
To appear, IJCAI-95, August 1995

A Critical Look at Critics in HTN Planning∗

Kutluhan Erol James Hendler Dana S. Nau Reiko Tsuneto

kutluhan@cs.umd.edu hendler@cs.umd.edu nau@cs.umd.edu reiko@cs.umd.edu

Computer Science Department,

Institute for Systems Research, and

Institute for Advanced Computer Studies

University of Maryland, College Park, MD 20742

Abstract

Detecting interactions and resolving conflicts is
one of the key issues for generative planning
systems. Hierarchical Task Network (HTN)
planning systems use critics for this purpose.
Critics have provided extra efficiency and flex-
ibility to HTN planning systems, but their
procedural –and sometimes domain-specific –
nature has not been amenable to analytical
studies. As a result, little work is available on
the correctness or efficiency of critics. This pa-
per describes a principled approach to handling
conflicts, as implemented in UMCP1, an HTN
planning system. Critics in UMCP have desir-
able properties such as systematicity, and the
preservation of soundness and completeness.

1 Introduction

Detecting interactions and resolving conflicts is one of
the key issues for planning systems. The importance of
this issue was realized as long ago as the 1970s in early
AI planning systems such as strips [Fikes and Nilsson,
1971] and hacker [Sussman, 1990]. The introduction of
task networks and task decomposition in noah [Sacer-
doti, 1977] provided an even richer set of interactions and
resolution methods, and a component of noah called the
critic mechanism was designed for handling these inter-
actions. Critics helped prune the search space by detect-
ing dead ends in advance and by resolving many types
of conflicts as soon as they appeared. Critics could also
draw upon domain-specific information to do their job
more efficiently. The power of the critic mechanism was
quickly realized and adopted by hierarchical task net-
work (HTN) planning systems [Tate, 1977; Vere, 1983;
Wilkins, 1988].

∗This work was supported in part by NSF Grants DDM-
9201779, IRI-9306580 and NSF EEC 94-02384, AFOSR
(F49620-93-1-0065), the ARPA/Rome Laboratory Planning
Initiative (F30602-93-C-0039), and ONR grant N00014-91-J-
1451. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Sci-
ence Foundation or ONR.

1Universal Method-Composition Planner

Some of the critics identified by Sacerdoti [1977]
(based in part on Sussman’s [1990] earlier work) include:

• Resolve Conflicts. The conflicts handled by this
critic, later referred to as “deleted-condition” inter-
actions, have received the bulk of the attention in
the literature.

• Eliminate redundant preconditions. This critic both
handled “phantom” conditions and found cases
where two different procedural networks added the
same primitive prior to usage.

In addition to the interactions handled by these critics,
several other situations that can arise in planning have
been identified in the literature:

• For his deviser system, Vere [1983] has discussed
temporal interactions between the times at which
actions must occur.2 He has used temporal window-
ing and performed an analysis thereof to eliminate
possible reductions.

• Wilkins’ sipe system [Wilkins, 1988] has added sev-
eral different mechanisms for recognizing resource
interactions and for allowing user preferences to be
considered when making a choice among reductions.

• Yang, Nau, and Hendler [Yang et al., 1993] have
discussed a general “action-precedence” interaction
that, while less general than deleted-condition in-
teractions, can be exploited in some planning situ-
ations. They also have discussed a “simultaneous
action” interaction that arises in some domains.

• To handle iteration in plans, Drummond [1985] has
proposed several extensions to the procedural net,
and an extension to Sacerdoti’s Resolve-conflicts
critic.

• NONLIN [Tate, 1977] and O-Plan2 [Tate et al.,
1994] provide various condition types which can be
used to reduce the search space. In O-Plan2, Con-
straint Managers support decision making of the
planner by providing complete information about
the constraints they are managing.

• A number of special-purpose “domain dependent”
planning systems have identified interactions occur-
ring only in the particular domain for which the sys-

2See also [Dean, 1983].
1

tem is being developed. Typically special-purpose
heuristics are introduced to exploit this knowledge.

As can be seen, the many interactions which need to
be handled during planning go beyond the (relatively)
well-understood deleted-condition interaction. To han-
dle these interactions, implemented planning systems
usually use critics or similar mechanisms. Unfortunately
it is difficult for a user to exploit these planning sys-
tems effectively (i.e. reasonably efficiently and correctly)
without an in-depth understanding of the implementa-
tion details of the critic mechanisms. To reason about
analytical properties of such mechanisms (i.e. system-
aticity, soundness, completeness), a general model of in-
teractions and critics is clearly needed.

