Combining Domain-Independent Planning and HTN Planning: The Duet Planner*

Alfonso Gerevini’ and Ugur Kuter?

Dana Nau’ and Alessandro Saetti’ and Nathaniel Waisbrot**
Dipartimento di Elettronica per 1’ Automazione, Universitd degli Studi di Brescia,
Via Branze 38, 1-25123 Brescia, Italy.
#Department of Computer Science and Institute for Advanced Computer Studies,
University of Maryland, College Park, Maryland 20742, USA.

Abstract

Despite the recent advances in planning for classical domains,
the question of how to use domain knowledge in planning
is yet to be completely and clearly answered. Some of the
existing planners use domain-independent search heuristics,
and some others depend on intensively-engineered domain-
specific knowledge to guide the planning process. In this pa-
per, we describe an approach to combine ideas from both of
the above schools of thought. We present Duet, our planning
system that incorporates the ability of using hierarchical do-
main knowledge in the form of Hierarchical Task Networks
(HTNs) as in SHOP2 (Nau et al. 2003) and using domain-
independent local search techniques as in LPG (Gerevini,
Saetti, and Serina 2003). In our experiments, Duet was able
to solve much larger problems than LPG could solve, with
only minimal domain knowledge encoded in HTNs (much
less domain knowledge than SHOP2 needed to solve those
problems by itself).

Introduction

Most classical planners fall into one of two categories: plan-
ners that use domain-independent knowledge, i.e., that work
in any classical planning domain, and planners that can ex-
ploit domain-specific knowledge. It has been shown, both
theoretically and experimentally, that each approach has its
own advantages and disadvantages:

e A planner that can exploit domain-specific knowledge in
order to guide its planning can solve much larger plan-
ning problems and can generally solve them much faster
than the planners that don’t use such knowledge. The
biggest downside of such planning systems, however, is
that they require an expert human to give them extensive
knowledge about how to solve planning problems in the
planning domain at hand. Usually this knowledge is ex-
pressed using either temporal logic (e.g., TLPlan (Bac-
chus and Kabanza 2000) and TALplanner (Kvarnstrom
and Doherty 2001)) or task decomposition (e.g., SHOP2
(Nau et al. 2003), SIPE-2 (Wilkins 1988), and O-PLAN

*This paper also appears in the Proceedings of the 18" Euro-
pean Conference on Artificial Intelligence (ECAI-08).
Copyright (© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

*Corresponding author (email:waisbrot@cs.umd.edu)

(Currie and Tate 1991)), and might not be easy for the
general user to specify.

e A planner that uses domain-independent heuristic in-
formation (e.g., FF (Hoffmann and Nebel 2001), Al-
tAlt (Nguyen, Kambhampati, and Nigenda 2002), SG-
Plan (Chen, Hsu, and Wah 2006), HSP (Bonet and
Geffner 1999), FastDownward (Helmert 2006), and LPG
(Gerevini, Saetti, and Serina 2003)) usually does not need
expert-provided domain knowledge, since the planner it-
self computes a heuristic for each domain. This makes
the domain formalization simpler and the planner easier
to use; but the planner may often perform much worse
than a planner that exploits specific domain knowledge.

In this paper, we describe Duet, a new planning system
that combines the advantages of using domain-independent
heuristics and domain-specific knowledge, while avoiding
their drawbacks. To accomplish this, Duet incorporates
adaptations of two well-known planners: LPG, which uses
domain-independent heuristics in a stochastic local search
engine (Gerevini, Saetti, and Serina 2003), and SHOP2,
which uses domain-specific Hierarchical Task Networks
(HTNs) to organize its search space (Nau et al. 2003). We
extended the SHOP2 and LPG formalisms to allow the plan-
ners to communicate in Duet by generating subgoals of a
planning problem for each other. Duet organizes the plan-
ning process by passing these subgoals to the individual
planners until no subgoals are left to achieve.

