
UMCP: A Sound and Complete Procedure for Hierarchical
Task-Network Planning∗

Kutluhan Erol James Hendler Dana S. Nau

kutluhan@cs.umd.edu hendler@cs.umd.edu nau@cs.umd.edu

Computer Science Department,

Institute for Systems Research and Institute for Advanced Computer Studies

University of Maryland, College Park, MD 20742

Abstract

One big obstacle to understanding the nature
of hierarchical task network (htn) planning has
been the lack of a clear theoretical framework. In
particular, no one has yet presented a clear and
concise htn algorithm that is sound and com-
plete. In this paper, we present a formal syntax
and semantics for htn planning. Based on this
syntax and semantics, we are able to define an
algorithm for htn planning and prove it sound
and complete.

Introduction

In AI planning research, planning practice (as em-
bodied in implemented planning systems) tends to
run far ahead of the theories that explain the behav-
ior of those planning systems. For example, strips-
style planning systems1 were developed more than
twenty years ago (Fikes et al. 1971), and most
of the practical work on AI planning systems for
the last fifteen years has been based on hierarchi-
cal task-network (htn) decomposition (Sacerdoti 1977;
Tate 1990; Wilkins 1988a; Wilkins 1988b). In contrast,
although the past few years have seen much analy-
sis of planning using strips-style operators, (Chap-
man 1987; McAllester et al. 1991; Erol et al. 1992b;
Erol et al. 1992a), there has been very little analytical
work on htn planners.

One big obstacle to such work has been the lack of
a clear theoretical framework for htn planning. Two
recent papers (Yang 1990; Kambhampati et al. 1992)
have provided important first steps towards formaliz-
ing htn planning, but these focused on the syntax,

∗This work was supported in part by NSF Grant NSFD
CDR-88003012 to the University of Maryland Systems Re-
search Center and NSF grant IRI-8907890 and ONR grant
N00014-91-J-1451 to the University of Maryland Computer
Science Department.

1We will refer to planning systems that use strips op-
erators (with no decompositions) as strips-style planners,
ignoring algorithmic differences among them that are not
relevant to the current work.

rather than the semantics. As a result, no one has pre-
sented a clear and concise htn algorithm that is sound
and complete. In this paper, we present exactly such
an algorithm.2

HTN planning

In htn planning, the world and the basic actions that
can be performed are represented in a manner simi-
lar to the representations used in strips (Fikes et al.
1971; Chapman 1987). Each “state” of the world is
represented as a collection of atoms, and operators are
used to associate effects to actions (primitive tasks).
The fundamental difference between strips-style plan-
ning and htn planning is the representation of “desired
change” in the world.

htn-planning replaces strips-style goals with tasks
and task networks, which are provably more power-
ful (Erol et al. 1994c; Erol et al. 1994b). There are
three types of tasks. Goal tasks, like goals in strips,
are properties we wish to make true in the world, such
as having a house. Primitive tasks are tasks we can di-
rectly achieve by executing the corresponding action,
such as moving a block, or turning a switch on. Com-
pound tasks denote desired changes that involve several
goal tasks and primitive tasks; e.g., building a house
requires many other tasks to be performed (laying the
foundation, building the walls, etc.). A compound task
allows us to represent a “desired change” that cannot
be represented as a single goal task or primitive task.
For example, the compound task of “building a house”
is different from the goal task of “having a house,” since
buying a house would achieve the goal task, but not
the compound task. As another example, consider the
compound task of making a round-trip to New York.
This could not be easily expressed as a single goal task
either, since the initial and final states would be the
same.

2Due to space limitations, we cannot include the details
of our proofs, nor the details of how our work compares
to (Sacerdoti 1977; Tate 1990; Wilkins 1988a; Yang 1990;
Kambhampati et al. 1992). These are presented in (Erol
et al. 1994a).



n1:

achieve[clear(v1)]

n2:

achieve[clear(v2)]

n3:

do[move(v1, v3, v2)]

@
@@R

�
���

clear(v1)

clear(v2)

:on(v1, v3)

Figure 1: Graphical representation of a task network.

