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Abstract 

Gupta, N and D S Nau, On the complexity of blocks-world planmng, Artificial Intelli- 
gence 56 (1992) 223-254 

In this paper, we show that m the best-known version of the blocks world (and several 
related versions), planning is difficult, in the sense that finding an optimal plan ~s 
NP-hard However, the NP-hardness is not due to deleted-condmon interactions, but 
instead due to a situation which we call a deadlock For problems that do not contain 
deadlocks, there is a simple hdl-chmbmg strategy that can easily find an optimal plan, 
regardless of whether or not the problem contains any deleted-condmon mteracuons 

The above result Is rather surprising, since one of the primary roles of the blocks world 
m the planning hterature has been to prowde examples of deleted-condmon mteracuons 
such as creaUve destruction and Sussman's anomaly However, we can explain why 
deadlocks are hard to handle m terms of a domain-independent goal interaction which 
we call an enabhng-condmon interaction, m which an action revoked to achieve one 
goal has a side-effect of mal~ng it easier to achieve other goals If  different actions have 
d~fferent useful s~de-effects, then ~t can be difficult to determine which set of actions 
wdl produce the best plan 
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Inmal  state 1 = {clear(a) Goal formula 
on(a,b)  on(b  T) clear(~l ,on(~ T)} (, = /on~h c)} 

Fig I ~, s~mple EBW problem 

1. Introduction 

Blocks-world planning has been widely investigated by planning research- 
ers, pr imari ly because it appears to capture several of  the relevant difficulties 
posed to planning systems It has been especially useful in investigations of  
goal and subgoal interact ions in p lanning--par t icular ly  deleted-condit ion in- 

teract ions such as creative destruct ion and Sussman's anomaly  [4,15,16,18- 
21], in which a side-effect of  establishing one goal or subgoal is to den~ 

another  goal or subgoal 
The  following version of  the blocks world, which we call the Elementar3 

Blocks World  (EBW),  ts especlall~ well known Our descript ion is based on 

those in [ 15,21 ] 

The objects in the problem domain  mclude a finite number  of  
cubical blocks, and a table large enough to hold all of  them Each 
block is on a single other  object (ei ther another  block or the 
table) For  each block b, either b is clear or else there is a unique 
block a sitting on b There  is one kind of  action move a single 
clear block, ei ther f rom another  block onto the table, or f rom an 
object onto another  clear block ~s a result of  moving b from < 
onto d, b is sitting on d Instead of  c, ~ ts clear (unless it is the 
table),  and d ts not clear (unless tt is the table) 

A problem in this domain  is specified by giving two sets oI 
ground atoms, ~ one specifying an initial state of  the world, and 
the other  specifying necessary and sufficient condmons  for a state 
to be a goal state (for example,  see Fig 1) A solution to this 
problem is a plan (t e ,  a sequence of  '~move" actions) capable 
of  t ransforming the initial state into a state satisfying the goal 

c o n d i t i o n s  

In this paper, we present the following results about  EBW and related 

problem domains  

1Since EBW contains no function symbols, for our  purposes a ground atom ~s a predicate 
whose arguments  are all constants denoting blocks or the table 
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( 1 ) Planning ~n E B W  In EBW, finding a non-optimal plan is qmte easy, 
and finding an optimal plan is NP-hard (but no worse) Surprisingly, 
the NP-hardness is not due to deleted-condition interactions, but to 
a different kind of goal mteractxon which we call a "deadlock" For 
EBW problems that do not contain deadlocks, there is a simple hlll- 
chmblng strategy that is guaranteed to find an optimal plan in time 
O(n 3 ) where n is the problem size, regardless of whether or not the 
problem contains deleted-condmon interactions Classical examples 
of deleted-condition interactions, such as Sussman's anomaly and 
creative destruction, do not contain deadlocks--and thus they are 
easily handled by this planner 

