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Abstract

Although blocks-world planning is well-known, its
complexity has not previously been analyzed, and dif-
ferent planning researchers have expressed conflicting
opinions about its difficulty. In this paper, we present
the following results:

1. Finding optimal plans in a well-known formulation of
the blocks-world planning domain is NP-hard, even
if the goal state is completely specified.

2. Classical examples of deleted-condition interactions
such as Sussman’s anomaly and creative destruction
are not difficult to handle in this domain, provided
that the right planning algorithm is used. Instead,
the NP-hardness of the problem results from difficul-
ties in determining which of several different actions
will best help to achieve multiple goals.

Introduction

Various versions of blocks-world planning have been
widely investigated, primarily because they appear to
capture several of the relevant difficulties posed to
planning systems. The following version, which we
call the Elementary Blocks World (EBW), is especially
well-known (our description is based on those in (Kluz-

niak & Szapowicz, 1990) and (Nilsson, 1980)).

The objects in the problem domain include a
finite number of blocks, and a table large enough
to hold all of them. Each block is on a single
other object (either another block or the table).
For each block z, either x is clear or else there is a
unique block y sitting on z. There 1s one kind of
action: move a single clear block, either from an-
other block onto the table, or from an object onto
another clear block. As a result of moving « from

*This work was supported in part by an NSF Presiden-
tial Young Investigator Award to Dana Nau, NSF Grant
NSFD CDR-85-00108 to the University of Maryland Sys-
tems Research Center, and NSF Grant IRI-8907890.

T Also with LNK Corporation, College Park, MD.

tAlso affiliated with the University of Maryland Insti-
tute for Advanced Computer Studies.

*

Dana S. Nau?

Computer Science Department

and Systems Research Center
University of Maryland
College Park, MD 20742

nau@cs.umd.edu

y onto z, x is sitting on z instead of y, y is clear
(unless it is the table), and z is not clear (unless
it is the table). A problem in this domain consists
of a collection of ON and CLEAR predicates that
completely specify the initial state, and another
collection of ON and CLEAR predicates that pro-
vide necessary and sufficient conditions for a state
to be a goal state. A solution to this problem is a
plan (i.e., a sequence of “move” actions) capable
of transforming the initial state into a state that
satisfies the goal formula.

This problem domain, which we will call the Elemen-
tary Blocks World (EBW), has been particularly use-
ful in investigations of goal and subgoal interactions
in planning. The primary interactions that have been
investigated have been deleted-condition interactions
such as creative destruction and Sussman’s anomaly
(Charniak & McDermott, 1985; Kluzniak & Szapowicz,
1990; Nilsson, 1980; Sacerdoti, 1975; Sussman, 1975;
Waldinger, 1977), in which a side-effect of establishing
one goal or subgoal is to deny another goal or subgoal.

Despite the wide attention that has been given to
planning problems in EBW, the complexity of plan-
ning in this domain has not been analyzed until now—
and in addition, different people appear to have differ-
ing notions of what the complexity is. For example,
in informal conversations with several prominent plan-
ning researchers, we posed the problem of how to find
shortest-length plans in the special case where the goal
state 13 completely specified. Some thought 1t obvious
that the problem was easy, and others thought it ob-
vious that the problem was difficult.

In this paper, we present the following results:

1. Given an instance of EBW and a positive integer L,
the problem of answering whether there is a plan of
length less than I is NP-complete, so the problem
of finding a shortest-length plan is NP-hard. This is
true even in the special case where the goal state is
completely specified.

2. Surprisingly, the details of our proof of NP-
completeness indicate that the complexity of the
problem is not due to deleted-condition interactions,
but instead results from the existence of what we call



“deadlock” situations, in which some critical step 1s
needed to facilitate the achievemnent of several differ-
ent goals. Some steps are capable of resolving more
than one deadlock at once—and what is difficult is to
find a set of critical steps that resolves all deadlocks
and is as small as possible. All remaining steps in the
plan can be determined easily, regardless of whether
or not they would correspond to deleted-condition
interactions in the traditional sense.

