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Abstract 
Most practical work on AI planning systems during the 
last fifteen years has been based on hierarchical task 
network (HTN) d ecomposition, but until now, there 
has been very little analytical work on the properties 
of HTN planners. This paper describes how the com- 
plexity of HTN planning varies with various conditions 
on the task networks. 

networks are required to be totally ordered, and (3) 
whether variables are allowed. From this table, we can 
draw the following conclusions: 

Introduction 
In AI planning research, planning practice (as embod- 
ied in implemented planning systems) tends to run far 
ahead of the theories that explain the behavior of those 
systems. There is much recent analysis of the proper- 
ties of total- and partial-order planning systems us- 
ing STRIPS-style planning operators-but STRIPS- 
style planning systems were developed more than 20 
years ago, and most of the practical work on AI plan- 
ning systems during the last fifteen years has been 
based on hierarchical task network (HTN) decomposi- 
tion (e.g., NOAH(Sacerdoti, I999), NONLIN(Tate, I999), 
sIPE(Wilkins, 1988), and DEVISER(Vere, 1983)). 

HTN’s are more expressive than STRIPS-style op- 
erators. This contradicts the idea, held by some re- 
searchers, that HTN’s are just an “efficiency hack.” 
HTN planning is undecidable under even a very se- 
vere set of constraints. In particular, it is undecid- 
able even if no variables are allowed, as long as there 
is the possibility that a task network can contain two 
non-primitive tasks without specifying the order in 
which they must be performed. 
In general, what restrictions we put on the non- 
primitive tasks has a bigger effect on complexity 
than whether or not we allow variables, or require 
tasks to be totally ordered. 

Until now, there has been very little analytical work 
on the properties of HTN planners. One of the primary 
obstacles impeding such work has been the lack of a 
clear theoretical framework explaining what a HTN 
planning system is, although two recent papers (Yang, 
1990; Kambhampati et al., 1992) have provided impor- 
tant first steps in that direction. A primary goal of our 
current work is to correctly define, analyze, and expli- 
cate features of the design of HTN planning systems. 
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To achieve decidability, it is sufficient to place re- 
strictions either on non-primitive tasks or on the or- 
dering of tasks. If either restriction is removed indi- 
vidually, planning remains decidable, but removing 
both simultaneously makes planning undecidable. 
If there are no restrictions on non-primitive tasks, 
then whether or not we require tasks to be totally 
ordered has a bigger effect (namely, decidability vs. 
undecidability) than whether or not we allow vari- 
ables. But in the presence of restrictions on non- 
primitive tasks, whether or not we allow variables 
has a bigger effect than whether or not we require 
tasks to be totally ordered. 

Our work has progressed far enough that we can do 
complexity analyses of HTN planning similar to anal- 
yses which Erol et ad. (1992) performed for planning 
with STRIPS-style operators. In particular, Table 1 
shows how the complexity of telling whether a plan 
exists depends on the following factors: (1) restric- 
tions on the existence and/or ordering of non-primitive 
tasks in task networks, (2) whether the tasks in task 

asks of TN Planning 
Qverview 

To provide an intuitive feel for HTN planning, here is a 
deliberately oversimplified description. The “Details” 
section gives a more precise description. 

The input to the planner consists of the following: 
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Complexity of HTN Planning 
Restrictions on Must every HTN be Are variables allowed? 
non-primitive tasks tot ally ordered? no Yes 

no Undecidable Undecidablep 
none Yes in EXPTIME; PsPAcE-hard in DEXPTIME; EXPSPACE-hard 
“regularity” a doesn’t matter PSPACE-COmpkk EXPSPACE-complete 
no non-primitive no NP-complete NP-complete 
tasks Yes Polynomial time NP-complete 
“At most one non-primitive task, which must follow all primitive tasks. 
PEven if the planning domain is fixed in advance. 

0 

0 

be variables or constants. Some tasks are “primi- 
tive” (i.e., they can be performed directly), and oth- 
ers are “non-primitive” (i.e., the planner needs to 
figure out how to perform them). Task networks 
also include constraints on the tasks, which may re- 
strict how some of the variables can be bound, the 
order in which the tasks are to be performed, etc. 
A set of “operators” Op telling the effects of each 
primitive task (action). 
A set of “methods” Me telling how to perform var- 
ious non-primitive tasks. Each method is a pair 
m=(t,d), h t w ere is a task and d is a task network. 
It says one way to achieve t is to perform the tasks 
specified in the network d (provided that this can be 
done in a way that satisfies all the constraints). 