Tasks are connected together in htn planning via
the use of task networks, which are also called “proce-
dural nets” in some of the literature (Sacerdoti 1977;
Drummond 1985). Figure 1 gives a graphical represen-
tation of a task network containing three tasks: clear-
ing the block v1, clearing the block v2, and moving
v1 to v2. It also shows the conditions that moving v1

should be done last, v1 and v2 should remain clear un-
til we move v1, and that the variable v3 is bound to
the location of v1 before v1 is moved.

A number of different systems that use heuristic al-
gorithms have been devised for htn planning (Tate
1990; Vere 1983; Wilkins 1988a), and several recent pa-
pers have tried to provide formal descriptions of these
algorithms (Yang 1990; Kambhampati et al. 1992).
Figure 2 presents the essence of these algorithms. As
shown in this figure, htn planning works by expanding
tasks and resolving conflicts iteratively, until a conflict-
free plan can be found that consists only of primitive
tasks.

Expanding each non-primitive task (steps 3–5) is
done by choosing an appropriate reduction, which
specifies one possible way of accomplishing that task.
Reductions are stored as methods, which associate
non-primitive tasks with task networks. For ex-
ample, in the blocks world, the non-primitive task
achieve[on(v1, v2)] might be associated with the task
network shown in Figure 1.

The task network produced in step 5 may contain
conflicts caused by the interactions among tasks. The
job of finding and resolving these interactions is per-
formed by critics. Historically speaking, critics were
introduced into noah (Sacerdoti 1977) to identify, and
deal with, several kinds of interactions (not just deleted
preconditions) between the different networks used to
reduce each non-primitive operator. This is reflected
in steps 6 and 7 of Figure 2: after each reduction, a set
of critics is checked so as to recognize and resolve inter-
actions between this and any other reductions. Thus,
critics provide a general mechanism for detecting in-
teractions early, so as to reduce the amount of back-
tracking. For a more detailed discussion of the many
different ways critic functions have been used, see (Tate
et al. 1990).

Although the basic idea of htn planning has been
around since 1974, the lack of a clear theoretical foun-
dation has made it difficult to explore its properties.

1. Input a planning problem P.
2. If P contains only primitive tasks, then resolve

the conflicts in P and return the result. If
the conflicts cannot be resolved, return failure.

3. Choose a non-primitive task t in P.
4. Choose an expansion for t.
5. Replace t with the expansion.
6. Use critics to find the interactions among the

tasks in P, and suggest ways to handle them.
7. Apply one of the ways suggested in step 6.
8. Go to step 2.

Figure 2: The basic htn Planning Procedure.

In particular, although it is easy to state this algo-
rithm, proving it sound and complete requires consid-
erable formal development. In the following section,
we present a syntax and semantics for htn planning.

HTN Formalism

Syntax

Our language L for htn planning is a first-order lan-
guage with some extensions, which generalizes the syn-
taxes of (Yang 1990; Kambhampati et al. 1992). The
vocabulary of L is a tuple 〈V, C, P, F, T, N〉, where V
is an infinite set of variable symbols, C is a finite set of
constant symbols, P is a finite set of predicate symbols,
F is a finite set of primitive-task symbols (denoting ac-
tions), T is a finite set of compound-task symbols, and
N is an infinite set of symbols used for labeling tasks.
P, F , and T are mutually disjoint.

A primitive task is a syntactic construct of the form
do[f(x1, . . . , xk)], where f ∈ F and x1, . . . , xk are
terms. A goal task is a syntactic construct of the form
achieve[l], where l is a literal. A compound task is a
syntactic construct of the form perform[t(x1, . . . , xk)],
where t ∈ T and x1, . . . , xk are terms. We some-
times refer to goal tasks and compound tasks as non-
primitive tasks.

A task network is a syntactic construct of the form
[(n1 : α1) . . . (nm : αm), φ], where

• each αi is a task;

• ni ∈ N is a label for αi (to distinguish it from any
other occurrences of αi in the network);

• φ is a boolean formula constructed from variable
binding constraints such as (v = v′) and (v = c),
temporal ordering constraints such as (n ≺ n′), and
truth constraints such as (n, l), (l, n), and (n, l, n′),
where v, v′ ∈ V , l is a literal, c ∈ C, and n, n′ ∈ N .3

3We also allow n, n′ to be of the form first[ni, nj , . . .] or
last[ni, nj , . . .] so that we can refer to the task that starts
first and to the task that ends last among a set of tasks,
respectively.