Definitions and Notation

In this paper, we use the usual definitions of the oN and
CLEAR predicates and the MOVE operator. As usual, a
plan 1s a totally ordered set of actions, each of which
can be applied to the state that results from the actions
that precede it. If P is a plan, then length(P) is the
number of actions in P.

The EBW optimization problem is as follows:

Given an EBW problem B, find a plan for B of
shortest possible length.

Note that in B, every state s consists of a set of
stacks of blocks. We say that a block b in s is n s
final position if there is a state g satisfying the goal
formula such that all blocks below b in s are also below
b in ¢, in exactly the same order.

We say that the set of blocks {b1,b2,...,b,} in s is
deadlocked if there is a set of blocks {dy,d>,...,dp}
such that the following two conditions hold:

1. in the state s, by 1s above dy, by 1s above ds, ..., and
b, is above dp;

2. 1n the goal state, by is above dy, by 1s above ds, .. .,
b, is above d;.

For example, in Fig. 1, the initial state contains two

deadlocked sets of blocks:

1. ais above ¢ and d i1s above e in the initial state, and
a is above e and d is above ¢ in the goal state, so
{a,d} is deadlocked in the initial state;

2. a 1s above b in both the initial state and the goal
state, so {a} is deadlocked in the initial state.

Suppose S is a deadlocked set and A is an applicable
action. Then we say that A resolves the deadlock if
is no longer deadlocked after A is performed. If one
of the blocks in S is clear, then moving it to the table
will always resolve the deadlock—and it may resolve
more than one deadlock simultaneously. For example,
in Fig. 1, moving a to the table will resolve both the
deadlocked sets {a,d} and {a}.

Recall that in EBW | the initial state must be com-
pletely specified but the goal state need not be com-
pletely specified. Instead, it is possible for more than
one state to satisfy the goal formula. We define the
Primitive Blocks World (PBW) to be the special case
of EBW in which the goal state is completely specified.

For use in proving NP-completeness results about
PBW, we follow the standard procedure for converting
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Figure 1: A blocks-world problem with two deadlocked
sets of blocks: {a,d} and {a}.

optimization problems into yes/no decision problems.
The Yes/No PBW (YPBW) decision problem is as fol-

lows:

Given a PBW problem B and an integer L > 0, is
there a plan for B of length less than L7

Algorithms

Let B be a PBW problem. We make the following
observations:

1. Whether or not each block & is in its final position
can be computed in low-order polynomial time, by
examining the stack of blocks beneath b to see if
the adjacent blocks in this stack correspond to ON
predicates in the goal formula.

2. Any block already in its final position need not be
moved.

3. Any block not already in its final position must be
moved at least once. However, it does not need to
be moved more than twice: we can move it to the
table until its final position is clear, and then move
it to 1ts final position.

4. If b 18 moved more than once in some plan P for B,
then there is a plan P’ for B in which b is moved
twice (once from its initial position to the table, and
later from the table to its final position), and all
other actions are the same as in P.

5. From the above observations, it follows that if there
are n blocks in B, then the length of a shortest-
length plan for B is between 0 and 2n.

The above observations make it clear that for any
PBW problem B, it is easy to generate a plan P
whose length is no more than twice the shortest pos-
sible length. Simply move to the table all blocks that
are not in their final positions, and then move these
blocks one by one into their final positions. This plan
can be generated in low-order polynomial time.

Finding a shortest-length plan is more difficult—Dbut
if we are allowed to use nondeterminism, it can be
done in low-order polynomial time by the nondeter-
ministic algorithm Solve-PBW shown below. In this
algorithm, RESOLVE 1is a nondeterministic command
that resolves a deadlock among the top blocks of stacks
in the current state, by moving one of the blocks from
top of a stack to the table.

Algorithm Solve-PBW
Input: a PBW problem B.



