
ITS: An E�cient Limited-Memory Heuristic Tree Search Algorithm�Subrata Ghosh Ambuj Mahanti Dana S. NauDepartment of Computer Science IIM, Calcutta Dept. of Computer Science, andUniversity of Maryland Calcutta 700 027 Institute for Systems ResearchCollege Park,MD 20742 India University of Marylandsubrata@cs.umd.edu iimcal!am@veccal.ernet.in College Park, MD 20742nau@cs.umd.eduAbstractThis paper describes a new admissible tree search al-gorithm called Iterative Threshold Search (ITS). ITScan be viewed as a much-simpli�ed version of MA*[1], and a generalized version of MREC [12]. We alsopresent the following results:1. Every node generated by ITS is also generatedby IDA*, even if ITS is given no more memory thanIDA*. In addition, there are trees on which ITS gener-ates O(N) nodes in comparison to O(N logN) nodesgenerated by IDA*, where N is the number of nodeseligible for generation by A*.2. Experimental tests show that if the node-generationtime is high (as in most practical problems), ITS canprovide signi�cant savings in both number of nodegenerations and running time. Our experimental re-sults also suggest that in the average case both IDA*and ITS are asymptotically optimal on the travelingsalesman problem.IntroductionAlthough A* is usually very e�cient in terms of num-ber of node expansions [2], it requires an exponentialamount of memory, and thus runs out of memory evenon problem instances of moderate size. This problemled to Korf's development of IDA* [6]. IDA*'s memoryrequirement is only linear in the depth of the search,enabling it to solve larger problems than A* can solvein practice. However, when additional memory is avail-able, IDA* does not make use of this memory to re-duce the number of node expansions. This led to thedevelopment of several other limited-memory heuristicsearch algorithms, including MREC and MA*. In thispaper, we present the following results:1. We present a new admissible tree search algorithmcalled Iterative Threshold Search (ITS). Like IDA*,ITS maintains a threshold z, expands each path untilits cost exceeds z, and then revises z. But if givenadditional memory, it keeps track of additional nodes,and backs up path information at parents when nodes�Supported in part by NSF Grants NSFD CDR-88003012, IRI-9306580, and CMDS project (work order no.019/7-148/CMDS-1039/90-91).

get pruned. ITS can be viewed as a much simpli�edversion of MA*, and a generalized version of MREC.ITS's node selection and retraction (pruning) overheadis much less expensive than MA*'s.2. We have proved (for proofs, see [4]) that ITS dom-inates IDA*; i.e., even if ITS is given no more memorythan IDA*, every node generated by ITS is also gener-ated by IDA*. In addition, we present example treesin which ITS expands O(N ) nodes in comparison toO(N logN ) nodes expanded by IDA* where N is thenumber of nodes eligible for expansion by A*.3. We present extensive experimental tests on ITSon three problem domains: the ow-shop schedulingproblem, the 15-puzzle, and the traveling salesmanproblem. Our results show that if the node-generationtime is high (which is the case for most practical prob-lems), ITS can provide signi�cant savings in both num-ber of node generations and running time.4. Our experiments suggest that in the average caseboth IDA* and ITS are asymptotically optimal on thetraveling salesman problem. Although Patrick et al.[8] showed that there exists a class of traveling sales-man problems in which IDA* is not asymptotically op-timal, our results suggest that such problems are notcommon enough to a�ect IDA*'s average performanceover a large number of problem instances.BackgroundThe objective of many heuristic search algorithms is to�nd a minimum cost solution path in a directed graphG. To �nd such a path, these algorithms use a nodeevaluation function f(n) = g(n) + h(n), where g(n) isthe cost of a minimum cost path currently known fromthe start node s to n, and h(n) � 0, the heuristic valueof node n, is an estimate of h�(n). h�(n) is the costof a minimum cost path from n to a goal node. Inthis paper, we assume that the heuristic function h isadmissible, i.e 8n 2 G, h(n) � h�(n). The cost of anedge (m;n) in G is denoted by c(m;n).Algorithm ITSMost heuristic search algorithmsmaintain a search treeT containing data about each node n that has been