The work described in [Erol et al., 1994a; 1994b]
presents a formal model for HTN planning, which pro-
vides a constraint-based representation for interactions
among tasks and enables principled approaches to con-
flict detection and handling in HTN planning. This pa-
per presents conflict management and constraint han-
dling techniques based on that framework. Among the
properties of these techniques are soundness, complete-
ness and systematicity. These techniques have been im-
plemented in UMCP, an HTN planning system.

2 An Overview of HTN planning

Here is a brief informal description of HTN planning.
For a precise formal description, see [Erol et al., 1994a;
1994b].

htn planning representations for actions and states
of the world are similar to those used in strips-style
planning.3 Each state of the world is represented by the
set of atoms true in that state. Actions, which in htn

planning are usually called primitive tasks, correspond to
state transitions; i.e., each action is a partial mapping
from the set of states to the set of states.

The primary difference between HTN planners and
strips-style planners is in what they plan for, and how
they plan for it. In strips-style planning, the objec-
tive is to find a sequence of actions that will bring the
world to a state that satisfies certain conditions or “at-
tainment goals.” Planning proceeds by finding operators
that have the desired effects and by making the precon-
ditions of those operators into subgoals. In contrast,
HTN planners search for plans that accomplish task net-
works, which can include things other than just attain-
ment goals; and they plan via task decomposition and
conflict resolution, which shall be explained shortly.

A task network is a collection of tasks that need to
be carried out, together with constraints on the order
in which tasks can be performed, the way variables are
instantiated, and what literals must be true before or
after each task is performed. Unlike strips-style plan-
ning, the constraints may or may not contain condi-
tions on what must be true in the final state. For-

3The term “strips-style” planning is used to refer to any
planner (either total- or partial-order) in which the planning
operators are “stripsoperators” (i.e., operators consisting of
three lists of atoms: a precondition list, an add list, and a
delete list).

[(n1 : achieve[clear(v1)])(n2 : achieve[clear(v2)])
(n3 : do[move(v1, v3, v2)])
(n1 ≺ n3) ∧ (n2 ≺ n3) ∧ (n1, clear(v1), n3)
∧(n2, clear(v2), n3) ∧ (on(v1, v3), n3) ∧ ¬(v1 = v2)
∧¬(v1 = v3) ∧ ¬(v2 = v3)]

n1:

achieve[clear(v1)]

n2:

achieve[clear(v2)]

n3:

do[move(v1, v3, v2)]

J
JĴ

�

clear(v1)

clear(v2)

:on(v1, v3)

Figure 1: A task network, and its graphical representa-
tion.

mally, a task network is a syntactic construct of the form
[(n1 : α1) . . . (nm : αm), φ], where

• each αi is a task;

• ni is a label for αi (to distinguish it from any other
occurrences of αi in the network);

• φ is a boolean formula constructed from variable
binding constraints such as (v = v′) and (v = c),
ordering constraints such as (n ≺ n′), and state
constraints such as (initially l), (n, l), (l, n), and
(n, l, n′), where v, v′ are variables, l is a literal, c
is a constant, and n, n′ are node labels.4 Intu-
itively, (n ≺ n′) means that the task labeled with n
must precede the one labeled with n′; (n, l), (l, n)
and (n, l, n′) mean that l must be true in the state
immediately after n, immediately before n, and in
all states between n and n′, respectively. (initially
l) means that l must be true in the initial state.
Both negation and disjunction are allowed in the
constraint formula.

As an example, Fig. 1 shows a blocks-world task net-
work and its graphical representation. In this task net-
work there are three tasks: clearing v1, clearing v2, and
moving v1 to v2. The task network also includes the
constraints that moving v1 should be done last, v1 and
v2 should remain clear until we move v1, and that the
variable v3 is bound to the location of v1 before v1 is
moved.

A task network that contains only primitive tasks is
called a primitive task network. Such a network might
occur, for example, in a scheduling problem. In this
case, an HTN planner would try to find a schedule (task
ordering and variable bindings) that satisfies all the con-
straints.