Planning proceeds by starting with the the initial 
task network d, and doing the following steps repeat- 
edly, until no non-primitive tasks are left: find a non- 
primitive task ti in d and a method m = (t, d’) in M 
such that t unifies with u. Then modify d by “re- 
ducing” u (i.e., replace u with the tasks in d’, and 
incorporate the constraints of d’ into d). Once no non- 
primitive tasks are left in d, the next problem is to find 
a totally-ordered ground instantiation a of d that sat- 
isfies all of the constraints. If this can be done, then tr 
is a successful plan for the original problem. 

In practice, HTN planning also has several other as- 
pects. In particular, functions are often provided which 
can “debug” partially reduced task networks to elimi- 
nate potential problems. These “critic” functions are 
used to handle ordering constraints, resource limits, 
and to provide domain-specific guidance. The formal- 
ization described in (Erol ef al., 1994a) explains critics 
and the relationship between these and the constraints 
described above. For the purposes of this paper, the 
critics do not affect worst-case behavior, and thus we 
will omit this detail. 

Details 
Our language C for HTN planning is a first-order lan- 
guage with some extensions. The representations of 
the world and the actions in HTN planning is very sim- 
ilar to those of STRIPS-style planning. Thus, L contains 
a set C of constant symbols that represent the objects, 
and a set P of predicate symbols that represent the 

relations among the objects. L also contains a set F 
of primitive task symbols which represent the actions. 
We use constructs called operators to associate effects 
to primitive task symbols. We define a plan as a se- 
quence of ground primitive tasks, and we designate the 
initial state of the world by a list of ground atoms. 

The fundamental difference between STRIPS-style 
planning’ and HTN planning is the representation of 
“desired change” in the world. HTN planning re- 
places STRIPS-style “goals” with tasks and task net- 
works (which we later show are more powerful). There 
are three types of tasks: 

Goal tuslcs, like goals in STRIPS, are properties we 
wish to make true in the world (for example, having 
a new house). 
Primitive tusks are the tasks we can directly achieve 
by executing the corresponding action, such as mov- 
ing a block, or turning a switch on. 
Compound tusks denote desired changes that involve 
several goal tasks and primitive tasks; e.g., build- 
ing a house requires many other tasks to be per- 
formed (laying the foundation, building the walls, 
etc.). Compound tasks allows us to represent “de- 
sired changes” that can not be represented as a single 
goal task or primitive task. As an example, the com- 
pound task of “building a house” is different from the 
goal task of “having a house,” since buying a house 
would achieve the goal task, but not the compound 
task. As another example, the compound task of 
making a round trip to New York cannot easily be 
expressed as a single goal task, because the initial 
and final states would be the same. 

Formally, the vocabulary of HTN language c is a tuple 
(V, 6, P, F, T, N), where V = {or, ~2, . . ,} is an infinite 
set of variable symbols, C is a finite set of constant 
symbols, P is a finite set of predicate symbols, F is 
a finite set of primitive task symbols, T is a finite set 
of compound task symbols, and N = (121, n2,. . .) is 

‘We use the term %TRIPS-style” planning to refer to 
any planner (either total- or partial-order) in which the 
planning OperatOrS are STRIPS-Style operators (i.e., opera- 
tors consisting of three lists of atoms: a precondition list, 
an add list, and a delete list). These atoms are normally 
assumed to contain no function symbols. 
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((721 : uchieve[cZeur(u~)])(n~ : achieve[cZear(v2)]) 
(723 : do[mo+h, ~3, ~2)]) 

(nl -( n3) A (n2 -4 n3> A (nl, cZea+l), n3) 

A(n2, clear(v2), n3) A (on(w v3), 723) 

A l(Vl = 2)~) A +Q = 113) A -4~2 = ~13)) 

121: 
clear( vu1 ) 

123: 

do[move(vl, ~3, v2)1 

Figure 1: A task network, and its graphical represen- 
tation. 

an infinite set of symbols used for labeling tasks. If 
21, * * *, 21~ are terms, then a primitive tusk has the form 
do&l, * * * ,xk)), where f E F; a goal task has the 
form achieve(l), where Z is a literal; and a compound 
tusk has the form perform[t(zl, . . .,x1;)], where t E T. 
We refer to goal tasks and compound tasks as non- 
primitive tasks. 