((n1 : achieve[clear(v1)])(n2 : achieve[clear(v2)])
(n3 : do[move(v1, v3, v2)])
(n1 ≺ n3) ∧ (n2 ≺ n3) ∧ (n1, clear(v1), n3)
∧(n2, clear(v2), n3) ∧ (on(v1, v3), n3)
∧ ¬(v1 = v2) ∧ ¬(v1 = v3) ∧ ¬(v2 = v3))

Figure 3: Formal representation of the task network of
Fig. 1.

Intuitively (this will be formalized in the “Seman-
tics” section), (n ≺ n′) means that the task labeled
with n must precede the one labeled with n′; (n, l),
(l, n) and (n, l, n′) mean that l must be true immedi-
ately after n, immediately before n, and between n
and n′, respectively. Both negation and disjunction
are allowed in the constraint formula.

Figure 3 gives a formal representation of the task net-
work shown in Figure 1. A primitive task network is a
task network that contains only primitive tasks.

A planning operator is a syntactic construct of the
form (f(v1, . . . , vk), l1, . . . , lm), where f ∈ F is a
primitive task symbol, l1, . . . , lm are literals denot-
ing the primitive task’s effects (also called postcondi-
tions), and v1, . . . , vk ∈ V are the variables appearing
in l1, . . . , lm. Our operators do not contain explicit
strips-style preconditions; these are realized in task
networks. The conditions the planner must actively
make true are realized as goal tasks, and the conditions
the planner must only verify to hold4 are realized as
truth constraints. For example, consider the task net-
work for achieving on(v1, v2) in blocks world, shown in
Fig. 1. To move the block v1, first we need to make it
clear, and this precondition is expressed as a goal task.
Now, consider the condition on(v1, v3). Its purpose is
to ensure that v3 is the block under v1; we certainly do
not intend to move v1 onto v3. Thus, it is expressed
by the constraint (on(v1, v3), n3) on the task network.

A method is a construct of the form (α, d) where α
is a non-primitive task, and d is a task network. As
we will define formally in the “Semantics” seciton, this
construct means that one way of accomplishing the
task α is to accomplish the task network d, i.e. to
accomplish all the subtasks in the task network with-
out violating the constraint formula of the task net-
work. To accomplish a goal task (achieve[l]), l needs
to be true in the end, and this is an implicit constraint
in all methods for goal tasks. If a goal is already
true, then an empty plan can be used to achieve it.
Thus, for each goal task, we (implicitly) have a method
(achieve[l], [(n : do[f ]), (l, n)]) which contains only one
dummy primitive task f with no effects, and the con-
straint that the goal l is true immediately before do[f ].

A planning domain D is a pair 〈Op, Me〉, where Op
is a list of operators (one for each primitive task), and

4These are generally called filter conditions in the
literature

Me is a list of methods. A planning problem P is a
triple 〈d, I,D〉, where D is a planning domain, I is the
initial state, and d is the task network we need to plan
for.

A plan is a sequence σ of ground primitive tasks.
solves(σ, d, I) is a syntactic construct which we will
use to mean that σ is a plan for the task network d at
state I.

Model-Theoretic Semantics

Before we can develop a sound and complete planning
algorithm for htn planning, we need a semantics that
provides meaning to the syntactic constructs of the
htn language, which in turn would define the set of
plans for a planning problem.

A semantic structure for htn planning is a triple
M = 〈SM ,FM , TM 〉; we omit the subscript M when-
ever it is clear from context which model we are re-
ferring to. The members of the triple are described
below.

The set of states is S = 2{all ground atoms}. Each
member of S is a state, consisting of the atoms true
in that state. Any atom not appearing in a state is
considered to be false in that state. Thus, a state cor-
responds to a “snapshot” instance of the world.
F : FxC∗xS → S interprets the actions. Given an

action symbol from F , with ground parameters from
C, and an input state, F tells us which state we would
end up with, if we were to execute the action.
T : {non-primitive tasks} → 2{primitive task networks}

interprets each non-primitive task d as a (not neces-
sarily finite) set of primitive task networks T (d). Each
primitive task network d′ in T (d) gives a set of actions
that would achieve d under certain conditions (as spec-
ified in the constraint formula of d′). There are two
restrictions on the interpretation of goal tasks of the
form achieve[l]: (1) at the end of the task, l must be
true, and (2) if l is already true, we must be able to
achieve l by doing nothing.