(2) Completely spectfied goal states Planning in EBW has been thought 
to be simpler in the special case where the goal state is completely 
specified, but there has been disagreement on how much simpler For 
example, in informal conversations with several prominent planning 
researchers, we posed the problem of how to find shortest-length plans 
in this special case Some thought it obvious that the problem was 
easy, and others thought xt obvious that the problem was difficult 

It turns out that this special case is basically equivalent to the 
general case There is an algorithm which, given any EBW problem, 
will produce in time O(n 3) a completely specified goal state such 
that any optimal plan for reaching this goal state is also an optimal 
plan for the original problem Thus, the results we stated above for 
EBW still hold even if the goal state is completely specified 

(3) Other verstons o f  the blocks world Other versions of the blocks world 
have also appeared in the AI literature For example, Wlnograd's 
original version of the blocks world contained blocks of different 
sizes and colors, and also contained pyramids [23] 

If we generalize EBW to contain objects of  varying sizes, including 
blocks, pyramids, and frustums (and prohibit objects from being 
placed on smaller objects), then all of the above results still hold If 
we limit the total number of blocks that may sit on the table, then 
different planning algorithms are required, but finding a non-optimal 
plan is still easy, and finding an optimal plan is still NP-hard but 
no worse. If in addition to llmmng the table size we allow different 
blocks to have different sizes, then it is no longer possible to find 
optimal plans nondetermmlstlcally in polynomial time, because there 
are some planning problems in which the shortest plan has exponential 
length. 

(4) Enabhng-condttlon tnteractlons The difficulty of handhng deadlocks 
can be described in terms of a domain-independent goal interaction 
which we call an "enabhng-condltlon interaction", In which an action 
revoked to achieve one goal has a side-effect of  making it easier to 
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achmve other  goals E n a b h n g - c o n d m o n  interact ions can also be used 

to explain some o f  the difficultms that  occur  In planning prob lems  in- 

vestigated by other  researchers  [5,13] In general, if  different  acnons  

have  different  useful side-effects then ~t can be difficult to de te rmine  

which set o f  ac tmns  will p roduce  the best plan 

This  pape r  is organized as follows Section 2 contains  basic defini t ions 

Section 3 describes some planning algori thms for EBW, and shows that  

p lanning In EBW ~s NP-ha rd  Secnon 4 explains why the NP-hardness  is due 

to deadlocks  ra ther  than de l e t ed -con dmon  ln teracnons  Section 5 describes 
what  happens  if  we generalize EBW to allow hml ted  table size a n d / o r  objects 

o f  varying sizes Section 6 summar izes  our results, and Section 7 discusses 

related work Section 8 discusses the s~gmficance of  our  results, describes 

enabl ing-condi t ion interact ions and suggests topics for future research The 

proofs  are conta ined  In the appendices  

2. Basic definitions 

2 1 Formulas, states, stacks, and poslttons 

An atom is a t e rm of  the fo rm " o n ( v ,  v)'" (meaning  that  x is on ~ ) ox 

" c l e a r ( ~ ) "  (meaning  that  a is clear),  where ~ and v are ei ther constants  

(1 e ,  specific blocks or  the table)  or variables  I f  .', and  y are constants  

then the a tom is a gpound atom The constant  T denotes  the table 
A Jbtmula is any set F of  ground a toms  ~ fo rmula  F is consistent if 

there is at least one conf igurat ion of  blocks that  satisfies the meanings  of  

the a toms  in F a~ fo rmula  F is consistent with a formula  G if F tO G is 

consis tent  
A fo rmula  F is a stale i f  it specifies the exact configurat ion of  some set 

o f  blocks (1 e ,  what  blocks are clear, what  blocks are on the table, and 

what  blocks are on what  o ther  blocks)  An ~mmedlate  consequence o f  this 

def ini t ion IS that  every state is consistent  
An EBWprob lem is an ordered  pair  B = ( I ,  G) where I is a state called 

the mlual stale, and G is a fo rmula  called the goal formula B is soh'able i f  

there exists at least one plan for B 
Let F be an} consis tent  fo rmula  & stacl, in F is a fo rmula  