installed in the tree. Nodes of G are generated oneat a time and installed into T , until a solution pathis found in T that duplicates the least-cost solutionpath of G. Usually the branches of T are representedonly as links among the data structures representingthe nodes. However, in the search tree T maintainedby ITS, ITS maintains heuristic information not onlyfor each node of the tree, but also for each branch ofthe tree. Thus, rather than considering a branch (p; q)merely to be a link between the node p and its child q,we consider it as a separate entity in T .Conceptually, ITS installs (p; q) into T at the sametime that it installs p into T , even though ITS has notyet generated q. It is possible to implement such ascheme without incurring the overhead of generatingall of p's children, by creating one branch (p;R(p))for each operator R applicable to p without actuallyinvoking the operator R. A tip branch of T is a branch(p; q) in T such that q is not in T . A tip node of T is anode p of T such that every branch (p; q) in T is a tipbranch. Such nodes are eligible for retraction by ITS.Retracting p consists of removing from T the node pand every branch (p; q).For each branch (p; q) in T a variable B is main-tained, which stores an estimate of the cost of the min-imum cost solution path containing the branch (p; q).B(p; q) is initialized to f(p) = g(p) + h(p), when thenode p is installed in T . However, unlike f-value ofa node, B(p; q) is updated every time the node q isretracted.S is the amount of storage (number of nodes) avail-able to ITS.Procedure ITS:1. Call Install(s; 0).2. Do the following steps repeatedly:(a) Set z := minfB(p; q) : (p; q) is a tip branchg.(b) Do the following steps repeatedly, until B(p; q) >z for every tip branch (p; q):i. Select the leftmost tip branch (m;n) such thatB(m;n) � z.ii. If m is a goal node then EXIT, returning g(m).iii. If n = dummy, then set B(m;n) := 1. Other-wise, do the following:A. If T contains � S nodes and has at least twotip nodes, then retract a node, as follows. Ifthere is a tip node x such that B(x; y) > z forevery branch (x; y), then let q be the leftmostsuch node. Otherwise, let q be the rightmost tipnode of T . Set B(p; q) := minr B(q; r), where pis q's parent in T . Remove q and every branch(q; r) from T .B. Call Install(n; g(m) + c(m;n)).Procedure Install(n; g):1. Put n into T .

2. If no operators are applicable to n, then puta dummy branch (n;dummy) in T . Else foreach operator R applicable to n, put a branch(n;R(n)) in T .3. Set g(n) := g.4. For each branch (n; r), set B(n; r) := g(n) +h(n).Basic Properties of ITSFor i = 1; 2; : : :, the i'th instant in the operation of ITSis the i'th time that Step 2(b)i is executed, i.e., the i'thtime that ITS selects a tip branch for expansion. ITS'sj'th iteration is the j'th iteration of the outer loop inStep 2. ITS's j'th threshold value is the value of zduring this iteration.In Theorem 1 below, we prove that no node is gen-erated more than once by ITS during iteration j, andfrom this it follows that the number of instants in it-eration j equals the number of nodes generated in it-eration j. At each instant i, ITS either exits at Step2(b)ii or generates a node ni at Step 2(b)iiiB. In thelatter case, either ni is a new node (i.e., a node thathas never before been generated), or else it is a nodethat was previously generated and retracted.Theorem 1 ITS satis�es the following properties:1. A tip branch (m;n) of T will be selected during aniteration i� B(m;n) � z during that iteration.2. The value of ITS's threshold z increases monotoni-cally after each iteration.3. For each instant i, for each branch (m;n) of T ,g(m) + h(m) � B(m;n) � cost(P ), where P is theleast costly solution path containing (m;n).4. Let i be any instant in iteration j, and suppose thatat instant i, ITS selects some branch (m;n) and gen-erates n. Let (n; p) be the leftmost branch from n.Then unless B(n; p) > z, (n; p) will be selected atinstant i+ 1.5. No node is generated more than once during eachiteration.Theorem 2 ITS terminates and returns an optimalsolution.Comparison of ITS with IDA*Theoretical ResultsIn this section we show the following:1. ITS never generates a node more times than IDA*.As a consequence, ITS generates every node gener-ated by IDA*, and that for every node n, ITS gen-erates n no more times than IDA* does.2. There are classes of trees on which ITS will havebetter asymptotic time complexity than IDA*, evenwhen given no more memory than IDA* (i.e., S = 0).The main reason for this is that when ITS retractsnodes, it backs up path information, which allows itto avoid re-generating many subtrees.