Our work on Duet is closely related to the recently-
proposed “Model-Lite Planning” approach (Kambhampati
2007; S. Yoon and S. Kambhampati 2007), which aims to
develop techniques that do not require intensive domain
knowledge but still are practical. There also have been sev-
eral planning systems that permit some combination of HTN
planning and domain-independent planning (e.g., (Kamb-
hampati, Liu, and Simpson 1998; McCluskey, Liu, and
Simpson 2003; Young, Pollack, and Moore 1994)). Of these,
only GIPO II (McCluskey, Liu, and Simpson 2003) and Duet
take advantage of domain-independent heuristics by com-
bining two state-of-the-art planners, and, to the best of our
knowledge, Duet is the first to offer a form of mutual plan-
ning in the sense that it allows for SHOP2 and LPG invok-
ing each other to solve different parts of the original input
planning problem and combines their partial results into a

complete solution.

We present our experiments with Duet on a new planning
domain, called Museums. The Museums domain was in-
spired by the real-world operations of acquiring and relocat-
ing art objects among a set of museums around the world.
The domain combines aspects of the well-known Logistic
and Tower of Hanoi (ToH) problems. The objective is to use
trucks to move various art objects from museums to other
museums. When a truck comes to a museum to load or un-
load objects, there are three places to put the objects: the
truck, and two pallets at the museum’s loading dock. An
object’s placement depends on its fragility: fragile art ob-
jects must be placed on less-fragile ones. Thus, loading and
unloading correspond to solving ToH problems.

The rationale for using the Museums domain in the eval-
uation of Duet was that we observed that it is challeng-
ing for state-of-the-art planners and it includes two kinds
of subproblems: domain-specific knowledge isn’t needed to
plan the truck movements, but is needed to plan the loading
and unloading operations, since the ToH problem is hard for
many domain-independent planners including LPG.

In our experiments, we varied the amount of HTN-based
domain-specific knowledge available to Duet and compared
its performance with LPG’s and SHOP2’s performance as
stand-alone planners. Even with just a small amount of
domain-specific knowledge (e.g., “choose the least-fragile
object and move it to the target museum”), Duet usually
generated solutions faster than LPG. With more domain-
specific problem-solving knowledge (e.g., how to properly
stack art objects on top of each other), Duet ran faster and
solved more problems than both LPG and SHOP2. Al-
though SHOP2’s performance could have been improved,
this would have required much more time for hand-crafting
its knowledge base.

Preliminaries

Our definitions of classical states, planning operators, plan-
ning domains and problems are based on those in (Ghallab,
Nau, and Traverso 2004). Below we’ll summarize the defini-
tions at the semantic level; for syntactic details see (Ghallab,
Nau, and Traverso 2004).

In addition to classical planning operators and actions
(i.e., ground instances of planning operators), we define an
abstract planning operator as a triple (¢, Pre, Eff), where
Pre and Eff are the preconditions and the effects of the
abstract operator (described as logical formulas over liter-
als), and ¢ is an expression (name, args, . .., arg,), where
name is the abstract operators’ name and argi,...,arg,
are the arguments (variables and/or constant symbols). An
abstract action is a ground instance of an abstract planning
operator. A plan is a sequence of actions that are either clas-
sical or abstract.

A planning domain is a triple ¥ = (S, A,~) where S
and A are the sets of states and actions (classical and ab-
stract), and v : S x A — S is the state-transition func-
tion, with (s, a) defined iff a is applicable to s. I'(s,) =
Y(y(..v(s,a1),a2),...,ay) is the state generated by apply-
ing the plan 7 = {(ay, ..., a,) in the state s. If some action

a; is inapplicable in I'(s, (a1, ...,a;—1)) then 7 is inappli-
cable in s and T'(s,) is not defined.

A planning problem is a pair P = (sg, g) in the planning
domain ¥ = (S, A,), where so € S is the initial state and
g is the goals represented as a conjunction of logical atoms
(i.e., g represents a set of goal states G C S). A solution for
a classical planning problem P is a plan 7 = (ay,...,ax)
such that each a; in 7 is a classical action and the state s’ =
['(sg,) satisfies the goals g.

LPG’s plan representation is based on linear action graphs
(Gerevini, Saetti, and Serina 2003), which are variants of
the well-known planning graphs (Blum and Furst 1997). A
linear action graph (Gerevini, Saetti, and Serina 2003) is a
directed acyclic leveled graph alternating between a propo-
sition level, i.e., a set of domain propositions, and an action
level, i.e., one ground domain action and a set of special
dummy actions, called “no-ops”, each of which propagates
a proposition of the previous level to the next one. If an
action is in the graph, then its preconditions and positive ef-
fects appear in the corresponding proposition levels of the
graph. Moreover, a pair of propositions or actions can be
marked as mutually exclusive at every graph level where the
pair appears (for a detailed description, see (Gerevini, Saetti,
and Serina 2003)).

