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1 Introduction 

In designing shop layouts for manufacturing discrete parts, the conventional func- 
tional approach is to group resources in functionally similar areas. Due to changes in 
manufacturing philosophy, this approach is being replaced by the cellular approach, 
in which the production equipment is disaggregated into smaller subsystems called 
manufacturing cells. These cells are functionally autonomous, and contain most of 
the machines required to produce one or more families of parts with similar process- 
ing requirements. This concept of partitioning the manufacturing system into cells, 
and part types into part families based on the similarity of part manufacturing 
characteristics, is the manufacturing view of Group Technology (GT). 

GT has had a profound impact on the realms of design, process planning, 
manufacturability evaluation and production planning. An established benefit from 
cellular manufacturing includes reduction in traffic of parts within the shop, which, 
in turn, reduces material handling efforts and costs [2, 25]. In addition, since the 
machines within a cell are dedicated to a set of parts with similar processing require- 
ments, set-ups can be shared to help reduce overall set-up time, reduce work-in- 
process inventories and queue times, flow-times and market response times. Further- 
more, production planning and scheduling are aided by planning and scheduling for 
aggregates as opposed to individual parts. A survey of the benefits of cellular manu- 
facturing can be found in Wemmed0v and Hyder [43], Ham et al. [14], Kusiak and 
Heragu [25] and Willey and Dale [44]. 

On the other hand, some disadvantages of cellular manufacturing include uneven 
distribution of workloads within cells and the disruptive effects of machine break- 
downs [2], the cost of implementation, rate of change of product mix, inter-cellular 
operations and co-existence with non-cellular set-ups [10]. A simulation study that 
compares the performance of GT and functional job-shops is presented in Flynn and 
Jacobs [9]. 

1.1 Background and motivation 

Extensive research efforts have focused on the problem of aggregating machines 
to manufacturing cells. A review of these can be found in Kusiak and Chow [26], 
and Wemmerl0v and Hyder [42]. The methods described in the literature can be 
broadly classified into four categories: (1) methods based on a part-machine incidence 
matrix that form cells and part families simultaneously [3,5-7, 11,12, 21-24,  31], 
(2) methods based on similarity coefficients and hierarchical clustering [4, 27, 30, 37], 
(3) methods based on material flow [8, 15, 16, 38-41], and (4) methods of the above 
categories that consider multiple criteria of practical significance, e.g., production 
costs, machining times, set-up times, queue times, utilization and capacities of 
machines, inter-cell flow and work-in-process (cost-based [2]; tooling and processing 
times [36]; functionally identical machines and workloads [32]; alternative routings 
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and resource capacities [28, 33]; graph theoretic grouping and layout [20]; function- 
ally identical machines, workloads and set-up families [17]; design constraints [19]). 

We focus our attention on the third category of material flow-based methods. 
Some of the reasons for this are: (i) material flow is perhaps the major consideration 
in the layout of manufacturing cells on the shop-floor, (ii) this method provides the 
basis for more comprehensive methods that include alternative process plans, func- 
tionally similar machines, and machine capacities. For instance, [33] presents a 
decomposition of a comprehensive problem into two problems that are solved itera- 
tively, one of which belongs to category (3), and [28] presents a division of a similar 
problem into two phases, the second phase employs the category (3)-based method. 

A further classification of the category (3) literature is based on the heuristic 
and non-heuristic nature of the solution algorithm. Among the heuristic methods, 
Tabucanon and Ojha [39] have proposed a heuristic, ICRMA, for cell formation in 
order to minimize the inter-cell traffic of parts within the shop. Choobineh [8] has 
suggested a method based on similarity coefficients that considers operation sequences 
as well. Vakharia and Wemmerltiv [40] have suggested a heuristic that uses duplicate 
machines to make the machine cells independent; machine loads are also considered. 
Harhalakis et al. [15] present a two-step node aggregation Inter-Cell Traffic Minimi- 
zation Method (ICTMM) for cell formation. Harhalakis et al. [16] have developed a 
heuristic based on simulated annealing, and compared it to ICTMM. Vohra et al. [41] 
have suggested a network approach to this problem. Okogbaa et al. [34] have proposed 
another heuristic for inter-cell flow reduction, and have performed comparison and 
simulation experiments on it. This heuristic facilitates formation of cells, and balances 
workload on identical machines. For an operation partition problem in assembly systems, 
which has a similar mathematical formulation, Ahmadi and Tang [1] have proposed 
another simulated annealing algorithm that finds near-optimal solutions. The starting 
solution for this algorithm is chosen from two different Lagrangian heuristics which 
also provide lower bounds for this problem. 1) 

In the non-heuristic methods, the work of Song and Hitomi [38] is notable. They 
formulate the problem of cell formation to minimize the total number of parts pro- 
duced in more than one cell as a quadratic assignment problem (QAP). It is solved 
using Lagrangian relaxation techniques and the optimality conditions of quadratic 
programming, and a branch-and-bound algorithm is employed for optimal solutions. 