In the more general case, a task network can contain
non-primitive tasks, which the planner needs to figure
out how to accomplish. Non-primitive tasks cannot be

4We also allow node labels in the constraints to be of the
form first[ni, nj , . . .] or last[ni, nj , . . .] so that we can refer
to the task that starts first and to the task that ends last
among a set of tasks, respectively.

2

1. Input a planning problem P.
2. If P contains only primitive tasks, then

resolve the conflicts in P and return the result.
If the conflicts cannot be resolved, return
failure.

3. Choose a non-primitive task t in P.
4. Choose an expansion for t.
5. Replace t with the expansion.
6. Use critics to find the interactions among the

tasks in P, and suggest ways to handle them.
7. Apply one of the ways suggested in step 6.
8. Go to step 2.

Figure 2: The Standard HTN Planning Procedure.

executed directly, because they represent activities that
may involve performing several other tasks. For example
the task of traveling to New York can be accomplished in
several ways, such as flying, driving or taking the train.
Flying would involve tasks such as making reservations,
going to the airport, buying ticket, boarding the plane;
and flying would only work if certain conditions were
satisfied: availability of tickets, being at the airport on
time, having enough money for the ticket, etc.

Ways of accomplishing non-primitive tasks are repre-
sented using constructs called methods. A method is a
syntactic construct of the form (α, d) where α is a non-
primitive task, and d is a task network. It states that
one way to accomplish the task α is to achieve all the
tasks in the task network d without violating the con-
straints in d. For example, the task network in Figure 1
presents one possible way of accomplishing on(v1, v2),
thus (achieve[on(v1, v2)], d) is a method for Blocks world
domain, where d is the task network in Figure 1.

An HTN planning problem is represented as a triple
P = 〈d, I,D〉, where d is the task network we need to
plan for, I is the initial state, and D is the set of opera-
tors and methods associated with the planning domain.

A number of different systems that use heuristic algo-
rithms have been devised for HTN planning [Tate, 1977;
Vere, 1983; Wilkins, 1988], and several recent papers
have tried to provide formal descriptions of these algo-
rithms [Yang, 1990; Kambhampati and Hendler, 1992].
Figure 2 presents the essence of these algorithms: HTN
planning works by expanding tasks and resolving con-
flicts iteratively, until a conflict-free plan can be found
that consists only of primitive tasks.

Expanding or reducing each non-primitive task (steps
3–5) is done by finding a method capable of accom-
plishing the non-primitive task, and replacing the non-
primitive task with the task network produced by the
method. Details of how to do the task expansion is pre-
sented in [Erol et al., 1994a; 1994b].

The task network produced in Step 5 may contain con-
flicts caused by the interactions among tasks. The job
of finding and resolving such interactions is performed
by critics. This is reflected in Steps 6 and 7 of Figure 2:
after each reduction, a set of critics is checked so as to
recognize and resolve interactions between this and any

1. Input a planning problem P =< d, I,D >.
2. Initialize OPEN-LIST to contain only d.
3. If OPEN-LIST is empty, then

halt and return “NO SOLUTION.”
4. Pick a task network tn from the OPEN-LIST.
5. If tn is primitive, its constraint formula is TRUE,

and tn has no committed-but-not-realized
constraints, then return tn as the solution.

6. Pick a refinement strategy R for tn .
7. Apply R to tn and insert the resulting set of

task networks into OPEN-LIST.
8. Go to step 3.

Figure 3: High-level Refinement-Search in UMCP

other reductions. Thus, critics provide a general mecha-
nism for detecting interactions early, so as to reduce the
amount of backtracking.

3 Planning in UMCP

One way of finding solutions to HTN planning prob-
lems is to generate all possible expansions of the input
task network to primitive task networks, then generate
all possible ground instances (assignment of constants
to variables) and total orderings of those primitive task
networks and finally output those whose constraint for-
mulae evaluate to true. However, considering the size of
the search space, it is more appropriate to try to take
advantage of the structure of the problem, and prune
large chunks of the search space by eliminating in ad-
vance some of the variable bindings, orderings or meth-
ods that would lead to dead-ends. To accomplish this
UMCP uses a branch-and-bound approach [Kanal and
Kumar, 1988].

A task network can be thought of as an implicit rep-
resentation for the set of solutions for that task network.
UMCP works by refining a task network into a set of
task networks, whose sets of solutions together make up
the set of solutions for the original task network. Those
task networks whose set of solutions are determined to be
empty are filtered out. In this aspect, UMCP nicely fits
into the general refinement search framework described
in [Kambhampati et al., 1995].