While in the original definition, action levels contain only
classical actions (Gerevini, Saetti, and Serina 2003), here we
use an extended representation where an action level con-
tains either a classical action or an abstract action. An (ex-
tended) action graph can have two types of flaws: unsatis-
fied action preconditions and abstract actions. LPG uses a
stochastic local search process that iteratively modifies the
current graph until there is no flaw or a certain search limit
is exceeded (Gerevini, Saetti, and Serina 2003). LPG deals
with an unsatisfied precondition by inserting into or remov-
ing from the graph a new or existing action, respectively. We
modified LPG in order to recognize abstract actions as flaws
resolvable by running an HTN planner, as described below.
An action graph with no flaws represents a solution for the
input planning problem.

An HTN planner formulates a plan by decomposing tasks
(i.e., symbolic representations of problem-solving activities
to be performed) into smaller and smaller subtasks until
tasks are reached that can be performed directly. An HTN
is a pair (T, C'), where T is a set of tasks and C' is a set of
partial ordering constraints on the tasks. The empty HTN is
the pair (T, C') such that T = () and C' = {).

An HTN planner uses an HTN domain description that
contains three kinds of knowledge artifacts: axioms, opera-
tors, and methods. The axioms are similar to logical Horn-
clause statements; the planner uses them to infer conditions
about the current state. The operators are like the planning
operators used in any classical planner. The names of these
operators are designated as primitive tasks .

Each method in an HTN domain description is a prescrip-
tion for how to accomplish a nonprimitive task by decom-
posing it into subtasks (which may be either primitive or
nonprimitive tasks). A method consists of (1) the task that
the method can be used to accomplish, (2) the set of precon-
ditions which must be satisfied for the method to be appli-

cable, and (3) the subtasks to accomplish, along with some
constraints over those tasks that must be satisfied.

For example, consider the task of moving a collection of
items from one location to another. One method might be to
move them by truck. For such a method, the preconditions
might be that the truck is in working order and is present at
the first location. The subtasks might be to open the door, put
the items onto the truck, drive the truck to the other location,
and unload the items.

We assume that each abstract action in a planning domain
corresponds to a nonprimitive task, which must be decom-
posed into smaller tasks using HTN methods (if available).!
In addition to primitive and nonprimitive tasks, we also de-
fine a class of special-purpose tasks called achieve-goals
tasks. An achieve-goals task specifies a set of goals, as in
a classical planning problem, that need to be achieved in the
world before the task decomposition-process can progress
during HTN planning. An HTN planner would not have any
methods to decompose an achieve-goals task ¢ Instead, an
achieve-goals task triggers the invocation of a classical plan-
ner to generate a plan 7 such that the state I'(s,) satisfies
the specified goals of ¢, which we denote as GoalsOf(s, t),
given the input set of actions. The achieve-goals task is an
important component of our planning system Duet that in-
corporates LPG and SHOP2 in a unified planning process,
as described in the next section.

Duet = LPG + SHOP2

This section describes our planning procedure, called Duet,
that incorporates local-search planning as in LPG (Gerevini,
Saetti, and Serina 2003) and HTN planning as in SHOP2
(Nau et al. 2003). The LPG and SHOP2 planning proce-
dures that we use in Duet are slightly modified versions of
the originals reported in (Gerevini, Saetti, and Serina 2003)
and (Nau et al. 2003), respectively. Below, we first de-
scribe the Duet planning procedure, and subsequently we
briefly describe our modifications to LPG and SHOP2 to
adapt them to work within Duet.