Task networks can be interpreted similarly, and we
extend the domain of T to cover task networks as fol-
lows:

• T (α) = {[(n : α), TRUE]}, if α is a ground primitive
task. Thus, in order to accomplish α, it suffices to
execute it.

• T (d) = {d}, if d is a ground primitive task network.

• To accomplish a non-primitive task network d, we
need to accomplish each task in d without violat-
ing the constraint formula. Thus we define T (d)
as follows. Let d = [(n1 : α1) . . . (nm : αm), φ]
be a ground task network possibly containing non-
primitive tasks. Then

T (d) = {compose(d1, . . . , dm, φ) | ∀i di ∈ T (αi)},

where compose is defined as follows. Suppose

di = [(ni1 : αi1) . . . (niki
: αiki

), φi]



for each i. Then5

compose(d1, . . . , dm, φ)

= [(n11 : α11) . . . (nmkm
: αmkm

), φ1 ∧ . . . φm ∧ φ′],

where φ′ is obtained from φ by making the following
replacements:

– replace (ni < nj)
with (last[ni1, . . . , niki

] < first[nj1, . . . , njkj
]);

– replace (l, ni) with (l, f irst[ni1, . . . , niki
]);

– replace (ni, l) with (last[ni1, . . . , niki
], l);

– replace (ni, l, nj)
with (last[ni1, . . . , niki

], l, f irst[nj1, . . . , njkj
]);

– everywhere that ni appears in φ in a first[] or a
last[] expression, replace it with ni1, . . . , niki

.

• T (d) =
⋃

d′ is a ground instance of d T (d′), if d is a task
network containing variables.

Satisfaction An operator (t(x1, . . . , xk), l1, . . . , lm)
is satisfied by a model M , if for any ground substi-
tution θ on x1, . . . , xk,and any state s,

FM (t, x1θ, . . . , xkθ, s)

= (s − {lθ | l ∈ {l1, . . . , lm} is a negative literal})

∪ {lθ | l ∈ {l1, . . . , lm} is a positive literal}.

Thus, a model M satisfies an operator, if M interprets
the primitive task so that it has the corresponding ef-
fects.

Next, we want to define the conditions under which
a model M satisfies solves((σ, d, s), i.e., the conditions
under which σ is a plan that solves the task network d
starting at state s, with respect to the model M . First
we consider the case where d is primitive.

Let σ = (f1(c11, . . . , c1k1
), . . . , fm(cm1, . . . , cmkm

))
be a plan, d = [(n1 : α1) · · · (nm′ : αm′), φ] be a
ground primitive task network, M be a model, and
s0 be a state. Let si = FM (fi, ci1, . . . , ciki

, si−1) for
i = 1 . . .m be the intermediate states. We define a
matching π from d to σ to be a one to one relation from
{1, . . . , m′} to {1, . . . , m} such that whenever π(i) = j,
αi = do[fj(cj1, . . . , cjkj

)]. Thus a matching provides a
total ordering on the tasks. M satisfies solves(σ, d, s)
if m = m′, and there exists a matching π that makes
the constraint formula φ true. The constraint formula
is evaluated as follows:

• (ci = cj) is true, if ci, cj are the same constant sym-
bols;

• first[ni, nj , . . .] evaluates to min{π(i), π(j), . . .};

• last[ni, nj, . . .] evaluates to max{π(i), π(j), . . .};

• (ni ≺ nj) is true if π(i) < π(j);

• (l, ni) is true if l holds in sπ(i)−1;

5The formula actually is slightly more complicated than
what is shown, because the variables and node labels in
each di must be renamed so that no common variable or
node label occurs.

• (ni, l) is true if l holds in sπ(i);

• (ni, l, nj) is true if l holds for all se, π(i) ≤ e < π(j);

• logical connectives ¬,∧,∨ are evaluated as in propo-
sitional logic.

