
Technical report CS-TR-3239, UMIACS-TR-94-31, ISR-TR-95-9, March, 1994.Semantics for Hierarchical Task-Network Planning�Kutluhan Erol James Hendler Dana S. Naukutluhan@cs.umd.edu hendler@cs.umd.edu nau@cs.umd.eduInstitute for Advanced Computer Studies,Institute for Systems Research,Computer Science Department,University of Maryland, College Park, MD 20742AbstractOne big obstacle to understanding the nature of hierarchical task net-work (htn) planning has been the lack of a clear theoretical framework. Inparticular, no one has yet presented a clear and concise htn algorithm thatis sound and complete. In this paper, we present a formal syntax and se-mantics for htn planning. Based on this syntax and semantics, we are ableto de�ne an algorithm for htn planning and prove it sound and complete.We also develop several de�nitions of expressivity for planning languagesand prove that htn planning is strictly more expressive than strips-styleplanning according to those de�nitions.1 IntroductionIn AI planning research, planning practice (as embodied in implemented planning systems)tends to run far ahead of the theories that explain the behavior of those planning systems. For�This work was supported in part by NSF Grants IRI-9306580 and NSF EEC 94-02384, AFOSR (F49620-93-1-0065), the ARPA/Rome Laboratory Planning Initiative (F30602-93-C-0039), and ONR grant N00014-91-J-1451. Any opinions, �ndings, and conclusions or recommendations expressed in this material are thoseof the authors and do not necessarily reect the views of the National Science Foundation or ONR.1

example, strips-style planning systems1 were developed more than twenty years ago (Fikeset al., 1971), and most of the practical work on AI planning systems for the last �fteenyears has been based on hierarchical task-network (htn) decomposition (Sacerdoti, 1977;Tate, 1990; Wilkins, 1988a; Wilkins, 1988b). In contrast, although the past few years haveseen much analysis of planning using strips-style operators, (Chapman, 1987; Mcallester etal., 1991; Erol et al., 1992b; Erol et al., 1992a), there has been very little analytical work onhtn planners.One big obstacle to such work has been the lack of a clear theoretical framework forhtn planning. Two recent papers (Yang, 1990; Kambhampati et al., 1992) have providedimportant �rst steps towards formalizing htn planning, but these focused on the syntax,rather than the semantics. As a result, no one has presented a clear and concise htnalgorithm that is sound and complete. In this paper, we present a syntax and semantics forhtn planning, which enables further analytical work. In particular, our formalism allowsus to evaluate the expressive power of htn planning and develop correct htn planningalgorithms.The paper is organized as follows. Section 2 contains an informal overview of htnplanning. In Section 3, we present our formalism, and in Section 4 we describe how variousfeatures of htn planning �t into our formalism. Section 5 contains our provably soundand complete planning algorithm UMCP. In Section 6, we develop several de�nitions ofexpressivity for planning languages, and prove that htn planning is more powerful thanstrips-style planning according to those de�nitions.2 An Overview of HTN planningThis section contains an informal description intended to give an intuitive feel for htnplanning. A precise formal description is presented in Section 3.One of the motivations for htn planning was to close the gap between AI planningtechniques such as strips-style planning, and operations-research techniques for projectmanagement and scheduling (Tate, 1990). Thus, there are some similarities between htnplanning and strips-style planning, but also some signi�cant di�erences.htn planning uses actions and states of the world that are similar to those used instrips-style planning.2 Each state of the world is represented by the set of atoms true in1We will refer to planning systems that use strips operators (with no decompositions) as strips-styleplanners, ignoring algorithmic di�erences among them that are not relevant to the current work.2We use the term \strips-style" planning to refer to any planner (either total- or partial-order) inwhich the planning operators are strips-style operators (i.e., operators consisting of three lists of atoms: aprecondition list, an add list, and a delete list). These atoms are normally assumed to contain no function2

See a showGo(D.C., Las Vegas) %& &% Go(Las Vegas, D.C.)Get richFigure 1: A task networkthat state. Actions, which in htn planning are usually called primitive tasks, correspond tostate transitions; i.e., each action is a partial mapping from the set of states to set of states.The primary di�erence between htn planners and strips-style planners is in what theyplan for, and how they plan for it. In strips-style planning, the objective is to �nd asequence of actions that will bring the world to a state that satis�es certain conditions or\attainment goals." Planning proceeds by �nding operators that have the desired e�ects,and by making the preconditions of those operators into subgoals. In contrast, htn plannerssearch for plans that accomplish task networks, which can include things other than justattainment goals; and they plan via task decomposition and conict resolution, which weshall explain shortly.A task network is a collection of tasks that need to be carried out, together with con-straints on the order in which tasks can be performed, the way variables are instantiated,and what literals must be true before or after each task is performed. For example, Figure 1contains a task network for a trip to Las Vegas. Unlike strips-style planning, the constraintsmay or may not contain conditions on what must be true in the �nal state.A task network that contains only primitive tasks is called a primitive task network.Such a network might occur, for example, in a scheduling problem. In this case, an htnplanner would try to �nd a schedule (task ordering and variable bindings) that satis�es allthe constraints.In the more general case, a task network can contain non-primitive tasks, which theplanner needs to �gure out how to accomplish. Non-primitive tasks cannot be executeddirectly, because they represent activities that may involve performing several other tasks.For example the task of traveling to New York can be accomplished in several ways, such asying, driving or taking the train. Flying would involve tasks such as making reservations,going to the airport, buying ticket, boarding the plane; and ying would only work if certainconditions were satis�ed, such as availability of tickets, being at the airport on time, havingenough money for the ticket, and so forth.symbols. 3

Go(X,Y)+Rent-a-car! Drive(X,Y)Figure 2: A (simpli�ed) method for going from X to Y.1. Input a planning problem P.2. If P contains only primitive tasks, thenresolve the conicts in P and return the result.If the conicts cannot be resolved, return failure.3. Choose a non-primitive task t in P.4. Choose an expansion for t.5. Replace t with the expansion.6. Use critics to �nd the interactions among the tasks in P,and suggest ways to handle them.7. Apply one of the ways suggested in step 6.8. Go to step 2.Figure 3: The basic htn Planning Procedure.Ways of accomplishing non-primitive tasks are represented using constructs called meth-ods. A method is a syntactic construct of the form (�; d) where � is a non-primitive task,and d is a task network. It states that one way to accomplish the task � is to achieve allthe tasks in the task network d without violating the constraints in d. Figure 2 presents a(simpli�ed) method for accomplishing Go(X,Y).A number of di�erent systems that use heuristic algorithms have been devised for htnplanning (Tate, 1990; Vere, 1983; Wilkins, 1988a), and several recent papers have tried toprovide formal descriptions of these algorithms (Yang, 1990; Kambhampati et al., 1992).Figure 3 presents the essence of these algorithms. As shown in this �gure, htn planningworks by expanding tasks and resolving conicts iteratively, until a conict-free plan can befound that consists only of primitive tasks.Expanding or reducing each non-primitive task (steps 3{5) is done by �nding a method4