Figure 1 shows a high-level description of the Duet plan-
ning procedure. Duet’s input includes the initial state sy and
the goal condition g of a classical planning problem, as well
as a possibly empty initial task network specified for achiev-
ing the goals g and a possibly empty set A/ of HTN methods.
Duet first initializes the current state s to sy and the current
partial plan to the empty plan. At Line 1, n is a counter for
the number of search steps performed by the planner; that
is, n is the total number of graph modifications performed
by LPG to fix the flaws plus the number of task decompo-
sitions done by SHOP2. Duet also uses a tabu list, T, that
keeps the abstract actions that cannot be decomposed into

"Note that a macro-action (Botea et al. 2005; Fikes and Nils-
son 1971) is a special case of an abstract action: a macro-action
decomposes directly into a sequence of primitive actions, whereas
an abstract action may be decomposed into a combination of both
primitive actions and other nonprimitive tasks that need to be de-
composed further. This allows us, for example, to write HTNs that
perform the standard recursive decomposition of a Towers of Hanoi
task in the Museum domain.

Procedure Duet(sg, g, wg, M)

Input: The problem initial state s, the set of problem goals
g, the initial task network wg and a set M of
HTN-methods.

Output: A solution plan or failure.
1-n<—0;S<_50;w<_w0;7r(_7_(_gshop2<_glpg<_®;
2. while n does not exceed a predefined number of steps
3. if wis a solution (all subgoals satisfied) then return 7;
4. else if there exists an abstract action gsnor2 then
5. (', s, gLpG, w’,n) « SHOP2(S, gsnop2, Tnit, 1, M);
6. if 7' = failure
7 then 7 «— 7 U (gstop2, n); w < (w — gsHop2);

8 else m — 7+ 7’5 w — w + (w — gshora); s «— §';

9

. gsHop2 — 0;
10. else if there exists an achieve-goals task g.pg then
11. (7', gsHop2, n) < LPG(S, gLpG, Tnil, M, T);
12. 7+ 7+ prefix of 7’ up to the first abstract action;
13. w « the rest of 7’ + (w — gipc);

14. s — I'(so,7);
15. gpc — 0;
16. elseif w # 0 then

17. (m, s, gLpG, w, nil) «— SHOP2(s,w, m,n, M);
18. if m = failure then return failure;

19. else

20. (7', gswop2,m) < LPG(s0, g, ™, M, T);

21. m + prefix of 7' up to the first abstract action;
22. w « the rest of 7’;

23. s« I'(so,7);
24. return failure.

Figure 1: Pseudocode of the Duet planning algorithm. “+” is
the operator concatenating two plans, m,;; is the empty plan,
s is the world state, w is the task network, 7 is the tabu-list,
gLpg represents the goals specified in an achieve-goals task,
and gsyop2 is an abstract action.

smaller tasks given the HTN methods in M, and therefore,
must be avoided during local search in LPG. The tabu list 7
is initialized to the empty list at Line 1.

Duet successively generates and resolves subgoals for the
input planning problem until it generates a solution plan. A
subgoal of the planning problem is either a goal to achieve
using domain-independent search heuristics via LPG, or an
abstract action (i.e., a task) that needs to be decomposed into
smaller tasks via SHOP2. Duet performs this iterative pro-
cedure for a maximum predefined number of search steps. If
a solution cannot be found during these iterations, the pro-
cedure returns failure.

If Duet returns failure, we re-start it from the beginning
with the same input for a predefined number of times, in
order to search for possible solutions again. The rationale
behind these restarts is that since LPG, and therefore Duet,
is a randomized search algorithm, there is a possibility that
different restarts of the planner will produce different search
paths in the search space and the planner will generate a
solution plan.

At each iteration of the while loop (Lines 2-23), Duet
first checks whether the current partial plan 7 is a solution
for the input planning problem. If so, Duet returns this plan
and terminates successfully. Otherwise, if there is an ab-

Procedure SHOP2(s, w, 7, n, M)

Input: a world state s, a task network w, a (partial) plan m,
a number of search steps n and a set M of
HTN-methods,

Output: a plan, its final state, a task that has no method,

a task network and a number of search steps.

1. while w is not empty do
2. nondeterministically choose a task ¢ from w that
has no predecessors and remove it;
n<«—mn+1;
if ¢ is primitive then
T =T+t s — (s, t);
else if ¢ is nonprimitive then
choose an applicable method m for ¢ (or if there’s
no such method then return failure)
add decomposition to the front of tasks;
10. else if t is an achieve-goals task then
11. return (7, s, GoalsOf (s, t), w, n);
12. return (7, s, nil, nil, n);

©CoNOO AW

Procedure LPG(s, g, 7, ninit, 7)
Input: an initial world state s, a set of goals g, a (partial)
plan 7, a number of search steps 7, and
a tabu-list 7,
Output: a plan, the first abstract action in the plan and
a number of search steps.