Let d be a task network, possibly containing non-
primitive tasks. A model M satisfies solves(σ, d, s), if
for some d′ ∈ TM (d), M satisfies solves(σ, d′, s).

For a method to be satisfied by a given model, not
only must any plan for d also be a plan for α, but in
addition, any plan for a task network tn containing
d must be a plan for the task network obtained from
tn by replacing d with α. More formally, a method
(α, d) is satisfied by a model M if the following prop-
erty holds: given any plan σ, any state s, and any
d′ ∈ TM (d), whenever there is a matching π such that
σ at s satisfies the constraint formula of d′, then there
exists d′′ ∈ TM (α) such that for some matching π′ with
the same range as π, σ at s makes the constraint for-
mula of d′′ true.

A model M satisfies a planning domain D =
〈Op, Me〉, if M satisfies all operators in Op, and all
methods in Me.

Proof Theory

A plan σ solves a planning problem P = 〈d, I,D〉 if
any model that satisfies D also satisfies solves(σ, d, I).
However, given a planning problem, how do we find
plans that solve it?

Let d be a primitive task network (one contain-
ing only primitive tasks), and let I be the initial
state. A plan σ is a completion of d at I, denoted
by σ ∈ comp(d, I,D), if σ is a total ordering of the
primitive tasks in a ground instance of d that satisfies
the constraint formula of d. For non-primitive task
networks d, comp(d, I,D) is defined to be ∅.

Let d be a non-primitive task network that contains
a (non-primitive) node (n : α). Let m = (α′, d′) be
a method, and θ be the most general unifier of α and
α′. We define reduce(d, n, m) to be the task network
obtained from dθ by replacing (n : α)θ with the task
nodes of d′θ, modifying the constraint formula φ of d′θ
into φ′ (as we did for compose), and incorporating d′θ’s
constraint formula. We denote the set of reductions of
d by red(d, I,D). Reductions formalize the notion of
task decomposition.

Here are the two rules we use to find plans:

R1. If σ ∈ comp(d, I,D), conclude σ ∈ sol(d, I,D).

R2. If d′ ∈ red(d, I,D) and σ ∈ sol(d′, I,D), conclude
σ ∈ sol(d, I,D).

The first rule states that the set of plans that achieve
a primitive task network consists of the completions of
the task network; the second rule states that if d′ is
a reduction of d, then any plan that achieves d′ also
achieves d.



procedure UMCP:
1. Input a planning problem P = 〈d, I,D〉.
2. if d is primitive, then

If comp(d, I,D) 6= ∅, return a member of it.
Otherwise return FAILURE.

3. Pick a non-primitive task node (n : α) in d.
4. Nondeterministically choose a method m for α.
5. Set d := reduce(d, n, m).
6. Set Γ := τ(d, I,D).
7. Nondeterministically set d := some element of Γ.
8. Go to step 2.

Figure 4: UMCP: Universal Method-Composition
Planner

Next, we define sol(d, I,D), the set of plans that can
be derived using R1 and R2:

sol1(d, I,D) = comp(d, I,D)
soln+1(d, I,D) = soln(d, I,D)∪⋃

d′∈red(d,I,D) soln(d′, I,D)

sol(d, I,D) = ∪n<ωsoln(d, I,D)

Intuitively, soln(d, I,D) is the set of plans that can be
derived in n steps, and sol(d, I,D) is the set of plans
that can be derived in any finite number of steps. The
following theorem states that sol(d, I,D) is indeed the
set of plans that solves 〈d, I,D〉

Theorem 1 (Equivalence Theorem) Given a task
network d, an initial state I, and a plan σ, σ is in
sol(d, I,D) iff any model that satisfies D also satisfies
solves(σ, d, I).

This theorem follows from the fact that sol(d, I,D)
is constructed such that it always contains only the
plans for a task network d with respect to the mini-
mum model. We prove the theorem by constructing
a model M such that for any non-primitive task α,
TM (α) contains the primitive task networks that can
be obtained by a finite number of reduction steps from
α. Then we prove M to be the minimum model satis-
fying D.

