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y onto z, x is sitting on z instead of y, y is clear(unless it is the table), and z is not clear (unlessit is the table). A problem in this domain consistsof a collection of on and clear predicates thatcompletely specify the initial state, and anothercollection of on and clear predicates that pro-vide necessary and su�cient conditions for a stateto be a goal state. A solution to this problem is aplan (i.e., a sequence of \move" actions) capableof transforming the initial state into a state thatsatis�es the goal formula.This problem domain, which we will call the Elemen-tary Blocks World (EBW), has been particularly use-ful in investigations of goal and subgoal interactionsin planning. The primary interactions that have beeninvestigated have been deleted-condition interactionssuch as creative destruction and Sussman's anomaly(Charniak & McDermott, 1985; Kluzniak & Szapowicz,1990; Nilsson, 1980; Sacerdoti, 1975; Sussman, 1975;Waldinger, 1977), in which a side-e�ect of establishingone goal or subgoal is to deny another goal or subgoal.Despite the wide attention that has been given toplanning problems in EBW, the complexity of plan-ning in this domain has not been analyzed until now|and in addition, di�erent people appear to have di�er-ing notions of what the complexity is. For example,in informal conversations with several prominent plan-ning researchers, we posed the problem of how to �ndshortest-length plans in the special case where the goalstate is completely speci�ed. Some thought it obviousthat the problem was easy, and others thought it ob-vious that the problem was di�cult.In this paper, we present the following results:1. Given an instance of EBW and a positive integer L,the problem of answering whether there is a plan oflength less than L is NP-complete, so the problemof �nding a shortest-length plan is NP-hard. This istrue even in the special case where the goal state iscompletely speci�ed.2. Surprisingly, the details of our proof of NP-completeness indicate that the complexity of theproblem is not due to deleted-condition interactions,but instead results from the existence of what we call1



\deadlock" situations, in which some critical step isneeded to facilitate the achievement of several di�er-ent goals. Some steps are capable of resolving morethan one deadlock at once|and what is di�cult is to�nd a set of critical steps that resolves all deadlocksand is as small as possible. All remaining steps in theplan can be determined easily, regardless of whetheror not they would correspond to deleted-conditioninteractions in the traditional sense.De�nitions and NotationIn this paper, we use the usual de�nitions of the on andclear predicates and the move operator. As usual, aplan is a totally ordered set of actions, each of whichcan be applied to the state that results from the actionsthat precede it. If P is a plan, then length(P ) is thenumber of actions in P .The EBW optimization problem is as follows:Given an EBW problem B, �nd a plan for B ofshortest possible length.Note that in B, every state s consists of a set ofstacks of blocks. We say that a block b in s is in its�nal position if there is a state g satisfying the goalformula such that all blocks below b in s are also belowb in g, in exactly the same order.We say that the set of blocks fb1; b2; : : : ; bpg in s isdeadlocked if there is a set of blocks fd1; d2; : : : ; dpgsuch that the following two conditions hold:1. in the state s, b1 is above d1, b2 is above d2, : : :, andbp is above dp;2. in the goal state, b1 is above d2, b2 is above d3, : : :,bp is above d1.For example, in Fig. 1, the initial state contains twodeadlocked sets of blocks:1. a is above c and d is above e in the initial state, anda is above e and d is above c in the goal state, sofa; dg is deadlocked in the initial state;2. a is above b in both the initial state and the goalstate, so fag is deadlocked in the initial state.Suppose S is a deadlocked set and A is an applicableaction. Then we say that A resolves the deadlock if Sis no longer deadlocked after A is performed. If oneof the blocks in S is clear, then moving it to the tablewill always resolve the deadlock|and it may resolvemore than one deadlock simultaneously. For example,in Fig. 1, moving a to the table will resolve both thedeadlocked sets fa; dg and fag.Recall that in EBW, the initial state must be com-pletely speci�ed but the goal state need not be com-pletely speci�ed. Instead, it is possible for more thanone state to satisfy the goal formula. We de�ne thePrimitive Blocks World (PBW) to be the special caseof EBW in which the goal state is completely speci�ed.For use in proving NP-completeness results aboutPBW, we follow the standard procedure for converting