1. A — an action graph with the first fact level defined by s,
the action levels by = and the last fact level by g
. for n = n;,i: 10 a predefined number of steps do
7w « the plan represented by A
if A is a solution graph then return (7, nil, n);
o < the flaw at the lowest level of A
if o is an abstract action then return (7, o, n);
else
N « set of actions that are not in = and
whose insertion to/removal from A fixes o;
9. select an element from N and modify .A with it
10. return (nil, nil,n).

Figure 2: Pseudocode of Duet’s modified SHOP2 and LPG
procedures.

ONoOGRWND

stract action (or an HTN of abstract actions) to be accom-
plished, Duet invokes SHOP2 on this HTN, which is called
gsnopz in Line 5. Using the input HTN methods M, SHOP2
attempts to generate a solution plan for the HTN gspopa2.

Figure 2 shows the modified version of SHOP2 (Nau et al.
2003) that Duet uses. The planning procedure is the same as
in (Nau et al. 2003), except for Lines 10-12. In Line 10, if
the current task to be decomposed is an achieve-goals task,
then our adaptation of SHOP2 returns the GoalsOf(s,t) in
the current state s. As described above, the Duet then in-
vokes LPG on these goals to achieve them and updates the
current partial plan.

When SHOP?2 returns, there are three cases:

e SHOP?2 generates a plan 7’ for gsyop» successfully using
the methods in M. In this case, the returned successor
HTN w’ is the empty HTN and there are no successor
goals for LPG (i.e., gLpg is the empty set in Line 5).

e SHOP?2 generates an achieve-goals task ¢ pg for Duet to
invoke LPG in the next iteration. In this case, 7’ is the
partial plan that SHOP2 generated until the task ¢ pg in
the decomposition process, s’ is the state in which LPG
must be called, g pg is the goals for LPG specified by
tipg, w’ is the HTN that still needs to be accomplished
once Duet generates a plan that achieves the goals g pg,
and n is the updated number of search steps.

e SHOP2 returns failure. SHOP2’s failure on gsyop2
means that there are no possible ways to decompose
gsHop2 given the current domain knowledge and the in-
put initial state, and therefore, LPG should not consider
the particular abstract action gsyop2 in its later planning
invocations. In this case, Duet inserts gspyop2, along with
the number of search steps generated so far, in the tabu
list, and removes gsyop2 from the current task network
(Line 7).

If SHOP2 returns a plan 7/, Duet inserts it into the current
plan 7, and updates the HTN w that still needs to be accom-
plished. Note that at Line 8, if SHOP2 could successfully
accomplish gsyopz without returning any goals to LPG, the
returned HTN w’ would be the empty HTN, and there would
be no update to the HTN w.

If there is a goal g pg for LPG (see Lines 10-15), Duet
invokes LPG with this goal, the current state, the empty
plan, and the current values of the tabu list and number
of search steps. The modified LPG procedure (Figure 2)
is essentially the same stochastic local search procedure of
(Gerevini, Saetti, and Serina 2003) with the following dif-
ferences: the action graph is initialized using a (possibly
non-empty) plan; the initial number of search steps is an
input number instead of zero; the action graphs can contain
a new type of flaw (an abstract action), which is handled by
just returning it to Duet together with the current plan and
number of search steps (Line 6); the search neighborhood is
restricted to forbid the insertion of an abstract action in the
input tabu list (Line 8). Note that at Line 5 the unsupported
preconditions of an abstract action are selected before the
action and that, as in (Gerevini, Saetti, and Serina 2003), the
neighborhood selection at Line 9 is randomized and uses a
heuristic function.

There are three possible cases when LPG terminates:

e LPG tries to fix a flaw corresponding to an abstract ac-
tion during its search and needs SHOP2 to decompose
this abstract action into smaller tasks. In this case, LPG
returns the current partial plan it has (7), the abstract ac-
tion for SHOP2 (gsyop2), and the updated number n of
performed search steps.

e LPG generates a solution plan with no abstract actions for
the input goals g pg. In this case, LPG’s gspyop2 output is
empty.

e LPG fails because the search increases the input number
of search steps n above the predefined maximum. In this
case, Duet will return failure and can be restarted.