Corollary 1 R1 and R2 are sound and complete.

Since the set of plans that can be derived using R1
and R2 is exactly sol(d, I,D), the corollary immedi-
ately follows from the equivalence theorem.

A Hierarchical Planning Procedure.

Using the syntax and semantics developed in the pre-
vious section, we can now formalize the htn planning
procedure that we presented in Figure 2. Figure 4
presents our formalization, which we call UMCP (for
Universal Method-Composition Planner).

It should be clear that UMCP mimics the defini-
tion of sol(d, I,D), except for Steps 6 and 7 (which
correspond to the critics). As discussed before, htn

planners typically use their critics for detecting and

resolving interactions among tasks (expressed as con-
straints) in task networks at higher levels, before all
subtasks have been reduced to primitive tasks. By
eliminating some task orderings and variable bindings
that lead to dead ends, critics help prune the search
space. In our formalism, this job is performed by the
critic function τ . τ inputs an initial state I, a task
network d, a planning domain D and outputs a set of
task networks Γ. Each member of Γ is a candidate
for resolving some6 of the conflicts in d. We need to
put two restrictions on τ to ensure that it functions
properly and that UMCP is sound and complete:

1. If d′ ∈ τ(d, I,D) then sol(d′, I,D) ⊆ sol(d, I,D).
Thus, any plan for d′ must be a plan for d ensuring
soundness.

2. If σ ∈ solk(d, I,D) for some k, then there exists
d′ ∈ τ(d, I,D) such that σ ∈ solk(d′, I,D).

Thus, whenever there is a plan for d, there is a plan
for some member d′ of τ(d, I,D). In addition, if the
solution for d is no further than k expansions, so is
the solution for d′. The latter condition ensures that
τ does not create infinite loops by undoing previous
expansions.

In contrast to the abundance of well understood
strips-style planning algorithms (such as (Fikes et al.
1971; Chapman 1987; Barett et al. 1992; Kambham-
pati 1992)), htn planning algorithms have typically
not been proven to be sound or complete. However,
using the formalism in this paper, we can establish the
soundness and completeness of the htn planning algo-
rithm UMCP.

Corollary 2 (Soundness) Whenever UMCP re-
turns a plan, it achieves the input task network at the
initial state with respect to all the models that satisfy
the methods and the operators.

Corollary 3 (Completeness)
Whenever UMCP fails to find a plan, there is no plan
that achieves the input task network at the initial state
with respect to all the models that satisfy the methods
and the operators.

These results follow directly from the equivalence
theorem using the fact that UMCP directly mimics
sol(). The restrictions on the critic function ensure
that τ does not introduce invalid solutions and that it
does not eliminate valid solutions.

Conclusions

One big obstacle to understanding the nature of hi-
erarchical task network (htn) planning has been the
lack of a clear theoretical framework. In this paper,
we have presented a formal syntax and semantics for
htn planning. Based on this syntax and semantics, we

6It might be impossible or too costly to resolve some
conflicts at a given level, and thus handling those conflicts
can be postponed.



have defined an algorithm for htn planning, and have
proved it to be sound and complete.

This formalism also enables us to do complexity
analyses of htn planning, to assess the expressive
power of the use of htns in planning, and to com-
pare htns to planning with strips-style operators. For
example, we have been able to prove that htn plan-
ning, as defined here, is formally more expressive than
planning without decompositions (Erol et al. 1994c;
Erol et al. 1994b). We are working on a deeper com-
plexity analysis of htns and towards an understanding
of where the complexity lies.

Our semantics characterizes various features of htn

planning systems, such as tasks, task networks, filter
conditions, task decomposition, and critics. We be-
lieve that this more formal understanding of these as-
pects of planning will make it easier to encode plan-
ning domains as htns and to analyze htn planners.
Furthermore, the definition for whether a given model
satisfies a planning domain can provide a criterion for
telling whether a given set of methods and operators
correctly describe a particular planning domain. We
are currently exploring these further.

Finally, we are starting to explore the order in which
tasks should be expanded to get the best performance,
and more generally, in which order all commitments
(variable bindings, temporal orderings, choice of meth-
ods) should be made. This will involve both algorith-
mic and empirical studies. Our long term goals are to
characterize planning domains for which htn planning
systems are suitable, and to develop efficient planners
for those domains. Our framework provides the neces-
sary foundation for such work.

