
Annals of Operations Research 65(1996)35-54 35

Manufacturing cell formation
by state-space search*

Subra t a G h o s h a, A m b u j Ma ha n t i b, R a k e s h N a g i c and D a n a S. N a u d

aHughes STX Corporation, 7701 Greenbelt Road,
Suite 400, Greenbelt, MD 20770, USA

Email: subrata@xpert.stx.com

blndian Institute of Management, RO. Box 16757, Calcutta 700027, India

CDepartment of lndustrial Engineering, State University of New York at Buffalo,
Buffalo, NY 14260, USA

E-mail: nagi@eng.buffalo.edu

dDepartment of Computer Science, Institute for Systems Research,
and Institute for Advanced Computer Studies, University of Maryland,

College Park, MD 20742, USA

E-mail: nau@cs.umd.edu

This paper addresses the problem of grouping machines in order to design cellular manu-
facturing ceils, with an objective to minimize inter-cell flow. This problem is related to
one of the major aims of group technology (GT): to decompose the manufacturing system
into manufacturing cells that are as independent as possible. This problem is NP-hard.
Thus, nonheuristic methods cannot address problems of typical industrial dimensions
because they would require exorbitant amounts of computing time, while fast heuristic
methods may suffer from poor solution quality. We present a branch-and-bound state-
space search algorithm that attempts to overcome both these deficiencies. One of the major
strengths of this algorithm is its efficient branching and search strategy. In addition, the
algorithm employs the fast Inter-Cell Traffic Minimization Method to provide good upper
bounds, and computes lower bounds based on a relaxation of merging.

Keywords: Group technology, cellular manufacturing, machine grouping, state-space
search, branch-and-bound algorithm.

* This work was supported in part by NSF Grants DDM-9201779, IRI-9306580, and NSFD EEC 94-
02384 in the US, and the CMDS project (work order 019/7-148/CMDS-1039/90-91) in India. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National Science Foundation.

© J.C. Baltzer AG, Science Publishers

36 S. Ghosh et al. // Manufacturing cell formation by search

1 Introduction

In designing shop layouts for manufacturing discrete parts, the conventional func-
tional approach is to group resources in functionally similar areas. Due to changes in
manufacturing philosophy, this approach is being replaced by the cellular approach,
in which the production equipment is disaggregated into smaller subsystems called
manufacturing cells. These cells are functionally autonomous, and contain most of
the machines required to produce one or more families of parts with similar process-
ing requirements. This concept of partitioning the manufacturing system into cells,
and part types into part families based on the similarity of part manufacturing
characteristics, is the manufacturing view of Group Technology (GT).

GT has had a profound impact on the realms of design, process planning,
manufacturability evaluation and production planning. An established benefit from
cellular manufacturing includes reduction in traffic of parts within the shop, which,
in turn, reduces material handling efforts and costs [2, 25]. In addition, since the
machines within a cell are dedicated to a set of parts with similar processing require-
ments, set-ups can be shared to help reduce overall set-up time, reduce work-in-
process inventories and queue times, flow-times and market response times. Further-
more, production planning and scheduling are aided by planning and scheduling for
aggregates as opposed to individual parts. A survey of the benefits of cellular manu-
facturing can be found in Wemmed0v and Hyder [43], Ham et al. [14], Kusiak and
Heragu [25] and Willey and Dale [44].

On the other hand, some disadvantages of cellular manufacturing include uneven
distribution of workloads within cells and the disruptive effects of machine break-
downs [2], the cost of implementation, rate of change of product mix, inter-cellular
operations and co-existence with non-cellular set-ups [10]. A simulation study that
compares the performance of GT and functional job-shops is presented in Flynn and
Jacobs [9].

1.1 Background and motivation

Extensive research efforts have focused on the problem of aggregating machines
to manufacturing cells. A review of these can be found in Kusiak and Chow [26],
and Wemmerl0v and Hyder [42]. The methods described in the literature can be
broadly classified into four categories: (1) methods based on a part-machine incidence
matrix that form cells and part families simultaneously [3,5-7, 11,12, 21-24, 31],
(2) methods based on similarity coefficients and hierarchical clustering [4, 27, 30, 37],
(3) methods based on material flow [8, 15, 16, 38-41], and (4) methods of the above
categories that consider multiple criteria of practical significance, e.g., production
costs, machining times, set-up times, queue times, utilization and capacities of
machines, inter-cell flow and work-in-process (cost-based [2]; tooling and processing
times [36]; functionally identical machines and workloads [32]; alternative routings

S. Ghosh et al. // Manufacturing cell formation by search 37

and resource capacities [28, 33]; graph theoretic grouping and layout [20]; function-
ally identical machines, workloads and set-up families [17]; design constraints [19]).

We focus our attention on the third category of material flow-based methods.
Some of the reasons for this are: (i) material flow is perhaps the major consideration
in the layout of manufacturing cells on the shop-floor, (ii) this method provides the
basis for more comprehensive methods that include alternative process plans, func-
tionally similar machines, and machine capacities. For instance, [33] presents a
decomposition of a comprehensive problem into two problems that are solved itera-
tively, one of which belongs to category (3), and [28] presents a division of a similar
problem into two phases, the second phase employs the category (3)-based method.