See a showRent-a-car! drive(D.C., Las Vegas) %& &% Go(L.V., D.C.)Get richFigure 4: A decomposition of the the task network in Fig. 1capable of accomplishing the non-primitive task, and replacing the non-primitive task withthe task network produced by the method. For example, the task Go(D.C., Las Vegas)in the task network of Figure 1 can be expanded using the method in Figure 2, producingthe task network in Figure 4.The task network produced in Step 5 may contain conicts caused by the interactionsamong tasks. For example, in Figure 4, if we use up all our money in order to rent thecar, we may not be able to see a show. The job of �nding and resolving such interactionsis performed by critics. Historically speaking, critics were introduced into noah (Sacerdoti,1977) to identify and deal with several kinds of interactions (not just deleted preconditions)among the di�erent networks used to reduce each non-primitive operator. This is reected inSteps 6 and 7 of Figure 3: after each reduction, a set of critics is checked so as to recognize andresolve interactions between this and any other reductions. Thus, critics provide a generalmechanism for detecting interactions early, so as to reduce the amount of backtracking. Fora more detailed discussion of the many di�erent ways critic functions have been used, see(Tate et al., 1990).3 HTN FormalismAlthough the basic idea of htn planning has been around since 1974, the lack of a cleartheoretical foundation has made it di�cult to explore its properties. In particular, althoughit is easy to state the algorithm shown in Figure 3, proving it sound and complete requiresconsiderable formal development. Below, we present a syntax and semantics for htn plan-ning.3.1 Syntax for HTN PlanningOur language L for htn planning is a �rst-order language with some extensions, and itis fairly similar to the syntax of nonlin (Tate, 1990). The vocabulary of L is a tuple5

n1:achieve[clear(v1)]n2:achieve[clear(v2)] n3:do[move(v1; v3; v2)]@@@R����clear(v1)clear(v2):on(v1; v3)Figure 5: Graphical representation of a task network.hV;C; P; F; T;Ni, where V is an in�nite set of variable symbols, C is a �nite set of constantsymbols, P is a �nite set of predicate symbols, F is a �nite set of primitive-task symbols(denoting actions), T is a �nite set of compound-task symbols, and N is an in�nite set ofsymbols used for labeling tasks. All these sets of symbols are mutually disjoint.A state is a list of ground atoms. The atoms appearing in that list are said to be true inthat state and those that do not appear are false in that state.A primitive task is a syntactic construct of the form do[f(x1; : : : ; xk)], where f 2 F andx1; : : : ; xk are terms. A goal task is a syntactic construct of the form achieve[l], where l is aliteral. A compound task is a syntactic construct of the form perform[t(x1; : : : ; xk)], wheret 2 T and x1; : : : ; xk are terms. We sometimes refer to goal tasks and compound tasks asnon-primitive tasks.A plan is a sequence � of ground primitive tasks.A task network is a syntactic construct of the form [(n1 : �1) : : : (nm : �m); �]; where� each �i is a task;� ni 2 N is a label for �i (to distinguish it from any other occurrences of �i in thenetwork);� � is a boolean formula constructed from variable binding constraints such as (v = v0)and (v = c), ordering constraints such as (n � n0), and state constraints such as (n; l),(l; n), and (n; l; n0), where v; v0 2 V , l is a literal, c 2 C, and n; n0 2 N .3 Intuitively(this will be formalized in Section 3.2, (n � n0) means that the task labeled with nmust precede the one labeled with n0; (n; l), (l; n) and (n; l; n0) mean that l must betrue in the state immediately after n, immediately before n, and in all states betweenn and n0, respectively. Both negation and disjunction are allowed in the constraintformula.3We also allow n; n0 to be of the form first[ni; nj; : : :] or last[ni; nj; : : :] so that we can refer to the taskthat starts �rst and to the task that ends last among a set of tasks, respectively.6

[(n1 : achieve[clear(v1)])(n2 : achieve[clear(v2)])(n3 : do[move(v1; v3; v2)])(n1 � n3) ^ (n2 � n3) ^ (n1; clear(v1); n3) ^ (n2; clear(v2); n3) ^ (on(v1; v3); n3)^ :(v1 = v2) ^ :(v1 = v3) ^ :(v2 = v3)]Figure 6: Formal representation of the task network of Fig. 5.A task network containing only primitive tasks is called a primitive task network.As an example, Fig. 6 gives a formal representation of the task network shown in Figure 5.In this blocks-world task network there are three tasks: clearing v1, clearing v2, and movingv1 to v2. The task network also includes the constraints that moving v1 must be done last,that v1 and v2 must remain clear until we move v1, that v1; v2; v3 are di�erent blocks, andthat on(v1; v3) be true immediately before v1 is moved. Note that on(v1; v3) appears as aconstraint, not as a goal task. The purpose of the constraint (on(v1; v3); n3) is to ensure thatv3 is bound to the block under v1 immediately before the move. Representing on(v1; v3) asa goal task would mean moving v1 onto some block v3 before we move it onto v2, which isnot what is intended.An operator is a syntactic construct of the form[operator f(v1; : : : ; vk)(pre:l1; : : : ; lm)(post:l01; : : : ; l0n)];where f is a primitive task symbol, and l1; : : : ; lm are literals describing when f is executable,l01; : : : ; l0n are literals describing the e�ects of f , and v1; : : : ; vk are the variable symbolsappearing in the literals.A method is a construct of the form (�; d) where � is a non-primitive task, and d is a tasknetwork. As we will de�ne formally in Section 3.2, this construct means that one way of ac-complishing the task � is to accomplish the task network d, i.e. to accomplish all the subtasksin the task network without violating the constraint formula of the task network. For exam-ple, a blocks-world method for achieving on(v1; v2) would look like (achieve(on(v1; v2)); d),where d is the task network in Fig. 6. To accomplish a goal task (achieve[l]), l needs to betrue in the end, and this is an implicit constraint in all methods for goal tasks. If a goal isalready true, then an empty plan can be used to achieve it. Thus, for each goal task, we(implicitly) have a method (achieve[l]; [(n : do[f]); (l; n)]) which contains only one dummyprimitive task f with no e�ects, and the constraint that the goal l is true immediately beforedo[f].Each primitive task has exactly one operator for it, where as a non-primitive task canhave an arbitrary number of methods.A planning domain D is a pair hOp;Mei, where Op is a list of operators, and Me is a7

list of methods. A planning problem instance P is a triple hd; I;Di, where D is a planningdomain, I is the initial state, and d is the task network we need to plan for. solves(�; d; I)is a syntactic construct which we will use to mean that � is a plan for the task network d atstate I.3.2 Model-Theoretic SemanticsBefore we can develop a sound and complete planning algorithm for htn planning, we needa semantics that provides meaning to the syntactic constructs of the htn language, whichin turn would de�ne the set of plans for a planning problem.Semantic StructureA semantic structure for htn planning is a triple M = hSM ;FM ;TMi. Whenever it is clearfrom context which model we are referring to, we will say M = hS;F ;T i, omitting thesubscript M . S, F , and T are described below.S = 2fall ground atomsg is the set of states. Each state in S is a set, consisting of the atomstrue in that state. Any atom not appearing in a state is considered to be false in that state.Thus, a state corresponds to a \snapshot" instance of the world.F : FxC�xS ! S is a partial function for interpreting the actions. Given a primitivetask symbol from F , with ground parameters from C, and an input state, F tells us whichstate we would end up with, if we were to execute the action. For a given action, F mightbe unde�ned for some input states, namely those for which the action is not executable.T : fground non-primitive tasksg ! 2fground primitive task networksg is a function that mapseach non-primitive task � to a (not necessarily �nite) set of ground primitive task networksT (�). Each primitive task network d in T (�) contains a set of actions that would achieve� under certain conditions (as speci�ed in the constraint formula of d). There are tworestrictions on the way T () interprets a goal task achieve[l]. First, l must be true at theend of any task network in T (achieve[l]). Second, since an empty plan can be used toaccomplish a goal task if the goal literal is already true, T (achieve[l]) must contain a tasknetwork consisting of a single dummy task with the constraint that l is true.Task networks can be interpreted similarly to non-primitive tasks, and we extend thedomain of T to cover task networks as follows:� T (�) = f[(n : �); TRUE]g, if � is a ground primitive task. Thus, in order to accomplish�, it su�ces to execute it (provided that it is executable).� T (d) = fdg, if d is a ground primitive task network.8