E = {on(bl ,h2) ,on(be,b3) ,  on(bv_l ,bp) } c_ I ~ 

such that  each b, is a block except  for hp, which may  be either a block or 

the table Informal ly ,  we will write E as "bl on he on b3 on o n  hp'" The 
top and bottom of  E a r e  bl and bp, respecuvely  E ~s a maxtmal stack if it 
is not a s u b s e t  o f  any other  stack i n F  I f F  is a state and b i s a b l o c k  m 
F then b ' s p o s t t t o n  In F is the largest stack in F whose top is b l e ,  the 
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Table 1 
lmtlal  block posmons in the EBW problem of Fig 1 

Block Block's po- Posmon ~s a Posmon ~s consxstent w~th 
SltlOn m I maximal stack the goal G = {on(b ,c)}  

a {on(a,b),on(b,T)} Yes No o n ( b , T )  contradicts on(b ,c )  
b ( o n ( b , T ) }  No No o n ( b , T )  contradicts on(b ,c )  
c {on (c ,T )}  Yes Yes {on(b,c),on(c,T)} is consistent 

stack in F whose top is b and whose bottom ~s the table b's position is a 
maximal stack if and only if b ts clear 

From the above definmons, it follows that in any EBW problem, the 
position of a block a ~s consistent with the goal formula G only if the 
positions of all blocks underneath a are also consistent with G For example, 
consider the EBW problem shown in Fig 1. As shown in Table 1, since b's 
poslt~on in I t s  inconsistent wtth G, a's position m I is also inconsistent 
with G 

2 2 Acttons, plans, and deadlocks 

We use move(x ,y ,  z) to denote the action of moving x from y to z. A 
plan is a finite sequence of such actions If P is a plan, then IPI is the 
number of actions In P, and P (S) is the state produced by starting at S and 
applying the actions m P one at a time (if not all of them are applicable, 
then P(S) ts not defined) A plan for an EBW problem B = (I,G) is a 
plan P such that P(I) is consistent wtth G It ts an opttmal plan for B if 
every plan Q for B has IQ[ >t IP[ 

The set of blocks {bl, b2, • , bp} lS deadlocked in the state S if there is a 
set of blocks {dl,d2,. ,dp} such that the following three condmons hold 
(see Fig 2) 

(1) In S, bz ts above d~ for t = 1,2, ,p 
(2) In G, b, is above d , + l  for t = 1,2, ,p - 1, and bp IS above dl 
(3) In S, none of  b~,b2, ,bp are in their final positions ( t fp  > 1, then 

the other two conditions entatl this condttlon) 

The current state S The goal G 

Fig 2 An dlustratlon of the definmon of deadlock, in the case where p > 1 
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a l s l n d ' s ~ a ~  a n d d  l s m  a s v ~ a ~  so {a d} is deadlocked 

I - - I  
~I I ¢1 ] a 

a is in tts own wa~, so {a} is deadlocked 

lnl tml state 
1 = {clear(a)  o n ( a  b) o n ( h  c) 

on(c  T )  c lea r (d )  o n ( d  e} o n l e ,  2-}} 

Goal formula  
¢s = { o n ( a , ¢ )  on (e  t,} o n l d  ~ }  

Fig 3 ~ p rob lem m which t ~o  sets o f  blocks are deadlocked {a d} and  /,¢[ 

For example, in Fig 3, in the initial state 1 there are two deadlocked sets 

of  blocks 

(1) I n l  a I s a b o v e c  and d is above e I n G ,  a l s a b o v e e a n d d l s a b o ' ~ e  