goal1 111 1 11 1 11nk+1nk+2n2k�1n2kG1nk�11 111 1 11 1 11s = n0n1n2nk 11 1 11s = n0n1n2nk1(a) (b)G2 GFigure 1: A tree G on which IDA* is O(N logN ) andITS is O(N )Theorem 3 IDA* and ITS do the same number ofiterations, and for every j,fnodes generated in IDA*'s j'th iterationg =fnodes generated in ITS's iterations 1; 2; : : : ; jg:Theorem 4 Let G be any state space, and n be anynode of G. If IDA* and ITS expand nodes from Gin left-to-right order following the same sequence ofoperators, then1. ITS and IDA* generate exactly the same set ofnodes;2. For every node n, ITS generates n no more timesthan IDA* does.The above theorem shows that ITS's time com-plexity is never any worse than IDA*'s. Below, weshow that there are classes of trees on which ITSdoes only O(N ) node expansions compared to IDA*'sO(N logN ) node expansions on the same trees. Thesame result also holds for node generations. In thetree in Example 1, it is simpler to count the number ofnode expansions, and therefore we present the resultin terms of node expansions.Example 1. In the search tree G shown in Figure1(a), each non-leaf node has a node-branching factorb = 2, and each arc has unit cost. G consists of twosubtrees G1 and G2 where each one is a full binary treeof height k. G2 is rooted at the right most node of G1.Every leaf node, except the one labeled as goal, is anon-terminal. For each node n in G, h(n) = 0.Clearly G1 and G2 each contain N 0 = dN=2e nodes,where N is the number of nodes eligible for expan-sion by A*. The cost of the solution path is 2k =2[log2(N 0 + 1) � 1]. Let N0 = bk + 2bk�1 + 3bk�2 +: : :+ kb: Then the total number of node expansions byIDA* in the worst-case isN0+kN 0+N0 � kN 0+N 0 = k(N 0+1) = O(N logN ):Now we count the total number of node expansionsby ITS on G. As in the case of IDA* no node of G2 will