After the run of LPG, Duet updates the current plan 7, the
current task network w and the current world state s (Lines

Table 1: Sizes of the human-generated Museum domain descriptions for LPG, Duetsimple,

and Duetspecialist, and a SHOP2 HTN.

Planner Total lines Total characters Total no. of tokens
LPG 34 1658 426
Duetsimple 70 2893 694
Duetspecialist 157 6573 1534
SHOP2 238 9549 2254

12-14).

If there are no immediate goals for SHOP2 or LPG (i.e., if
both gshopz = 0 and g pg = @), then Duet checks whether
there are more tasks that need to be decomposed by SHOP2
(Lines 16-18) or any remaining flaws in the current plan
that need to be fixed by LPG (Lines 19-23). In the for-
mer case, Duet invokes SHOP? to plan for the HTN w that
still needs to be accomplished. Note that, in this case, Duet
gives SHOP2 the current partial plan as input (instead of the
empty plan as in the above case). This is because if SHOP2
generates a plan for the input abstract action then that plan
must be a part of the solution. If the task network becomes
empty and the current plan contains a flaw, Duet invokes
LPG in its next iteration (see Line 20) with the initial plan-
ning problem, except that this time LPG starts with the cur-
rent partial plan and attempts to generate a solution based on
it, rather than starting from the empty plan.

The following theorem establishes Duet’s soundness (we
omit the proof due to space limitations).

Theorem 1 Let P = (sq, g) be a classical planning prob-
lem, wqo be a (possibly empty) HTN to accomplish the
goals g, and M be a set of HTN methods. Suppose
Duet(sq, g, wo, M) returns a plan 7. Then, T is a solution
for the planning problem P.

Duet is not a complete planner (i.e., it may not find a so-
lution to an input planning problem, although there is one)
for two reasons: (1) LPG, as a stochastic local search proce-
dure, may return failure without finding any solution given
the number of restarts and the bound parameter on the num-
ber of search steps; and (2) the HTNs provided as input for
SHOP2 may not be complete, and even if they are, they may
prune the solution away.

Experimental Evaluation

We compared LPG and SHOP2 with two versions of Duet,
one supplied with extremely sparse domain knowledge, and
the other with more detailed knowledge of one facet of the
Museums domain. The planning operators for LPG in this
domain are DRIVE-TRUCK, MOVE-TO-TRUCK, MOVE-
FROM-TRUCK, and MOVE. The three move operators de-
fine a ToH subdomain where the pegs are the truck area
and the two museum pallets. Duet with sparse domain-
knowledge, denoted as Duetsjmple, used SHOP2 to choose
the order in which to relocate the objects, and LPG to plan
how to move each object. Duet with rich domain-knowledge
of object-stacking, denoted as Duetspecialist, provided LPG
with abstract actions LOAD and UNLOAD in place of the

three primitive move operators. In this version, LPG con-
trols the trucks and chooses which objects to pick up and
drop off, where each pick up/drop off request is an abstract
action handled by SHOP2.

To measure the complexity of the domain knowledge
needed by the various planners, Table 1 gives several dif-
ferent measures of the sizes of the domain descriptions used
by the various planners. LPG requires only a description
of the operators, while SHOP2 requires the operators and
HTN methods to solve the Museum planning problems.
Duetsimple and Duetspeciaiist use a partial set of HTN meth-
ods: these methods can be used to generate plans for parts
of a Museums planning problem but they cannot solve the
problem entirely.

There are three parameters affecting problem difficulty in
Museums domain: the number of museums, the connectiv-
ity of the museums, and the number of art objects to trans-
port. We performed experiments for each case in which we
fixed two of the parameters above and vary the other. In
the cases where we varied the first two parameters above,
we did not observe a significant change in the relative per-
formance of the planners since these two cases emphasized
the truck-movement subproblems in the Museums domain
and all of our planners were able to solve truck-movement
subproblems easily.

All of our operator and HTN descriptions and other input
files regarding our experimental setup are available online.?