ab dc eInitial state ae db cGoal stateFigure 1: A blocks-world problem with two deadlockedsets of blocks: fa; dg and fag.optimization problems into yes/no decision problems.The Yes/No PBW (YPBW) decision problem is as fol-lows:Given a PBW problem B and an integer L > 0, isthere a plan for B of length less than L?AlgorithmsLet B be a PBW problem. We make the followingobservations:1. Whether or not each block b is in its �nal positioncan be computed in low-order polynomial time, byexamining the stack of blocks beneath b to see ifthe adjacent blocks in this stack correspond to onpredicates in the goal formula.2. Any block already in its �nal position need not bemoved.3. Any block not already in its �nal position must bemoved at least once. However, it does not need tobe moved more than twice: we can move it to thetable until its �nal position is clear, and then moveit to its �nal position.4. If b is moved more than once in some plan P for B,then there is a plan P 0 for B in which b is movedtwice (once from its initial position to the table, andlater from the table to its �nal position), and allother actions are the same as in P .5. From the above observations, it follows that if thereare n blocks in B, then the length of a shortest-length plan for B is between 0 and 2n.The above observations make it clear that for anyPBW problem B, it is easy to generate a plan Pwhose length is no more than twice the shortest pos-sible length. Simply move to the table all blocks thatare not in their �nal positions, and then move theseblocks one by one into their �nal positions. This plancan be generated in low-order polynomial time.Finding a shortest-length plan is more di�cult|butif we are allowed to use nondeterminism, it can bedone in low-order polynomial time by the nondeter-ministic algorithm Solve-PBW shown below. In thisalgorithm, RESOLVE is a nondeterministic commandthat resolves a deadlock among the top blocks of stacksin the current state, by moving one of the blocks fromtop of a stack to the table.Algorithm Solve-PBWInput: a PBW problem B.



Output: a plan P for B.Step 1: Current state  initial state.Step 2: If the current state is the same as the goalstate, then EXIT.Step 3: If there is a block b that can be moved toits �nal position, move it and go to Step 2.Step 4: If we reach this step, then the set of allblocks that are at the tops of their stacks andare not in their �nal positions form one or moredeadlocked sets. Call RESOLVE to resolve oneof these deadlocks, and go to Step 2.Theorem 1 Let B be any PBW problem with p blocks,of which q blocks in the initial state are already in their�nal positions. Then the length of a shortest-lengthplan for B is p�q+r, where r is the minimum numberof times RESOLVE is called in any of the executiontraces of nondeterministic procedure Solve-PBW(B).Proof. Let P be any plan for B. From Ob-servation 4 it follows that there is a plan P 0 withlength(P 0) � length(P ) such that for every block bthat is movedmore than once, b is moved exactly twice:once from its initial position to the table and once fromthe table to its �nal position. Let s be the state justbefore b is moved for the �rst time. For every block cin s that can be moved directly to its �nal state, mov-ing c to its �nal position before moving b to the tablecannot possibly interfere with any subsequent moves.Thus, there is a plan P 00 with length(P 00) � length(P )having the property that whenever a block is movedto the table, the current state contains no block thatcan be moved directly to its �nal state. Solve-PBWgenerates every plan having this property, so thereforeit generates a plan of shortest possible length. Butthe shortest-length plan generated by Solve-PBW haslength p� q + r, so this must be the shortest possiblelength of any plan for B.Complexity ResultsIn this section, we show that YPBW is NP-complete|and that therefore, the PBW and EBW optimizationproblems are NP-hard.Lemma 1 YPBW belongs to NP.Proof. We give a nondeterministic polynomial timealgorithm to solve YPBW:Algorithm Solve-YPBWInput: a YPBW problem (B;L).Output: True if there is a plan for B of length< L, and False otherwise.Step 1: If Solve-PBW(B) �nds a plan P such thatlength(P ) < L, return True. Else return False.Solve-YPBW returns True if and only if (B;C) belongsto YPBW. Since Solve-PBW takes polynomial time,Solve-YPBW also takes polynomial time.To show that YPBW is NP-hard, we need to showthat an NP-complete problem reduces to YPBW. For