� To accomplish a non-primitive task network d, we need to accomplish each task ind without violating the constraint formula. Thus we de�ne T (d) as follows. Letd = [(n1 : �1) : : : (nm : �m); �] be a ground task network possibly containing non-primitive tasks. ThenT (d) = fcompose(d1; : : : ; dm; �) j di 2 T (�i); i = 1 : : : mg;where compose is de�ned as follows. Supposedi = [(ni1 : �i1) : : : (niki : �iki); �i]for each i. Then4compose(d1; : : : ; dm; �) = [(n11 : �11) : : : (nmkm : �mkm); �1 ^ : : : �m ^ �0];where �0 is obtained from � by making the following replacements:{ replace (ni < nj) with (last[ni1; : : : ; niki] < first[nj1; : : : ; njkj]), since all tasks inthe decomposition of ni must precede all tasks in the decomposition of nj;{ replace (l; ni) with (l; first[ni1; : : : ; niki]), since l needs to be true immediatelybefore the �rst task in the decomposition of ni;{ replace (ni; l) with (last[ni1; : : : ; niki]; l);{ replace (ni; l; nj) with (last[ni1; : : : ; niki]; l; first[nj1; : : : ; njkj]);{ everywhere that ni appears in � in a first[] or a last[] expression, replace it withni1; : : : ; niki .� T (d) = Sd0 is a ground instance of d T (d0), if d is a task network containing variables.SatisfactionIn this section we describe how syntactic expressions such as operators and methods taketruth values in a given model. We will use the phrases \: : : is true in model M" and \: : : issatis�ed by model M" interchangeably.A model M satis�es an operator if M interprets the primitive task associated with theoperator so that the primitive task is executable under the conditions speci�ed in the pre-conditions of the operator, and has the e�ects speci�ed in the postconditions of the operator.4Actually, the formula is slightly more complicated than what is shown, because the variables and nodelabels in each di must be renamed so that no common variable or node label occurs.9

More formally, we will say that an operator [f(v1; : : : ; vk)(pre:l1; : : : ; lm)(post:l01; : : : ; l0n)] issatis�ed by a model M i� for any ground substitution � and any state s, Fm has the fol-lowing properties, where En; Ep are the sets of negative and positive literals in l01; : : : ; l0n,respectively:� if l1�; : : : ; lm� are true in s, then FM (f; v1�; : : : ; vk�; s) = (s� En�) [Ep�;� otherwise, FM(f; v1�; : : : ; vk�; s) is unde�ned.Next, we want to de�ne the conditions under which a model M satis�es solves(�; d; s),i.e., the conditions under which � is a plan that accomplishes the task network d starting atstate s, in M . First we consider the case where d is primitive.Let M be a model, d = [(n1 : �1) � � � (nm0 : �m0); �] be a ground primitive task network,s0 be a state, and � = (f1(c11; : : : ; c1k1); : : : ; fm(cm1; : : : ; cmkm)) be a plan executable at s0.Thus, si = FM (fi; ci1; : : : ; ciki; si�1) for i = 1 : : :m, which are the intermediate states,are all well-de�ned. We de�ne a matching � from d to � to be a one-to-one function fromf1; : : : ;m0g to f1; : : : ;mg such that whenever �(i) = j, �i = do[fj(cj1; : : : ; cjkj)]. Thus amatching provides a total ordering on the tasks. M satis�es solves(�; d; s) if m = m0, andthere exists a matching � that makes the constraint formula � true. The constraint formulais evaluated as follows:� (ci = cj) is true, if ci; cj are the same constant symbols;� first[ni; nj; : : :] evaluates to minf�(i); �(j); : : :g;� last[ni; nj; : : :] evaluates to maxf�(i); �(j); : : :g;� (ni � nj) is true if �(i) < �(j);� (l; ni) is true if l holds in s�(i)�1;� (ni; l) is true if l holds in s�(i);� (ni; l; nj) is true if l holds for all se, �(i) � e < �(j);� logical connectives :;^;_ are evaluated as in propositional logic.Let d be a task network, possibly containing non-primitive tasks. A model M satis�essolves(�; d; s) if for some d0 2 TM (d), M satis�es solves(�; d0; s).For a method (�; d) to be satis�ed by a given model, not only must any plan for d also bea plan for �, but in addition, any plan for a task network tn containing d must be a plan for10

the task network obtained from tn by replacing d with �. Thus, a method (�; d) is satis�edby a model M , i� TM(�) covers TM (d), where \covers" is de�ned as follows:Given a model M , two sets of ground primitive task networks TN and TN 0, TN is saidto cover TN 0, i� for any state s, any plan � executable at s, and any d0 2 TN 0, the followingproperty holds:Whenever there exists a matching � between d0 and � such that � at s satis�esthe constraint formula of d0, then there exists a d 2 TN such that for somematching �0 with the same range as �, � at s makes the constraint formula of dtrue.A modelM satis�es a planning domain D = hOp;Mei, ifM satis�es all operators in Op,and all methods in Me.3.3 Proof TheoryA plan � solves a planning problem P = hd; I;Di if any model that satis�es D also satis�essolves(�; d; I). However, given a planning problem, how do we �nd plans that solve it?Let d be a primitive task network (one containing only primitive tasks), and let I bethe initial state. A plan � is a completion of d at I, denoted by � 2 comp(d; I;D), if � isexecutable (i.e. the preconditions of each action in � are satis�ed) and � corresponds to atotal ordering of the primitive tasks in a ground instance of d that satis�es the constraintformula of d. For non-primitive task networks d, comp(d; I;D) is de�ned to be ;.Let d be a non-primitive task network that contains a (non-primitive) node (n : �).Let m = (�0; d0) be a method, and � be the most general uni�er of � and �0. We de�nereduce(d; n;m) to be the task network obtained from d� by replacing (n : �)� with the tasknodes of d0�, modifying the constraint formula � of d0� into �0 (as we did for compose), andincorporating d0�'s constraint formula. We denote the set of reductions of d by red(d; I;D).Reductions formalize the notion of task decomposition.A plan � solves a primitive task network d at initial state I i� � 2 comp(d; I;D); aplan � solves a non-primitive task network d at initial state I i� � solves some reductiond0 2 red(d; I;D) at initial state I.Now, we can de�ne the set of plans sol(d; I;D) that solves a planning problem instanceP =< d; I;D >:sol1(d; I;D) = comp(d; I;D)soln+1(d; I;D) = soln(d; I;D) [Sd02red(d;I;D) soln(d0; I;D)sol(d; I;D) = [n<!soln(d; I;D)11

