ITS: An Efficient Limited-Memory Heuristic Tree Search Algorithm*

Subrata Ghosh
Department of Computer Science
University of Maryland
College Park,MD 20742

subrata@cs.umd.edu

Abstract

This paper describes a new admissible tree search al-
gorithm called Iterative Threshold Search (ITS). ITS
can be viewed as a much-simplified version of MA*
[1], and a generalized version of MREC [12]. We also
present the following results:

1. Every node generated by ITS is also generated
by IDA*, even if ITS is given no more memory than
IDA*. In addition, there are trees on which ITS gener-
ates O(N) nodes in comparison to O(N log N) nodes
generated by IDA*, where N is the number of nodes
eligible for generation by A*.

2. Experimental tests show that if the node-generation
time is high (as in most practical problems), ITS can
provide significant savings in both number of node
generations and running time. Our experimental re-
sults also suggest that in the average case both TDA*
and ITS are asymptotically optimal on the traveling
salesman problem.

Introduction

Although A* is usually very efficient in terms of num-
ber of node expansions [2], it requires an exponential
amount of memory, and thus runs out of memory even
on problem instances of moderate size. This problem
led to Korf’s development of IDA* [6]. IDA*’s memory
requirement is only linear in the depth of the search,
enabling it to solve larger problems than A* can solve
in practice. However, when additional memory is avail-
able, IDA* does not make use of this memory to re-
duce the number of node expansions. This led to the
development of several other limited-memory heuristic
search algorithms, including MREC and MA*. In this
paper, we present the following results:

1. We present a new admissible tree search algorithm
called Tterative Threshold Search (ITS). Like TDA*,
ITS maintains a threshold z, expands each path until
its cost exceeds z, and then revises z. But if given
additional memory, it keeps track of additional nodes,
and backs up path information at parents when nodes

*Supported in part by NSF Grants NSFD CDR-
88003012, IRI-9306580, and CMDS project (work order no.
019/7-148/CMDS-1039/90-91).

Ambuj Mahanti
ITM, Calcutta
Calcutta 700 027
India University of Maryland
iimcallam@veccal.ernet.in

Dana S. Nau
Dept. of Computer Science, and
Institute for Systems Research

College Park, MD 20742

nau@cs.umd.edu

get pruned. ITS can be viewed as a much simplified
version of MA* and a generalized version of MREC.
ITS’s node selection and retraction (pruning) overhead
is much less expensive than MA*’s.

2. We have proved (for proofs, see [4]) that ITS dom-
inates IDA*; i.e., even if I'TS is given no more memory
than IDA*, every node generated by I'TS is also gener-
ated by IDA*. In addition, we present example trees
in which ITS expands O(N) nodes in comparison to
O(N log N) nodes expanded by IDA* where N is the
number of nodes eligible for expansion by A*.

3. We present extensive experimental tests on I'TS
on three problem domains: the flow-shop scheduling
problem; the 15-puzzle, and the traveling salesman
problem. Our results show that if the node-generation
time is high (which is the case for most practical prob-
lems), ITS can provide significant savings in both num-
ber of node generations and running time.

4. Our experiments suggest that in the average case
both IDA* and I'TS are asymptotically optimal on the
traveling salesman problem. Although Patrick et al
[8] showed that there exists a class of traveling sales-
man problems in which IDA* is not asymptotically op-
timal, our results suggest that such problems are not
common enough to affect IDA*’s average performance
over a large number of problem instances.

Background

The objective of many heuristic search algorithms is to
find a minimum cost solution path in a directed graph
G. To find such a path, these algorithms use a node
evaluation function f(n) = g(n) + h(n), where g(n) is
the cost of a minimum cost path currently known from
the start node s to n, and h(n) > 0, the heuristic value
of node n, is an estimate of h*(n). h*(n) is the cost
of a minimum cost path from n to a goal node. In
this paper, we assume that the heuristic function A is
admissible, i.e Vn € G, h(n) < h*(n). The cost of an
edge (m,n) in G is denoted by c(m,n).