As even the simplest formulation of the material flow-based cell formation is 
usually a combinatorial problem, nonheuristic methods cannot address problems of 
typical industrial dimensions. Greedy heuristic methods are faster, but they often 
return poor solution quality. The motivation of our work is to attempt to overcome the 

~) Another significant difference between our work and that of Ahmadi and Tang is that they require that 
the number of nonempty components (in our terminology, the number of cells) be given as an input 
parameter, whereas our algorithm will consider all possible numbers of cells, in order to find which 
number is best. 
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deficiencies of both these approaches. Of course, our work can benefit from the most 
recent, near-optimal heuristics (such as simulated annealing and genetic algorithms), 
and further enhance the solution quality or prove optimality. 

1.2 Preliminary discussion o f  the problem 

The problem of partitioning a set of machines having a specified traffic between each 
pair, to obtain manufacturing cells with no more than a desired number of machines 
in any cell, at minimum total inter-cell traffic, is NP-hard. Although this has not been 
proven formally in the literature, it can be done by a straightforward reduction of the 
clustering problem [ 13] to the manufacturing cell optimization problem. 

Since cell formation is part of designing a manufacturing system, and the system 
is expected to stay in place for a fairly long duration of time, longer solution times 
can be permitted in order to obtain better solutions. Even a small improvement in the 
suggested solution can accrue to significant saving in material handling costs over the 
life of the manufacturing system. 

In this paper, we present a branch-and-bound state-space search algorithm that 
attempts to find good solutions in a reasonable amount of time. The algorithm starts 
with a good feasible solution which is considered as the upper bound, and tries to 
improve the solution through state-space search. The search is performed under time 
and memory constraints. In simple cases, i.e., problems of small size, the algorithm 
terminates successfully by finding the optimal solution - and in difficult cases, it can 
at least hope to improve upon the initial feasible solution. To provide the upper bound, 
the algorithm employs the Inter-Cell Traffic Minimization Method, a fast bottom-up 
aggregation heuristic presented in [15, 16]. The lower bound is derived based on a 
relaxation of merging. An efficient branching and search strategy constitutes a major 
strength of this algorithm. 

The paper is organized as follows. The problem formulation is presented in 
section 2. The detailed branch-and-bound algorithm is presented in section 3. Section 
4 is devoted to the numerical results obtained for the performance of the proposed 
algorithm. Finally, the conclusions are presented in section 5. 

2 Problem formulation 

We consider a set M = {M l, M2 ..... Mm} of m machines in a given manufacturing 
system. Each machine is recognized as unique, i.e., each work center is referred to by 
a different identification even if some work centers are functionally similar. We also 
consider a set P = { Pi, P2 .. . . .  Pn } of n part types to be manufactured. Each part type 
has associated with it a production routing which identifies the machines and sequence 
of operations to be used to manufacture it. Let R i = { M  1, M 2 . . . . .  M 7  i } represent the 
routing of part Pi, where s i is the number of operations, and M j ~ M is the machine 
on which the j th  operation is to be done, for j = 1, 2 ..... si. We ignore set-up and 
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processing times, as we assume that the assignment of parts to machines has been 
performed a priori in a manner that respects machine capacity constraints; otherwise, 
the iterative approach suggested in [33] can be adopted. Let ui be the production 
volume required for part type Pi in the chosen horizon, for i = 1, 2 ..... n. This infor- 
mation is the projected production requirement calculated on an average basis; either 
by long-term production forecasts (in the case of new facilities), or by historical 
production information (in the case of existing facilities). We also introduce ci as a 
cost factor for one unit of  part type Pi, i = 1, 2 ..... n. The cost factor can be a combi- 
nation of the following: 

Material handling cost. This depends on the size, shape, weight, or other attributes 
of  a part. It can be based on the need of different types of material handling equip- 
ment, such as forklifts, cranes, and so forth. 

Part cost. The purpose of including this cost is to minimize the total monetary 
value of the work-in-process (WIP). Material movement is generally faster within 
a cell, rather than between different cells. Thus, a costly part critical to WIP, 
should be confined to a single cell. 