Intuitively, soln(d; I;D) is the set of plans that can be derived in n steps, and sol(d; I;D) isthe set of plans that can be derived in any �nite number of steps.In Section 3.2, we presented a model-theoretic semantics for htn planning, and in thissection we have presented an operational, �xed-point semantics that provides a proceduralcharacterization of the set of solutions to planning problems. The next step is to show thatthe model-theoretic semantics and operational semantics are equivalent, so that we can usethe model-theoretic semantics to get a precise understanding of htn planning, and use theoperational semantics to build sound and complete planning systems. The following theoremstates that sol(d; I;D) is indeed the set of plans that solves hd; I;Di.Theorem 1 (Equivalence Theorem) Given a task network d, an initial state I, and aplan �, � is in sol(d; I;D) i� any model that satis�es D also satis�es solves(�; d; I).This theorem follows from the fact that sol(d; I;D) is constructed such that it alwayscontains only the plans for a task network d with respect to the minimum model. We provethe theorem by constructing a model M such that for any non-primitive task �, TM (�)contains the primitive task networks that can be obtained by a �nite number of reductionsteps from �. Then we prove M to be the minimum model satisfying D. The details of theproof are in the appendix.Since the set of plans that can be derived using R1 and R2 is exactly sol(d; I;D), thecorollary immediately follows from the equivalence theorem.4 Features of htn PlanningUsing the syntax and semantics as de�ned above, we can now de�ne and/or explain a numberof items that are often discussed in the literature:Tasks and Task-decompositionThere appears to be some general confusion about the nature and role of tasks in htnplanning. This seems largely due to the fact that htn planning emerged, without a formaldescription, in implemented planning systems (Sacerdoti, 1977; Tate, 1990). Many ideas in-troduced in htn planning (such as nonlinearity, partial order planning, etc.) were formalizedonly as they were adapted to strips-style planning, and only within that context (Chapman,1987; Mcallester et al., 1991; Minton et al., 1991; Barett et al., 1992; Collins et al., 1992;Kambhampati, 1992). Those ideas not adapted to strips-style planning (such as compoundtasks and task decomposition) have even been dismissed as mere e�ciency hacks. In fact,12

one view of htn planning totally discards compound tasks, and views methods for goal tasksas heuristic information on how to go about achieving the goals (i.e., which operator to use,in which order to achieve the preconditions of that operator). Although this is a perfectlycoherent view, we �nd it restrictive, and we believe there is more to htn planning, as we tryto demonstrate in our formalism and in the section on expressive power.We view tasks as activities we need to plan i.e. things that need to be accomplished.Each method tells us one way of achieving a task, and it also tells us under which conditionsthat way is going to succeed (as expressed in the constraint formula) Finally, the task de-composition refers to choosing a method for the task, and using it to achieve the task. Forexample, possible methods for the task of traveling to a city might be ying (under the con-dition that airports are not closed due to bad weather), taking the train (under the conditionthat there is an available ticket), or renting a car (under the condition that I have a driver'slicense). Tasks and task networks provide a more natural and exible way of representingplanning problems than strips-style attainment goals, as Lansky (Lansky, 1988) argues foraction-based planning in general.Our formalism is mostly shaped after nonlin (Tate, 1990) and the works of Yang andKambhampati (Yang, 1990; Kambhampati et al., 1992) on hierarchical planning. However,our terminology for referring to compound tasks is slightly di�erent from theirs, which insteaduses the term \high level actions" (Sacerdoti, 1977; Yang, 1990). Although this term hassome intuitive appeal, we prefer not to use it, in order to avoid any possible confusion withstrips-style actions. strips-style actions are atomic, and they always have the same e�ecton the world; non-primitive tasks can be decomposed into a number of primitive tasks, andthe e�ect of accomplishing a non-primitive task depends not only on the methods chosen fordoing decompositions, but also on the interleavings with other tasks. For example, considerthe task of \round-trip to New York". The amount of money I have got after the trip dependson whether I ew or took a train, and also on my activities in New York (night clubs, etc).Unlike strips-style actions, tasks are not \executed" for their e�ects in the world, but theyare ends by themselves. In this aspect, tasks are more similar to strips-style goals thanstrips-style actions.Here are some more examples to further clarify the distinctions among di�erent types oftasks and strips-style goals. Building a house requires many other tasks to be performed(laying the foundation, building the walls, etc.), thus it is a compound task. It is di�erentfrom the goal task of \having a house," since buying a house would achieve this goal task,but not the compound task of building a house (the agent must build it himself). As anotherexample, the compound task of making a round trip to New York cannot easily be expressedas a single goal task, because the initial and �nal states would be the same. Goal tasksare very similar to strips-style goals. However, in strips-style planning, any sequence of13

actions that make the goal expression true is a valid plan, where as in htn planning, onlythose plans that can be derived via decompositions are considered as valid. This allowsthe user to rule out certain undesirable sequences of actions that nonetheless make the goalexpression true. For example, consider the goal task of \being in New York", and suppose theplanner is investigating the possibility of driving to accomplish this goal, and suppose thatthe agent does not have a driver's license. Even though learning how to drive and getting adriver's license might remedy the situation, the user can consider this solution unacceptable,and while writing down the methods for be-in(New York), add the constraint that themethod of driving succeeds only when the agent already has a driver's license.High-Level E�ectsTypically, htn planners allow one to attach \high-level" e�ects to subtasks in methods,similar to the way we attach e�ects to primitive tasks using operators. Some htn-plannerssuch as nonlin assume that the high-level e�ects will be true immediately after the corre-sponding subtasks, even if they are not asserted by any primitive tasks. This is problematic:one can obtain the same sequence of primitive tasks with di�erent tasks and methods, andgiven high-level e�ects, the �nal state might depend on what particular task(s) the sequencewas intended for. Yang (Yang, 1990) addresses this problem by attaching high-level e�ectsto tasks directly using operators. In addition, he requires that for each high-level e�ect lassociated with a task �, every decomposition of � must contain a subtask with the e�ectl, which is not clobbered by any other subtask in the same decomposition. However, thissolution does not preclude the possibility that l might be clobbered by actions in the de-compositions of other tasks. In our framework, only primitive tasks can change the stateof the world, non-primitive tasks are not allowed to have direct e�ects. Instead, we expresshigh-level e�ects as constraints of the form (n; l) so that the planner veri�es those e�ectsto hold. Thus we avoid the previous problem, but we still bene�t from guiding search withhigh level e�ects (one of the primary reasons they are often used in implemented planningsystems).Conditionshtn planners often allow several types of conditions in methods. For instance nonlin hasuse-when, supervised, and unsupervised conditions.Supervised conditions, similar to preconditions in strips-style planning, are those thatthe planner needs to accomplish, thus in our framework, they appear as goal nodes in tasknetworks. In the task network shown in Fig. 5, the conditions clear(v1) and clear(v2)appear as goal tasks for that reason. 14