Tasks are connected together in HTN planning via 
the use of task networkq2 which are collections of tasks 
and constraints on those tasks. Formally, a tusk net- 
work has the form ((nl : cyl), . . . , (n, : cyrra), q5), where 
each pi is a task labeled with ni, and q5 is a boolean 
formula constructed from variable binding constraints 
such as v = v’ and v = c, temporal ordering con- 
straints such as n 4 n’, and truth constraints such as 
(n, Z), (I, n), and (n, Z, n’), where n, n’ E N, v, v’ E V, 
I is a literal, and c E C. n + n’ means that the task 
labeled with n precedes the one labeled with n’; (n, I), 
(I, n) and (n,Z,n’) mean that I needs to be true im- 
mediately after n, immediately before n, and between 
n and n’, respectively. Both negation and disjunction 
are allowed in the constraint formula. 

As an example, Fig. 1 shows a blocks-world task 
network and its graphical representation. In this task 
network there are three tasks: clearing ~1, clearing ~2, 
and moving ~1 to 02. The task network also includes 
the constraints that moving ~1 should be done last, ~1 
and ~12 should remain clear until we move ~1, and that 
the variable 213 is bound to the location of ~1 before ~1 
is moved. 

To specify how actions change the world, we use op- 
erators of the form (f (v1 , . . . , Q), 11, . . . , I,), where f 
is a primitive task symbol, ~1, . . . , vk are variable sym- 
bols, and II, . . . , I, are literals, denoting the primitive 
task’s effects (which are also called postconditions). 
Our HTN operators do not contain STRIPS-St+& pre- 
conditions; preconditions are realized as goal tasks in 

2These are also called “procedural nets” in some of the 
literature (Sacerdoti, 1990; Drummond, 1985). 

task networks (as in Fig. 1). 
It is clear how to achieve a primitive task: execute 

the corresponding action. But for non-primitive tasks, 
we need to tell our planner how to achieve them, and 
we do this using constructs called methods. 

A method is a pair (cu, d) where e is a non-primitive 
task, and d is a task network. It, statqs that one way of 
achieving the task Q is to achieve the task network d, i.e 
to achieve all the subtasks in the task network with- 
out violating the constraint formula of the task net- 
work. For example, a blocks-world method for achiev- 
ing on(vl , ~2) would look like (uchiewe(on(vl , Q)), d), 
where d is the task network in Fig. 1. An empty plan 
would achieve a goal task when the goal is already true. 
Thus, for each goal task, we (implicitly) have a method 
(achieve(Z), ((n : do(t))(Z, n))) which contains only one 
dummy primitive task t with no effects, and the con- 
straint that the goal Z is true immediately before t. 

Planning Domains and Problems 
A planning domain is a pair 2) = (Op, Me), where Qp 
is a set of operators, and Me is a set of methods. 

A planning problem is a triple P = (d, I,V>, where 
D is a planning domain, I is the initial state, and d is 
the task network we need to plan for. The language 
of P is the HTN language ,C generated by the constant, 
predicate, and task symbols appearing in P, along with 
an infinite set of variables and an infinite set of node 
labels. Thus, the set of constants, predicates and tasks 
are all part of the input. 

P is primitive if the task network d contains only 
primitive tasks. P is regudar if all the task networks in 
the methods and d contain at most one non-primitive 
task, and that non-primitive task is ordered to occur 
as either the first or the last task. P is propositional 
if no variables are allowed. P is totally ordered if all 
the tasks in any task network are totally ordered. 

PLAN EXISTENCE is the following problem: given 
P = (d, I, D), is there a plan that solves P? 

The problem of finding an optimal (i.e., shortest- 
length) plan that solves P is at least as difficult as 
the problem of determining whether or not a plan ex- 
ists. In an analysis of STRIPS-style planning, Erol et ad. 
(1992) analyzed this problem by transforming it into a 
decision problem (which we called PLAN LENGTH) ac- 
cording to the usual complexity-theoretic technique of 
asking whether, for some input integer Ic, there exists 
a successful plan of length k or less. 

This paper does not address the plan optimality 
problem, for two reasons. First,, HTN planners have 
usually not worried about optimality because it is so 
difficult to verify (in many cases, optimal&y cannot be 
guaranteed by method decomposition). Second, Erol 
et al. (1992) found that for STRIPS-style planning, in 
some cases the complexity of PLAN LENGTH was mis- 
leadingly low. In particular, PLAN LENGTH was N- 
EXPTIME-COmpkk? even in cases where the plan op- 
timal&y problem was much harder, because the input 

Task Network 1125 



to PLAN LENGTH includes the integer k encoded in bi- 
nary, which confines the planner to plans of length at 
most exponential in the length of the input. 