Figure 3 contains a sketch of the high-level search al-
gorithm in UMCP. Search is implemented by keeping
an OPEN-LIST of task networks in the search space
that are to be explored; by altering how task networks
are picked from the OPEN-LIST and how they are in-
serted, depth-first, breadth-first, best-first and various
other search techniques can be employed. Step 5 checks
whether tn is a solution node; if all tasks in tn are prim-
itive, the constraint formula is the atom TRUE, and the
list of constraints that have been committed to be made
true but not yet made true is empty, then all task order-
ings and variable assignments consistent with the aux-
iliary data structures associated with tn are plans for
the original problem.5 Those plans can be easily enu-

5Constraints and the data structures will be discussed in
3

merated. If tn is not a solution node, then it is refined
by some refinement strategy R, and the resulting task
networks are inserted back into the OPEN-LIST.

Three types of refinement strategies used in UMCP are
task reduction, constraint refinement, and user-specific
critics. Task reduction involves retrieving the set of
methods associated with a non-primitive task in tn, ex-
panding tn by applying each method to the chosen task
and returning the resulting set of task networks. User-
specific critics is one of the places where UMCP can be
tailored for specific domains. If a domain-specific refine-
ment strategy is available, it can be used to improve the
performance of the planner. This paper will focus on
constraint refinement.

4 Constraint Handling in UMCP

4.1 Overview

This section contains an overview of the constraint han-
dling mechanisms in UMCP, which serve as domain in-
dependent critics. They are designed to preserve sound-
ness, completeness, and systematicity. Details for each
type of constraint are summarized in the next section.
For a full description, see [Erol, 1995].

The three types of decisions in HTN planning are the
choice of method for each non-primitive task, the choice
of constant to assign to each variable, and the orderings
of tasks. Of those three, the choice of method is directly
reflected in the task network (i.e. in the list of tasks
and the constraint formula). Auxiliary data structures
are required for the other two. Thus, along with each
task network, UMCP keeps a list of possible values for
each variable values until the size of the list exceeds a
threshold, and a partial order graph of task nodes. Both
of those structures will be referred to as commitments.
Dealing with some constraints might not be possible at
the current level of detail in a task network; dealing with
those constraints has to be postponed until the task net-
work is refined further. Until then, those constraints
are stored in a list called the Promissory List (the list
of constraints the planner has committed to make true,
but has not done so yet).

The four phases of constraint refinement in UMCP are
constraint selection, constraint update, constraint prop-
agation and constraint simplification, which are carried
out sequentially.

Constraint selection involves deciding which con-
straints in the constraint formula or in the commit-
ments to work on. Constraint selection returns a list
of constraint formulae, where each formula is a conjunct
of atomic constraints. The list of constraint formulae
is selected in such a way that (a) the formulae in the
list are mutually inconsistent in the presence of com-
mitments (in order to preserve systematicity), and (b)
the list covers all possibilities (in order to preserve com-
pleteness). Some examples of constraints that may be
selected include (i) an atomic constraint6 and its nega-
tion, (ii) a conjunct of unit clauses from the constraint

detail in the next section.
6An atomic constraint refers to any instance of the types

of constraints discussed in Section 2.

formula, or (iii) a set of possible constraints for a vari-
able – i.e. if the set of possible values for a variable v
are {truck1, truck2, truck3}, UMCP may branch out on
the constraints (v = truck1), (v = truck2), (v = truck3).

For each constraint formula in the list computed in the
constraint selection phase, the constraint update phase
computes a task network for every possible way of mak-
ing the selected formula true by further restricting the
commitments of the task network. For each atomic con-
straint in the selected constraint formula, the following
steps are executed: first it is evaluated; if it evaluates to
true, it can be ignored, if it evaluates to false, the task
network fails, otherwise further restrictions are placed
on the commitments (variable bindings, orderings etc.)
to make the constraint necessarily true in all further re-
finements of the task network. There might be multiple
possible ways of accomplishing that, thus even atomic
constraint update computes a list of task networks rather
than a single task network. However, UMCP does con-
straint update in such a way that there is no overlap
among the set of solutions to the task networks in this
list. For some constraints, at the current level of detail
in the task network, it might not be possible via restric-
tions on commitments to ensure that the constraint will
be true in all further refinements. Those constraints are
simply recorded in the Promissory List.