Unsupervised conditions are conditions that are needed for achieving a task but supposedto be accomplished by some other part of the task network (or the initial state). For example,a load(package,vehicle) task in a transport logistics domain would require the package andvehicle to be at the same location, but it might be the responsibility of another task (e.g. avehicle dispatcher) to accomplish that condition. Thus, the load task must only verify thecondition to be true and it must not try to achieve it by task decompositions, or insertions ofnew actions. In our framework, we represent unsupervised conditions as state constraints sothat the planner tries to �nd variable bindings/task orderings that would make them true,but it does not plan for them by inserting new actions or doing task decompositions. nonlinignores the unsupervised conditions until all tasks are expanded into primitive tasks, whichis not always an e�cient strategy. UMCP, on the other hand, tries to process unsupervisedconditions at higher levels to prune the search space.htn planners employ �lter conditions (called use-when conditions in nonlin) for decidingwhich methods to try for a task expansion and reduce the branching factor by eliminatingirrelevant methods. For example consider the task of going to New York, and the method ofaccomplishing it by driving. One condition necessary for this method to succeed is havinga driver's license. Although a driver's license can be obtained by learning how to drive andgoing through the paperwork, the user of the planner might consider this unacceptable, and inthat case he would specify having a driver's license not as a goal task but as a �lter condition, and the method of driving to New York would not be considered if the agent does not havea driver's license at the appropriate point in the plan. In (Collins et al., 1992), Collins andPryor state that �lter conditions are ine�ective. They argue that �lter conditions do nothelp pruning the search space for partial order planners, because it is not possible to checkwhether they hold or not in an incomplete plan. They also empirically demonstrate thatignoring the �lter conditions until all the subgoals are achieved is quite ine�cient. Althoughtheir study of �lter conditions is in the context of strips representation, to a large extend italso applies to htn planning. nonlin, for instance, evaluates �lter conditions as soon as theyare encountered, and unless it can establish those conditions to be necessarily true, it willbacktrack. Thus, nonlin sometimes backtracks over �lter conditions which would have beenachieved by actions in later task expansions. Hence nonlin is not complete. Although itmight not always be possible to determine whether a �lter condition is true in an incompleteplan, �lter conditions can still be used to prune the search space. Our framework represents�lter conditions as state constraints and planning algorithms based on this framework canemploy constraint satisfaction/propagation techniques to prune inconsistent task networks.For example if a task network contains the �lter condition (l,n), and also another constraint(n1;:l; n2), one can deduce that n should be either before n1, or after n2. Furthermore,some �lter conditions might not be a�ected by the actions (e.g. conditions on the type of15

objects), and thus it su�ces to check the initial state to evaluate those. This kind of �lterconditions can also be very helpful in pruning the search space.Overall, our constraint language provides a principled way of representing many kinds ofconditions, and our planner UMCP employs techniques for using them e�ectively withoutsacri�cing soundness or completeness.Constraints and CriticsOne attractive feature of htn systems is that by using various sorts of critics, they canhandle many di�erent kinds of interactions, thus allowing the analysis of potential problemsin plans, and preventing later failure and backtracking. However, this mechanism has beenlittle explored in the formal literature, primarily due to the procedural nature of handlinginteractions between subtasks. 5 In our framework, we represent interactions using con-straints: temporal constraints of the form (n � n0) denote temporal interactions, and stateconstraints of the form (n; l; n0) denote deleted condition interactions. We have provided aconservative set of constraints in section 3.1 to keep the paper in focus. This set can easilybe extended to express other kinds of interactions (for example the resource interactions of(Wilkins, 1988b)).htn planners typically use their critics for guiding the search at higher levels, before allsubtasks have been reduced to primitive tasks. In our formalism, this job is performed bythe critic function � . � inputs an initial state I, and a task network d, and outputs a setof task networks �. � manipulates the constraints and the tasks in d. For example, if �encounters a constraint (n1; l; n2), and a primitive task(labeled with n3) that asserts :l, itmight augment the constraint formula to contain (n3 � n1) _ (n2 � n3). Alternatively, �might decide that it is time to commit to an ordering, and output two task networks, onewith (n3 � n1), and another with (n2 � n3).Another usage of constraints is encoding control information. When the user encodesa domain, it might be known in advance that certain variable bindings, task orderings etc.lead to dead ends. These can be eliminated by posting constraints (in methods) so thatthe planner does not go waste time deriving this information, thus gaining e�ciency. (Thisability to encode known shortcuts and/or pitfalls was o�ered as a major motivation for themove to procedural networks in noah (Sacerdoti, 1977)).5 A Hierarchical Planning Procedure.5The obvious exception is deleted precondition interactions, which have been analyzed ad nauseum.16

procedure UMCP:1. Input a planning problem P = hd; I;Di.2. if d is primitive, thenIf comp(d; I;D) 6= ;, return a member of it.Otherwise return FAILURE.3. Pick a non-primitive task node (n : �) in d.4. Nondeterministically choose a method m for �.5. Set d := reduce(d; n;m).6. Set � := � (d; I;D).7. Nondeterministically set d := some element of �.8. Go to step 2.Figure 7: UMCP: Universal Method-Composition PlannerUsing the syntax and semantics developed in the previous section, we can now formalizethe htn planning procedure that we presented in Figure 3. Figure 7 presents our formaliza-tion, which we call UMCP (for Universal Method-Composition Planner).It should be clear that UMCP mimics the de�nition of sol(d; I;D), except for Steps 6and 7 (which correspond to the critics). As discussed before, htn planners typically usetheir critics for detecting and resolving interactions among tasks (expressed as constraints)in task networks at higher levels, before all subtasks have been reduced to primitive tasks.By eliminating some task orderings and variable bindings that lead to dead ends, critics helpprune the search space. In our formalism, this job is performed by the critic function � . �takes as input an initial state I, a task network d, and a planning domain D; and producesas its output a set of task networks �. Each member of � is a candidate for resolving some6of the conicts in d. We need to put two restrictions on � :1. If d0 2 � (d; I;D) then sol(d0; I;D) � sol(d; I;D). Thus, any plan for d0 must be a planfor d ensuring soundness.2. If � 2 solk(d; I;D) for some k, then there exists d0 2 � (d; I;D) such that � 2solk(d0; I;D).Thus, whenever there is a plan for d, there is a plan for some member d0 of � (d; I;D).In addition, if the solution for d is no further than k expansions, so is the solution6It might be impossible or too costly to resolve some conicts at a given level, and thus handling thoseconicts can be postponed. 17

for d0. The latter condition ensures that � does not create in�nite loops by undoingprevious expansions.In contrast to the abundance of well understood strips-style planning algorithms (suchas (Fikes et al., 1971; Chapman, 1987; Barett et al., 1992; Kambhampati, 1992)), htnplanning algorithms have typically not been proven to be sound or complete. However,using the formalism in this paper, we can establish the soundness and completeness of thehtn planning algorithm UMCP.Theorem 2 (Soundness) Whenever UMCP returns a plan, it achieves the input tasknetwork at the initial state with respect to all the models that satisfy the methods and theoperators.Theorem 3 (Completeness) Whenever UMCP fails to �nd a plan, there is no plan thatachieves the input task network at the initial state with respect to all the models that satisfythe methods and the operators.These results follow directly from the equivalence theorem using the fact that UMCPdirectly mimics sol(). The restrictions on the critic function ensure that � does not introduceinvalid solutions and that it does not eliminate valid solutions. The details of the proofs arein the appendix.6 ExpressivityIt has long been a topic of debate whether htn planning is merely an \e�ciency hack"over strips-style planning, or htn planning is actually more expressive than strips-styleplanning. Our htn framework enables us to address this question formally.There is not a well established de�nition of expressivity for planning languages. It ispossible to de�ne expressivity based on model-theoretic semantics, operational semantics,and even on the computational complexity of problems that can be represented in the plan-ning language. We have devised formal de�nitions for each of these cases, and proved thathtn planning is strictly more expressive than strips-style planning according to all threeof them.6.1 Model-Theoretic ExpressivityBaader (Baader, 1990) has presented a de�nition of expressivity for knowledge representationlanguages. Below we describe Baader's de�nition of expressivity and adapt it to planninglanguages. 18