A further classification of the category (3) literature is based on the heuristic
and non-heuristic nature of the solution algorithm. Among the heuristic methods,
Tabucanon and Ojha [39] have proposed a heuristic, ICRMA, for cell formation in
order to minimize the inter-cell traffic of parts within the shop. Choobineh [8] has
suggested a method based on similarity coefficients that considers operation sequences
as well. Vakharia and Wemmerltiv [40] have suggested a heuristic that uses duplicate
machines to make the machine cells independent; machine loads are also considered.
Harhalakis et al. [15] present a two-step node aggregation Inter-Cell Traffic Minimi-
zation Method (ICTMM) for cell formation. Harhalakis et al. [16] have developed a
heuristic based on simulated annealing, and compared it to ICTMM. Vohra et al. [41]
have suggested a network approach to this problem. Okogbaa et al. [34] have proposed
another heuristic for inter-cell flow reduction, and have performed comparison and
simulation experiments on it. This heuristic facilitates formation of cells, and balances
workload on identical machines. For an operation partition problem in assembly systems,
which has a similar mathematical formulation, Ahmadi and Tang [1] have proposed
another simulated annealing algorithm that finds near-optimal solutions. The starting
solution for this algorithm is chosen from two different Lagrangian heuristics which
also provide lower bounds for this problem. 1)

In the non-heuristic methods, the work of Song and Hitomi [38] is notable. They
formulate the problem of cell formation to minimize the total number of parts pro-
duced in more than one cell as a quadratic assignment problem (QAP). It is solved
using Lagrangian relaxation techniques and the optimality conditions of quadratic
programming, and a branch-and-bound algorithm is employed for optimal solutions.

As even the simplest formulation of the material flow-based cell formation is
usually a combinatorial problem, nonheuristic methods cannot address problems of
typical industrial dimensions. Greedy heuristic methods are faster, but they often
return poor solution quality. The motivation of our work is to attempt to overcome the

~) Another significant difference between our work and that of Ahmadi and Tang is that they require that
the number of nonempty components (in our terminology, the number of cells) be given as an input
parameter, whereas our algorithm will consider all possible numbers of cells, in order to find which
number is best.

38 S. Ghosh et al. / Manufacturing cell formation by search

deficiencies of both these approaches. Of course, our work can benefit from the most
recent, near-optimal heuristics (such as simulated annealing and genetic algorithms),
and further enhance the solution quality or prove optimality.

1.2 Preliminary discussion o f the problem

The problem of partitioning a set of machines having a specified traffic between each
pair, to obtain manufacturing cells with no more than a desired number of machines
in any cell, at minimum total inter-cell traffic, is NP-hard. Although this has not been
proven formally in the literature, it can be done by a straightforward reduction of the
clustering problem [13] to the manufacturing cell optimization problem.

Since cell formation is part of designing a manufacturing system, and the system
is expected to stay in place for a fairly long duration of time, longer solution times
can be permitted in order to obtain better solutions. Even a small improvement in the
suggested solution can accrue to significant saving in material handling costs over the
life of the manufacturing system.

In this paper, we present a branch-and-bound state-space search algorithm that
attempts to find good solutions in a reasonable amount of time. The algorithm starts
with a good feasible solution which is considered as the upper bound, and tries to
improve the solution through state-space search. The search is performed under time
and memory constraints. In simple cases, i.e., problems of small size, the algorithm
terminates successfully by finding the optimal solution - and in difficult cases, it can
at least hope to improve upon the initial feasible solution. To provide the upper bound,
the algorithm employs the Inter-Cell Traffic Minimization Method, a fast bottom-up
aggregation heuristic presented in [15, 16]. The lower bound is derived based on a
relaxation of merging. An efficient branching and search strategy constitutes a major
strength of this algorithm.

The paper is organized as follows. The problem formulation is presented in
section 2. The detailed branch-and-bound algorithm is presented in section 3. Section
4 is devoted to the numerical results obtained for the performance of the proposed
algorithm. Finally, the conclusions are presented in section 5.

2 Problem formulation

We consider a set M = {M l, M2 Mm} of m machines in a given manufacturing
system. Each machine is recognized as unique, i.e., each work center is referred to by
a different identification even if some work centers are functionally similar. We also
consider a set P = { Pi, P2 Pn } of n part types to be manufactured. Each part type
has associated with it a production routing which identifies the machines and sequence
of operations to be used to manufacture it. Let R i = { M 1, M 2 M 7 i } represent the
routing of part Pi, where s i is the number of operations, and M j ~ M is the machine
on which the j th operation is to be done, for j = 1, 2 si. We ignore set-up and

S. Ghosh et al. / Manufacturing cell formation by search 39

processing times, as we assume that the assignment of parts to machines has been
performed a priori in a manner that respects machine capacity constraints; otherwise,
the iterative approach suggested in [33] can be adopted. Let ui be the production
volume required for part type Pi in the chosen horizon, for i = 1, 2 n. This infor-
mation is the projected production requirement calculated on an average basis; either
by long-term production forecasts (in the case of new facilities), or by historical
production information (in the case of existing facilities). We also introduce ci as a
cost factor for one unit of part type Pi, i = 1, 2 n. The cost factor can be a combi-
nation of the following:

Material handling cost. This depends on the size, shape, weight, or other attributes
of a part. It can be based on the need of different types of material handling equip-
ment, such as forklifts, cranes, and so forth.

Part cost. The purpose of including this cost is to minimize the total monetary
value of the work-in-process (WIP). Material movement is generally faster within
a cell, rather than between different cells. Thus, a costly part critical to WIP,
should be confined to a single cell.