For each (Pi, Mj, Mk) ~ T x M x M ,  we define qqk to be the number of times Mj 
follows Mk or Mk follows Mj in the routing g i. Then for each pair (My, Mk) ~ M x M ,  
the traffic between machines Mj and Mk is defined as follows, where tjk = tkj and tjj = O, 
for i , j  ~ { 1, 2 ..... m}: n 

tJ k = 2 CiUiqiJ k" (1) 
i=l 

We let N denote the maximal number of work-centers permissible in a cell (user 
defined). This number is derived from technical constraints and practical considera- 
tions: intra-cell transportation devices such as robots that cannot feed many machines, 
limitations on intra-cell buffers, ease of management and control, and so forth. A 
tight range for this constraint is usually decided upon by the company management, 
and depends on the specific manufacturing facility, the physical dimensions of the 
machines, operational flexibility of the machines, what types of  intra/inter-cell trans- 
portation devices are used, the complexity of the parts to be manufactured, etc. 

A partition of M is any set C =  {C l, C 2 ..... Cw} such that C i f') C j = O  for i , j  
E {1, 2 . . . . .  w} and i C j, and UiW=lCi = M.  We let U be the set of all partitions C of 
M such that no member of C is larger than the maximum cell size N, i.e., 

U = { C = { C I , C 2  . . . . .  Cw}l lCil < N, i  = l ,2  . . . .  ,w}. (2) 

If Ci, Cj are two cells, then from equation (1) it follows that the traffic between Ci and 

Cj is 
Y ( C i , C j  ) = 2 trs" 

MrECi,MsECj 
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Since tjk = tkj, it follows that F (C i ,  Cj) = F(Cj ,  Ci). The total inter-cell traffic for C is 

F ( c )  = Z F ( c i ,  c j ) .  (3) 
i#j 

The manufacturing cell optimization problem is the problem of finding the optimal 
partition in U ,  i.e., the partition C* ~ U such that 

F(C*) =minF(C).  (4) 
C~U 

3 Description of the algorithm 

State space search is commonly used for solving combinatorial optimization problems. 
Some well-known search algorithms are best-first branch-and-bound and depth-first 
branch-and-bound. However, as we explain below, these are not suitable for solving 
the manufacturing cell optimization problem. 

The main drawback of best-first branch-and-bound is the fact that it stores every 
node generated in its memory. As a result, it runs out of memory very fast. Moreover, 
it expands every node with cost less than the cost of  the optimal solution before 
terminating with a solution. Due to these two reasons and the fact that the search space 
generated by our problem is very large [33], best-first branch-and-bound can not solve 
any but very small problem instances. 

Depth-first branch-and-bound does not suffer from any of the drawbacks of best- 
first branch-and-bound presented above. However, since depth-first branch-and-bound 
goes deep along one path, it may get stuck in a bad part of  the search space in the 
available time and therefore return a very poor solution. 

In this section, we describe a state-space search algorithm that is suitable for 
finding an optimal or near-optimal solution to the manufacturing cell optimization 
problem. This algorithm is basically an adaptation of the block-depth-first search 
(BDFS) algorithm of  [29]. We describe how the search space is constructed, present 
a heuristic lower bound function for the states in the search space, and describe the 
algorithm for traversing the state space. 

3.1 The search space 

A state in the search space is a collection of machine cells (each containing a maxi- 
mum of N machines), along with a matrix [F(Ci,  Cj)] whose elements give the traffic 
between the cells. 2) In addition, each cell in the state is labeled open or closed; the 
purpose of this label is discussed below. 

2) For efficient implementation of our algorithm, since the traffic matrix is symmetric (i.e. F(Ci, Cj) 
= F(Cj, Ci) for all i,j), we represent each state by a triangular matrix of inter-cell traffics, a vector of 
the cardinalities of the cells, and some other bookkeeping information. 
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S0 
Co,I = {M1}, open 
Co,2 = { M2 }, open 

Co,m = { Mm }, open 

C2,2 = { M1, M3 }, open 

C2,m-1 = {Mm}, open 

~ Sm 
~}x}, closed 

12 = {M2}, open 

{/~Im }, open 

Cm-1,2 = {M3}, open 

Gr,-1,m-1 = {M1,Mm}, open 

Figure 1. The start state So and its successors. 

The start state S O is the state at which the search algorithm begins its search. As 
shown in figure 1, this state contains m cells C0A = {M1}, Co, 2 = {3'/2} .... ,Co, m = {Mm}, 
each consisting of  a single machine. In the start state, every cell is marked as open, 
to indicate that it will be possible to merge it with other cells in states that are succes- 
sors of  S o. A goal state is a state in which no further merging can take place, i.e., all 
cells are marked closed. 