be expanded prior to the expansion of all the nodes ofG1 at least once. Using the theorem 4, we can inferthat the total number of node expansions by ITS onG1 is O(N ). Once ITS begins expanding nodes of G2,the portion of G1 that will be retained in memory isshown in Figure 1(b). The branches ofG1 which do notlead a goal node (all left branches) will have B valueof 1. Therefore no node of G1 will be reexpandedwhile expanding nodes of G2. Since G1 and G2 aresymmetric, by the same argument as in case of G1,ITS will not make more than O(N ) node expansionson G2. Thus the worst-case time complexity of ITS ontrees like G will always be O(N ).Experimental ResultsIn the example above, we have shown that there areclasses of trees on which ITS's asymptotic complex-ity is better than IDA*'s. In this section we reportresults of our experiments on three problem domainsnamely ow-shop scheduling, traveling salesman and15-puzzle. These problems were selected mainly to en-compass a wide range of node generation times. Whilethe node generation time for the 15-puzzle is verysmall, it is signi�cant for the traveling salesman prob-lem. The node generation time for ow-shop schedul-ing problem is also small but higher than that of 15-puzzle. All the programs were written in C and runon a SUN sparcstation. We describe the problems andour results in the following sections.One purpose of our experiments was to compare ITSwith IDA*, and another purpose was to see how giv-ing ITS additional memory would improve its perfor-mance in terms of both node generation and runningtime. For the latter purpose, we ran ITS with varyingamounts of memory. The de�nition of ITS includes aparameter S which gives the total amount of memoryavailable to ITS for storing nodes. If S = 0, then ITSretracts all nodes except those on the current path.For each problem instance p, let ITS(v) be ITS withS = vM , where M is the number of distinct nodesgenerated by ITS on p. Thus, v = S=M is what frac-tion ITS gets of the amount of memory it would needin order to avoid doing any retractions.1 For example,ITS(1) is ITS with enough memory that it doesn't needto retract any nodes, and ITS(1/4) is ITS running with1/4 of the amount of memory as ITS(1).Flow-Shop Scheduling Problem The ow-shopscheduling problem is to schedule a given set of jobs ona set of machines such that the time to �nish all of thejobs is minimized. In our experiments, we selected the1If we had expressed S as an absolute number ratherthan a fraction of M , this would not have given useful re-sults, because the number of distinct nodes generated byITS on each problem instance varies widely. For example,with 100,000 nodes, on some problem instances ITS wouldhave exhausted the available memory very quickly, and onothers, it would not even have used the whole memory.



Table 1: IDA* and ITS0(0) on the 10-job3-machine ow-shop scheduling problem.algorithm node generations time (sec)IDA* 211308.76 3.93ITS0(0) 210842.96 4.43Table 2: ITS(v) on the 10-job 3-machineow-shop scheduling problem.v node generations time (sec)0 210842.96 23.221/4 123764.71 13.641/2 61690.79 6.923/4 28174.31 3.321 17663.28 1.80number of machines to be 3. We used a search-spacerepresentation and admissible node evaluation functionof Ignall and Schrage [5].For ITS(0), there is a special case to consider. Inthe ow-shop scheduling problem, it is very easy togenerate the successor n0 of a node n. Thus, sinceIDA* and ITS(0) will need to keep track of only onesuccessor of n at a time, both IDA* and ITS(0) cangenerate n0 by modifying the record for n (and undoingthis modi�cation later when retracting n0), rather thangenerating an entirely new record For the ow-shopscheduling problem, we used this technique to improvethe e�ciency of both IDA* and ITS(0). To distinguishbetween the normal version of ITS(0) and the improvedversion, we call the latter ITS0(0).We ran IDA* and ITS0(0) on 100 problem instanceswith 10 jobs in the jobset. The processing times of thejobs on the three machines were generated randomlyfrom the range [0,100] using a uniform distribution.Table 1 presents the average node generation and run-ning time �gures for IDA* and ITS0(0) on these prob-lem instances. As can be seen, ITS0(0) generated fewernodes than IDA*. However, ITS0(0) took slightly moretime than IDA*. This is primarily because the nodegeneration time for this problem is small, and thereforethe smaller number of nodes generated by ITS0(0) didnot compensate for its slightly higher overhead thanIDA* in node selection and retraction.We also ran ITS(v) on the same problem instances,with various values of v. The average node genera-tion and running-time �gures for ITS(v) are given inTable 2. The table shows that as the amount of avail-able memory increases, ITS improves its performancein terms of both node generations and running time.Traveling Salesman Problem The traveling sales-man problem is as follows: given a set of K cities withnonnegative cost between each pair of cities, �nd thecheapest tour. A tour is a path that starting at someinitial city visits every city once and only once, andreturns to the initial city. We chose the well knownmethod of Little et al. [7] to represent the search spaceand the lower bound heuristic for the traveling sales-man problem.