For each (Pi, Mj, Mk) ~ T x M x M , we define qqk to be the number of times Mj
follows Mk or Mk follows Mj in the routing g i. Then for each pair (My, Mk) ~ M x M ,
the traffic between machines Mj and Mk is defined as follows, where tjk = tkj and tjj = O,
for i , j ~ { 1, 2 m}: n

tJ k = 2 CiUiqiJ k" (1)
i=l

We let N denote the maximal number of work-centers permissible in a cell (user
defined). This number is derived from technical constraints and practical considera-
tions: intra-cell transportation devices such as robots that cannot feed many machines,
limitations on intra-cell buffers, ease of management and control, and so forth. A
tight range for this constraint is usually decided upon by the company management,
and depends on the specific manufacturing facility, the physical dimensions of the
machines, operational flexibility of the machines, what types of intra/inter-cell trans-
portation devices are used, the complexity of the parts to be manufactured, etc.

A partition of M is any set C = {C l, C 2 Cw} such that C i f') C j = O for i , j
E {1, 2 w} and i C j, and UiW=lCi = M. We let U be the set of all partitions C of
M such that no member of C is larger than the maximum cell size N, i.e.,

U = { C = { C I , C 2 Cw}l lCil < N, i = l ,2 ,w}. (2)

If Ci, Cj are two cells, then from equation (1) it follows that the traffic between Ci and

Cj is
Y (C i , C j) = 2 trs"

MrECi,MsECj

40 S. Ghosh et al. / Manufacturing cell formation by search

Since tjk = tkj, it follows that F (C i , Cj) = F(Cj , Ci). The total inter-cell traffic for C is

F (c) = Z F (c i , c j) . (3)
i#j

The manufacturing cell optimization problem is the problem of finding the optimal
partition in U , i.e., the partition C* ~ U such that

F(C*) =minF(C). (4)
C~U

3 Description of the algorithm

State space search is commonly used for solving combinatorial optimization problems.
Some well-known search algorithms are best-first branch-and-bound and depth-first
branch-and-bound. However, as we explain below, these are not suitable for solving
the manufacturing cell optimization problem.

The main drawback of best-first branch-and-bound is the fact that it stores every
node generated in its memory. As a result, it runs out of memory very fast. Moreover,
it expands every node with cost less than the cost of the optimal solution before
terminating with a solution. Due to these two reasons and the fact that the search space
generated by our problem is very large [33], best-first branch-and-bound can not solve
any but very small problem instances.

Depth-first branch-and-bound does not suffer from any of the drawbacks of best-
first branch-and-bound presented above. However, since depth-first branch-and-bound
goes deep along one path, it may get stuck in a bad part of the search space in the
available time and therefore return a very poor solution.

In this section, we describe a state-space search algorithm that is suitable for
finding an optimal or near-optimal solution to the manufacturing cell optimization
problem. This algorithm is basically an adaptation of the block-depth-first search
(BDFS) algorithm of [29]. We describe how the search space is constructed, present
a heuristic lower bound function for the states in the search space, and describe the
algorithm for traversing the state space.

3.1 The search space

A state in the search space is a collection of machine cells (each containing a maxi-
mum of N machines), along with a matrix [F(Ci, Cj)] whose elements give the traffic
between the cells. 2) In addition, each cell in the state is labeled open or closed; the
purpose of this label is discussed below.

2) For efficient implementation of our algorithm, since the traffic matrix is symmetric (i.e. F(Ci, Cj)
= F(Cj, Ci) for all i,j), we represent each state by a triangular matrix of inter-cell traffics, a vector of
the cardinalities of the cells, and some other bookkeeping information.

S. Ghosh et al. / Manufacturing cell formation by search 41

S0
Co,I = {M1}, open
Co,2 = { M2 }, open

Co,m = { Mm }, open

C2,2 = { M1, M3 }, open

C2,m-1 = {Mm}, open

~ Sm
~}x}, closed

12 = {M2}, open

{/~Im }, open

Cm-1,2 = {M3}, open

Gr,-1,m-1 = {M1,Mm}, open

Figure 1. The start state So and its successors.

The start state S O is the state at which the search algorithm begins its search. As
shown in figure 1, this state contains m cells C0A = {M1}, Co, 2 = {3'/2} ,Co, m = {Mm},
each consisting of a single machine. In the start state, every cell is marked as open,
to indicate that it will be possible to merge it with other cells in states that are succes-
sors of S o. A goal state is a state in which no further merging can take place, i.e., all
cells are marked closed.

As shown in figure 1, So has m - 1 successor states that correspond to merging
cell C0A of S O with cells Co, R, Co, 3 Co, m, respectively. S O has an additional ruth
successor state that corresponds to the decision not to merge Co,1 with any other cell.
The cells in this state are identical to the corresponding cells of So, except that the
cell Cm, l is marked closed.

More generally, suppose S is an arbitrary state, and let C1 , Cp be the ceils in S.
Then the successors of S are as follows:

• Let Ci = {Mk, ,Mk,} be the first cell in S marked open. Let Cj = {Mkl Mk;, }
be any open cell in S such tha t j > i and Ci's largest machine index kp is less than

42 S. Ghosh et al. / Manufacturing ceU formation by search

Cj's smallest machine index k{. 3) For each such cell Cj, if I f i U Cjl <-N, then S
has a successor S" that corresponds to merging Ci and Cj into a single cell Ci U Cj.

S' contains one less cell than S, because in S ' the cells Ci and Cj are replaced by
a merged cell Ci U Cj. If the number of machines in C i U Cj is N, then Ci U Cj is
marked closed; otherwise it is marked open. For the new cell Ci U Cj, the traffic
with other cells in S' is the sum of Ci's traffic and Cj's traffic in S; i.e.,

F (C i U Cj, C k) = F(Clc, Ci u Cj) = F (C i, c k) + F(Cj , cl~).