In the constraint propagation phase, UMCP evaluates
and simplifies the constraints in the Promissory List of
each task network produced during the constraint up-
date phase. If any of those constraints evaluate to false,
the task network fails; those that evaluate to true are
removed from the Promissory List. Constraint update
is performed on the remaining simplified constraints if
possible at the current level of detail in the task net-
work. This phase is repeated until no more propagation
is possible.

UMCP contains evaluation and simplification routines
for every type of constraint, as described in the next sec-
tion. These routines are used in the constraint simplifi-
cation phase to evaluate and simplify the constraint for-
mulae of the task networks produced during the propa-
gation phase. For instance if part of a conjunct evaluates
to true, that part is dropped, if it evaluates to false, the
whole conjunct evaluates to false. Disjuncts are treated
analogously. Those task networks whose constraint for-
mulae evaluate to false are pruned.

4.2 Details

This section describes how constraint evaluation and up-
date is done for each type of constraint. Update always
involves evaluating the constraint and it fails whenever
the constraint evaluates to false. This is omitted from
the explanations below for brevity.

Variable Binding Constraints

Type: (v = a)
Evaluation: Return true if constant a is the only pos-
sible value for variable v; return false if a is not a possible
value for v; return (v = a) otherwise.
Update: To make it true, set the possible value list for
v to a, replace v with a throughout the task network. To

4

make it false, remove a from the possible value list for
v. If v has only one possible value left, substitute that
value for v throughout the task network.

Type: (v1 = v2)
Evaluation: Return true if both v1 and v2 have the
same one possible value; return false if they do not have
any common possible values or if negation of the con-
straint is in the Promissory List; return the constraint
itself otherwise.
Update: To make it true, set the possible value list for
v2 to the intersection of possible values for v1 and v2, set
the possible value list for v1 to v2, and replace v1 with
v2 throughout the task network. To make it false, insert
its negation in the Promissory List.

Ordering Constraints
Ordering constraints are handled by querying and mod-
ifying the partial order graph. They are of the form
(node-expression ≺ node-expression).

A node-expression can be in either of the 2 forms:
first[n1, n2, . . . , nk], or last[n1, n2, . . . , nk]. Thus, a to-
tal of four types of ordering constraints need to be
considered.7

Let Ai = {ni1, . . . , nik} be lists of node labels for
i = 0, 1. Recall that first[A0] and last[A0] refer to the
node which is ordered to be the first and the last among
the nodes in the expansion of nodes {n01, . . . , n0k}, re-
spectively.

Let’s define Oi, Ii ⊆ Ai as the nodes that are not or-
dered after (respectively before) any node in A0 ∪ A1.

Let’s define Bi, Ci ⊆ Ai as the nodes that are not
ordered after (respectively before) some node in Ai and
are not ordered after(respectively before) all nodes in
A(i+1) mod 2.

Type: (first[A0] ≺ first[A1])
Evaluation: Return true if O1 is empty; return false if
O0 is empty; return (first[O0] ≺ first[O1]) otherwise.
Update: If O0 contains a single primitive task put links
from the node in O0 to each node in O1 in the partial
order graph; otherwise insert (first[O0] ≺ first[O1])
into the Promissory List.

Type: (first[A0] ≺ last[A1])
Evaluation: Return false if B0 or C1 is empty; return
true if some node in B0 is ordered before one in C1;
otherwise return (first[B0] ≺ last[C1]).
Update: If both B0 and C1 contain single primi-
tive tasks, put a link between them, otherwise insert
(first[B0] ≺ last[C1]) into the Promissory List.

Evaluations and updates of (last[A0] ≺ first[A1]) and
(last[A0] ≺ last[A1]) are done analogously.

State Constraints
The set of atoms in the initial state are stored in a dis-
crimination tree for fast querying. Negative literals need
not be stored due to the closed world assumption. Note
that “¬ (initially l)” and “(initially ¬l)” have the same
meaning.

7Ordering constraints which contain negation or refer to
single node labels can be converted to one of those four forms.