Algorithm ITS

Most heuristic search algorithms maintain a search tree
T containing data about each node n that has been

installed in the tree. Nodes of G are generated one
at a time and installed into 7', until a solution path
is found in T that duplicates the least-cost solution
path of G. Usually the branches of T are represented
only as links among the data structures representing
the nodes. However, in the search tree 1" maintained
by ITS, ITS maintains heuristic information not only
for each node of the tree, but also for each branch of
the tree. Thus, rather than considering a branch (p, ¢)
merely to be a link between the node p and its child ¢,
we consider i1t as a separate entity in 7.

Conceptually, ITS installs (p, ¢) into T" at the same
time that it installs p into T, even though ITS has not
vet generated ¢. It i1s possible to implement such a
scheme without incurring the overhead of generating
all of p’s children, by creating one branch (p, R(p))
for each operator R applicable to p without actually
invoking the operator R. A tip branch of T 1s a branch
(p,q) in T such that ¢ is not in T'. A tip node of T is a
node p of T such that every branch (p,q) in 7' is a tip
branch. Such nodes are eligible for retraction by ITS.
Retracting p consists of removing from 7' the node p
and every branch (p, q).

For each branch (p,¢) in T a variable B is main-
tained, which stores an estimate of the cost of the min-
imum cost solution path containing the branch (p,q).
B(p, q) is initialized to f(p) = g(p) + h(p), when the
node p is installed in 7. However, unlike f-value of
a node, B(p,q) is updated every time the node ¢ is
retracted.

S is the amount of storage (number of nodes) avail-

able to ITS.

Procedure ITS:
1. Call Install(s, 0).
2. Do the following steps repeatedly:
(a) Set z :=min{B(p, ¢) : (p,q) is a tip branch}.
(b) Do the following steps repeatedly, until B(p, q) >
z for every tip branch (p, q):
i. Select the leftmost tip branch (m,n) such that
B(m,n) < z.
ii. If m is a goal node then EXIT, returning g(m).
iii. If n = DUMMY, then set B(m,n) := co. Other-
wise, do the following:

A. If T contains > S nodes and has at least two
tip nodes, then retract a node, as follows. If
there is a tip node # such that B(z,y) > z for
every branch (z,y), then let ¢ be the leftmost
such node. Otherwise, let ¢ be the rightmost tip
node of T'. Set B(p, ¢) := min, B(g,r), where p

is ¢’s parent in T'. Remove ¢ and every branch
(¢g,7) from T.

B. Call Install(n, g(m) + ¢(m, n)).
Procedure Install(n, ¢):
1. Put n into T

2. If no operators are applicable to n, then put
a dummy branch (n,DUMMY) in 7. Else for
each operator R applicable to n, put a branch
(n,R(n)) in T.

3. Set g(n) :=g.
4. For each branch (n,r), set B(n,r) := g(n) +

Basic Properties of ITS

Forz=1,2,..., the ¢’th instant in the operation of I'TS
is the ¢’th time that Step 2(b)i is executed, i.e., the ¢’th
time that I'TS selects a tip branch for expansion. ITS’s
j’th iteration is the j’th iteration of the outer loop in
Step 2. ITS’s j'th threshold value is the value of z
during this iteration.

In Theorem 1 below, we prove that no node is gen-
erated more than once by ITS during iteration j, and
from this it follows that the number of instants in it-
eration j equals the number of nodes generated in it-
eration j. At each instant ¢, ITS either exits at Step
2(b)ii or generates a node n; at Step 2(b)iiiB. In the
latter case, either n; is a new node (i.e., a node that
has never before been generated), or else it is a node
that was previously generated and retracted.

Theorem 1 ITS satisfies the following properties:

1. A tip branch (m,n) of T will be selected during an
iteration iff B(m,n) < z during that iteration.

2. The value of I'TS’s threshold z increases monotoni-
cally after each iteration.

3. For each instant ¢, for each branch (m,n) of T,
g(m) + h(m) < B(m,n) < cost(P), where P is the
least costly solution path containing (m, n).