For all cells in S ' other than the new cell C i U Cj, the traffic is the same as it was
in S. Thus, the total inter-cell traffic in S ' is that of S minus g (C i, Cj) (the traffic
between cell C i and cell Cj).

• In addition to the above successors, S has a successor that corresponds to the
decision not to merge C i with any other cell. This state is identical to S except that
C i is marked closed.

It is easy to see that the search space defined above is a tree with maximum depth
m. It can also be shown that the search space is complete, i.e. every feasible partition
is one of the goal states in the search space defined.

The objective of our algorithm is to find a goal state with minimum inter-cell
traffic. It is not always feasible to achieve this objective because the problem is NP-
hard and therefore requires an exponential amount of time in the worst case. A more
realistic objective is to find a good solution (not necessarily optimal) in the available
time. Our search algorithm attempts to achieve this objective.

3.2 Heuristic

In this section, we present a heuristic lower bound function for the manufacturing cell
optimization problem. This function is used for two purposes by our algorithm: for
ordering states (as explained later), and for pruning states from the search space.

The lower bound function we present is based on the relaxation technique, which
is a well-known method for designing lower bound functions [35]. The basic idea is,
given any state, to allow maximum possible merging for each cell and then take the
remaining inter-cell traffic as the lower bound value. We state this more formally
below.

Let S be any arbitrary state, and C 1 Cp be its cells. Then the traffic between
cell C i and cell Cj is g (C i, Cj) = y(Cj , Ci), so the total inter-ceU traffic among the
cells is ~,~-11~, P. i+i g (C i , Cj). If we can compute an upper bound R(Ci) o n the --] =

maximum possible amount of reduction in traffic that can be achieved by merging the

3) The purpose of these conditions is to ensure that each possible state will appear exactly once in the
search space.

S. Ghosh et al. / Manufacturing cell formation by search 43

cell Ci with other cells, then the quantity 1 e -~ ~i =1 R(Ci) will be an upper bound on the
maximum possible reduction in traffic that can be achieved by merging cells in the
state S. (The reason for multiplying the sum by 1/2 is that in summing up these upper
bounds, the traffic between each pair of cells Ci, Cj is counted twice: once in R(Ci)
and once in R(Cj).) Therefore, the following is a lower bound on the cost of any
solution achievable from S:

P-l 1
LB(S) = ~_, ~ ..T(Ci, C j) -

i=l j = i + l i=l

The significance of LB being a lower bound is that whenever a state S in the search
space is found with LB(S) greater than or equal to the cost of the currently known
solution, it can be pruned without the possibility of losing the optimal solution.

To compute the value R(Ci), we use the procedure shown below. An intuitive
explanation of this procedure is as follows. Since the cell cardinalities can be at most
N, Ci can be merged with at most N - I C/] machines. By considering the cells in de-
creasing order of the ratio of cell traffic to cell cardinality, the procedure basically
finds those cells which would reduce traffic the most if they were merged with C/,
and lets R(C/) be the total amount of traffic reduction which could be obtained in this
way 4) The reason why R(Ci) is an upper bound (rather than an exact value) is because
it will not always be possible to merge those machines into a single cell.

Procedure R(Ci)

r := O, c := I Cil /* Initialize */
loop

if there is no mergeable cell 5) Cj such that Y(Ci, Cj) > O, then return r
else let Cj be the one that maximizes Y(Ci, cj)/Icjl
if c + I Cjl <- N then

r := r + Y(Ci, Cj) / * accumulated reduction in traffic */
c := c + I cjl / * accumulated number of machines */
eliminate cell Cj from future consideration

else
r := r + y (C i, Cj) * (N - c) / I f j l ; return r

repeat

3.3 Complexity of heuristic computation

In the procedure for computing R(Ci), the loop is executed at most N - I cil times.
During one iteration of the loop, choosing Cj takes time O(P), where P is the total
number of cells. All other steps take time O(1). Therefore, the procedure takes time

4) The same approach has been used to find optimal solutions to the knapsack problem, and upper bounds
for the 0/1 knapsack problem [18].

5) Two cells Ci and Cj are mergeable if i c j, both Ci and Cj are marked open and ICil ÷ I Cjl -< N.

44 S. Ghosh et al. / Manufacturing cell formation by search

Table 1

Traffic matrix.

1 2 3 4 5 6

1 0 4 6 0 0 8
2 4 0 4 8 10 0

3 6 4 0 2 8 0

4 0 8 2 0 12 6

5 0 10 8 12 0 14

6 8 0 0 6 14 0

O(P(N- I f i l)) . Finally, since the procedure is executed P times, the total time
required to compute the second component of LB is O(p2(N- I fgl)) = O(p2N). The
time required to compute the first component is clearly O(p2). Therefore, since P < m
where m is the total number of machines, the total time required to compute LB(S) is
O(P 2) + O(p2N) = O(p2N) = O(m2N).

3.4 An example of heuristic computation

Consider a state S in which the number of cells is P = 6, and the maximum cell size
is N = 3. For simplicity, assume all cells in S are marked open. Let the cell cardin-
alities be

IQI--1, Ic21--2, 1C31=2, [C 4 l = l , IC51--1, 1C6 = 2 ,

and let the traffic matrix [y(C/ , Cj)] be as shown in table 1. Then the procedure
defined above will produce the following values:

R(C1) = 8, R(Cz) = 8, R(C 3) = 8, R(C 4) = 16, R(Cs) = 19, e (c 6) ----- 14.