Operational Semantics 

In this section, we give a syntactic characterization of 
the set of solutions for a given HTN-planning problem. 
Description of an equivalent model-theoretic semantics 
appear in (Erol et ad., 1994a). 

Let d be a primitive task network (one contain- 
ing only primitive tasks), and let I be the initial 
state. A plan o is a completion of d at I, denoted 
by 0 E comp(d, I, /D), if ~7 is a total ordering of the 
primitive tasks in a ground instance of d that satisfies 
the constraint formula of d. 

Let d be a non-primitive task network that contains 
a (non-primitive) node (n : CX) . Let m = (~2, d’) be a 
method, and 8 be the most general unifier of cy and Q’. 
Then we define reduce(d, n, m) to be the task network 
obtained from de by replacing (n : (;Y)e with the task 
nodes of d’6, and incorporating d’e’s constraint for- 
mula into the constraint formula of d. We denote the 
set of reductions of d by red(d, I, V) . Reductions for- 
malize the notion of task decomposition. For a precise 
definition of completions and reductions, the reader is 
referred to (Erol et al., 1994a). 

Here are the two inference rules we use to find plans: 
Rl. If u E comp(d, I, V), conclude u E soZ(d, I, V). 

R2. If d’ E red(d, I,V) and CT E soZ(d’, I,V), conclude 
u E soZ(d, I,V). 

Rule Rl says that the set of plans that achieve a prim- 
itive task network consists of the completions of the 
task network; Rule R2 says that if d’ is a reduction of 
d, then any plan that achieves d’ also achieves d. 

Now, we need to define the set of plans that can be 
derived using those two inference rules. Let us define 
a function soZ(d, 1, V) as follows: 

so& (4 I, Do> = 
sol,+1 (d, I, V) 

comp(d, I, V) 
= sol, (d, I, V)u 

U d’Ered(d,l,P) Sozn(d’y If v) 
soZ(d, I, V) = un<wsoZn (d, I, V) 

Intuitively, SOZ, (d, I, V) is the set of plans that can 
be derived in n steps, and soZ(d, 1, V) is the set of plans 
that can be derived in any finite number of steps. In 
(Erol et ad., 1994a), it is proved that soZ() is indeed the 
set of solutions, and that the inference rules R1, R2 
are sound and complete. 

Decidability 

Results 

It is easy to show that we can simulate context-free 
grammars within HTN planning. More interesting is 
the fact that we can simulate any two context-free 
grammars, and with the help of task interleavings and 

constraints, we can check whether these two gram- 
mars have a common string. in the languages they 
generate. Whether the intersection of the languages 
of two context-free grammars is non-empty is a semi- 
decidable problem (Hopcroft et ad., 1979). Thus:3 
Theorem 1 PLAN EXISTENCE is strictly semi- 
decidable, even if P is restricted to be propositionuZ, 
to have at most two tusks in any tusk network, and to 
be totally ordered (except for the input tusk network,). 

One way to make PLAN EXISTENCE decidable is to 
restrict the methods to be acyclic. In that case, any 
task can be expanded up to a finite depth, and thus 
the problem becomes decidable. To this end, we de- 
fine a k-level-mapping to be a function level0 from 
ground instances of tasks to the set { 0, . . . , k}, such 
that whenever we have a method that can expand a 
ground task t to a task network containing a ground 
task t’, level(t) > ZeveZ(t’). Furthermore, level(t) must 
be 0 for every primitive task t. 

Intuitively, ZeueZ() assigns levels to each ground task, 
and makes sure that tasks can be expanded into only 
lower level tasks, establishing an acyclic hierarchy. In 
this case, any task can be expanded to a depth of at 
most k. Therefore, 
Theorem 2 PLAN EXISTENCE is decidable if P has a 
k-level-mapping for some finite integer k. 

Another way to make PLAN EXISTENCE decidable is 
to restrict the interactions among the tasks. Restrict- 
ing the task networks to be totally ordered limits the 
interactions that can occur between tasks. Tasks need 
to be achieved serially, one after the other; interleav- 
ing subtasks for different tasks is not possible. Thus 
interactions between the tasks are limited to the in- 
put and output state of the tasks, and the “protection 
intervals”, i.e the literals that need to be preserved. 

