its graphical represen-
tation.

an infinite set of symbols used for labeling tasks. If
21, * * *, 21~ are terms, then a primitive tusk has the form
do&l, * * * ,xk)), where f E F; a goal task has the
form achieve(l), where Z is a literal; and a compound
tusk has the form perform[t(zl, . . .,x1;)], where t E T.
We refer to goal tasks and compound tasks as non-
primitive tasks.

Tasks are connected together in HTN planning via
the use of task networkq2 which are collections of tasks
and constraints on those tasks. Formally, a tusk net-
work has the form ((nl : cyl), . . . , (n, : cyrra), q5), where
each pi is a task labeled with ni, and q5 is a boolean
formula constructed from variable binding constraints
such as v = v’ and v = c, temporal ordering con-
straints such as n 4 n’, and truth constraints such as
(n, Z), (I, n), and (n, Z, n’), where n, n’ E N, v, v’ E V,
I is a literal, and c E C. n + n’ means that the task
labeled with n precedes the one labeled with n’; (n, I),
(I, n) and (n,Z,n’) mean that I needs to be true im-
mediately after n, immediately before n, and between
n and n’, respectively. Both negation and disjunction
are allowed in the constraint formula.

As an example, Fig. 1 shows a blocks-world task
network and its graphical representation. In this task
network there are three tasks: clearing ~1, clearing ~2,
and moving ~1 to 02. The task network also includes
the constraints that moving ~1 should be done last, ~1
and ~12 should remain clear until we move ~1, and that
the variable 213 is bound to the location of ~1 before ~1
is moved.

To specify how actions change the world, we use op-
erators of the form (f (v1 , . . . , Q), 11, . . . , I,), where f
is a primitive task symbol, ~1, . . . , vk are variable sym-
bols, and II, . . . , I, are literals, denoting the primitive
task’s effects (which are also called postconditions).
Our HTN operators do not contain STRIPS-St+& pre-
conditions; preconditions are realized as goal tasks in

2These are also called “procedural nets” in some of the
literature (Sacerdoti, 1990; Drummond, 1985).

task networks (as in Fig. 1).
It is clear how to achieve a primitive task: execute

the corresponding action. But for non-primitive tasks,
we need to tell our planner how to achieve them, and
we do this using constructs called methods.

A method is a pair (cu, d) where e is a non-primitive
task, and d is a task network. It, statqs that one way of
achieving the task Q is to achieve the task network d, i.e
to achieve all the subtasks in the task network with-
out violating the constraint formula of the task net-
work. For example, a blocks-world method for achiev-
ing on(vl , ~2) would look like (uchiewe(on(vl , Q)), d),
where d is the task network in Fig. 1. An empty plan
would achieve a goal task when the goal is already true.
Thus, for each goal task, we (implicitly) have a method
(achieve(Z), ((n : do(t))(Z, n))) which contains only one
dummy primitive task t with no effects, and the con-
straint that the goal Z is true immediately before t.

Planning Domains and Problems
A planning domain is a pair 2) = (Op, Me), where Qp
is a set of operators, and Me is a set of methods.

A planning problem is a triple P = (d, I,V>, where
D is a planning domain, I is the initial state, and d is
the task network we need to plan for. The language
of P is the HTN language ,C generated by the constant,
predicate, and task symbols appearing in P, along with
an infinite set of variables and an infinite set of node
labels. Thus, the set of constants, predicates and tasks
are all part of the input.

P is primitive if the task network d contains only
primitive tasks. P is regudar if all the task networks in
the methods and d contain at most one non-primitive
task, and that non-primitive task is ordered to occur
as either the first or the last task. P is propositional
if no variables are allowed. P is totally ordered if all
the tasks in any task network are totally ordered.

PLAN EXISTENCE is the following problem: given
P = (d, I, D), is there a plan that solves P?