T h u s , 5 6
1 6

LB(S) = ~ ~, .T (Ci ,C j) - ~ R (C i) = 8 2 - 3 6 . 5 = 45.5.
i=1 j = i + l i 1"=

3.5 Search algorithm

Block-depth-first search (BDFS) is a search algorithm that is based on a novel com-
bination of staged search and depth-first search. As a result, it has good features of
both best-first and depth-first branch-and-bound and at the same time avoids the bad
features of both. In this paper we describe an adaptation of BDFS for use in solving
the cell-optimization problem. We use the following notation:

r : node generation rate (nodes per second)

MEM : amount of memory available (number of nodes)

T : amount of time available (in seconds)

S. Ghosh et al. / Manufacturing cell formation by search 45

Branch-and-bound algorithm

Input: Problem instance (m, N, tij, 1 <_ i < j < m), MEM, r and T.

Our algorithm has two main phases: (1) the forward phase, and (2) the backtrack-
ing phase. In the forward phase, it finds a good solution depending on the available
time. In the backtracking phase, it finds successive improvements on the solution
found in the forward phase, until the available time is completely exhausted.

Forward phase

In this phase, the algorithm explores the search tree, level by level. All nodes
generated are stored in a linear list L of size MEM. The root node is assigned level 0
and stored. After this the algorithm runs iteratively, working on one level at each
iteration. At iteration (level) i, it first estimates the number of nodes of level i + 1 to
be generated (using the available memory MEM, available time T, node generation
rate r, and an estimate of the number of levels of the search tree yet to be generated)
and then generates at most those many nodes by expanding nodes of level i. The ex-
pansion of a node means the generation of all of its successors. The nodes of level i
are expanded in increasing order of their lower bound values. An initial upper bound
of the solution cost is obtained by running the ICTMM algorithm of [15]. Any
generated node with a lower bound value greater than the upper bound is discarded
(pruned). The forward phase continues until a solution is found or the number of
stored nodes in an iteration becomes zero. The number of nodes stored can become
zero due to pruning. The details of the forward phase are given below:

Step 0

Step 1

[Initialization]

create the start_node and store it in L.
current_level := 0.
solution_cost := ICTMM(). /* Initial upper bound */
rem_levels := m. /* Number of machines */
rem_memory : = M E M - 1.
rem_time := r * T - 1.

[Branching]
• [rem_mem rem_time

nodes_to_be_generated := nun [~ , ~ s 1"
nodes_generated : = 0.
while nodes generated < nodes_to_be_generated do
begin

select the first unexpanded node n. If there is no such node then goto
step 2.
If n is a goal node, update solution_cost to total inter-cell traffic in n and
goto step 4.

46 S. Ghosh et al. / Manufacturing cell formation by search

Step 2

Step 3

Step 4

expand n generating and storing all successors of n in L.
nodes_generated := nodes_generated + number of successors of n.
Mark n expanded.

end

[Bounding and Ordering]

Compute the lower bound LB of every newly generated node in step 1.
Discard a node from L if its LB value is greater or equal to upper_bound.
If no new node is stored in L then goto step 4.
Sort the newly stored nodes in L in increasing order of their LB values.

[Update]

rem_mem := rem_mem - number of newly stored nodes in step 2.
rem_time := rem_time - number of newly generated nodes in step 1.
rem_levels := rem_levels - 1.
current_level := current_level + 1.
goto step 1.

[Termination]
Start backtracking phase

Backtracking phase
After the completion of the forward phase, there may be some time left because

the estimation of rem_levels and node generation rate may not be exact. That time is
used in this phase to improve the solution found in the forward phase. This phase
basically executes depth-first branch-and-bound (DFBB) starting at each unexpanded
node. DFBB is performed in the reverse order, i.e., from the last level generated down
to level 1.

Step 1

Step 2

[DFBB]
for each level from current_level down to 1 do
begin

select the first unexpanded node n.
perform a DFBB search starting at n, cutting off each generated path
when its cost exceeds solution_cost. If a solution is found, then update
solutioncost to the total inter-cell traffic of the solution state.
Mark n expanded.
rem_time := rem_time - nodes generated by DFBB(n).
if rem_time < 0 then goto step 2.

end

[Termination]
output the solution found.

S. Ghosh et al. / Manufacturing cell formation by search 47

4 Numerical experiments

4.1 Problem generation

In order to perform numerical tests of our approach, problems of various degrees of
complexity were constructed. In this section, we detail the generation of random prob-
lem data used in these tests. The predominant factors influencing problem complexity
are (i) the number of machines, (ii) the maximal cell size, and (iii) intensity of traffic
between pairs of machines, which is impacted by the number of parts and their
routings. Thus, to incorporate the influence of these factors in the problem data, we
used the following generation scheme:

1. Select the number of machines, m.

2. Select the number of parts, n.

3. Select the number of expected number of cells (or blocks), b; this is chosen such
that the average number of machines per cell is between 5 to 10. b also corre-
sponds to the number of part families.

4. Assign machines to cells at random, with at least [m/(2 x b)] machines per cell.

5. Assign parts to part families at random, with at least [n / (2 x b)] parts per family.
At this stage, conceptually, a binary (0 - 1) matrix M is available. The rows
correspond to parts, and the columns correspond to machines. An element mij of
M is 1 if the part i and machine j belong to the same block, and 0 otherwise.
Thus, a block diagonal matrix, D, can be constructed by permuting the rows and
columns of M. 6)

6. Select an inside pollution factor, inpoll. This factor weakens the traffic between
machines that belong to the same cell. At random, convert inpoll percentage of
entries in the diagonal blocks of D from l ' s to O's.