The technique that we used to improve the e�ciencyof IDA* and ITS(0) in the ow-shop scheduling prob-lem cannot be used in the traveling salesman problem,because in this problem it is much more di�cult togenerate the successors of a node.We ran our experiments with the number of citiesK equal to 5, 10, 15, 20, 25, 30, 35 and 40. For eachvalue of K, one hundred cost matrices were generated,taking the cost values c(i; j) at random from the inter-val [0,100] using a uniform distribution (except wheni = j, in which case c(i; j) =1). Thus, in general thecost matrices were not symmetric and did not satisfythe triangle inequality.The results of our experiments are summarized inFigures 2 through 5, which graph the performance ofIDA*, ITS(0), ITS(1/4), ITS(1/2), and ITS(1). From�gures 2 and 3, it can be seen that on this problem,ITS(0) makes fewer node generations and runs slightlyfaster than IDA*. This is because the node generationtime is large enough that the extra overhead of ITSover IDA* becomes relatively insigni�cant, and there-fore the reduction in number of node generations doesreduce the running time. Furthermore, the additionalmemory used by ITS signi�cantly reduces the numberof node generations as well as the running time.In order to study how IDA*'s average-case asymp-totic behavior compares to ITS's, in �gures 4 and 5we have plotted ratios of node generations and run-ning time of IDA* and ITS. The interesting point tobe noted about these graphs is that in each case, theratio �rst goes up and then goes down. If ITS's asymp-totic performance were strictly better than IDA*'s, wewould have expected the ratios to keep going up. SinceTheorem 4 shows that ITS's asymptotic performanceis at least as good as IDA*'s, that both algorithmshave the same asymptotic performance on this prob-lem. Since this behavior also occurs for ITS(1), whichis essentially a version of A*, this suggests that bothITS and IDA* are asymptotically optimal on the trav-eling salesman problem (at least in the case when thecosts between cities are generated uniformly from a�xed range).15-Puzzle The 15-puzzle problem consists of a 4 � 4frame containing �fteen numbered tiles and an emptyposition usually known as the \blank". The validmoves slide any tile adjacent to the blank horizontallyor vertically to the adjacent blank position. The task isto �nd a sequence of valid moves which transform somerandom initial con�guration to a desired goal con�gu-ration. The manhattan distance function was used asthe heuristic in our experiments.In the 15-puzzle, we made the same e�ciency-improving modi�cation to IDA* that we made in theow-shop scheduling problem. We considered makingthe same modi�cation to ITS(0), but decided not torun ITS(0) at all on this problem, for the followingreason. In the 15-puzzle, with the manhattan distanceheuristic, the threshold in every iteration of IDA* and



5 10 15 20 25 30 35 40
0

2

4

6

8

10

12
x 10

4

-- = IDA*

 o = ITS(0)

 + = ITS(1/4)

 x = ITS(1/2)

 * = ITS(1)

Number of cities.

Nu
m

be
r o

f n
od

e 
ge

ne
ra

tio
ns

. Figure 2: Nodes versus no. of cities.
5 10 15 20 25 30 35 40

0

50

100

150

200

250

300

-- = IDA*

 o = ITS(0)

 + = ITS(1/4)

 x = ITS(1/2)

 * = ITS(1)

Number of cities.

Ru
nn

in
g 

tim
e 

(s
ec

on
ds

). Figure 3: Time versus no. of cities.
5 10 15 20 25 30 35 40

0

5

10

15

20

25

 o = ratio IDA*/ITS(0)

 + = ratio IDA*/ITS(1/4)

 x = ratio IDA*/ITS(1/2)

 * = ratio IDA*/ITS(1)

Number of cities.

Ra
tio

 o
f n

um
be

r o
f n

od
e 

ge
ne

ra
tio

ns
.

Figure 4: IDA* to ITS nodes, versus no. of cities.
5 10 15 20 25 30 35 40

0

2

4

6

8

10

12

14

16

18

20

 o = ratio IDA*/ITS(0)

 + = ratio IDA*/ITS(1/4)

 x = ratio IDA*/ITS(1/2)

 * = ratio IDA*/ITS(1)

Number of cities.