4. Let ¢ be any instant in iteration j, and suppose that
at instant ¢, I'TS selects some branch (m,n) and gen-
erates n. Let (n,p) be the leftmost branch from n.
Then unless B(n,p) > z, (n,p) will be selected at
instant ¢ 4+ 1.

5. No node is generated more than once during each
iteration.

Theorem 2 ITS terminates and returns an optimal
solution.

Comparison of ITS with IDA*
Theoretical Results
In this section we show the following:

1. ITS never generates a node more times than TDA*.
As a consequence, I'TS generates every node gener-
ated by IDA*, and that for every node n, ITS gen-
erates n no more times than IDA* does.

2. There are classes of trees on which ITS will have
better asymptotic time complexity than IDA* even
when given no more memory than IDA* (i.e., S = 0).
The main reason for this is that when I'TS retracts
nodes, it backs up path information, which allows it
to avoid re-generating many subtrees.

s = ng
1
n1
1/\1 1/\1 s = no
ng G 1 1
,'” ' o nl
/y
G Nk

(®)

Figure 1: A tree G on which IDA* is O(N log N) and
ITS is O(N)

Theorem 3 IDA* and ITS do the same number of
iterations, and for every j,

{nodes generated in IDA*’s j’th iteration} =
{nodes generated in ITS’s iterations 1,2,...,j}.

Theorem 4 Let (G be any state space, and n be any
node of G. If IDA* and ITS expand nodes from G
in left-to-right order following the same sequence of
operators, then

1. ITS and IDA* generate exactly the same set of
nodes;

2. For every node n, ITS generates n no more times
than TDA* does.

The above theorem shows that ITS’s time com-
plexity is never any worse than IDA*’s. Below, we
show that there are classes of trees on which ITS
does only O(N) node expansions compared to IDA*’s
O(N log N) node expansions on the same trees. The
same result also holds for node generations. In the
tree in Example 1, it is simpler to count the number of
node expansions, and therefore we present the result
in terms of node expansions.

Example 1. In the search tree G shown in Figure
1(a), each non-leaf node has a node-branching factor
b = 2, and each arc has unit cost. G consists of two
subtrees GG1 and (G where each one is a full binary tree
of height k. G5 is rooted at the right most node of G;.
Every leaf node, except the one labeled as goal, is a
non-terminal. For each node n in G, h(n) = 0.

Clearly G; and G5 each contain N’ = [N/2] nodes,
where N is the number of nodes eligible for expan-
sion by A*. The cost of the solution path is 2k =
2log, (N’ + 1) — 1]. Let Ny = b* + 265~ 4 382 4
...+ kb. Then the total number of node expansions by
IDA* in the worst-case is

No+kN'+ Ny > kN'+N' = k(N'+1) = O(N log N).

Now we count the total number of node expansions
by ITS on GG. As in the case of IDA* no node of G5 will

be expanded prior to the expansion of all the nodes of
GGy at least once. Using the theorem 4, we can infer
that the total number of node expansions by ITS on
(1 is O(N). Once ITS begins expanding nodes of G,
the portion of (G; that will be retained in memory is
shown in Figure 1(b). The branches of (G; which do not
lead a goal node (all left branches) will have B value
of oo. Therefore no node of G; will be reexpanded
while expanding nodes of (G5. Since (7 and G5 are
symmetric, by the same argument as in case of G,
ITS will not make more than O(N) node expansions
on (3. Thus the worst-case time complexity of I'TS on

trees like G will always be O(N).