The problem of finding an optimal (i.e., shortest-
length) plan that solves P is at least as difficult as
the problem of determining whether or not a plan ex-
ists. In an analysis of STRIPS-style planning, Erol et ad.
(1992) analyzed this problem by transforming it into a
decision problem (which we called PLAN LENGTH) ac-
cording to the usual complexity-theoretic technique of
asking whether, for some input integer Ic, there exists
a successful plan of length k or less.

This paper does not address the plan optimality
problem, for two reasons. First,, HTN planners have
usually not worried about optimality because it is so
difficult to verify (in many cases, optimal&y cannot be
guaranteed by method decomposition). Second, Erol
et al. (1992) found that for STRIPS-style planning, in
some cases the complexity of PLAN LENGTH was mis-
leadingly low. In particular, PLAN LENGTH was N-
EXPTIME-COmpkk? even in cases where the plan op-
timal&y problem was much harder, because the input

Task Network 1125

to PLAN LENGTH includes the integer k encoded in bi-
nary, which confines the planner to plans of length at
most exponential in the length of the input.

Operational Semantics

In this section, we give a syntactic characterization of
the set of solutions for a given HTN-planning problem.
Description of an equivalent model-theoretic semantics
appear in (Erol et ad., 1994a).

Let d be a primitive task network (one contain-
ing only primitive tasks), and let I be the initial
state. A plan o is a completion of d at I, denoted
by 0 E comp(d, I, /D), if ~7 is a total ordering of the
primitive tasks in a ground instance of d that satisfies
the constraint formula of d.

Let d be a non-primitive task network that contains
a (non-primitive) node (n : CX) . Let m = (~2, d’) be a
method, and 8 be the most general unifier of cy and Q’.
Then we define reduce(d, n, m) to be the task network
obtained from de by replacing (n : (;Y)e with the task
nodes of d’6, and incorporating d’e’s constraint for-
mula into the constraint formula of d. We denote the
set of reductions of d by red(d, I, V) . Reductions for-
malize the notion of task decomposition. For a precise
definition of completions and reductions, the reader is
referred to (Erol et al., 1994a).

Here are the two inference rules we use to find plans:
Rl. If u E comp(d, I, V), conclude u E soZ(d, I, V).

R2. If d’ E red(d, I,V) and CT E soZ(d’, I,V), conclude
u E soZ(d, I,V).

Rule Rl says that the set of plans that achieve a prim-
itive task network consists of the completions of the
task network; Rule R2 says that if d’ is a reduction of
d, then any plan that achieves d’ also achieves d.

Now, we need to define the set of plans that can be
derived using those two inference rules. Let us define
a function soZ(d, 1, V) as follows:

so& (4 I, Do> =
sol,+1 (d, I, V)

comp(d, I, V)
= sol, (d, I, V)u

U d’Ered(d,l,P) Sozn(d’y If v)
soZ(d, I, V) = un<wsoZn (d, I, V)

Intuitively, SOZ, (d, I, V) is the set of plans that can
be derived in n steps, and soZ(d, 1, V) is the set of plans
that can be derived in any finite number of steps. In
(Erol et ad., 1994a), it is proved that soZ() is indeed the
set of solutions, and that the inference rules R1, R2
are sound and complete.

Decidability

Results

It is easy to show that we can simulate context-free
grammars within HTN planning. More interesting is
the fact that we can simulate any two context-free
grammars, and with the help of task interleavings and

constraints, we can check whether these two gram-
mars have a common string. in the languages they
generate. Whether the intersection of the languages
of two context-free grammars is non-empty is a semi-
decidable problem (Hopcroft et ad., 1979). Thus:3
Theorem 1 PLAN EXISTENCE is strictly semi-
decidable, even if P is restricted to be propositionuZ,
to have at most two tusks in any tusk network, and to
be totally ordered (except for the input tusk network,).

One way to make PLAN EXISTENCE decidable is to
restrict the methods to be acyclic. In that case, any
task can be expanded up to a finite depth, and thus
the problem becomes decidable. To this end, we de-
fine a k-level-mapping to be a function level0 from
ground instances of tasks to the set { 0, . . . , k}, such
that whenever we have a method that can expand a
ground task t to a task network containing a ground
task t’, level(t) > ZeveZ(t’). Furthermore, level(t) must
be 0 for every primitive task t.