Figure 3 shows the results of our experiments with vary-
ing number of objects where we fixed the number of mu-
seums as 3 and generated complete graphs of museums.
Each data point in this figure is the average of 50 randomly-
generated planning problems. We set the time limit of 500
seconds for the planners and we scored those runs that did
not return a plan within the limit at 500 seconds.

With increasing numbers of objects, LPG’s local search
became frequently trapped into local minima and was unable
to produce any plan within the given CPU-time limit. For
example, LPG began to struggle when the number of objects
at any one museum went beyond 4, and out of the 50 9-
object problems, it failed on 37.

Duetsimple outperformed LPG slightly when they both
solved a problem, but generally failed on most of the same
problems as LPG, for the same reasons. One advantage of
Duetsimple Over LPG was an increase in reliability. Some
of the plans produced by LPG included repetition of ac-
tions: picking an object up and then putting it back in the
same place multiple times. LPG can be configured to do

2See http://www.cs.umd.edu/~waisbrot/Duet

500 I I
450 Ipg-solo —+— .
400 - duet-simple ---x--
350 |-duet-specialist ---*---
300 shop2-solo &
250
200
150
100

time (s)

B
4 5 6 7 8 9
number of objects

of problems left unsolved

50 T T T T
Ipg-solo —+—
40 ~ duet-simple ---x-- N
duet-specialist ---*---)
30 shop2-solo & /-
"
20 - A
10 - .
0 =®

4 9

number of objects

Figure 3: In the first graph, each data point is the average running time on 50 randomly generated problems. The second graph
shows how many times the planners failed to return plans within our 500-second deadline; each such failure was scored at 500

seconds in the first graph.

more planning iterations and produce an improved plan, but
Duetsimple Was able to produce a more directed plan in a
single pass, saving time.

Duetspecialist dramatically outperformed both Duetsimple
and LPG because it used domain-specific HTNs to solve the
parts of the problem that involve object-stacking. While the
object-stacking HTNs required human authoring, we did not
give Duetspecialist any HTNs for navigating between muse-
ums, choosing when objects should be picked up, or choos-
ing where to place objects. Duetspecialist Solved all of the
problems, and in most cases solved them faster than LPG.

To run SHOP?2 by itself, we needed to give it HTN meth-
ods both for stacking art objects and navigating the truck.
It suffered from two major failings, due to the inexperience
of the domain writer. First, the HTN methods focused on
moving one art object at a time, rather than loading multiple
objects onto the truck before attempting delivery. Second,
the HTN methods were deeply recursive, so large problems
caused the stack to overflow. Although the SHOP2 meth-
ods could be improved with additional time and experience,
Duet produces good results with less effort on the part of the
domain writer.

One exception to Duet’s performance was that LPG out-
performed it in the easiest problems. This is because of
Duet’s loose coupling between SHOP2 and LPG, which
made Duet easy to implement but made the communication
from SHOP2 to LPG very expensive. Duet and SHOP2 are
both written in LISP, so calls to SHOP2 to decompose a task
were inexpensive, but calls to LPG, which is written in C,
required spawning and later destroying a separate shell and
process. Because of this expense, the easiest problems were
completely solved by LPG before Duet was able to complete
the necessary calls between planners. If both planners were
packaged as libraries, this inter-planner communication cost
would be significantly decreased.

Conclusions

We have described Duet, a new planner that incorporates
adaptations of two well-known planners, LPG (Gerevini,

Saetti, and Serina 2003) and SHOP2 (Nau et al. 2003).
Duet combines LPG’s domain-independent local search
techniques with hierarchical domain knowledge in the form
of SHOP2’s Hierarchical Task Networks (HTNs). Duet
starts with a planning problem consisting of an initial state,
a goal condition, and a possibly empty set of tasks. Dur-
ing planning, Duet uses SHOP2 to decompose tasks into
smaller subtasks, and LPG to satisfy goal conditions.

Our experiments with Duet in the Museums domain
showed that even when Duet had only a small amount of
domain-specific knowledge (e.g., “choose the least-fragile
object and move it to the target museum first”), it still solved
planning problems faster, on average, than LPG. With more
problem-solving knowledge (e.g., how to properly manip-
ulate stacks of art objects), Duet outperformed both LPG
and SHOP?2, in terms of both speed and the number of suc-
cessfully solved problems. To get SHOP2 to perform better,
significantly more human effort would have been needed to
improve its knowledge base.