Experimental Results

In the example above, we have shown that there are
classes of trees on which ITS’s asymptotic complex-
ity is better than IDA*’s. In this section we report
results of our experiments on three problem domains
namely flow-shop scheduling, traveling salesman and
15-puzzle. These problems were selected mainly to en-
compass a wide range of node generation times. While
the node generation time for the 15-puzzle is very
small, it is significant for the traveling salesman prob-
lem. The node generation time for flow-shop schedul-
ing problem is also small but higher than that of 15-
puzzle. All the programs were written in C and run
on a SUN sparcstation. We describe the problems and
our results in the following sections.

One purpose of our experiments was to compare I'TS
with IDA*, and another purpose was to see how giv-
ing I'TS additional memory would improve its perfor-
mance in terms of both node generation and running
time. For the latter purpose, we ran ITS with varying
amounts of memory. The definition of I'TS includes a
parameter S which gives the total amount of memory
available to I'TS for storing nodes. If S = 0, then I'TS
retracts all nodes except those on the current path.
For each problem instance p, let ITS(v) be ITS with
S = vM, where M is the number of distinct nodes
generated by ITS on p. Thus, v = S/M is what frac-
tion ITS gets of the amount of memory it would need
in order to avoid doing any retractions.’ For example,
ITS(1) is ITS with enough memory that it doesn’t need
to retract any nodes, and I'TS(1/4) is ITS running with
1/4 of the amount of memory as ITS(1).

Flow-Shop Scheduling Problem The flow-shop
scheduling problem is to schedule a given set of jobs on
a set of machines such that the time to finish all of the
jobs is minimized. In our experiments, we selected the

'If we had expressed S as an absolute number rather
than a fraction of M, this would not have given useful re-
sults, because the number of distinct nodes generated by
ITS on each problem instance varies widely. For example,
with 100,000 nodes, on some problem instances I'T'S would
have exhausted the available memory very quickly, and on
others, it would not even have used the whole memory.

Table 1: TDA* and ITS(0) on the 10-job

3-machine flow-shop scheduling problem.

algorithm | node generations time (sec)
IDA* 211308.76 3.93
ITS'(0) 210842.96 4.43

Table 2: TTS(v) on the 10-job 3-machine
flow-shop scheduling problem.

v | node generations time (sec)
0 210842.96 23.22
1/4 123764.71 13.64
1/2 61690.79 6.92
3/4 28174.31 3.32
1 17663.28 1.80

number of machines to be 3. We used a search-space
representation and admissible node evaluation function

of Tgnall and Schrage [5].

For TTS(0), there is a special case to consider. In
the flow-shop scheduling problem, it is very easy to
generate the successor n’ of a node nm. Thus, since
IDA* and ITS(0) will need to keep track of only one
successor of n at a time, both IDA* and ITS(0) can
generate n’ by modifying the record for n (and undoing
this modification later when retracting n’), rather than
generating an entirely new record For the flow-shop
scheduling problem, we used this technique to improve
the efficiency of both IDA* and ITS(0). To distinguish
between the normal version of ITS(0) and the improved
version, we call the latter ITS'(0).

We ran IDA* and ITS/(0) on 100 problem instances
with 10 jobs in the jobset. The processing times of the
jobs on the three machines were generated randomly
from the range [0,100] using a uniform distribution.
Table 1 presents the average node generation and run-
ning time figures for IDA* and I'TS/(0) on these prob-
lem instances. As can be seen, I'TS'(0) generated fewer
nodes than IDA*. However, ITS'(0) took slightly more
time than IDA*. This is primarily because the node
generation time for this problem is small, and therefore
the smaller number of nodes generated by ITS(0) did
not compensate for its slightly higher overhead than
IDA* in node selection and retraction.

We also ran ITS(v) on the same problem instances,
with various values of v. The average node genera-
tion and running-time figures for I'TS(v) are given in
Table 2. The table shows that as the amount of avail-
able memory increases, I'TS improves its performance
in terms of both node generations and running time.

Traveling Salesman Problem The traveling sales-
man problem is as follows: given a set of K cities with
nonnegative cost between each pair of cities, find the
cheapest tour. A tour is a path that starting at some
initial city visits every city once and only once, and
returns to the initial city. We chose the well known
method of Little et al. [7] to represent the search space
and the lower bound heuristic for the traveling sales-
man problem.