7. Select an outside pollution factor, outpoll. This factor introduces traffic between
machines that do not belong to the same cell. At random, convert outpoll percent-
age of the entries outside the diagonal blocks of D from O's to l 's .

8. At this point, we have the set of machines, Si, that each part type Pi needs to visit
in order to be manufactured. From this set, randomly generate the sequence in
which each part type Pi must visit its machines. 7) This is the production routing
Ri, as defined in section 2.

9. Set the cost factor ci and production volume ui of each part type Pi t o unity.

6) Note that we do not need to physically create either of these matrices. We simply point out that the
information to construct them is available at this time, in order to make our approach more under-
standable to readers who are familiar with the incidence-matrix based methods for GT presented in
section 1.

7) While generating the sequence, it would be possible to choose a machine for more than one operation,
indicating non-consecutive operations on the same machine [15,16]. However, we avoid this for the
sake of simplicity.

48 S. Ghosh et al. /Manufacturing cell formation by search

Table 2

Parameter values used in the experiments.

m n b poll

15 30,45 3 10,20,30

20 40,60 3,4 10,20,30

30 60,90 4,5 10,20,30

50 100,150 6,8 10,20,30

100 200,300 10,20 10,20,30

The actual values of the parameters used in our experiments are shown in table 2. In
our experiments, we used inpoll equal to outpoll, hereby referred to as poll. For each
set of parameters, five problem instances were generated, resulting in a total of 270
problem instances.

4.2 Resul~

To study the performance of the search algorithm described earlier, we implemented
it, and ran it on all 270 of the problem instances described earlier. The value of the
cell size limit (N) was set to [m/(b-1)J . The algorithm was run on a Sun 4
workstation, with MEM = 100,000 nodes, T= 300, 600, 900, 1200 and 7200 seconds,
and m = 15, 20, 30, 50 and 100 machines, respectively.

The results of our experiments are listed in tables 3 - 7 . Each line of each table
presents the results of running BDFS on five problem instances. The data include
(i) the number of guaranteed-optimal solutions found, (ii) the average number of
nodes generated, (iii) the average number of nodes expanded, and (iv) the average
solution cost found. For comparison, we have also listed the average solution cost
found by ICTMM. It is noted that the CPU time for ICTMM was always less than 10
seconds. Items (ii) and (iii) are related to the tightness of the lower bound. Other
informal computational experiments with some other bounds that were attempted
and the zero bound indicated the effectiveness of our lower bound heuristic. It is
recognized that experience is empirical and not based on worst/mean case analyses.
However, the simplicity in ease of implementation as well as low order of complexity
make it attractive for the cell formation problem. From our analysis of the data, we
note the following:

I. As can be seen from table 3, for small problem instances BDFS returned
provably optimal solutions. The solution returned by BDFS is provably optimal
for all problem instances in which the algorithm terminates before its allotted
search time T.

S. Ghosh et al. / Manufacturing cell formation by search 49

Table 3

Results for m = 15 and T= 300.

N

BDFS ICTMM

Optimal Nodes Nodes Solution Solution
poll solutions generated expanded cost cost

40 7

60 7

10 5 20293 6123 47 48

20 5 38905 11767 61 63
30 5 80680 28138 78 84

10 5 8019 2418 68 71

20 5 63109 23973 99 110

30 5 85326 30355 123 129

Table 4

Results for m = 20 and T= 600.

BDFS ICTMM

Optimal Nodes Nodes Solution Solution
n N poll solutions generated expanded cost cost

10 5 33706 9311 66 66
40 10 20 0 179892 64591 118 132

30 0 184074 68623 130 142

10 5 28981 8974 103 110
60 10 20 1 151668 51653 174 191

30 0 165634 61098 199 228

10 4 99416 20411 98 100

40 6 20 0 284353 69877 140 145
30 0 306171 79899 175 179

10 1 142442 27667 149 151

60 6 20 0 267288 69906 217 225
30 0 322659 87776 273 282

2. As expected, for large problems (M > 30) none of the solutions found by BDFS

are guaranteed to be optimal. However , BDFS clearly improves the initial solu-

tion found by ICTMM.

3. As the pollution factor increases, the improvement o f BDFS over I C T M M also

increases. This is because the pollution factor determines the diff iculty o f the

50 S. Ghosh et al. // Manufacturing cell formation by search

Table 5

Results for m = 30 and T = 900.

N poll

BDFS ICTMM

Optimal Nodes Nodes Solution Solution
solutions generated expanded cost cost

10 0 134669 40263 197 200

60 10 20 0 142127 42964 321 347

30 0 151938 45750 391 418

10 0 107024 32796 302 311

90 10 20 0 126375 37410 479 513

30 0 137133 42528 613 648

I0 0 175254 43135 224 232

60 7 20 0 234083 58663 343 353

30 0 295579 83450 433 450

10 0 170769 41519 345 355

90 7 20 0 263312 76660 552 568

30 0 301884 96141 679 702

Table 6

Results for m = 50 and T = 1200.

N poll

BDFS ICTMM

Optimal Nodes Nodes Solution Solution
solutions generated expanded cost cost

10 0

100 10 20 0

30 0

I0 0

150 10 20 0

30 0

10 0

100 7 20 0

30 0

10 0

150 7 20 0

30 0

78410 19746 613 615

168820 61126 1036 1054

166188 60243 1328 1352

146533 30699 618 623

191452 49693 1021 1028

226533 68826 1343 1350

77048 21191 963 965

158419 61368 1595 1623

162045 63030 1999 2036

105168 19439 946 955

172360 44636 1542 1571

173801 45801 2022 2068

S. Ghosh et al. // Manufacturing cell formation by search 51

Table 7

Results for m = 100 and T= 7200.