De�nition of Model-Theoretic ExpressivityBaader's notion of expressivity is based on the idea that if a language L1 can be expressed byanother language L2, then for any set of sentences �1 in L1, there must be a correspondingset of sentences �2 in L2 with the same meaning. Baader captures \the same meaning" byrequiring the two set of sentences have the same set of models. Since it is possible that L2can contain symbols not necessary for expressing L1, and the name of the symbols used mustnot make a di�erence, it su�ces for the set of models for �1 and the set of models for �2 beequivalent modulo a symbol translation function !.More formally, given a function ! from the set of symbols in L1 into the set of symbols inL2, two modelsM1 and M2 are de�ned to be equivalent module !, denoted as M1 =! M2 i�for any symbol s in L1, M1(s) = M2(!(s)), in other words, s and !(s) must have the sameinterpretation.The equivalence between models can be extended to sets of models as follows: Two setsof modelsM1, andM2 are equivalent modulo a symbol translation function !, denoted byM1 =!M2, i� for any modelM1 2 M1, there exists a modelM2 2 M2 such thatM1 =! M2,and for any model M2 2 M2, there exists a model M1 2 M1 such that M1 =! M2.A knowledge representation language L1 can be expressed by another knowledge repre-sentation language L2, i� there exists a function from the set of sentences in L1 to the setof sentences in L2, and a function ! from the set of symbols in L1 to the set of symbols inL2 such that for any set of sentences � from L1, the set of modelsM1 satisfying � and theset of modelsM2 satisfying (�) are equivalent modulo !, i.e. M1 =!M2.Although the internal structures of the models for planning languages and knowledgerepresentation languages are di�erent, we can still use the same de�nition of expressivity, byproviding a de�nition for equivalence of htn models:Given two htn models M1;M2 for two htn languages L1;L2, and a symbol translationfunction ! from L1 to L2, M1 =! M2 i�1. For any ground primitive task �, any state s, and any ground literal l in L1,l is true in FM1(�; s) i� !(l) is true in FM2(!(�); !(s)).2. For any ground non-primitive task � in L1,!(TM1(�)) covers TM2(!(�)), and TM2(!(�)) covers !(TM1(�)).Recall that \covers" was de�ned in Section 3.2.Now we can formally de�ne expressivity of planning languages. A planning languageL1can be expressed by a planning language L2, i� the following three conditions hold:1. There exists a symbol translation function ! from the set of symbols in L1 to the setof symbols in L2, 19

2. There exists a function from the set of sentences in L1 to the set of sentences in L2,3. For any set of sentences �1 in L1, wheneverM1 is the set of all models that satisfy �1andM2 is the set of all models that satisfy (�2), it is the case thatM1 =!M2.When a planning language L1 can be expressed by a planning language L2, but not viceversa, then L2 is strictly more expressive than L1.Before proceeding to compare the expressive power of htn planning and strips-styleplanning, we need to present a formal semantics for strips-style planning that is compatiblewith the semantics for htn planning.Semantics for STRIPSA semantic structure for strips-style planning has the same form as a semantic structurefor htn planning, with some restrictions. Thus it is a triple M = hSM ;FM ;TMi, where Sis the set of states, F interprets actions as state transitions, and T interprets non-primitivetasks as sets of ground primitive task networks, with the following restrictions:1. Since strips representation lacks the notion of compound tasks, non-primitive tasksconsist of only goal tasks, and T is not de�ned for compound tasks.2. In strips-style planning, any executable sequence of actions that make the goals trueis a valid plan, thus, given any goal task achieve[l], T maps achieve[l] to the set of allground sequences of actions, each with the (implicit) constraint that l is true in the�nal state.HTNs versus STRIPSIt is fairly easy to show that the strips language can be expressed by the htn planninglanguage. All we need to is to present two functions and ! and show that the translationpreserves the set of models.Since htn planning does not require any extra symbols for expressing strips-style plan-ning, ! is de�ned to be the identity function. Thus the htn representation is going to useexactly the same set of constants, predicates, and actions (primitive tasks) as its stripscounterpart.Given a set of strips-style operators �, here is how we de�ne (�):� (�) contains exactly the same set of operators as �.20

� For each goal task achieve[l] and each action f , (�) contains the method(achieve[l]; [(n1 : do[f])(n2 : achieve[l]); (n1 � n2)])Since there is an implicit method for each goal task stating it can be expanded to adummy task when the goal literal is already true, with the methods in (�), any goal taskcan be expanded to any sequence of actions, and such a sequence of actions would be aplan for the goal task whenever all the actions are executable and the goal literal is truein the end of the plan. Thus, the methods precisely reect the restrictions on the modelsof strips-style planning, and as a result � and (�) have exactly the same set of models.Thus we concludeLemma 1 The strips language can be expressed by the htn language with respect to model-theoretic expressivity.The converse is not true. To prove that the strips language is not as expressive asthe htn language, we are going to construct an htn planning domain �, and show thatthere does not exist any strips-style planning domain (i.e. set of strips operators) withan equivalent set of models.Note that the set of plans for any strips-style planning domain always forms a regularset: One can de�ne a �nite automata with the same states as the strips domain, with statetransitions corresponding to the actions, and the goal states in the strips domain wouldbe designated as the �nal states in the automata. On the other hand, the set of plans foran htn planning domain can be any arbitrary context-free set, including those context-freesets that are not regular. Given a context-free grammar, we can declare one compound tasksymbol for each non-terminal of the grammar, one primitive task symbol for each terminalof the grammar, and for each grammar rule of the form X ! Y Z, we can declare a method(�X [(n1 : �Y)(n2 : �Z) (n1 � n2)]).Given an htn planning domain � that corresponds to a context-free but not regulargrammar, � will have a minimummodel7 M such that TM will map compound task symbols(which correspond to the non-terminal symbols of the grammar) to sets of totally orderedprimitive task networks (or equivalently, to context-free sets of strings from the terminalsymbols of the grammar). Since TM maps compound tasks into context-free but not regularsets, no strips-style planning domain can have a model equivalent toM . Thus we state thefollowing lemma:Lemma 2 The htn language cannot be expressed by the strips language with respect tomodel-theoretic expressivity.7refer to the proof of Theorem 1 to see how to construct a minimummodel21

Thus, from Lemma 1 and Lemma 2 we can conclude the following:Theorem 4 The htn language is strictly more expressive than the strips language withrespect to model-theoretic expressivity.6.2 Alternative De�nitions of ExpressivityThere are other ways of de�ning expressivity. For instance, we can modify the third conditionin the de�nition for the expressivity of planning languages so that it reads as follows:� For any set of sentences �1 in L1, whenever M1 is the minimum model that satis�es�1, and M2 is the minimum model that satis�es (�1), it is the case that M1 =! M2.From the operational semantics point of view, this corresponds to requiring that for everyplanning problem expressed in L1, there exists a corresponding planning problem expressedin L2 and the set of solutions for both these problems are equivalent. Although this de�nitionof expressivity based on operational semantics is quite di�erent from the de�nition of model-theoretic expressivity, it yields the same result: Since the set of solutions to an htn planningproblem can be any context-free set, whereas the set of solutions to a strips-style planningproblem always is a regular set, a proof similar to that of Lemma 2 can be constructed toprove that htn planning is strictly more expressive according to this de�nition of expressivity.Thus, we can conclude the following:Theorem 5 The htn language is strictly more expressive than the strips language withrespect to operational expressivity.The details of the de�nition of operational expressivity and the proof can be found in (Erolet al., 1994b).Note that in previous de�nitions of expressivity, is not restricted to be computablein polynomial time (or even to be computable at all!), nor are there any restrictions onthe size of (�) in terms of the size of �. In de�ning expressivity, one can discard theequivalence of models and instead ask whether there exists a polynomial (or computable)transformation � from the set of planning problems that can be represented in L1 to theset of planning problems that can be represented in L2 such that any planning problemP in L1 has a solution i� � (P) also has a solution. This de�nition of expressivity fora planning language is based on the computational complexity of telling which planningproblems represented in that language have solutions. In (Erol et al., 1994b) we show that thecomplexity of htn planning is strictly semi-decidable, whereas in (Erol et al., 1992a), we show22