The technique that we used to improve the efficiency
of IDA* and ITS(0) in the flow-shop scheduling prob-
lem cannot be used in the traveling salesman problem,
because in this problem it is much more difficult to
generate the successors of a node.

We ran our experiments with the number of cities
K equal to 5, 10, 15, 20, 25, 30, 35 and 40. For each
value of K| one hundred cost matrices were generated,
taking the cost values ¢(4, j) at random from the inter-
val [0,100] using a uniform distribution (except when
i = j, in which case ¢(¢, j) = 00). Thus, in general the
cost matrices were not symmetric and did not satisfy
the triangle inequality.

The results of our experiments are summarized in
Figures 2 through 5, which graph the performance of
IDA*, TTS(0), ITS(1/4), TTS(1/2), and TTS(1). From
figures 2 and 3, it can be seen that on this problem,
ITS(0) makes fewer node generations and runs slightly
faster than IDA*. This is because the node generation
time is large enough that the extra overhead of ITS
over IDA* becomes relatively insignificant, and there-
fore the reduction in number of node generations does
reduce the running time. Furthermore, the additional
memory used by I'TS significantly reduces the number
of node generations as well as the running time.

In order to study how IDA*’s average-case asymp-
totic behavior compares to I'TS’s; in figures 4 and 5
we have plotted ratios of node generations and run-
ning time of IDA* and ITS. The interesting point to
be noted about these graphs is that in each case, the
ratio first goes up and then goes down. If ITS’s asymp-
totic performance were strictly better than IDA*’s, we
would have expected the ratios to keep going up. Since
Theorem 4 shows that ITS’s asymptotic performance
is at least as good as IDA*’s, that both algorithms
have the same asymptotic performance on this prob-
lem. Since this behavior also occurs for ITS(1), which
is essentially a version of A*, this suggests that both
ITS and IDA* are asymptotically optimal on the trav-
eling salesman problem (at least in the case when the
costs between cities are generated uniformly from a
fixed range).

15-Puzzle The 15-puzzle problem consists of a4 x 4
frame containing fifteen numbered tiles and an empty
position usually known as the “blank”. The valid
moves slide any tile adjacent to the blank horizontally
or vertically to the adjacent blank position. The task is
to find a sequence of valid moves which transform some
random initial configuration to a desired goal configu-
ration. The manhattan distance function was used as
the heuristic in our experiments.

In the 1b-puzzle, we made the same efficiency-
improving modification to IDA* that we made in the
flow-shop scheduling problem. We considered making
the same modification to ITS(0), but decided not to
run ITS(0) at all on this problem, for the following
reason. In the 15-puzzle, with the manhattan distance
heuristic, the threshold in every iteration of IDA* and

12

-- = IDA*
10 o0 = ITS(0)
+ = ITS(1/4)
2’
S 8 x = ITS(1/2)
<]
g * = 1TS(1)
S
8 e
8
2
5
B
2
E ar
2
oL
N =
5 10 15

20 25
Number of cities.

Figure 2: Nodes versus no. of cities.

- = IDA*
250} 0 =1TS(0)
+ = 1TS(1/4)
x = ITS(1/2)
*=ITS(1)

N

]

<]
T

N

o

e}
T

Running time (seconds).
@
o
T

50

Figure 3: Time versus no. of cities.
25 T T T T T

o = ratio IDA*/ITS(0)

+ = ratio IDA*/ITS(1/4)
x = ratio IDA*ITS(1/2)

* = ratio IDA*/ITS(1)

10

Ratio of number of node generations.

5 10 15 20 25 30 35 40
Number of cities.

Figure 4: IDA* to ITS nodes, versus no. of cities.