BDFS ICTMM

Optimal Nodes Nodes Solution Solution
n N poll solutions generated expanded cost cost

10 0 146514 26496 2583 2583

200 11 20 0 248543 71241 4284 4288

30 0 271394 80699 5679 5704

10 0 159705 40899 3920 3933

300 11 20 0 305343 94387 6532 6549

30 0 345297 117084 8625 8792

10 0 326279 28524 2257 2257

200 5 20 0 565396 88638 3993 4005

30 0 640622 117751 5701 5709

10 0 397616 45146 3480 3480

300 5 20 0 609223 105975 6050 6062

30 0 556177 97010 8614 8638

problem instance. The problem instances with a low pollution factor are easy in
general, because there is very little cross traffic between cells. However, as the
pollution factor increases, the problems become increasingly difficult. Since
ICTMM is a greedy algorithm, it fails to find good solutions for hard problem
instances, and therefore the improvement of BDFS over ICTMM increases with
an increasing pollution factor. For the same reason, for m = 20, BDFS finds
optimal solutions for 15 out of 20 problem instances with pollution factor 10, as
shown in table 4. However, if the pollution factor is 30, none of the solutions are
guaranteed optimal.

4. Finally, the relative improvement of BDFS over ICTMM (i.e., the percentage by
which BDFS's solution quality is better than ICTMM's) does not remain the same
with the problem size m. For example, the percentage improvement in solution
quality for m = 100 is not as dramatic as for m = 15. This is primarily due to two
factors: (1) the size of the traffic matrix and (2) the size of the search space. The
first factor increases quadratically with problem size m, and the second factor
increases exponentially with m. Therefore, the increase in the allowed search time
T from 300 seconds to 7200 seconds does not compensate well for the increase
in these two factors. We could not increase T any further because of time con-
straints.

52 S. Ghosh et al. / Manufacturing cell formation by search

5 Conclusion

Manufacturing cell formation for group technology is an important and well studied
problem. In this paper, we have presented an efficient heuristic search algorithm for
manufacturing cell optimization based on material flow. To guide this algorithm, we
have developed a new lower bound function, based on a relaxation of the problem of
merging machines into cells.

The heuristic search algorithm also employs the ICTMM heuristic [15] as an
upper bound function. This improves the efficiency of the algorithm by allowing it to
do pruning before the first solution is found - but the algorithm could equally be used
without this upper bound function. On the other hand, more recent, high perform-
ance, non-deterministic search algorithms can also be employed to possibly improve
on ICTMM's upper bound.

We have also presented the results of an extensive empirical study of our algorithm.
The results indicate that our scheme is able to improve upon the existing ICTMM
solution, and also finds provably optimal solutions for problems of small sizes such
as 15 to 20 machines. We envision that this improvement can impact significantly on
the operations of the cellular manufacturing system over its entire life.

The primary benefits of our algorithm are that it runs with constrained time and
storage resources. Given more execution time, it improves the solution quality or
attempts to prove that its last solution found was indeed optimal. Since the manufac-
turing cell formation problem is a design level problem, computational efficiency is
not as critical as the solution quality. Even small improvements at the design stage
will result in significant savings in material handling costs over the life of the shop
layout. Thus, the ability to prove optimality or potentially improve over other good
heuristic solutions is the major contribution of this work.

Future work can be aimed at integrating this methodology with other realistic
concerns of manufacturing cell formation, including alternative process plans, func-
tionally similar machines, and workload distribution under resource capacities.

We hope that our results will encourage others to consider using heuristic search
techniques to develop practical solutions to other industrial problems.

References

[1] R.H. Ahmadi and C.S. Tang, An operation partitioning problem for automated assembly system
design, Operations Research 39, 1991, 824-835.

[2] R. Askin and S.B. Subramanian, A cost-based heuristic for group technology configuration, Inter-
national Journal of Production 25, 1987, t01-113.

[3] R. Askin, S.H. Cresswell, J.B. Goldberg and A. Vakharia, A Hamiltonian path approach to re-
ordering the part-machine matrix for cellular manufacturing, International Journal of Production
Research 29, 1991, 1081-1100.

[4] A.S. Carrie, Numerical taxonomy applied to group technology and plant layout, International
Journal of Production Research 11, 1973, 399-416.

S. Ghosh et al. / Manufacturing cell formation by search 53

[5] H.M. Chan and D.A. Milner, Direct clustering algorithm for group formation in cellular manufac-
turing, Journal of Manufacturing Systems 1, 1982, 65-74.

[6] M.P. Chandrasekharan and R. Rajagopalan, ZODIAC - an algorithm for concurrent formation of
part-families and machine-cells, International Journal of Production Research 25, 1987, 835-850.

[7] C.Y. Chert and S. Irani, Cluster first-sequence last heuristics for generating block diagonal forms
for a machine-part matrix, International Journal of Production Research 3 I, 1993, 2623-2647.

[8] E Choobineh, A framework for the design of cellular manufacturing systems, International Journal
of Production Research 26, 1988, I 161 - I 172.

[9] B.B. Flynn and F. R. Jacobs, A simulation comparison of group technology with traditional job
shop manufacturing, International Journal of Production Research 24, 1986, 1171-1192.

[10] C.C. Gallagher and W.A. Knight, Group Technology Production Methods in Manufacture, Ellis-
Horwood, 1986.

[11] H. Garcia and J.M. Proth, Group technology in production management: the short horizon plan-
ning level, Applied Stochastic Models and Data Analysis 1, 1985, 25-34.