Output: a plan P for B.

Step 1: Current state < initial state.

Step 2: If the current state is the same as the goal
state, then EXIT.

Step 3: If there is a block b that can be moved to
its final position, move it and go to Step 2.
Step 4: If we reach this step, then the set of all
blocks that are at the tops of their stacks and
are not in their final positions form one or more
deadlocked sets. Call RESOLVE to resolve one

of these deadlocks, and go to Step 2.

Theorem 1 Let B be any PBW problem with p blocks,
of which q blocks in the initial state are already in their
final positions. Then the length of a shortest-length
plan for B is p—q-+r, where r is the minimum number
of times RESOLVE 1s called in any of the execution
traces of nondeterministic procedure Solve-PBW(B ).

Proof. Let P be any plan for B. From Ob-
servation 4 it follows that there is a plan P’ with
length(P’) < length(P) such that for every block b
that 1s moved more than once, b is moved exactly twice:
once from its initial position to the table and once from
the table to i1ts final position. Let s be the state just
before b is moved for the first time. For every block ¢
in s that can be moved directly to its final state, mov-
ing ¢ to its final position before moving b to the table
cannot possibly interfere with any subsequent moves.
Thus, there is a plan P” with length(P") < length(P)
having the property that whenever a block is moved
to the table, the current state contains no block that
can be moved directly to its final state. Solve-PBW
generates every plan having this property, so therefore
it generates a plan of shortest possible length. But
the shortest-length plan generated by Solve-PBW has
length p — ¢ + 7, so this must be the shortest possible
length of any plan for B. W

Complexity Results

In this section, we show that YPBW is NP-complete—
and that therefore, the PBW and EBW optimization
problems are NP-hard.

Lemma 1 YPBW belongs to NP.

Proof. We give a nondeterministic polynomial time
algorithm to solve YPBW:

Algorithm Solve-YPBW

Input: a YPBW problem (B, L).

Output: True if there is a plan for B of length
< L, and False otherwise.

Step 1: If Solve-PBW(B) finds a plan P such that
length(P) < L, return True. Else return False.

Solve-YPBW returns True if and only if (B, C') belongs
to YPBW. Since Solve-PBW takes polynomial time,
Solve-YPBW also takes polynomial time. W

To show that YPBW is NP-hard, we need to show
that an NP-complete problem reduces to YPBW. For

B’s 1nitial state

,2 2,0,1 all other blocks
1 1,1,2 are on the table

B’s goal state

Figure 2: A graph G, and the PBW problem B re-
turned by M(G, k).

this purpose we use the Feedback Arc Set (FAS) deci-
sion problem, which can be stated as follows:

Given a digraph G = (V, F) and a positive integer
k, 1s there a set of edges S of cardinality less than
k, such that the digraph G’ = (V, E=5) is acyclic?

This problem is known to be NP-complete ((Garey &
Johnson, 1979), p. 192).

If G = (V,F) is a digraph, then without loss of
generality we may assume that V is the set of inte-
gers {1,2,...,n} for some n. If (G, k) is a FAS prob-
lem, then we define M (G, k) to be the YPBW problem
(B, L), where L = (2n+ 2)n + k, and B is the PBW
problem defined below:

e For each v € V|, B’s initial state contains a stack of
2n+ 3 blocks, named (from the bottom of the stack
to the top) [v, I, n+1], [v,I,n], ..., [v,1,0], [v,0,0],

. [v,0,n] (see Fig. 2). Thus, B’s initial state
consists of n stacks of 2n 4+ 3 blocks each, for a total

of 2n2 + 3n blocks.

e B’s goal state has [z, 0, y] stacked on [y, I, ] for
every edge (x,y) in E, and all other blocks sitting
on the table. Thus, B’s goal state contains |E| stacks
of 2 blocks each, and 2n? 4+ 3n — |E| blocks sitting
on the table by themselves.