18 o = ratio IDA*/ITS(0)

+ = ratio IDA*/ITS(1/4)
16+

x = ratio IDA*ITS(1/2)

N
IS

[*=ratio IDA*ITS(1)

e
N

®

Ratio of running times.
o
o

5 10 15 20 25 30 35 40
Number of cities.

Figure 5: IDA* to ITS time, versus no. of cities.

0.95-

0.9

0.85F 0 = ITS(S=100,000) / IDA* B

+ = ITS(S=300,000) / IDA*

Ratio of node generations, ITS/IDA*

* = ITS(S=600,000) / IDA*
o.8| B

.
2 4 6 8 10 12 14 16 18 20
Problem (sorted by number of node generations)

Figure 6: ITS to IDA* nodes on 20 problem instances.

13 T

e
N
T

I
|
T

e
o
T

o = ITS(S=100,000) / IDA* *

+ = ITS(S=300,000) / IDA*

©
T

* = ITS(S=600,000) / IDA* *

Ratio of running times, ITS/IDA*

.
o 2 a 6 8 10 12 14 16 18 20
Problem (sorted by number of node generations)

Figure 7: ITS to IDA* time on 20 problem instances.

ITS increases by exactly two. Also, if z is the thresh-
old during the current iteration, every tip branch (p, ¢)
whose B value exceeds z has B(p,¢) = z + 2. This
makes it useless to back-up B values during retraction,
because every node that is retracted in iteration ¢ must
be regenerated in iteration ¢+ 1. Thus, in order to im-
prove the efficiency of ITS(0) on this this problem, we
should not only simplify the node-generation scheme
as described in the flow-shop scheduling problem, but
should also remove the back-up step. But that makes
ITS(0) essentially identical to IDA*.

The same reasoning suggests that on the 15-puzzle,
even if S # 0, I'TS will not reduce the number of node
generations very much in comparison with IDA*. If
IDA* makes I iterations on a problem, then I'TS with
S amount of memory will save at most S I number of
node generations. Since [is usually small for 15-puzzle
(between 5 and 10), the actual savings is expected to be
relatively small. Thus, since ITS has higher overhead
than IDA* we would expect ITS to take more time
than IDA* on this problem.

To confirm these hypotheses, we ran ITS and IDA*
with .S = 100,000, 300,000, and 600,000 on the twenty
problem instances on which Chakrabarti et al. ran
MA*(0). We could not run ITS(v) on these problem in-
stances because the number of distinct nodes is so large
on some of the problem instances that they exceed the
available memory. Therefore, we had to run ITS with
fixed values for S. The results are summarized in Fig-
ures 6 and 7. As expected, I'TS did not achieve a sig-

nificant reduction in the number of node generations,
and took significantly more time than IDA*.2 Thus,
for the 15-puzzle, IDA* is the preferable algorithm.

Related Work

Following ITDA* several other limited-memory algo-
rithms have been designed to reduce the number of
node generations compared to IDA*. These algo-
rithms can be categorized into two classes: (1) the first
class uses additional memory to store more nodes than
IDA*, and thereby reduce regeneration of some nodes.
The algorithms which belong to this class are MREC,
MA*, RA* [3], SMA* [10], and ITS, and (2) the second
class of algorithms attempts to reduce node regenera-
tions by reducing the number of iterations, by increas-
ing the threshold more liberally than IDA*. IDA*_CR
[11], DFS* [9], and MIDA* [13] belong to this class.

Like IDA*, MREC is a recursive search algorithm.
The difference between MREC and other algorithms in
its class is that MREC allocates its memory statically,
in the order in which nodes are generated. Algorithm
MA* makes use of the available memory in a more in-
telligent fashion, by storing the best nodes generated
so far. MA* does top-down and bottom-up propaga-
tion of heuristics and generates one successor at a time.
RA* and SMA* are simplified versions of MA* with
some differences.