[12] H. Garcia and J.M. Proth, A new cross-decomposition algorithm: the gpm. comparison with the
bond energy method, Control and Cybernetics 15, 1986, 155-164.

[13] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Com-
pleteness, Freeman, New York, 1979.

[14] I. Ham, K. Hitomi and T. Yoshida, Group Technology -Applications to Production Management,
Kluwer-Nijhoff, 1985.

[15] G. Harhalakis, R. Nagi and J. M. Proth, An efficient heuristic in manufacturing cell formation for
group technology applications, International Journal of Production Research 28, 1990, 185-198.

[16] G. Harhalakis, J.M. Proth and X.L. Xie, Manufacturing cell design using simulated annealing,
Journal of Intelligent Manufacturing I, 1990, 185-191.

[17] G. Harhalakis, T. Lu, I. Minis and R. Nagi, A practical method for hybrid-type production facili-
ties, accepted in International Journal of Production Research (1995).

[18] E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms, Computer Science Press,
Potomac, MD, 1978.

[19] S.S. Heragu and Y.P. Gupta, A heuristic for designing cellular manufacturing facilities, Inter-
national Journal of Production Research 32, 1994, 125-140.

[20] S.A. Irani, P.H. Cohen and T.M. Cavalier, Design of cellular manufacturing systems, ASME
Transactions of Engineering for Industry 114, 1992, 352-361.

[21] S.K. Khator and S.A. Irani, Cell-formation in group technology: A new approach, Computers and
Industrial Engineering 12, 1987, 561-569.

[22] J.R. King, Machine-component grouping formation in group technology, OMEGA: The Inter-
national Journal of Management Science 8, 1979, 193-199.

[23] J.R. King, Machine-component grouping in production flow: An approach using rank order
clustering, International Journal of Production Research 18, I980, 213-232.

[24] A. Kusiak and W.S. Chow, Efficient solving of the group technology problem, Journal of Manu-
facturing Systems 6, 1987, 117-124.

[25] A. Kusiak and S.S. Heragu, Group technology, Computers in Industry 9, 1987, 83-91.
[26] A. Kusiak and W.S. Chow, Decomposition of manufacturing systems, IEEE Journal of Robotics

and Automation 4, 1988, 457-471.
[27] Z. Leskowsky, L. Logan and A. Vannelli, Group technology decision aids in an expert system for

plant layout, Modern Production Management Systems, Elsevier Science, 1987.
[28] R. Logendran, P. Ramakrishna and C. Sriskandarajah, Tabu search-based heuristics for cellular

manufacturing systems in the presence of alternative process plans, International Journal of
Production Research 32, 1994, 273-297.

[29] A. Mahanti, S. Ghosh and A.K. Pal, A high performance limited-memory admissible and real time
search algorithm for networks, Technical Report, CS-TR-92-34. Department of Computer Science,
University of Maryland, 1992.

54 S. Ghosh et al. / Manufacturing cell formation by search

[30] J. McAuley, Machine grouping for efficient production, The Production Engineer 51, 1972,
53 -57.

[31] W.T. McCormick, EJ. Schweitzer and T.E. White, Problem decomposition and data re-organiza-
tion by a clustering technique, Operations Research 20, 1972, 993-1009.

[32] I. Minis, G. Harhalakis and S. Jajodia, Manufacturing cell formation with multiple, functionally
identical machines, Manufacturing Review 3, 1990, 252-261.

[33] R. Nagi, G. Harhalakis and J.M. Proth, Multiple routings and capacity considerations in group tech-
nology applications, International Journal of Production Research 28, 1990, 2243-2257.

[34] O.G. Okogbaa, M.T. Chen, C. Changchit and R.L. Shell, Manufacturing system cell formation and
evaluation using a new inter-cell flow reduction heuristic, International Journal of Production
Research 30, 1992, ll01-1118.

[35] J. Pearl, Heuristics, Intelligent Search Strategies for Computer Problem Solving, Addison-Wesley,
1984.

[36] K.R Gunasingh and R.S. Lashkar, Machine grouping problem in cellular manufacturing systems
- an integer programming approach, International Journal of Production Research 27, 1989,
1465-1473.

[37] H. Seifoddini and EM. Wolfe, Application of the similarity coefficient method in group tech-
nology, IIE Transactions 18, 1986, 271-277.

[38] S. Song and K. Hitomi, GT cell formation for minimizing the intercell parts flow, International
Journal of Production Research 30, 1992, 2737-2753.

[39] M.T. Tabucanon and R. Ojha, ICRMA- a heuristic approach for intercell flow reduction in cellular
manufacturing systems, Material Flow 4, 1987, 189-197.

[40] A.J. Vakharia and U. Wemmerl6v, Designing a cellular manufacturing system: A material flow
approach based on operation sequences, IIE Transactions 22, 1990, 84-97.

[41] T. Vohra, D.S. Chen, J.C. Chang and H.C. Chen, A network approach to cell formation in cellular
manufacturing, International Journal of Production Research 28, 1990, 2075-2084.

[42] U. WemmerlOv and N.L. Hyder, Procedures for the part family/machine group identification prob-
lem in cellular manufacturing, Journal of Operations Management 6, 1986, 125-148.

[43] U. Wemmerl6v and N.L. Hyder, Cellular manufacturing in the U.S. industry: A survey of user,
International Journal of Production Research 27, 1989, 1511-1530.

[44] P.C.T. Willey and B.G. Dale, Manufacturing characteristics and management performance of com-
panies under group technology, Proceedings of the 18th International Machine Tool Design and
Research Conference, 1977, p. 777.