Intuitively, ZeueZ() assigns levels to each ground task,
and makes sure that tasks can be expanded into only
lower level tasks, establishing an acyclic hierarchy. In
this case, any task can be expanded to a depth of at
most k. Therefore,
Theorem 2 PLAN EXISTENCE is decidable if P has a
k-level-mapping for some finite integer k.

Another way to make PLAN EXISTENCE decidable is
to restrict the interactions among the tasks. Restrict-
ing the task networks to be totally ordered limits the
interactions that can occur between tasks. Tasks need
to be achieved serially, one after the other; interleav-
ing subtasks for different tasks is not possible. Thus
interactions between the tasks are limited to the in-
put and output state of the tasks, and the “protection
intervals”, i.e the literals that need to be preserved.

Under the above conditions, we can create a table
with an entry for each task, input/output state pair,
and set of protected literals, that tells whether it is pos-
sible to achieve that task under those conditions. Using
dynamic programming techniques we can compute the
entries in the table in DOUBLE-EXPTIME, or in EXP-
TIME if the problem is further restricted to be propo-
sitional. It is easy to show that STRIPS-style planning
can be modeled using HTN’s that satisfy these condi-
tions, so we can use the complexity results on STRIPS-
style planning in (Erol et aZ.,.1992) to establish a lower
bound on the complexity of HTN planning. Thus:
Theorem 3 PLAN EXISTENCE is EXPSPACE-hard and
in DOUBLE-EXPTIME ifP is restricted to be totuddy or-
dered. PLAN EXISTENCE is PSPAcE-hard and in EXP-
TIME if P is further restricted to be propositional.

If we restrict our planning problem to be regular,
then there will be at most, one non-primitive task in
any task network (both the initial input task network,

3All proofs app ear in (Erol et al., 1994b).

1126 Planning and Scheduling

and those we obtain by expansions). Thus, subtasks in Despite such claims, it has never been demonstrated
the expansions of different tasks cannot be interleaved, that HTNS can encode situations which STRIPS-Style
whichis similar to what happens in Theorem 3. But in
Theorem 3, there could be several non-primitive tasks
in a task network, and we needed to keep track of all of
them (which is why we used the table): If the planning
problem is regular, we only need to keep track of a sin-
gle non-primitive task, its input/final states, and the
protected literals. Since the size of a state is at most
exponential, the problem can be solved in exponen-
tial space. But even with regularity and several other
restrictions, it is still possible to reduce an EXPSPACE-
complete STRIPS-style planning problem (described
in (Erol et al., 1992)) to the HTN framework. Thus:

Theorem 4 PLAN EXISTENCE is EXPSPACE-complete
if P is restricted to be regular. It is still EXPSPACE-
complete if P is further restricted to be totally or-
dered, with at most one non-primitive task symbol in
the planning language, and all task networks contain-
ing at most two tasks.

When we further restrict our problem to be
sitional, the complexity goes down one level:

propo-

Theorem 5 PLAN EXISTENCE is PSPACE-complete if
P is restricted to be regular and propositional. It is
still PSPACE-complete if P is further restricted to be
totally ordered, with at most one non-primitive task
symbol in the planning language, and all task networks
containing at most two tasks.

Suppose a planning problem is primitive, and either
propositional or totally ordered. Then the problem’s
membership in NP is easy to see: once we nondeter-
ministically guess a total ordering and variable bind-
ing, we can check whether the constraint formula on
the task network is satisfied in polynomial time. Fur-
thermore, unless we require the planning problem to be
both totally ordered and propositional, our constraint
language enables us to represent the satisfiability prob-
lem, and thus we get N&hardness. Hence:
Theorem 6 PLAN EXISTENCE is NP-complete if P is
restricted to be primitive, or primitive and totally or-
dered, or primitive and propositional. However, PLAN
EXISTENCE can be solved in polynomial time if P is
restricted to be primitive, totally ordered, and proposi-
tional.