As shown in figure 1, So has m -  1 successor states that correspond to merging 
cell C0A of S O with cells Co, R, Co, 3 ..... Co, m, respectively. S O has an additional ruth 
successor state that corresponds to the decision not to merge Co,1 with any other cell. 
The cells in this state are identical to the corresponding cells of  So, except that the 
cell Cm, l is marked closed. 

More generally, suppose S is an arbitrary state, and let C1 .... , Cp be the ceils in S. 
Then the successors of  S are as follows: 

• Let Ci = {Mk, .... ,Mk,} be the first cell in S marked open. Let Cj = {Mkl ..... Mk;, } 
be any open cell in S such tha t j  > i and Ci's largest machine index kp is less than 
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Cj's smallest machine index k{. 3) For each such cell Cj, if I f  i U Cjl <-N, then S 
has a successor S" that corresponds to merging Ci and Cj into a single cell Ci U Cj. 

S'  contains one less cell than S, because in S '  the cells Ci and Cj are replaced by 
a merged cell Ci U Cj. If the number of  machines in C i U Cj is N, then Ci U Cj is 
marked closed; otherwise it is marked open. For the new cell Ci U Cj, the traffic 
with other cells in S' is the sum of Ci's traffic and Cj's traffic in S; i.e., 

F ( C  i U Cj, C k) = F(Clc, Ci u Cj ) = F (C  i, c k) + F(Cj ,  cl~). 

For all cells in S '  other than the new cell C i U Cj, the traffic is the same as it was 
in S. Thus, the total inter-cell traffic in S '  is that of S minus g ( C  i, Cj) (the traffic 
between cell C i and cell Cj). 

• In addition to the above successors, S has a successor that corresponds to the 
decision not to merge C i with any other cell. This state is identical to S except that 
C i is marked closed. 

It is easy to see that the search space defined above is a tree with maximum depth 
m. It can also be shown that the search space is complete, i.e. every feasible partition 
is one of the goal states in the search space defined. 

The objective of our algorithm is to find a goal state with minimum inter-cell 
traffic. It is not always feasible to achieve this objective because the problem is NP- 
hard and therefore requires an exponential amount of time in the worst case. A more 
realistic objective is to find a good solution (not necessarily optimal) in the available 
time. Our search algorithm attempts to achieve this objective. 

3.2 Heuristic 

In this section, we present a heuristic lower bound function for the manufacturing cell 
optimization problem. This function is used for two purposes by our algorithm: for 
ordering states (as explained later), and for pruning states from the search space. 

The lower bound function we present is based on the relaxation technique, which 
is a well-known method for designing lower bound functions [35]. The basic idea is, 
given any state, to allow maximum possible merging for each cell and then take the 
remaining inter-cell traffic as the lower bound value. We state this more formally 
below. 

Let S be any arbitrary state, and C 1 ..... Cp be its cells. Then the traffic between 
cell C i and cell Cj is g ( C  i, Cj) = y(Cj ,  Ci), so the total inter-ceU traffic among the 
cells is ~,~-11~, P. i+i g (C i ,  Cj). If we can compute an upper bound R(Ci) o n  the -- ] =  

maximum possible amount of reduction in traffic that can be achieved by merging the 

3) The purpose of these conditions is to ensure that each possible state will appear exactly once in the 
search space. 
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cell Ci with other cells, then the quantity 1 e -~ ~i  =1 R(Ci ) will be an upper bound on the 
maximum possible reduction in traffic that can be achieved by merging cells in the 
state S. (The reason for multiplying the sum by 1/2 is that in summing up these upper 
bounds, the traffic between each pair of cells Ci, Cj is counted twice: once in R(Ci) 
and once in R(Cj).) Therefore, the following is a lower bound on the cost of  any 
solution achievable from S: 

P-l  1 
LB(S) = ~_, ~ ..T(Ci, C j ) -  

i=l j = i + l  i=l  

The significance of LB being a lower bound is that whenever a state S in the search 
space is found with LB(S) greater than or equal to the cost of the currently known 
solution, it can be pruned without the possibility of losing the optimal solution. 

To compute the value R(Ci), we use the procedure shown below. An intuitive 
explanation of this procedure is as follows. Since the cell cardinalities can be at most 
N, Ci can be merged with at most N -  I C/] machines. By considering the cells in de- 
creasing order of the ratio of cell traffic to cell cardinality, the procedure basically 
finds those cells which would reduce traffic the most if they were merged with C/, 
and lets R(C/) be the total amount of traffic reduction which could be obtained in this 
way 4) The reason why R(Ci) is an upper bound (rather than an exact value) is because 
it will not always be possible to merge those machines into a single cell. 