We are currently starting a further experimental evalua-
tion of Duet. So far, we have run experiments using the
Storage domain from the 2006 International Planning Com-
petition and obtained similar results to those shown here.

Although the Duet planning procedure we described in
this paper is based on SHOP2 and LPG, the ideas we
described here could be easily generalized to combine
any planner that uses domain-specific knowledge with any
domain-independent classical planner. Thus, a possible fu-
ture direction is to extend Duet to work with planners such
as FF (Hoffmann and Nebel 2001), FastDownward (Helmert
2006), and SGPlan (Chen, Hsu, and Wah 2006).

Another direction is a tighter integration of SHOP2 and
LPG, which would probably yield more efficient planning in
Duet. Not only would this reduce the communication over-
head between the planners, it would allow Duet to provide a
richer form of “knowledge transfer;” the decisions that one
of the planners make during its planning time will be more
closely dependent on the domain knowledge that the other
one could provide.

Acknowledgments. This work was supported in part by
DARPA’s Transfer Learning and Integrated Learning pro-
grams and NSF grant 1IS0412812. The opinions in this pa-
per are those of the authors and do not necessarily reflect the
opinions of the funders.

References

Bacchus, F., and Kabanza, F. 2000. Using temporal logics
to express search control knowledge for planning. Artificial
Intelligence 116(1-2):123-191.

Blum, A. L., and Furst, M. L. 1997. Fast planning
through planning graph analysis. Artificial Intelligence
90(1-2):281-300.

Bonet, B., and Geffner, H. 1999. Planning as heuristic
search: New results. In ECP.

Botea, A.; Enzenberger, M.; Muller, M.; and Schaeffer, J.
2005. Macro-ff: Improving ai planning with automatically
learned macro-operators. JAIR 24:581-621.

Chen, Y.; Hsu, C.; and Wah, B. 2006. Temporal planning
using subgoal partitioning and resolution in SGPlan. JAIR
26:323-369.

Currie, K., and Tate, A. 1991. O-Plan: The open planning
architecture. Artificial Intelligence 52(1):49-86.

Fikes, R. E., and Nilsson, N. 1971. Strips: A new approach
to the application of theorem proving to problem solving.
Artificial Intelligence 5(2):189-208.

Gerevini, A.; Saetti, A.; and Serina, I. 2003. Plan-

ning through Stochastic Local Search and Temporal Action
Graphs. JAIR 20:239-290.

Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann.

Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191-246.

Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. JAIR
14:253-302.

Kambhampati, S.; Liu, D.; and Simpson, R. M. 1998. Hy-
brid planning for partially hierarchical domains. In Proc.
of AAAI-98.

Kambhampati, S. 2007. Model-lite planning for the web
age masses: The challenges of planning with incomplete
and evolving domain theories. In AAAL

Kvarnstrom, J., and Doherty, P. 2001. TALplanner: A
temporal logic based forward chaining planner. Annals of
Mathematics and Articial Intelligence 30:119—-169.

McCluskey, T. L.; Liu, D.; and Simpson, R. M. 2003.
GIPO II: HTN planning in a tool-supported knowledge en-
gineering environment. In Proc. of ICAPS-03.

Nau, D.; Au, T.; Illghami, O.; Kuter, U.; Murdock, W.; Wu,
D.; and Yaman, F. 2003. SHOP2: An HTN planning sys-
tem. JAIR 20:379-404.

Nguyen, N.; Kambhampati, S.; and Nigenda, R. 2002.
Planning graph as the basis for deriving heuristics for plan

synthesis by state space and CSP search. Artificial Intelli-
gence 135(1-2):73 — 124.

S. Yoon and S. Kambhampati. 2007. Towards Model-lite
Planning: A Proposal For Learning & Planning with In-
complete Domain Models. In Proc. ICAPS-07 Workshop
on Al Planning and Learning.

Wilkins, D. E. 1988. Practical Planning: Extending the
Classical Al Planning Paradigm. San Mateo, CA: Morgan
Kaufmann.

Young, R. M.; Pollack, M., E.; and Moore, J. D. 1994.
Decomposition and causality in partial-order planning. In
Proc. of AIPS-94.