Expressivity
It has been informally observed that HTN approaches
do not need to completely specify the conditions that
each action affects, while the STRIPS-style “state-
based” plan structures typically require complete spec-
ification of intermediate states. Thus, in describing
the relationships between actions, it has been argued
that HTN approaches are more appropriate. Lansky
(1988), for example, makes this argument and claims
it is largely responsible for the the more general use of
HTNs over STRIPS-Style systems in planning practice.

planning operators cannot, because the lack of a for-
malism for HTN planning has left it unclear what can
be expressed with HTNS. Using the formalism in this
paper, we can directly compare the expressive power
of HTN and STRIPS-style planning operators.

When we compare HTNS and STRIPS, we observe that
the HTN approach provides all the concepts (states, ac-
tions, goals) that STRIPS has. In fact, given a domain
encoded as a set of STRIPS operators, we can transform
it to an HTN planning domain, in low-order polyno-
mial time. A straightforward transformation would be
to declare one primitive task symbol for each STRIPS
operator, and for every effect of each operator, to de-
clare a method similar to the one in Fig. 1. Each such
method contains the preconditions of the operator as
goal tasks, and also the primitive task corresponding
to the operator itself.

Below is a more instructive transformation, which
demonstrates that the relationship between STRIPS-
style planning and HTN planning is analogous to the
relationship between right linear (regular) grammars
and context-free grammars. We summarize the trans-
formation below; for details see (Erol et al., 1994b).

In this transformation, the HTN representation uses
the same constants and predicates used in the STRIPS
representation. For each STRIPS operator o, we declare
a primitive task f with the same effects as o. We also
use a dummy primitive task fd with no effects. We
declare a single compound task symbol t. For each
primitive task f, we construct a method of the form

1 1

where dl, . . . , II, are the preconditions of the action
associated with f. We declare one last method
lPerformrtl] 3 (1. Note that t can be ex-
panded to any sequence of actions ending with fd,
provided that the preconditions of each action are
satisfied. The input task network has the form
b : perform[t]), (n, Gl) A . . . A (n : Gm)] where
G,...,G are the STRIPS-style goals we want to
achieve. Note that the transformation produces reg-
ular HTN problems, which has exactly the same com-
plexity as STRIPS-style planning. Thus, just as restrict-
ing context-free grammars to be right linear produces
regular sets, restricting HTN methods to be regular pro-
duces STRIPS-style planning.

HTNS can express situations impossible to express
using unmodified STRIPS operators. Intuitively, this is
because STRIPS lacks the concept of compound tasks,
and its notion of goals is limited. It does not provide
means for declaring goals/constraints on the interme-
diate states as HTNS do. Furthermore, in contrast to
STRIPS, HTNS provide a rich constraint language that
can express many types of interactions.

Task Network 1127

More formally, from Theorem 1, HTN planning with
no function symbols (and thus only finitely many
ground terms) is semi-decidable. Even if we require the
domain description 2, to be fixed in advance (i.e., not
part of the input), there are HTN planning domains for
which planning is semi-decidable.4 However, with no
function symbols, STRIPS-style planning is decidable;
regardless of whether or not the planning domain5 is
fixed in advance (Erol et al., 1992). Thus:

Theorem 7 There exists HTN planning domains that
can not be represented by any finite number of STRIPS-
style operators. 6

Another way of comparing expressive power of two
languages is based on model-theoretic semantics, which
we do in (Erol et al., 1994a).

The power of HTN planning comes from two things:
(1) allowing multiple tasks and arbitrary constraint
formulas in task networks, (2) compound tasks. Al-
lowing multiple tasks and arbitrary formulae provides
flexibility-but if all tasks were either primitive or goal
(STRIPS-style) tasks, these could probably be expressed
with STRIPS-stye operators (albeit clumsily and using
an exponential number of operators/predicates). Com-
pound tasks provide an abstract representation for sets
of primitive task networks, similar to the way non-
terminal symbols provide an abstract representation
for sets of strings in context-free grammars.