1�! �2the graph G1; O; 2 2; O; 21; O; 1 2; O; 11; O; 0 2; O; 01; I; 0 2; O; 01; I; 1 2; I; 11; I; 2 2; I; 21; I; 3 2; I; 3B's initial state1; O; 2 2; O; 1 all other blocks2; I; 1 1; I; 2 are on the tableB's goal stateFigure 2: A graph G, and the PBW problem B re-turned by M (G; k).this purpose we use the Feedback Arc Set (FAS) deci-sion problem, which can be stated as follows:Given a digraph G = (V;E) and a positive integerk, is there a set of edges S of cardinality less thank, such that the digraphG0 = (V;E�S) is acyclic?This problem is known to be NP-complete ((Garey &Johnson, 1979), p. 192).If G = (V;E) is a digraph, then without loss ofgenerality we may assume that V is the set of inte-gers f1; 2; : : : ; ng for some n. If (G; k) is a FAS prob-lem, then we de�ne M (G; k) to be the YPBW problem(B;L), where L = (2n + 2)n + k, and B is the PBWproblem de�ned below:� For each v 2 V , B's initial state contains a stack of2n+ 3 blocks, named (from the bottom of the stackto the top) [v; I; n+1], [v; I; n], : : :, [v; I; 0], [v;O; 0],: : :, [v;O; n] (see Fig. 2). Thus, B's initial stateconsists of n stacks of 2n+3 blocks each, for a totalof 2n2 + 3n blocks.� B's goal state has [x;O; y] stacked on [y; I; x] forevery edge (x; y) in E, and all other blocks sittingon the table. Thus, B's goal state contains jEj stacksof 2 blocks each, and 2n2 + 3n � jEj blocks sittingon the table by themselves.M (G; k) can easily be computed in polynomial time.For the rest of this section, we let (G; k) be any FASproblem, and (B;L) = M (G; k).Lemma 2 Each cycle in G corresponds to a uniquedeadlocked set in B.Proof. Suppose G contains a cycle (v1; v2; : : : ; vp; v1).Then the edges (v1; v2), (v2; v3), : : :, (vp; v1) arein E, so in B's goal state, we have [v1; O; v2] on[v2; I; v1], [v2; O; v3] on [v3; I; v2], : : :, and [vp; O; v1]on [v1; I; vp]. But in B's initial state, we have



[v1; O; v2] above [v1; I; vp], [v2; O; v3] above [v2; I; v1],: : :, and [vp; O; v1] above [vp; I; vp�1]. Thus the setf[v1; O; v2]; [v2; O; v3]; : : : ; [vp; O; v1]g is deadlocked.Conversely, suppose a set of blocks D is deadlocked.Then each block b 2 D must be on some other blockc in the goal state. But from the de�nition of B,this means there are v; w such that b = [v;O;w]and c = [w;O; v]. Thus, there are z1; z2; : : : ; zp suchthat D = f[z1; O; z2]; [z2; O; z3]; : : : ; [zp; O; z1]g andB's goal state contains the following stacks: [z1; O; z2]on [z2; I; z1], [z2; O; z3] on [z3; I; z2], : : :, [zp; O; z1] on[z1; I; zp]. From the de�nition of B, this means that(z1; z2; : : : ; zp; z1) is a cycle in G.Thus each cycle in G corresponds to a unique dead-locked set of blocks in B.An example of Lemma 2 appears in Fig. 2, in whichthe cycle (1; 2; 1) in G corresponds to the deadlockedset of blocks f[1; O; 2]; [2; O; 1]g.Lemma 3 B has a plan of length less than L i� G hasa feedback arc set of size less than k.Proof. (!): Suppose B has a plan P for whichlength(P ) < L, and let S be the set of all blocks thatare moved more than once in P . From Observation 4,we may assume that each block in S is moved twice:once to the table and once to its �nal position. Since2n2+2n blocks in B's initial state are not in their �nalpositions, they must be moved at least once. ThusjSj � L � 2n2 + 2n = k � 1. For each deadlockedset D, P resolves the deadlock by moving some blockb 2 D to the table. From the de�nition of deadlock,b's �nal position must be on top of some other block,so b 2 S. From the proof of Lemma 2, b = [v;O;w]for some edge (v; w) in G. Thus, S contains blocks[v1; O;w1]; : : : ; [vj; O;wj] such that every deadlockedset D contains at least one of these blocks. From theproof of Lemma 2, it follows that every cycle in Gcontains one of the edges (v1; w1), : : :, (vj ; wj), so Ghas a feedback arc set of size j � jSj � k � 1.( ): Suppose G has a feedback arc set S =f(v1; w1); : : : ; (vp; wp)g such that p < k, and sup-pose we invoke Solve-PBW(B). The initial state con-tains 2n2 + 2n blocks that are not in their �nal po-sitions, so Step 3 of Solve-PBW will be executed2n2 + 2n times. Each time Solve-PBW enters Step4, the set of all blocks b that are at the top of theirstacks and are not in their �nal positions form oneor more deadlocked sets. From Lemma 2, each suchdeadlocked set D corresponds to a cycle in G, soat least one block [vi; O;wi] 2 D corresponds to anedge (vi; wi) 2 S. But moving [vi; O;wi] to the ta-ble will resolve the deadlock. Thus, there is an ex-ecution trace for Solve-PBW(B) in which all dead-locks are resolved by moving to the table blocks inthe set f[v1; O;w1]; : : : ; [vp; O;wp]g, whence Step 4 isexecuted at most p times. Thus, one of the execu-tion traces for Solve-PBW �nds a plan P of lengthlength(P ) � 2n2 + 2n+ p < 2n2 + 2n+ k = L.