Type: (initially l)

Evaluation: Return true if all ground instances of
l that are consistent with possible values lists in com-
mitments are in initial state; return false if none of the
ground instances of l that are consistent with possible
values lists are in initial state.
Update: To make it true (false) do the following: If
l has only one variable, restrict that variable to values
for which l is true (false) in the initial state. If l con-
tains k > 1 variables, for each combination of values for
the first k − 1 variables, output a task network by as-
signing those variables the corresponding constants, and
restricting the value of the last variable so as to make
l true (false) in the initial state. Combinations of val-
ues for which this is not possible need not be considered.
For example, in order to make (initially type[v,truck])
true in transport logistics domain, it suffices to restrict
possible values for v to constants of type truck.

The state constraints of the form (l, n) are evaluated
and updated by computing the effectors. An effector of l
is either (i) a primitive task with an effect that can unify
with l or ¬l, (ii) the initial state, (iii) a compound task
whose expansion might contain such a primitive task,
or (iv) a committed-to state constraint that is stored
in Promissory List whose literal can unify with l or ¬l.
Those effectors that are ordered after n or shadowed by8

some other effector of l are ignored. If all effectors of l
are positive then (l, n) is true, if all are negative than it
is false, otherwise it is unknown yet. Update is delayed
if some of the positive effectors are compound tasks, and
the constraint is recorded in Promissory List. Otherwise
for each positive effector e a new task network is created
where e is the establisher of l with added constraints
(preserve l e n)∧(preserve ¬l e n)preventing any action
between e and n from denying or asserting l, respectively.

Evaluating and/or updating constraints of the form
(n, l) is delayed until n refers to a single primitive task
symbol. In that case (n, l) evaluates to true if the action
labeled by n asserts l, it evaluates to false if that action
denies l, otherwise it evaluates to (l, n).

Constraints of the form (n, l, n′) are converted to (n′ ≺
n)∨ [(n � n′)∧ (n, l)∧ (preserve l n n′)] and handled as
such.

4.3 Properties of Constraint Refinement

As discussed in Section 3, constraint refinement takes
a task network tn as input, and returns a list of task
networks R(tn). We can now demonstrate the properties
of constraint refinement in UMCP:

• Soundness: Any solution to any task network in
R(tn) is also a solution for tn. Thus constraint
refinement does not introduce invalid solutions.
UMCP satisfies this property because commitments
in task networks grow monotonically, and con-
straints in the Promissory List are removed only as
they become necessarily true.

8An effector x shadows an effector y if x is ordered between
y and n, and whenever an effect of y codesignates with l, so
does an effect of x.

5

• Completeness: Any solution for tn is also a solution
for some task network in R(tn). Thus constraint
refinement does not eliminate any valid solutions.
UMCP satisfies this property because any time a
constraint is selected in constraint selection phase,
its negation is also selected (unless it contradicts
with the commitments or the constraint formula),
and all possible ways of making a constraint true
are tried in the constraint update phase.

• Systematicity: The set of candidate solutions for
each task network in R(tn) are mutually disjoint.
Thus UMCP does not examine the same candidates
multiple times. The way systematicity is accom-
plished in UMCP is by making sure (a) the branches
in constraint selection are mutually exclusive (i.e.
any two conjuncts have a common literal, positive
in one, negated in the other); (b) there is no over-
lap among the solution sets to the task networks
produced in update phase.

5 Related Work

Causal links are used by POCL planners such as
SNLP [McAllester and Rosenblitt, 1991] to establish pre-
conditions and to detect threats. Causal links are also
employed by UMCP in the form of special state con-
straints stored in the Promissory List. SNLP’s threat
removal process is similar to how UMCP handles those
special constraints in its constraint propagation phase.

[Chapman, 1987] introduced the MTC (modal truth
criterion) to tell whether a literal is true at a given point
in a partially-ordered plan. In order to evaluate state
constraints, UMCP uses an extended version of the MTC
that also accounts for compound tasks. UMCP’s ex-
tended MTC algorithm runs in quadratic time—and it
is directly applicable for computing Chapman’s MTC,
for which the other known algorithms run in cubic time.

NOAH [Sacerdoti, 1977] employs its resolve conflicts
critic to deal with deleted-condition interactions, which
are explicitly represented by state constraints in UMCP.
The constraint refinement techniques of UMCP guaran-
tees these interactions will be handled without sacrificing
soundness or completeness.

UMCP evaluates each constraint before trying to make
it true, and skips those constraints that are already true,
and hence it emulates NOAH’s eliminate redundant pre-
conditions critic.