M (G, k) can easily be computed in polynomial time.
For the rest of this section, we let (G, k) be any FAS
problem, and (B, L) = M (G, k).

Lemma 2 Fach cycle in G corresponds to a unique
deadlocked set in B.

Proof. Suppose GG contains a cycle (vi,va, ..., vp, v1).
Then the edges (vi,v2), (v2,v3), ..., (vp,v1) are
in F, so in B’s goal state, we have [v1,0,vs] on
[UZa Ia vl]’ [UZa Oa U3] on [1}3, Ia vZ]a RS and [vp’ Oa vl]
on [vi,I,vp]. But in B’s initial state, we have



[v1, 0, vs] above [v1, I, vp], [v2, O, v3] above [vy, T, v1],
..., and [vp, O, v1] above [vp, I,vp_1]. Thus the set
{[v1, 0, v3], [v2, 0, 03], .. ., [vp, O, v1]} is deadlocked.

Conversely, suppose a set of blocks D is deadlocked.
Then each block b € D must be on some other block
¢ in the goal state. But from the definition of B,
this means there are v,w such that b = [v,0,w]
and ¢ = [w,0,v]. Thus, there are z1,22,...,2, such
that D = {[21,0, 23], [#2,0, 23], ..., [2p,0, 1]} and
B’s goal state contains the following stacks: [z1, O, 23]
on [ZZa Ia Zl]’ [ZZa Oa Z3] on [Z3a Ia ZZ]a R3] [Zpa Oa Zl] on
(21,1, z,]. From the definition of B, this means that
(z1,%92,...,2p,21) 1s a cycle in G.

Thus each cycle in GG corresponds to a unique dead-
locked set of blocks in B. W

An example of Lemma 2 appears in Fig. 2, in which
the cycle (1,2,1) in G corresponds to the deadlocked
set of blocks {[1,0,2],[2,0,1]}.

Lemma 3 B has a plan of length less than L iff G has
a feedback arc set of size less than k.

Proof. (—): Suppose B has a plan P for which
length(P) < L, and let S be the set of all blocks that
are moved more than once in P. From Observation 4,
we may assume that each block in S is moved twice:
once to the table and once to its final position. Since
2n? +2n blocks in B’s initial state are not in their final
positions, they must be moved at least once. Thus
S| < L —2n? +2n = k — 1. For each deadlocked
set D, P resolves the deadlock by moving some block
b € D to the table. From the definition of deadlock,
b’s final position must be on top of some other block,
so b € S. From the proof of Lemma 2, b = [v,0, w]
for some edge (v,w) in G. Thus, S contains blocks
[v1,0,w1], ..., [vj,0,w;] such that every deadlocked
set D contains at least one of these blocks. From the
proof of Lemma 2, it follows that every cycle in G
contains one of the edges (v1,w1), ..., (vj,w;), so G
has a feedback arc set of size j <|S| <k — 1.

(«<): Suppose G has a feedback arc set S =
{(vi,w1),...,(vp,wp)} such that p < k, and sup-
pose we invoke Solve-PBW(B). The initial state con-
tains 2n% + 2n blocks that are not in their final po-
sitions, so Step 3 of Solve-PBW will be executed
2n? + 2n times. Each time Solve-PBW enters Step
4, the set of all blocks b that are at the top of their
stacks and are not in their final positions form one
or more deadlocked sets. From Lemma 2, each such
deadlocked set D corresponds to a cycle in () so
at least one block [v;,0,w;] € D corresponds to an
edge (vi,w;) € S. But moving [v;, O, w;] to the ta-
ble will resolve the deadlock. Thus, there is an ex-
ecution trace for Solve-PBW(B) in which all dead-
locks are resolved by moving to the table blocks in
the set {{v1,0,w1],...,[vp, 0, wp]}, whence Step 4 is
executed at most p times. Thus, one of the execu-
tion traces for Solve-PBW finds a plan P of length
length(P) < 2n?+2n+p<2n?+2n+k=L. N

Theorem 2 YPBW is NP-complete.