that the complexity of strips-style planning is much easier, more speci�cally, EXPSPACE-complete. This clearly shows that there does not exist any computable transformation fromhtn planning to strips-style planning. Hence we can state the following theorem:Theorem 6 The htn language is strictly more expressive than the strips language withrespect to complexity-based expressivity.The details of the de�nition of complexity-based expressivity, together with the proofsthat htn planning is more expressive with respect to this de�nition can be found in (Erolet al., 1994b).7 ConclusionsOne big obstacle to understanding the nature of hierarchical task network (htn) planninghas been the lack of a clear theoretical framework. In this paper, we have presented a formalsyntax and semantics for htn planning. Based on this syntax and semantics, we have de�nedan algorithm for htn planning, and have proved it to be sound and complete.This formalism also enables us to do complexity analyses of htn planning, to assess theexpressive power of the use of htns in planning, and to compare htns to planning withstrips-style operators. For example, we have been able to prove that htn planning, asde�ned here, is formally more expressive than planning without decompositions (Erol et al.,1994c; Erol et al., 1994b). We are working on a deeper complexity analysis of htns andtowards an understanding of where the complexity lies.Our semantics characterizes various features of htn planning systems, such as tasks, tasknetworks, �lter conditions, task decomposition, and critics. We believe that this more formalunderstanding of these aspects of planning will make it easier to encode planning domains ashtns and to analyze htn planners. Furthermore, the de�nition for whether a given modelsatis�es a planning domain can provide a criterion for telling whether a given set of methodsand operators correctly describe a particular planning domain. We are currently exploringthese further.Finally, we are starting to explore the order in which tasks should be expanded to get thebest performance, and more generally, in which order all commitments (variable bindings,temporal orderings, choice of methods) should be made. This will involve both algorithmicand empirical studies. Our long term goals are to characterize planning domains for whichhtn planning systems are suitable, and to develop e�cient planners for those domains. Ourframework provides the necessary foundation for such work.23

References(Allen et al., 1990) Allen, J.; Hendler, J. and Tate, A. editors. Readings in Planning.Morgan-Kaufmann, San Mateo, CA, 1990.(Baader, 1990) Baader, F. A formal de�nition for expressive power of knowledge representa-tion languages. In Proceedings of the 9th European Conference on Arti�cial Intelligence,Stockholm, Sweden, Aug. 1990. Pitman.(Barett et al., 1992) Barrett, A. and Weld, D. Partial Order Planning. Technical report 92-05-01, Computer Science Dept., University of Washington, June, 1992.(Chapman, 1987) Chapman, D. Planning for conjunctive goals. Arti�cial Intelligence,32:333{378, 1987.(Collins et al., 1992) Gregg Collins and Louise Pryor. Achieving the functionality of �lterconditions in a partial order planner In Proc. AAAI-92, 1992, pp. 375|380.(Drummond, 1985) Drummond, M. Re�ning and Extending the Procedural Net. In Proc.IJCAI-85, 1985.(Erol et al., 1992a) Erol, K.; Nau, D.; and Subrahmanian, V. S. On the Complexity ofDomain Independent Planning. In Proc. AAAI-92, 1992, pp. 381|387.(Erol et al., 1992b) Erol, K.; Nau, D.; and Subrahmanian, V. S. When is planning decidable?In Proc. First Internat. Conf. AI Planning Systems, pp. 222{227, June 1992.(Erol et al., 1994b) Erol, K.; Hendler, J.; and Nau, D. Complexity results for hierarchi-cal task-network planning. To appear in Annals of Mathematics and Arti�cial Intelli-gence Also available as Technical report CS-TR-3240, UMIACS-TR-94-32, ISR-TR-95-10, Computer Science Dept., University of Maryland, March 1994.(Erol et al., 1994c) Erol, K.; Hendler, J.; and Nau, D. HTN Planning: Complexity andExpressivity. To appear in Proc. AAAI-94, 1994.(Fikes et al., 1971) Fikes, R. E. and Nilsson, N. J. strips: a new approach to the applicationof theorem proving to problem solving. Arti�cial Intelligence, 2(3/4):189{208, 1971.(Kambhampati et al., 1992) Kambhampati, S. and Hendler, J. \A Validation StructureBased Theory of Plan Modi�cation and Reuse" Arti�cial Intelligence, May, 1992.24

(Kambhampati, 1992) Kambhampati, S. \On the utility of systematicity: understandingtrade-o�s between redundancy and commitment in partial-ordering planning," unpub-lished manuscript, Dec., 1992.(Lansky, 1988) Lansky, A.L. Localized Event-Based Reasoning for Multiagent Domains.Computational Intelligence Journal, 1988.(Mcallester et al., 1991) Mcallester, D. and Rosenblitt, D. Systematic nonlinear planning.In Proc. AAAI-91, 1991.(Minton et al., 1991) Minton, S.; Bresna, J. and Drummond, M. Commitment strategies inplanning. In Proc. IJCAI-91, 1991.(Nilsson, 1980) Nilsson, N. Principles of Arti�cial Intelligence, Morgan-Kaufmann, CA.1980.(Penberthy et al., 1992) Penberthy, J. and Weld, D. S. UCPOP: A Sound, Complete, PartialOrder Planner for ADL Proceedings of the Third International Conference on KnowledgeRepresentation and Reasoning, October 1992(Sacerdoti, 1977) Sacerdoti, E. D. A Structure for Plans and Behavior, Elsevier-North Hol-land. 1977.(Tate et al., 1990) Tate, A.; Hendler, J. and Drummond, D. AI planning: Systems andtechniques. AI Magazine, (UMIACS-TR-90-21, CS-TR-2408):61{77, Summer 1990.(Tate, 1990) Tate, A. Generating Project Networks In Proc. IJCAI-77, 1977. pp. 888{893.(Vere, 1983) Vere, S. A. Planning in Time: Windows and Durations for Activities and Goals.IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-5(3):246{247,1983.(Wilkins, 1988a) Wilkins, D. Domain-independent Planning: Representation and Plan Gen-eration. In Allen, James; Hendler, James; and Tate, Austin, editors 1990, Readings inPlanning. Morgan Kaufman. 319|335.(Wilkins, 1988b) Wilkins, D. Practical Planning: Extending the classical AI planningparadigm, Morgan-Kaufmann, CA. 1988.(Yang, 1990) Yang, Q. Formalizing planning knowledge for hierarchical planning Computa-tional Intelligence Vol.6., 12{24, 1990. 25