Procedure R(Ci) 

r := O, c := I Cil /* Initialize */ 
loop 

if there is no mergeable cell 5) Cj such that Y(Ci, Cj) > O, then return r 
else let Cj be the one that maximizes Y(Ci, cj)/Icjl 
if c + I Cjl <- N then 

r := r + Y(Ci, Cj) / * accumulated reduction in traffic */ 
c := c + I cjl  / * accumulated number of machines */ 
eliminate cell Cj from future consideration 

else 
r := r + y ( C  i, Cj) * ( N -  c ) / I f j l ;  return r 

repeat 

3.3 Complexity of  heuristic computation 

In the procedure for computing R(Ci), the loop is executed at most N -  I cil  times. 
During one iteration of the loop, choosing Cj takes time O(P), where P is the total 
number of cells. All other steps take time O(1). Therefore, the procedure takes time 

4) The same approach has been used to find optimal solutions to the knapsack problem, and upper bounds 
for the 0/1 knapsack problem [18]. 

5) Two cells Ci and Cj are mergeable if i c j, both Ci and Cj are marked open and ICil ÷ I Cjl -< N. 
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Table 1 

Traffic matrix. 

1 2 3 4 5 6 

1 0 4 6 0 0 8 
2 4 0 4 8 10 0 

3 6 4 0 2 8 0 

4 0 8 2 0 12 6 

5 0 10 8 12 0 14 

6 8 0 0 6 14 0 

O(P(N- I f i l ) ) .  Finally, since the procedure is executed P times, the total time 
required to compute the second component of LB is O(p2(N- I fgl )) = O(p2N). The 
time required to compute the first component is clearly O(p2). Therefore, since P < m 
where m is the total number of machines, the total time required to compute LB(S) is 
O(P 2) + O(p2N) = O(p2N) = O(m2N). 

3.4 An example of heuristic computation 

Consider a state S in which the number of cells is P = 6, and the maximum cell size 
is N = 3. For simplicity, assume all cells in S are marked open. Let the cell cardin- 
alities be 

IQI--1,  Ic21--2, 1C31=2, [ C 4 l = l ,  IC51--1, 1C6 = 2 ,  

and let the traffic matrix [y(C/ ,  Cj)] be as shown in table 1. Then the procedure 
defined above will produce the following values: 

R(C1 ) = 8, R(Cz ) = 8, R(C 3 ) = 8, R(C 4) = 16, R(Cs) = 19, e ( c  6 ) ----- 14. 

T h u s ,  5 6 
1 6 

LB(S) = ~ ~, .T (Ci ,C j ) -  ~ R ( C i )  = 8 2 - 3 6 . 5  = 45.5. 
i=1 j = i + l  i 1"= 

3.5 Search algorithm 

Block-depth-first search (BDFS) is a search algorithm that is based on a novel com- 
bination of staged search and depth-first search. As a result, it has good features of 
both best-first and depth-first branch-and-bound and at the same time avoids the bad 
features of  both. In this paper we describe an adaptation of BDFS for use in solving 
the cell-optimization problem. We use the following notation: 

r : node generation rate (nodes per second) 

MEM : amount of memory available (number of nodes) 

T : amount of time available (in seconds) 
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Branch-and-bound algorithm 

Input: Problem instance (m, N, tij, 1 <_ i < j < m), MEM,  r and T. 

Our algorithm has two main phases: (1) the forward phase, and (2) the backtrack- 
ing phase. In the forward phase, it finds a good solution depending on the available 
time. In the backtracking phase, it finds successive improvements on the solution 
found in the forward phase, until the available time is completely exhausted. 

Forward phase 

In this phase, the algorithm explores the search tree, level by level. All nodes 
generated are stored in a linear list L of size MEM.  The root node is assigned level 0 
and stored. After this the algorithm runs iteratively, working on one level at each 
iteration. At iteration (level) i, it first estimates the number of nodes of level i + 1 to 
be generated (using the available memory MEM,  available time T, node generation 
rate r, and an estimate of the number of levels of  the search tree yet to be generated) 
and then generates at most those many nodes by expanding nodes of level i. The ex- 
pansion of a node means the generation of all of its successors. The nodes of level i 
are expanded in increasing order of their lower bound values. An initial upper bound 
of the solution cost is obtained by running the ICTMM algorithm of [15]. Any 
generated node with a lower bound value greater than the upper bound is discarded 
(pruned). The forward phase continues until a solution is found or the number of 
stored nodes in an iteration becomes zero. The number of nodes stored can become 
zero due to pruning. The details of the forward phase are given below: 

Step 0 

Step 1 

[Initialization] 

create the start_node and store it in L. 
current_level := 0. 
solution_cost := ICTMM().  /* Initial upper bound */ 
rem_levels := m. /* Number of machines */ 
rem_memory : = M E M -  1. 
rem_time := r * T -  1. 