HTN planners often allow several types of conditions
in methods. How to deal with those conditions has been
a topic of debate.

NONLIN [Tate, 1977] evaluates filter conditions as
soon as they are encountered, using the Q&A mecha-
nism. Q&A returns false unless it can verify those con-
ditions to be necessarily true, even if the conditions are
possibly true. Thus, nonlin often backtracks over filter
conditions which would have been achieved by actions
in later task expansions or by more ordering and vari-
able binding commitments. As a result, nonlin may fail
to find a solution when a solution exists, or may miss a
short and simple solution and do much more work to
find a longer and more complicated solution.

At first glance, the problems such as these might seem
to argue against the use of filter conditions: at one ex-
treme, using filter conditions immediately to prune the
search space sacrifices completeness, and at the other
extreme, postponing their use until the plan is complete
(so as to preserve completeness) is inefficient.9

Although the above argument is partially correct, it
ignores a third possibility that lies between the two ex-
tremes. In general, to preserve completeness, a plan-
ner cannot use a filter condition to prune the search
space unless the filter condition evaluates to “necessar-
ily false”—but this does not necessarily require that the
task network has been expanded into a primitive and
totally-ordered plan. Instead, UMCP simply records the
filter conditions in the Promissory List and prunes the
task network only when one of them becomes necessarily
false.

More specifically, UMCP handles filter conditions and
other constraints as follows:

• Some instances of variable binding, ordering, and
state constraints can be dealt with immediately. For
example, conditions (e.g., an object’s type) that are
not affected by the actions are represented by con-
straints of the form (initially l). Such constraints
can be evaluated at any time by querying the initial
state, and they can be committed to by appropri-
ately restricting the possible values for the variables
in l.10

• Those constraints that cannot be dealt with imme-
diately are stored in the Promissory List, and are
processed in the constraint propagation phases.

Constraints in UMCP go through three stages: they
first appear in constraint formula; then possibly in the
Promissory List if they cannot be dealt with at the time
they are selected in constraint selection phase; and fi-
nally they are reflected in restrictions on possible values
for variables and task orderings. This three-stage ap-
proach facilitates dealing with the disjunctions in the
constraint formula, and by postponing its processing of
some types of constraints, UMCP preserves complete-
ness without sacrificing efficiency.

6 Conclusion

Dealing with numerous types of interactions is an im-
portant aspect of planning systems. The work described
in [Erol et al., 1994a; 1994b] has provided a formal frame-
work for representing interactions and conflicts via con-
straints, and in this paper we have introduced techniques
for constraint handling as a means for detecting interac-
tions and resolving conflicts. Those techniques preserve
soundness, completeness, systematicity, and they have
been implemented in UMCP, an HTN planning system.

9In fact, Collins and Pryor [1992] have made a similar
argument against filter conditions in the context of planning
with STRIPS-style operators.

10
sipe [Wilkins, 1988] uses a “sort hierarchy” for this pur-

pose, the only difference in UMCP is that UMCP allows ar-
bitrary boolean formulae constructed from all types of con-
straints, instead of a conjunct of constraints as in sipe.

6

By instantiating the constraint selection strategy in
different ways, various commitment strategies discussed
in the literature can be used by UMCP. For example,
variable instantiation can be done before anything else
(as in nonlin), all primitive tasks can be totally ordered
as soon as they appear in task networks, or task expan-
sions can be deferred until all conflicts have been resolved
(least commitment). Currently, we are designing exper-
iments to empirically evaluate these techniques.

UMCP’s constraint-handling mechanism provides the
capabilities of many domain-independent critics dis-
cussed in the literature, and UMCP’s user-specific critics
module can be used to incorporate domain-specific crit-
ics as well. The modular and formal nature of UMCP
makes it readily extensible. We are currently exploring
ways of extending UMCP’s constraint-handling mecha-
nism to handle numerical and complex temporal con-
straints so that it can do deadline and resource man-
agement, and provide the capabilities of other domain-
independent critics.

References

[Allen et al., 1990] Allen, J.; Hendler, J. and Tate, A.
editors. Readings in Planning. Morgan-Kaufmann,
San Mateo, CA, 1990.

[Chapman, 1987] Chapman, D. Planning for conjunc-
tive goals. Artificial Intelligence, 32:333–378, 1987.