Under the above conditions, we can create a table 
with an entry for each task, input/output state pair, 
and set of protected literals, that tells whether it is pos- 
sible to achieve that task under those conditions. Using 
dynamic programming techniques we can compute the 
entries in the table in DOUBLE-EXPTIME, or in EXP- 
TIME if the problem is further restricted to be propo- 
sitional. It is easy to show that STRIPS-style planning 
can be modeled using HTN’s that satisfy these condi- 
tions, so we can use the complexity results on STRIPS- 
style planning in (Erol et aZ.,.1992) to establish a lower 
bound on the complexity of HTN planning. Thus: 
Theorem 3 PLAN EXISTENCE is EXPSPACE-hard and 
in DOUBLE-EXPTIME ifP is restricted to be totuddy or- 
dered. PLAN EXISTENCE is PSPAcE-hard and in EXP- 
TIME if P is further restricted to be propositional. 

If we restrict our planning problem to be regular, 
then there will be at most, one non-primitive task in 
any task network (both the initial input task network, 

3All proofs app ear in (Erol et al., 1994b). 
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and those we obtain by expansions). Thus, subtasks in Despite such claims, it has never been demonstrated 
the expansions of different tasks cannot be interleaved, that HTNS can encode situations which STRIPS-Style 
whichis similar to what happens in Theorem 3. But in 
Theorem 3, there could be several non-primitive tasks 
in a task network, and we needed to keep track of all of 
them (which is why we used the table): If the planning 
problem is regular, we only need to keep track of a sin- 
gle non-primitive task, its input/final states, and the 
protected literals. Since the size of a state is at most 
exponential, the problem can be solved in exponen- 
tial space. But even with regularity and several other 
restrictions, it is still possible to reduce an EXPSPACE- 
complete STRIPS-style planning problem (described 
in (Erol et al., 1992)) to the HTN framework. Thus: 

Theorem 4 PLAN EXISTENCE is EXPSPACE-complete 
if P is restricted to be regular. It is still EXPSPACE- 
complete if P is further restricted to be totally or- 
dered, with at most one non-primitive task symbol in 
the planning language, and all task networks contain- 
ing at most two tasks. 

When we further restrict our problem to be 
sitional, the complexity goes down one level: 

propo- 

Theorem 5 PLAN EXISTENCE is PSPACE-complete if 
P is restricted to be regular and propositional. It is 
still PSPACE-complete if P is further restricted to be 
totally ordered, with at most one non-primitive task 
symbol in the planning language, and all task networks 
containing at most two tasks. 

Suppose a planning problem is primitive, and either 
propositional or totally ordered. Then the problem’s 
membership in NP is easy to see: once we nondeter- 
ministically guess a total ordering and variable bind- 
ing, we can check whether the constraint formula on 
the task network is satisfied in polynomial time. Fur- 
thermore, unless we require the planning problem to be 
both totally ordered and propositional, our constraint 
language enables us to represent the satisfiability prob- 
lem, and thus we get N&hardness. Hence: 
Theorem 6 PLAN EXISTENCE is NP-complete if P is 
restricted to be primitive, or primitive and totally or- 
dered, or primitive and propositional. However, PLAN 
EXISTENCE can be solved in polynomial time if P is 
restricted to be primitive, totally ordered, and proposi- 
tional. 

Expressivity 
It has been informally observed that HTN approaches 
do not need to completely specify the conditions that 
each action affects, while the STRIPS-style “state- 
based” plan structures typically require complete spec- 
ification of intermediate states. Thus, in describing 
the relationships between actions, it has been argued 
that HTN approaches are more appropriate. Lansky 
(1988), for example, makes this argument and claims 
it is largely responsible for the the more general use of 
HTNs over STRIPS-Style systems in planning practice. 

planning operators cannot, because the lack of a for- 
malism for HTN planning has left it unclear what can 
be expressed with HTNS. Using the formalism in this 
paper, we can directly compare the expressive power 
of HTN and STRIPS-style planning operators. 

When we compare HTNS and STRIPS, we observe that 
the HTN approach provides all the concepts (states, ac- 
tions, goals) that STRIPS has. In fact, given a domain 
encoded as a set of STRIPS operators, we can transform 
it to an HTN planning domain, in low-order polyno- 
mial time. A straightforward transformation would be 
to declare one primitive task symbol for each STRIPS 
operator, and for every effect of each operator, to de- 
clare a method similar to the one in Fig. 1. Each such 
method contains the preconditions of the operator as 
goal tasks, and also the primitive task corresponding 
to the operator itself. 