[Branching] 
• [ rem_mem rem_time 

nodes_to_be_generated := nun [ ~ ,  ~ s  1" 
nodes_generated : = 0. 
while nodes generated < nodes_to_be_generated do 
begin 

select the first unexpanded node n. If there is no such node then goto 
step 2. 
If n is a goal node, update solution_cost to total inter-cell traffic in n and 
goto step 4. 
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Step 2 

Step 3 

Step 4 

expand n generating and storing all successors of n in L. 
nodes_generated := nodes_generated + number of successors of n. 
Mark n expanded. 

end 

[Bounding and Ordering] 

Compute the lower bound LB of every newly generated node in step 1. 
Discard a node from L if its LB value is greater or equal to upper_bound. 
If no new node is stored in L then goto step 4. 
Sort the newly stored nodes in L in increasing order of their LB values. 

[Update] 

rem_mem := rem_mem - number of newly stored nodes in step 2. 
rem_time := rem_time - number of newly generated nodes in step 1. 
rem_levels := rem_levels - 1. 
current_level := current_level + 1. 
goto step 1. 

[Termination] 
Start backtracking phase 

Backtracking phase 
After the completion of the forward phase, there may be some time left because 

the estimation of rem_levels and node generation rate may not be exact. That time is 
used in this phase to improve the solution found in the forward phase. This phase 
basically executes depth-first branch-and-bound (DFBB) starting at each unexpanded 
node. DFBB is performed in the reverse order, i.e., from the last level generated down 
to level 1. 

Step 1 

Step 2 

[DFBB] 
for each level from current_level down to 1 do 
begin 

select the first unexpanded node n. 
perform a DFBB search starting at n, cutting off each generated path 
when its cost exceeds solution_cost. If a solution is found, then update 
solutioncost to the total inter-cell traffic of the solution state. 
Mark n expanded. 
rem_time := rem_time - nodes generated by DFBB(n). 
if rem_time < 0 then goto step 2. 

end 

[Termination] 
output the solution found. 
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4 Numerical experiments 

4.1 Problem generation 

In order to perform numerical tests of our approach, problems of  various degrees of  
complexity were constructed. In this section, we detail the generation of  random prob- 
lem data used in these tests. The predominant factors influencing problem complexity 
are (i) the number of machines, (ii) the maximal cell size, and (iii) intensity of  traffic 
between pairs of  machines, which is impacted by the number of  parts and their 
routings. Thus, to incorporate the influence of  these factors in the problem data, we 
used the following generation scheme: 

1. Select the number of machines, m. 

2. Select the number of  parts, n. 

3. Select the number of  expected number of cells (or blocks), b; this is chosen such 
that the average number of machines per cell is between 5 to 10. b also corre- 
sponds to the number of  part families. 

4. Assign machines to cells at random, with at least [m/(2  x b)] machines per cell. 

5. Assign parts to part families at random, with at least [n / (2  x b)] parts per family. 
At this stage, conceptually, a binary ( 0 - 1 )  matrix M is available. The rows 
correspond to parts, and the columns correspond to machines. An element mij of 
M is 1 if the part i and machine j belong to the same block, and 0 otherwise. 
Thus, a block diagonal matrix, D, can be constructed by permuting the rows and 
columns of  M. 6) 

6. Select an inside pollution factor, inpoll. This factor weakens the traffic between 
machines that belong to the same cell. At random, convert inpoll percentage of  
entries in the diagonal blocks of  D from l ' s  to O's. 

7. Select an outside pollution factor, outpoll. This factor introduces traffic between 
machines that do not belong to the same cell. At random, convert outpoll percent- 
age of  the entries outside the diagonal blocks of  D from O's to l 's .  

8. At this point, we have the set of  machines, Si, that each part type Pi needs to visit 
in order to be manufactured. From this set, randomly generate the sequence in 
which each part type Pi must visit its machines. 7) This is the production routing 
Ri, as  defined in section 2. 