Proof. Lemma 3 shows that M reduces FAS to
YPBW. Since M runs in polynomial time, this means
that YPBW is NP-hard. But Lemma 1 shows that
YPBW is in NP. Thus, YPBW is NP-complete. W

Theorem 3 The PBW and EBW optimization prob-
lems are NP-hard.

Proof. If we can find a shortest-length plan, then we
can immediately tell whether there is a plan of length
less than L. Thus from Theorem 2, the YPBW opti-
mization problem is NP-hard. Since PBW is a special
case of EBW, the EBW optimization problem is also
NP-hard. W

Discussion

The nondeterministic algorithm Solve-PBW  finds
shortest-length plans, and it needs to make a nondeter-
ministic choice only when a deadlock occurs. If there
were no deadlocks, then Solve-PBW would be a deter-
ministic algorithm operating in low-order polynomial
time. Thus, it is the deadlocks that are responsible for
the NP-completeness of YPBW-—so we need to exam-
ine them more carefully.

It is important to note that deadlocks are not the
same as deleted-condition interactions. Rather, an ac-
tion a that resolves a deadlock is useful because it fa-
cilitates the achievement of several different goals at
once. Some actions are capable of resolving more than
one deadlock—and in finding a shortest-length plan,
the critical problem is to find a smallest possible set
of actions capable of resolving all existing deadlocks.
All actions other than these resolving actions can be
determined quite easily by Solve-PBW.

The primary reason why deleted-condition interac-
tions do not cause problems in Solve-PBW 1s that it
does not consider the ON predicates in isolation, but
instead considers the partial order induced by them.
For example, if we want to achieve ON(z, y), we should
make sure that y is in its final position before we try
to move x to y. By “final position”, we do not mean
merely whether y is on the same block 1t will be on in
the goal state, but whether the entire stack of blocks
below y is the same as it will be in the goal state.

It is straightforward to generalize Solve-PBW to
solve problems in EBW, and we intend to include a
proof of this in (Gupta & Nau, 1991). In EBW there
is not necessarily a unique goal state—but by doing a
topological sort on the ON predicates in the goal for-
mula, we can easily deduce whether any block that is
currently below y in the current state will need to be
elsewhere in the goal state.

Conclusion

In this paper, we have discussed a well-known class
of planning problems which we call the Elementary

Blocks World (EBW). We have shown that the problem



of finding shortest-length plans in EBW is NP-hard,
even if the goal state is completely specified. This re-
sult is interesting for two reasons. First is that in the
case where the goal state is completely specified, differ-
ent planning researchers have had conflicting intuitions
about the difficulty of finding shortest-length plans—
and this result answers the question. Second, the na-
ture of the proof says something unexpected about why
blocks-world planning is difficult.

One of the primary uses of the blocks world in the
planning literature has been to provide examples of
deleted-condition interactions such as creative destruc-
tion and Sussman’s anomaly (Charniak & McDermott,
1985; Kluzniak & Szapowicz, 1990; Nilsson, 1980;
Sacerdoti, 1975; Sussman, 1975; Waldinger, 1977), in
which the plan for achieving one goal or subgoal in-
terferes with another goal or subgoal. However, as we
pointed out in Section , such interactions present no
problem if an appropriate planning algorithm is used.

The complexity of planning in EBW is due instead
to “deadlock” situations, in which some critical action
must be chosen in order to help in achieving the re-
maining goals. In choosing which action to use to re-
solve a deadlock, some actions are better than others,
because they will resolve more than one deadlock—but
if we use the hill-climbing approach of always choosing
the action that resolves the most deadlocks, this will
not always result in a shortest-length plan. Instead, we
must find a minimum-cardinality set of actions that re-
solves all deadlocks. Apparently this problem is what
causes planning in EBW to be NP-hard—for if we can
solve this problem, it is easy to plan the other actions.
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