Ra
tio

 o
f r

un
ni

ng
 ti

m
es

. Figure 5: IDA* to ITS time, versus no. of cities.

0 2 4 6 8 10 12 14 16 18 20
0.75

0.8

0.85

0.9

0.95

1

Problem (sorted by number of node generations)

Ra
tio

 o
f n

od
e 

ge
ne

ra
tio

ns
, I

TS
/ID

A*

 o = ITS(S=100,000) / IDA*

 + = ITS(S=300,000) / IDA*

 * = ITS(S=600,000) / IDA*Figure 6: ITS to IDA* nodes on 20 problem instances.
0 2 4 6 8 10 12 14 16 18 20

7

8

9

10

11

12

13

Problem (sorted by number of node generations)

Ra
tio

 o
f r

un
nin

g 
tim

es
, I

TS
/ID

A*

 o = ITS(S=100,000) / IDA*

 + = ITS(S=300,000) / IDA*

 * = ITS(S=600,000) / IDA*Figure 7: ITS to IDA* time on 20 problem instances.ITS increases by exactly two. Also, if z is the thresh-old during the current iteration, every tip branch (p; q)whose B value exceeds z has B(p; q) = z + 2. Thismakes it useless to back-up B values during retraction,because every node that is retracted in iteration i mustbe regenerated in iteration i+1. Thus, in order to im-prove the e�ciency of ITS(0) on this this problem, weshould not only simplify the node-generation schemeas described in the ow-shop scheduling problem, butshould also remove the back-up step. But that makesITS(0) essentially identical to IDA*.The same reasoning suggests that on the 15-puzzle,even if S 6= 0, ITS will not reduce the number of nodegenerations very much in comparison with IDA*. IfIDA* makes I iterations on a problem, then ITS withS amount of memory will save at most S �I number ofnode generations. Since I is usually small for 15-puzzle(between 5 and 10), the actual savings is expected to berelatively small. Thus, since ITS has higher overheadthan IDA*, we would expect ITS to take more timethan IDA* on this problem.To con�rm these hypotheses, we ran ITS and IDA*with S = 100; 000, 300,000, and 600,000 on the twentyproblem instances on which Chakrabarti et al. ranMA*(0). We could not run ITS(v) on these problem in-stances because the number of distinct nodes is so largeon some of the problem instances that they exceed theavailable memory. Therefore, we had to run ITS with�xed values for S. The results are summarized in Fig-ures 6 and 7. As expected, ITS did not achieve a sig-



ni�cant reduction in the number of node generations,and took signi�cantly more time than IDA*.2 Thus,for the 15-puzzle, IDA* is the preferable algorithm.Related WorkFollowing IDA*, several other limited-memory algo-rithms have been designed to reduce the number ofnode generations compared to IDA*. These algo-rithms can be categorized into two classes: (1) the �rstclass uses additional memory to store more nodes thanIDA*, and thereby reduce regeneration of some nodes.The algorithms which belong to this class are MREC,MA*, RA* [3], SMA* [10], and ITS, and (2) the secondclass of algorithms attempts to reduce node regenera-tions by reducing the number of iterations, by increas-ing the threshold more liberally than IDA*. IDA* CR[11], DFS* [9], and MIDA* [13] belong to this class.Like IDA*, MREC is a recursive search algorithm.The di�erence between MREC and other algorithms inits class is that MREC allocates its memory statically,in the order in which nodes are generated. AlgorithmMA* makes use of the available memory in a more in-telligent fashion, by storing the best nodes generatedso far. MA* does top-down and bottom-up propaga-tion of heuristics and generates one successor at a time.RA* and SMA* are simpli�ed versions of MA*, withsome di�erences.Although algorithms MA*, RA*, and SMA* arelimited-memory algorithms, their formulation is moresimilar to A*'s than IDA*'s. They all maintain OPENand CLOSED, select the best/worst node from OPENfor expansion and pruning. Therefore, their node gen-eration/pruning overhead is much higher than IDA*'s.As a result, even if they generate fewer nodes thanIDA*, they do not always run faster than IDA*. ITS'sformulation is similar to IDA*'s and therefore has alow node-generation overhead than any of them.Algorithms IDA* CR, MIDA*, and DFS* work sim-ilar to IDA* except that they set successive thresh-olds to values larger than the minimum value that ex-ceeded the previous threshold. This reduces the num-ber of iterations and therefore the total number of nodegenerations. However, unlike IDA*, the �rst solutionfound by these algorithms is not necessarily optimaland therefore to guarantee optimal solution, these al-gorithms revert to depth-�rst branch-and-bound in thelast iteration.Finally, it should be noted that the techniques usedin the two classes of algorithms can be combined.ConclusionWe have presented a new algorithm called ITS for treesearch in limited memory. Like IDA*, ITS has low2Oddly, Figure 7 shows a relative improvement for ITSat the two largest problem sizes. However, we suspect thatthese data are spurious, because on these two problem in-stances, we exceeded the maximum integer size of some ofour counters and also encountered thrashing.