Below is a more instructive transformation, which 
demonstrates that the relationship between STRIPS- 
style planning and HTN planning is analogous to the 
relationship between right linear (regular) grammars 
and context-free grammars. We summarize the trans- 
formation below; for details see (Erol et al., 1994b). 

In this transformation, the HTN representation uses 
the same constants and predicates used in the STRIPS 
representation. For each STRIPS operator o, we declare 
a primitive task f with the same effects as o. We also 
use a dummy primitive task fd with no effects. We 
declare a single compound task symbol t. For each 
primitive task f, we construct a method of the form 

1 1 

where dl, . . . , II, are the preconditions of the action 
associated with f. We declare one last method 
lPerformrtl] 3 (1. Note that t can be ex- 
panded to any sequence of actions ending with fd, 
provided that the preconditions of each action are 
satisfied. The input task network has the form 
b : perform[t]), (n, Gl) A . . . A (n : Gm)] where 
G,...,G are the STRIPS-style goals we want to 
achieve. Note that the transformation produces reg- 
ular HTN problems, which has exactly the same com- 
plexity as STRIPS-style planning. Thus, just as restrict- 
ing context-free grammars to be right linear produces 
regular sets, restricting HTN methods to be regular pro- 
duces STRIPS-style planning. 

HTNS can express situations impossible to express 
using unmodified STRIPS operators. Intuitively, this is 
because STRIPS lacks the concept of compound tasks, 
and its notion of goals is limited. It does not provide 
means for declaring goals/constraints on the interme- 
diate states as HTNS do. Furthermore, in contrast to 
STRIPS, HTNS provide a rich constraint language that 
can express many types of interactions. 
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More formally, from Theorem 1, HTN planning with 
no function symbols (and thus only finitely many 
ground terms) is semi-decidable. Even if we require the 
domain description 2, to be fixed in advance (i.e., not 
part of the input), there are HTN planning domains for 
which planning is semi-decidable.4 However, with no 
function symbols, STRIPS-style planning is decidable; 
regardless of whether or not the planning domain5 is 
fixed in advance (Erol et al., 1992). Thus: 

Theorem 7 There exists HTN planning domains that 
can not be represented by any finite number of STRIPS- 
style operators. 6 

Another way of comparing expressive power of two 
languages is based on model-theoretic semantics, which 
we do in (Erol et al., 1994a). 

The power of HTN planning comes from two things: 
(1) allowing multiple tasks and arbitrary constraint 
formulas in task networks, (2) compound tasks. Al- 
lowing multiple tasks and arbitrary formulae provides 
flexibility-but if all tasks were either primitive or goal 
(STRIPS-style) tasks, these could probably be expressed 
with STRIPS-stye operators (albeit clumsily and using 
an exponential number of operators/predicates). Com- 
pound tasks provide an abstract representation for sets 
of primitive task networks, similar to the way non- 
terminal symbols provide an abstract representation 
for sets of strings in context-free grammars. 

Conclusion 
Our results show that handling interactions among 
non-primitive tasks is the most difficult part of HTN 
planning. In particular, if subtasks in the expansions 
for different tasks can be interleaved, then planning is 
undecidable, even if no variables are allowed. 

We have investigated several conditions on the plan- 
ning problem, such as restricting task-networks to con- 
tain a single non-primitive task or to be totally ordered. 
Those restrictions reduced the complexity significantly, 
because they limited the interactions among tasks. 

Our comparison of the complexity of HTN plan- 
ning and STRIPS-Style planning demonstrates that HTN 
planners can represent a broader and more com- 
plex set of planning problems and planning domains. 
The transformations from HTN planning problems to 
STRIPS-style planning problems have revealed that 
STRIPS-style planning is a special case of HTN plan- 
ning, and that the relation between them is analogous 
to the relation between context-free languages and reg- 
ular languages. 

4(Erol et al., 1994b) includes several complexity results 
similar to those in this paper, for the case when D is fixed. 

5Since STRIPS-style planning does not include methods, 
a STRIPS-style planning domain is simply a set of operators. 

‘In proving this theorem, we use the standard assump- 
tion that the STRIPS operators do not contain function sym- 
bols, nor do the HTN operators. 
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