Conclusion
Our results show that handling interactions among
non-primitive tasks is the most difficult part of HTN
planning. In particular, if subtasks in the expansions
for different tasks can be interleaved, then planning is
undecidable, even if no variables are allowed.

We have investigated several conditions on the plan-
ning problem, such as restricting task-networks to con-
tain a single non-primitive task or to be totally ordered.
Those restrictions reduced the complexity significantly,
because they limited the interactions among tasks.

Our comparison of the complexity of HTN plan-
ning and STRIPS-Style planning demonstrates that HTN
planners can represent a broader and more com-
plex set of planning problems and planning domains.
The transformations from HTN planning problems to
STRIPS-style planning problems have revealed that
STRIPS-style planning is a special case of HTN plan-
ning, and that the relation between them is analogous
to the relation between context-free languages and reg-
ular languages.

4(Erol et al., 1994b) includes several complexity results
similar to those in this paper, for the case when D is fixed.

5Since STRIPS-style planning does not include methods,
a STRIPS-style planning domain is simply a set of operators.

‘In proving this theorem, we use the standard assump-
tion that the STRIPS operators do not contain function sym-
bols, nor do the HTN operators.

1128 Planning and Scheduling

Acknowledgement
We thank R. Kambhampati and A. Barrett for their
insightful comments.

References
Chapman, D. Planning for conjunctive goals.
cial Intelligence, 32:333-378, 1987.
Drummond, M. Refining and Extending the
dural Net. In Proc. IJCAI-85, 1985.
Erol, K.; Nau, D.; and Subrahmanian,
Complexity, decidability and undecidability
for domain-independent planning. Artificial

Artifi-

Proce-

v. s.
results
Intelli-

gence to appear. A more detailed version is avail-
able as Tech. Report CS-TR-2797, UMIACS-TR-91-
154, SRC-TR-91-96, University of Maryland, College
Park, MD, 1992.
Erol, K.; Hendler, J.; and Nau, D. Semantics for
Hierarchical Task Network Planning. Technical report
CS-TR-3239, UMIACS-TR-94-31, Computer Science
Dept., University of Maryland, March 1994.
Erol, K.; Hendler, J.; and Nau, D. Complexity re-
sults for hierarchical task-network planning. To ap-
pear in Annals of Mathematics and Artijkial Intelli-
gence Also available as Technical report CS-TR-3240,
UMIACS-TR-94-32, Computer Science Dept ., Uni-
versity of Maryland, March 1994.
Fikes, R. E. and Nilsson, N. J. STRIPS: a new ap-
proach to the application of theorem proving to prob-
lem solving. Artificial Intelligence, 2(3/4) 1971.
Hopcroft and Ullman. Introduction to Automata The-
ory, Languages and Computation. Addison-Wesley
Publishing Company Inc., California, 1979.
Kambhampati, S. and Hendler, J. “A Validation
Structure Based Theory of Plan Modification and
Reuse” Artijkial Intelligence, May, 1992.
Lansky, A.L. Localized Event-Based Reasoning
for Multiagent Domains. Computational Intelligence
Journal, 1988.
Sacerdoti, E. D. . The nonlinear Nature of Plans In
Allen, J.; Hendler, J.; and Tate, A., editors 1990,
Readings in Planning. Morgan Kaufman. 162-170.
Tate, A. Generating Project Networks In Allen, J.;
Hendler, J.; and Tate, A., editors 1990, Readings in
Planning. Morgan Kaufman. 291-296.
Vere, S. A. Planning in Time: Windows and Du-
rations for Activities and Goals. IEEE Transactions
on Pattern Analysis and Machine Intelligence, PAMI-
5(3):246-247, 1983.
Wilkins, D. Practical Planning: Extending the classi-
cal A I planning paradigm, Morgan-Kaufmann 1988.
Yang, Q. Formalizing planning knowledge for hier-
archical planning Computational Intelligence Vol.6.,
12-24, 1990.