Although algorithms MA* RA* and SMA* are
limited-memory algorithms, their formulation is more
similar to A*’s than IDA*’s. They all maintain OPEN
and CLOSED, select the best/worst node from OPEN
for expansion and pruning. Therefore, their node gen-
eration/pruning overhead is much higher than TDA*’s.
As a result, even if they generate fewer nodes than
IDA*, they do not always run faster than IDA*. ITS’s
formulation is similar to IDA*’s and therefore has a
low node-generation overhead than any of them.

Algorithms IDA*_CR, MIDA*, and DFS* work sim-
ilar to IDA* except that they set successive thresh-
olds to values larger than the minimum value that ex-
ceeded the previous threshold. This reduces the num-
ber of iterations and therefore the total number of node
generations. However, unlike IDA*, the first solution
found by these algorithms is not necessarily optimal
and therefore to guarantee optimal solution, these al-
gorithms revert to depth-first branch-and-bound in the
last 1teration.

Finally, it should be noted that the techniques used
in the two classes of algorithms can be combined.

Conclusion

We have presented a new algorithm called ITS for tree
search in limited memory. Like IDA* ITS has low

20ddly, Figure 7 shows a relative improvement for ITS
at the two largest problem sizes. However, we suspect that
these data are spurious, because on these two problem in-
stances, we exceeded the maximum integer size of some of
our counters and also encountered thrashing.

node-generation overhead—and like MA*, it makes dy-
namic use of memory. Our theoretical analysis shows
that, ITS never does more node generations than IDA*
and there are trees where 1t generates fewer nodes than
IDA*. Our experimental results indicate that with ad-
ditional memory, I'TS can significantly reduce the num-
ber of node generations and run faster on problems for
which the node-generation time is sufficiently high.

References
[1] P. P. Chakrabarti, S. Ghosh, A. Acharya, and

S. C. De Sarkar. Heuristic search in restricted

memory. Artif. Intel | 47:197-221, 1989.

[2] R. Dechter and J. Pearl. Generalized best-first
search strategies and the optimality of A*. JACM,
32(3):505-536, 1985.

[3] M. Evett, J. Hendler, A. Mahanti, and D. Nau.
PRA*: A memory-limited heuristic search pro-
cedure for the connection machine. In Fron-
tiers’90: Frontiers of Massively Parallel Compu-
tation, 1990.

[4] S. Ghosh. Heuristic Search with Limited Re-
sources. PhD thesis, Department of Computer
Science, U. of Maryland, 1994 (forthcoming).

[5] E. Ignall and L. Schrage. Applications of
the branch and bound technique to some flow-
shop scheduling problems. Operations Research,

13(3):400-412, 1965.

[6] R. E. Korf. Depth first iterative deepening:
An optimal admissible tree search. Artif. Intel.,

27:97-109, 1985.

[7] J. D. Little, K. G. Murty, D. W. Sweeney, and
C. Karel. An algorithm for the traveling salesman

problem. Operations Research, 11:972-989, 1963.

[8] B. G. Patrick, M. Almulla, and M. M. Newborn.
An upper bound on the complexity of iterative-
deepening-A*. In Symp. on Artif. Intel. and
Math., Fort Lauderdale, FL, 1989.

[9] V. N. Rao and V. Kumar R. E. Korf. Depth-first
vs. best-first search. In AAAI-1991, pages 434—
440, Anaheim, California, 1991.

[10] S. Russell. Efficient memory-bounded search
methods. In FCAI-1992, Vienna, Austria, 1992.

[11] U. K. Sarkar, P. P. Chakrabarti, S. Ghose, and
S. C. De Sarkar. Reducing reexpansions in it-
erative deepening search by controlling cutoff

bounds. Artif. Intel., 50(2):207-221, 1991.

[12] A.Sen and A. Bagchi. Fast recursive formulations
for best-first search that allow controlled use of

memory. In IJCAI-89, pages 274-277, 1989.

[13] B. W. Wah. MIDA* an IDA* search with dy-
namic control. Technical Report UILU-ENG-91-
2216, U. of Illinois, Champaign-Urbana, IL, 1991.