node-generation overhead|and like MA*, it makes dy-namic use of memory. Our theoretical analysis showsthat, ITS never does more node generations than IDA*and there are trees where it generates fewer nodes thanIDA*. Our experimental results indicate that with ad-ditional memory, ITS can signi�cantly reduce the num-ber of node generations and run faster on problems forwhich the node-generation time is su�ciently high.References[1] P. P. Chakrabarti, S. Ghosh, A. Acharya, andS. C. De Sarkar. Heuristic search in restrictedmemory. Artif. Intel., 47:197{221, 1989.[2] R. Dechter and J. Pearl. Generalized best-�rstsearch strategies and the optimality of A*. JACM,32(3):505{536, 1985.[3] M. Evett, J. Hendler, A. Mahanti, and D. Nau.PRA*: A memory-limited heuristic search pro-cedure for the connection machine. In Fron-tiers'90: Frontiers of Massively Parallel Compu-tation, 1990.[4] S. Ghosh. Heuristic Search with Limited Re-sources. PhD thesis, Department of ComputerScience, U. of Maryland, 1994 (forthcoming).[5] E. Ignall and L. Schrage. Applications ofthe branch and bound technique to some ow-shop scheduling problems. Operations Research,13(3):400{412, 1965.[6] R. E. Korf. Depth �rst iterative deepening:An optimal admissible tree search. Artif. Intel.,27:97{109, 1985.[7] J. D. Little, K. G. Murty, D. W. Sweeney, andC. Karel. An algorithm for the traveling salesmanproblem. Operations Research, 11:972{989, 1963.[8] B. G. Patrick, M. Almulla, and M. M. Newborn.An upper bound on the complexity of iterative-deepening-A*. In Symp. on Artif. Intel. andMath., Fort Lauderdale, FL, 1989.[9] V. N. Rao and V. Kumar R. E. Korf. Depth-�rstvs. best-�rst search. In AAAI-1991, pages 434{440, Anaheim, California, 1991.[10] S. Russell. E�cient memory-bounded searchmethods. In ECAI-1992, Vienna, Austria, 1992.[11] U. K. Sarkar, P. P. Chakrabarti, S. Ghose, andS. C. De Sarkar. Reducing reexpansions in it-erative deepening search by controlling cuto�bounds. Artif. Intel., 50(2):207{221, 1991.[12] A. Sen and A. Bagchi. Fast recursive formulationsfor best-�rst search that allow controlled use ofmemory. In IJCAI-89, pages 274{277, 1989.[13] B. W. Wah. MIDA*, an IDA* search with dy-namic control. Technical Report UILU-ENG-91-2216, U. of Illinois, Champaign-Urbana, IL, 1991.