9. Set the cost factor ci and production volume ui of each part type Pi t o  unity. 

6) Note that we do not need to physically create either of these matrices. We simply point out that the 
information to construct them is available at this time, in order to make our approach more under- 
standable to readers who are familiar with the incidence-matrix based methods for GT presented in 
section 1. 

7) While generating the sequence, it would be possible to choose a machine for more than one operation, 
indicating non-consecutive operations on the same machine [15,16]. However, we avoid this for the 
sake of simplicity. 
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Table 2 

Parameter values used in the experiments. 

m n b poll 

15 30,45 3 10,20,30 

20 40,60 3,4 10,20,30 

30 60,90 4,5 10,20,30 

50 100,150 6,8 10,20,30 

100 200,300 10,20 10,20,30 

The actual values of the parameters used in our experiments are shown in table 2. In 
our experiments, we used inpoll equal to outpoll, hereby referred to as poll. For each 
set of parameters, five problem instances were generated, resulting in a total of 270 
problem instances. 

4.2 Resul~ 

To study the performance of the search algorithm described earlier, we implemented 
it, and ran it on all 270 of the problem instances described earlier. The value of the 
cell size limit (N) was set to [m/(b-1)J .  The algorithm was run on a Sun 4 
workstation, with MEM = 100,000 nodes, T=  300, 600, 900, 1200 and 7200 seconds, 
and m = 15, 20, 30, 50 and 100 machines, respectively. 

The results of our experiments are listed in tables 3 - 7 .  Each line of each table 
presents the results of running BDFS on five problem instances. The data include 
(i) the number of guaranteed-optimal solutions found, (ii) the average number of 
nodes generated, (iii) the average number of nodes expanded, and (iv) the average 
solution cost found. For comparison, we have also listed the average solution cost 
found by ICTMM. It is noted that the CPU time for ICTMM was always less than 10 
seconds. Items (ii) and (iii) are related to the tightness of the lower bound. Other 
informal computational experiments with some other bounds that were attempted 
and the zero bound indicated the effectiveness of our lower bound heuristic. It is 
recognized that experience is empirical and not based on worst/mean case analyses. 
However, the simplicity in ease of implementation as well as low order of complexity 
make it attractive for the cell formation problem. From our analysis of the data, we 
note the following: 

I. As can be seen from table 3, for small problem instances BDFS returned 
provably optimal solutions. The solution returned by BDFS is provably optimal 
for all problem instances in which the algorithm terminates before its allotted 
search time T. 
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Table 3 

Results for m = 15 and T= 300. 

N 

BDFS ICTMM 

Optimal Nodes Nodes Solution Solution 
poll solutions generated expanded cost cost 

40 7 

60 7 

10 5 20293 6123 47 48 

20 5 38905 11767 61 63 
30 5 80680 28138 78 84 

10 5 8019 2418 68 71 

20 5 63109 23973 99 110 

30 5 85326 30355 123 129 

Table 4 

Results for m = 20 and T= 600. 

BDFS ICTMM 

Optimal Nodes Nodes Solution Solution 
n N poll solutions generated expanded cost cost 

10 5 33706 9311 66 66 
40 10 20 0 179892 64591 118 132 

30 0 184074 68623 130 142 

10 5 28981 8974 103 110 
60 10 20 1 151668 51653 174 191 

30 0 165634 61098 199 228 

10 4 99416 20411 98 100 

40 6 20 0 284353 69877 140 145 
30 0 306171 79899 175 179 

10 1 142442 27667 149 151 

60 6 20 0 267288 69906 217 225 
30 0 322659 87776 273 282 

2. As expected,  for  large problems (M > 30) none of  the solutions found by BDFS 

are guaranteed to be optimal. However ,  BDFS clearly improves  the initial solu- 

tion found by ICTMM.  

3. As the pollution factor  increases, the improvement  o f  BDFS over  I C T M M  also 

increases.  This is because the pollution factor  determines the diff iculty o f  the 



50 S. Ghosh et al. // Manufacturing cell formation by search 

Table 5 

Results for m = 30 and T = 900. 

N poll 

BDFS ICTMM 

Optimal Nodes Nodes Solution Solution 
solutions generated expanded cost cost 

10 0 134669 40263 197 200 

60 10 20 0 142127 42964 321 347 

30 0 151938 45750 391 418 

10 0 107024 32796 302 311 

90 10 20 0 126375 37410 479 513 

30 0 137133 42528 613 648 

I0 0 175254 43135 224 232 

60 7 20 0 234083 58663 343 353 

30 0 295579 83450 433 450 

10 0 170769 41519 345 355 

90 7 20 0 263312 76660 552 568 

30 0 301884 96141 679 702 

Table 6 

Results for m = 50 and T = 1200. 