A AppendixTheorem 1 (Equivalence Theorem) Given a task network d,an initial state I, and aplan �, � is in sol(d; I;D) i� any model that satis�es D also satis�es solves(�; d; I).Proof. ! : Since sol(d; I;D) is de�ned recursively in terms of completions and reductions,it su�ces to show that (a)Given any primitive task-network d, if � 2 comp(d; I;D), thenany model that satisfy D also satis�es solves(�; d; I), (b) for any model M that satis�es D,if M satis�es solves(�; d0; I), and d0 2 red(d; I;D), it also satis�es solves(�; d; I).(a) Assume � 2 comp(d; I;D). Then, � is a totally ordered ground instance of d thatmakes the constraint formula true. LetM be any model that satis�es D. BecauseM satis�esthe operators, FM will project the intermediate states to be exactly the same as projectedin the completion. Furthermore, the constraint formula is evaluated in the same way bothfor �nding completions and for determining whether a model satis�es solves(�; d; I). Thus,given a primitive task network d, and a modelM that satis�es D, M satis�es solves(�; d; I)i� � 2 comp(d; I;D).(b) Let d0 be in red(d; I;D). Then there exists a method m, and a task node n in d suchthat d0 = reduce(d; n;m). Let M be a model that satis�es D, and also solves(�; d0; I).Without loss of generality, let's assume d;m; d0 have the following forms:d = [(n1 : �1) : : : (nk : �k) (n : �); �];m = (�; [(n01 : �01) : : : (n0j : �0j);]);d0 = [(n01 : �01) : : : (n0j : �0j) (n1 : �1) : : : (nk : �k); �0 ^]:Since M satis�es solves(�; d0; I), there existsd01 2 T (�01); : : : ; d0j 2 T (�0j); d1 2 T (�1); : : : ; dk 2 T (�k) such that � is a plan forcompose(d1; : : : ; d0j; d1; : : : ; dk; �0 ^).Thus, there exists a matching � between � and compose(d01; : : : ; d0j; d1; : : : ; dk; �0 ^),such that the constraint formula of compose(d01; : : : ; d0j ;), which correspond to the portionof the task network corresponding to the expansion of �, is satis�ed. From this fact and thatM satis�es the method m, we conclude there exists a d00 2 T (�) and a matching �0 suchthat � makes the constraint formula of d00 true.Consider compose(d1; : : : ; dk; d00; �) 2 T (d). Construct a matching �00 by extending �0to d1; : : : ; dk (taking the same value as � for those places). � satis�es � and the constraintsof d1; : : : ; dk; d00. Thus M satis�es solves(�; d; I). : We will show that whenever � =2 sol(d; I;D), there exists a model M that satis�esD, but not solves(�; d; I).Here is how we construct M =< S;F ;T >:26

� S = 2fground atomsg.� F(f; c1 : : : ; ck; s) = (s�N�) [P�, whenever the operator for f is of the form(f(v1; : : : ; vk); l1; : : : ; lk), where � is the substitution fci=vij1 � i � kg, and N;P arethe sets of negative and positive literals in fl1; : : : ; lkg, respectively.� T (�) = fdjd is a ground instance of a primitive task-network obtained from � by a�nite number of reductionsg, for any non-primitive task �.When T is extended to cover task networks as de�ned in Section 3.2, we observe thatT (d) = fd0jd0is a ground instance of a primitive task-network obtained from d by a �nitenumber of reductionsg for any task network d.F is de�ned such that M satis�es all the operators in D. By de�nition of T , wheneverd0 2 red(d; I;D), T (d0) � T (d). Thus M also satis�es all the methods in D.Given a primitive task network d, and a modelM that satis�es D,M satis�es solves(�; d; I)i� � 2 comp(d; I;D)Let d be a primitive task network such that � =2 sol(d; I;D). Then � =2 comp(d; I;D),either. In part (a) of the proof, we showed that for any model that satis�es the operators,comp(d; I;D) is exactly the set of plans that solves the primitive task network d. Thus weconclude M does not satisfy solves(�; d; I).Consider the alternative where d is a non-primitive task network such that � =2 sol(d; I;D).Assume M satis�es solves(�; d; I). Then there exists a primitive task network d0 2 T (d)such that � is a plan for d0. From part (a) of the proof, � must be in comp(d0; I;D). However,since T (d) contains only primitive task networks that can be obtained by a �nitenumber ofreductions from d, we conclude � 2 sol(d; I;D), which is a contradiction.Theorem 2 (Soundness) Whenever UMCP returns a plan, it achieves the input tasknetwork at the initial state with respect to all the models that satisfy the methods and theoperators.Proof. Let's assume on input P =< d; I;D >, UMCP halts in n iterations. and returns�. Using induction on n, we prove that � 2 sol(d; I;D), and from the equivalance theoremwe conclude that any model that satis�es D also satis�es solves(�; d; I).[Base case: n = 0.] d must be a primitive task network and � 2 comp((d; I;D). Thus,� 2 sol(d; I;D).[Induction Hypothesis] Assume for n < k if UMCP returns � in n iterations, then� 2 sol(d; I;D). 27

Suppose on input P =< d; I;D > UMCP halts in n = k iterations. and returns �.Then d is a non-primitive task network. Let d1 = reduce(d; n;m) be the value assigned to dat step 5 of UMCPin the �rst iteration, and let d2 2 � (d1; I;D) be the value assigned to dat step 7 of UMCPin the �rst iteration.On input P =< d2; I;D >, the planner halts in k � 1 steps and returns �. Thus, byinduction hypothesis, � 2 sol(d2; I;D). From restriction 1 on the critic function � () andfrom d2 2 � (d1; I;D) we conclude � 2 sol(d1; I;D). Since d1 2 red(d; I; calD), from thede�nition of sol() we conclude � 2 sol(d; I;D).Theorem 3 (Completeness) Whenever UMCP fails to �nd a plan, there is no planthat achieves the input task network at the initial state with respect to all the models thatsatisfy the methods and the operators.Proof. Assume � 2 sol(d; I;D). Let k be the minimum number of reductions needed toderive �; i.e. � 2 solk+1(d; I;D), but � =2 solk(d; I;D). We show that there exists a sequenceof non-deterministic choices such that the UMCP halts in k iterations and returns a plan.Proof by induction on k.[Base case: k = 0.] In that case � 2 comp(d; I;D), and UMCP �nds a plan in in step 2.[Induction Hypothesis] Assume whenever the number of reductions needed to derive �is less then j (i.e. k < j), there exists a sequence of non-deterministic choices for whichUMCP returns a plan in k iterations.Let � 2 sol((d; I;D), and it takes exactly j reductions to derive �. Let (n : �) be thenode picked by UMCP in step 3 in the �rst iteration (Since this is not a non-deterministicchoice, the planner could pick any non-primitive node at that step.) Let m be the methodused for reducing (n : �) in the derivation. Let d1 = reduce(d; n;m). reduce() is de�ned inSection 3.2 such that the order of reductions does not matter; i.e. For a task network d thatcontains two non-primitive tasks n1; n2 with corresponding methods m1;m2,reduce(reduce(d; n1;m1); n2;m2) and reduce(reduce(d; n2;m2); n1;m1)are equal modulo variable and node label names. Thus, since we obtained d1 from d byreducing n with the same method used in the derivation, we conclude � 2 solj�1((d1; I;D).As � 2 solj�1((d1; I;D), by the second restriction on � (), there exists d2 2 � (d1; I;D)such that � 2 solj�1((d2; I;D). Let the planner non-deterministically choose d2 to assign tod at step 7 in the �rst iteration. By induction hypothesis, the planner will halt in j�1 moreiterations and return a plan. 28