References

Allen, J.; Hendler, J. and Tate, A. editors. Readings
in Planning. Morgan-Kaufmann, San Mateo, CA,
1990.

Barrett, A. and Weld, D. Partial Order Planning.
Technical report 92-05-01, Computer Science Dept.,
University of Washington, June, 1992.

Chapman, D. Planning for conjunctive goals. Artifi-
cial Intelligence, 32:333–378, 1987.

Drummond, M. Refining and Extending the Proce-
dural Net. In Proc. IJCAI-85, 1985.

Erol, K.; Nau, D.; and Subrahmanian, V. S. On
the Complexity of Domain Independent Planning. In
Proc. AAAI-92, 1992, pp. 381—387.

Erol, K.; Nau, D.; and Subrahmanian, V. S. When
is planning decidable? In Proc. First Internat. Conf.
AI Planning Systems, pp. 222–227, June 1992.

Erol, K.; Hendler, J.; and Nau, D. Semantics for
Hierarchical Task Network Planning. Technical report
CS-TR-3239, UMIACS-TR-94-31, Computer Science
Dept., University of Maryland, March 1994.

Erol, K.; Hendler, J.; and Nau, D. Complexity re-
sults for hierarchical task-network planning. To ap-
pear in Annals of Mathematics and Artificial Intelli-
gence Also available as Technical report CS-TR-3240,
UMIACS-TR-94-32, Computer Science Dept., Uni-
versity of Maryland, March 1994.

Erol, K.; Hendler, J.; and Nau, D. HTN Planning:
Complexity and Expressivity. To appear in Proc.
AAAI-94, 1994.

Fikes, R. E. and Nilsson, N. J. strips: a new ap-
proach to the application of theorem proving to prob-
lem solving. Artificial Intelligence, 2(3/4):189–208,
1971.

Kambhampati, S. and Hendler, J. “A Validation
Structure Based Theory of Plan Modification and
Reuse” Artificial Intelligence, May, 1992.

Kambhampati, S. “On the utility of systematicity:
understanding trade-offs between redundancy and
commitment in partial-ordering planning,” unpub-
lished manuscript, Dec., 1992.

Lansky, A.L. Localized Event-Based Reasoning
for Multiagent Domains. Computational Intelligence
Journal, 1988.

McAllester, D. and Rosenblitt, D. Systematic nonlin-
ear planning. In Proc. AAAI-91, 1991.

Minton, S.; Bresna, J. and Drummond, M. Commit-
ment strategies in planning. In Proc. IJCAI-91, 1991.

Nilsson, N. Principles of Artificial Intelligence,
Morgan-Kaufmann, CA. 1980.

Penberthy, J. and Weld, D. S. UCPOP: A Sound,
Complete, Partial Order Planner for ADL Proceed-
ings of the Third International Conference on Knowl-
edge Representation and Reasoning, October 1992

Sacerdoti, E. D. A Structure for Plans and Behavior,
Elsevier-North Holland. 1977.

Tate, A.; Hendler, J. and Drummond, D. AI planning:
Systems and techniques. AI Magazine, (UMIACS-
TR-90-21, CS-TR-2408):61–77, Summer 1990.

Tate, A. Generating Project Networks In Allen, J.;
Hendler, J.; and Tate, A., editors 1990, Readings in
Planning. Morgan Kaufman. 291—296.

Vere, S. A. Planning in Time: Windows and Du-
rations for Activities and Goals. IEEE Transactions
on Pattern Analysis and Machine Intelligence, PAMI-
5(3):246–247, 1983.

Wilkins, D. Domain-independent Planning: Repre-
sentation and Plan Generation. In Allen, James;
Hendler, James; and Tate, Austin, editors 1990, Read-
ings in Planning. Morgan Kaufman. 319—335.

Wilkins, D. Practical Planning: Extending the clas-
sical AI planning paradigm, Morgan-Kaufmann, CA.
1988.

Yang, Q. Formalizing planning knowledge for hier-
archical planning Computational Intelligence Vol.6.,
12–24, 1990.