N poll 

BDFS ICTMM 

Optimal Nodes Nodes Solution Solution 
solutions generated expanded cost cost 

10 0 

100 10 20 0 

30 0 

I0 0 

150 10 20 0 

30 0 

10 0 

100 7 20 0 

30 0 

10 0 

150 7 20 0 

30 0 

78410 19746 613 615 

168820 61126 1036 1054 

166188 60243 1328 1352 

146533 30699 618 623 

191452 49693 1021 1028 

226533 68826 1343 1350 

77048 21191 963 965 

158419 61368 1595 1623 

162045 63030 1999 2036 

105168 19439 946 955 

172360 44636 1542 1571 

173801 45801 2022 2068 
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Table 7 

Results for m = 100 and T= 7200. 

BDFS ICTMM 

Optimal Nodes Nodes Solution Solution 
n N poll solutions generated expanded cost cost 

10 0 146514 26496 2583 2583 

200 11 20 0 248543 71241 4284 4288 

30 0 271394 80699 5679 5704 

10 0 159705 40899 3920 3933 

300 11 20 0 305343 94387 6532 6549 

30 0 345297 117084 8625 8792 

10 0 326279 28524 2257 2257 

200 5 20 0 565396 88638 3993 4005 

30 0 640622 117751 5701 5709 

10 0 397616 45146 3480 3480 

300 5 20 0 609223 105975 6050 6062 

30 0 556177 97010 8614 8638 

problem instance. The problem instances with a low pollution factor are easy in 
general, because there is very little cross traffic between cells. However, as the 
pollution factor increases, the problems become increasingly difficult. Since 
ICTMM is a greedy algorithm, it fails to find good solutions for hard problem 
instances, and therefore the improvement of BDFS over ICTMM increases with 
an increasing pollution factor. For the same reason, for m = 20, BDFS finds 
optimal solutions for 15 out of 20 problem instances with pollution factor 10, as 
shown in table 4. However, if the pollution factor is 30, none of the solutions are 
guaranteed optimal. 

4. Finally, the relative improvement of BDFS over ICTMM (i.e., the percentage by 
which BDFS's solution quality is better than ICTMM's) does not remain the same 
with the problem size m. For example, the percentage improvement in solution 
quality for m = 100 is not as dramatic as for m = 15. This is primarily due to two 
factors: (1) the size of the traffic matrix and (2) the size of the search space. The 
first factor increases quadratically with problem size m, and the second factor 
increases exponentially with m. Therefore, the increase in the allowed search time 
T from 300 seconds to 7200 seconds does not compensate well for the increase 
in these two factors. We could not increase T any further because of time con- 
straints. 
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5 Conclusion 

Manufacturing cell formation for group technology is an important and well studied 
problem. In this paper, we have presented an efficient heuristic search algorithm for 
manufacturing cell optimization based on material flow. To guide this algorithm, we 
have developed a new lower bound function, based on a relaxation of the problem of 
merging machines into cells. 

The heuristic search algorithm also employs the ICTMM heuristic [15] as an 
upper bound function. This improves the efficiency of the algorithm by allowing it to 
do pruning before the first solution is found - but the algorithm could equally be used 
without this upper bound function. On the other hand, more recent, high perform- 
ance, non-deterministic search algorithms can also be employed to possibly improve 
on ICTMM's upper bound. 

We have also presented the results of an extensive empirical study of our algorithm. 
The results indicate that our scheme is able to improve upon the existing ICTMM 
solution, and also finds provably optimal solutions for problems of small sizes such 
as 15 to 20 machines. We envision that this improvement can impact significantly on 
the operations of the cellular manufacturing system over its entire life. 

The primary benefits of our algorithm are that it runs with constrained time and 
storage resources. Given more execution time, it improves the solution quality or 
attempts to prove that its last solution found was indeed optimal. Since the manufac- 
turing cell formation problem is a design level problem, computational efficiency is 
not as critical as the solution quality. Even small improvements at the design stage 
will result in significant savings in material handling costs over the life of the shop 
layout. Thus, the ability to prove optimality or potentially improve over other good 
heuristic solutions is the major contribution of this work. 

Future work can be aimed at integrating this methodology with other realistic 
concerns of manufacturing cell formation, including alternative process plans, func- 
tionally similar machines, and workload distribution under resource capacities. 

We hope that our results will encourage others to consider using heuristic search 
techniques to develop practical solutions to other industrial problems. 
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