Theorem 2 YPBW is NP-complete.Proof. Lemma 3 shows that M reduces FAS toYPBW. Since M runs in polynomial time, this meansthat YPBW is NP-hard. But Lemma 1 shows thatYPBW is in NP. Thus, YPBW is NP-complete.Theorem 3 The PBW and EBW optimization prob-lems are NP-hard.Proof. If we can �nd a shortest-length plan, then wecan immediately tell whether there is a plan of lengthless than L. Thus from Theorem 2, the YPBW opti-mization problem is NP-hard. Since PBW is a specialcase of EBW, the EBW optimization problem is alsoNP-hard. DiscussionThe nondeterministic algorithm Solve-PBW �ndsshortest-length plans, and it needs to make a nondeter-ministic choice only when a deadlock occurs. If therewere no deadlocks, then Solve-PBW would be a deter-ministic algorithm operating in low-order polynomialtime. Thus, it is the deadlocks that are responsible forthe NP-completeness of YPBW|so we need to exam-ine them more carefully.It is important to note that deadlocks are not thesame as deleted-condition interactions. Rather, an ac-tion a that resolves a deadlock is useful because it fa-cilitates the achievement of several di�erent goals atonce. Some actions are capable of resolving more thanone deadlock|and in �nding a shortest-length plan,the critical problem is to �nd a smallest possible setof actions capable of resolving all existing deadlocks.All actions other than these resolving actions can bedetermined quite easily by Solve-PBW.The primary reason why deleted-condition interac-tions do not cause problems in Solve-PBW is that itdoes not consider the on predicates in isolation, butinstead considers the partial order induced by them.For example, if we want to achieve on(x; y), we shouldmake sure that y is in its �nal position before we tryto move x to y. By \�nal position", we do not meanmerely whether y is on the same block it will be on inthe goal state, but whether the entire stack of blocksbelow y is the same as it will be in the goal state.It is straightforward to generalize Solve-PBW tosolve problems in EBW, and we intend to include aproof of this in (Gupta & Nau, 1991). In EBW thereis not necessarily a unique goal state|but by doing atopological sort on the on predicates in the goal for-mula, we can easily deduce whether any block that iscurrently below y in the current state will need to beelsewhere in the goal state.ConclusionIn this paper, we have discussed a well-known classof planning problems which we call the ElementaryBlocks World (EBW).We have shown that the problem



of �nding shortest-length plans in EBW is NP-hard,even if the goal state is completely speci�ed. This re-sult is interesting for two reasons. First is that in thecase where the goal state is completely speci�ed, di�er-ent planning researchers have had con
icting intuitionsabout the di�culty of �nding shortest-length plans|and this result answers the question. Second, the na-ture of the proof says something unexpected about whyblocks-world planning is di�cult.One of the primary uses of the blocks world in theplanning literature has been to provide examples ofdeleted-condition interactions such as creative destruc-tion and Sussman's anomaly (Charniak & McDermott,1985; Kluzniak & Szapowicz, 1990; Nilsson, 1980;Sacerdoti, 1975; Sussman, 1975; Waldinger, 1977), inwhich the plan for achieving one goal or subgoal in-terferes with another goal or subgoal. However, as wepointed out in Section , such interactions present noproblem if an appropriate planning algorithm is used.The complexity of planning in EBW is due insteadto \deadlock" situations, in which some critical actionmust be chosen in order to help in achieving the re-maining goals. In choosing which action to use to re-solve a deadlock, some actions are better than others,because they will resolve more than one deadlock|butif we use the hill-climbing approach of always choosingthe action that resolves the most deadlocks, this willnot always result in a shortest-length plan. Instead, wemust �nd a minimum-cardinality set of actions that re-solves all deadlocks. Apparently this problem is whatcauses planning in EBW to be NP-hard|for if we cansolve this problem, it is easy to plan the other actions.AcknowledgementsWe wish to thank James Hendler for his many helpfulcomments and discussions.ReferencesAllen, J.; Hendler, J.; and Tate, A., editors 1990.Readings in Planning. Morgan-Kaufmann, San Ma-teo, CA.Chapman, D. 1987. Planning for conjunctive goals.Arti�cial Intelligence 32:333{378.Charniak, E. and McDermott, D. 1985. Introductionto Arti�cial Intelligence. Addison-Wesley, Reading,MA.Garey, Michael R. and Johnson, D. S. 1979. Comput-ers and Intractability A Guide to the Theory of NP-Completeness. W. H. Freeman and Company Pub-lishing.Gupta, N. and Nau, D. S. 1991. On the complexityof blocks world planning. Forthcoming.Kluzniak, and Szapowicz, 1990. extract from apicstudies in data processing no. 24. In Allen, J.;Hendler, J.; and Tate, A., editors 1990, Readings inPlanning. Morgan Kaufman. 140{153.
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