[Collins and Pryor, 1992] Collins, G. and Pryor, L.
Achieving the functionality of filter conditions in a
partial order planner In Proc. AAAI-92, 1992, pp.
375—380.

[Dean, 1983] Dean, T. Time map maintenance. Techni-
cal Report 289, Yale University, October 1983.

[Drummond, 1985] Drummond, M. Refining and Ex-
tending the Procedural Net. In Proc. IJCAI-85,
1985.

[Erol et al., 1994a] Erol, K.; Hendler, J. and Nau, D.
Semantics for Hierarchical Task Network Plan-
ning. CS-TR-3239, UMIACS-TR-94-31, ISR-TR-
95-9, University of Maryland, March 1994.

[Erol et al., 1994b] Erol, K.; Hendler, J. and Nau, D.
Complexity results for hierarchical task-network
planning. To appear in Annals of Mathematics and
Artificial Intelligence Also available as Technical re-
port CS-TR-3240, UMIACS-TR-94-32, ISR-TR-95-
10 Computer Science Dept., University of Mary-
land, March 1994.

[Erol, 1995] Erol, K. HTN Planning: Formalization,
Analysis, and Implementation. Ph.D. Dissertation,
Computer Science Dept., University of Maryland,
1995. In preparation.

[Fikes and Nilsson, 1971] Fikes, R. E. and Nilsson, N. J.
strips: a new approach to the application of the-
orem proving to problem solving. Artificial Intelli-
gence, 2(3/4):189–208, 1971.

[Kambhampati and Hendler, 1992] Kambhampati,
S. and Hendler, J. “A Validation Structure Based

Theory of Plan Modification and Reuse” Artificial
Intelligence, May, 1992.

[Kambhampati, 1992] Kambhampati, S. “On the utility
of systematicity: understanding trade-offs between
redundancy and commitment in partial-ordering
planning,” unpublished manuscript, Dec., 1992.

[Kambhampati et al., 1995] Kambhampati, S.;
Knoblock, C. and Yang, Q. Planning as refinement
search: A unified framework for evaluating design
tradeoffs in partial order planning. To appear in Ar-
tificial Intelligence, Special Issue on Planning.

[Kanal and Kumar, 1988] Kanal, L. and Kumar, V.
Search in Artificial Intelligence, Springer-Verlag,
1988.

[McAllester and Rosenblitt, 1991] McAllester, D. and
Rosenblitt, D. Systematic nonlinear planning. In
Proc. AAAI-91, 1991.

[Minton et al., 1991] Minton, S.; Bresina, J. and Drum-
mond, M. Commitment strategies in planning. In
Proc. IJCAI-91, 1991.

[Sacerdoti, 1977] Sacerdoti, E. D. A Structure for Plans
and Behavior, Elsevier-North Holland. 1977.

[Sussman, 1990] Sussman, G.J., HACKER: a compu-
tational model of skill acquisition, MIT AI Lab
Memo 1973, also in Allen, 1990, Readings in Plan-
ning. Morgan Kaufmann.

[Tate et al., 1990] Tate, A.; Hendler, J. and Drummond,
D. AI planning: Systems and techniques. AI
Magazine, (UMIACS-TR-90-21, CS-TR-2408):61–
77, Summer 1990

[Tate, 1977] Tate, A. Generating Project Networks In
Proc. IJCAI-77, 1977. pp. 888–893.

[Tate et al., 1994] Tate, A.; Drabble, B. and Dalton, J.
The Use of Condition Types to Restrict Search in
an AI Planner. Proc. AAAI-94. pp. 1129-1134.

[Vere, 1983] Vere, S. A. Planning in Time: Windows
and Durations for Activities and Goals. IEEE
Transactions on Pattern Analysis and Machine In-
telligence, PAMI-5(3):246–247, 1983.

[Wilkins, 1988] Wilkins, D. Practical Planning: Extend-
ing the classical AI planning paradigm, Morgan-
Kaufmann, CA. 1988.

[Yang, 1990] Yang, Q. Formalizing planning knowledge
for hierarchical planning Computational Intelli-
gence Vol.6., 12–24, 1990.

[Yang et al., 1993] Yang, Q.; Nau, D.S.; and Hendler,
J. Merging separately generated plans with re-
stricted interactions. Computational Intelligence,
9(1), February 1993.

7