c Thus {a,d} is deadlocked in I 

(2) a is above b in both I and G, and a is not  m its final position m I 

Thus {a} is deadlocked in l 

Suppose some set of  blocks D as deadlocked in the state S If  4 ~s an 

action applicable to S, then 4 tesoh'es D if D is not deadlocked in the state 

produced by applying A to S If  any of  the blocks m D is clear in S then 

moving  it to the table will always resolve the dead lock- -and  at ma) resolve 

more than one deadlock slmultaneousl:y For example, in Fig 3, the action 

move(a ,  b,T) will resolve both the deadlocked sets {a,d} and {a} 

3. Planning in EBW 

3 1 Planning algottthm~ 

From the meanings of  the "on"  and "'clear" atoms in EBW, it follows that 

a formula F is consistent if and only if the following condit ions hold for 

every block b ment ioned in F h ~s not above ~tself, the table is not  on b b 
is on at most  one object, at most  one object IS on b, and nothing is on h if b 

is clear One can verify whether or not these condit ions are satisfied m time 

O ( n )  as follows, where n is the number  of  atoms m F Consider  the graph 
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H(F)  whose nodes are the blocks, and having an arc from block b to block 
c if and only if on(b,c)  E F Such a graph is called a Hasse diagram (e g,  
see [17]), and it can be constructed in time O(n) using a modification 
of a topological sorting algorithm such as the ones given in [6,14] F is 
consistent if and only if F contains no atoms of the form " o n ( T , x ) ' ,  and 
H(F) consists of one or more disjoint acychc paths, with each clear block 
at the beginning of a different path 

Let B = (I, G) be any EBW problem Let m and n, respectively, be the 
number of blocks and atoms in I u G Since every atom contains at least one 
block, m < n. Since I is a state it is consistent, so it contains at most two 
atoms for each block If G is consistent, then G will also contain at most 
two atoms for each block, so n ~< 4m and thus O(m) = O(n) 

One can check whether or not B is solvable in time O(n log n ), by checking 
whether or not G is consistent, and whether or not G mentions any blocks 
not mentioned in I If  G is inconsistent or mentions a block not mentioned 
in I, then clearly B is not solvable But if G is consistent and only mentions 
blocks mentioned in I ,  then each of the paths in H (G) represents one of the 
maximal stacks in G One can produce a plan for B by moving all blocks 
to the table, and then using H(G) to guide us in building these maximal 
stacks from the bottom up The length of this plan is at most 2m, and it 
takes time O(n) to produce It 

In time O(n 3) one can find a plan of length no more than twice the 
length of the optimal plan To see this, consider Algorithm Solve-EBW 
shown below This is basically a simple hlll-chmbmg algorithm any time a 
block can be moved directly to a position consistent with the goal condition, 
it does so 

Algorithm Solve-EBW(I, G) 
Step 1 If  G contains any blocks not in I, then (I, G) is not solvable, so 

exit with failure. 
Step 2. Construct the graph H(G), and use it to check whether or not G 

is consistent If  G is inconsistent, then (I, G) is not solvable, so exit with 
failure 

Step 3 S ~ I 
Step 4 If S is consistent with G, then exit with success 
Step 5 If  S contains clear blocks b and c such that b's position is not 

consistent with G, G contains on(b,c) ,  and c's position is consistent with 
G, then move b to c and go to Step 4 

Step 6 I f S  contains a clear block b such that b's position is not consistent 
with G and there is no c such that G contains on(b,c) ,  then the posmon 
on(b ,T)  is consistent with G, so move b to the table and go to Step 4. 

Step 7 At this point, every clear block whose position is not consistent 
with G is in a deadlocked set Arbitrarily move one of these blocks to the 
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table, and then go to Step 4 

In Appendix  A we prove  that  the plan Q produced  by Solve-EBW satisfies 

the p roper ty  IQI ~< 2 ( m  - q) where m as the total n u m b e r  of  blocks m B 
and q as the n u m b e r  of  blocks whose posi t ions m I are consistent  w~th 6 

Since every plan for B mus t  have length at least m -  q, this means  that  

the length of  Q as no more  than twace the opt imal  length Each of the steps 

in Solve-EBW takes t ime  at mos t  O ( n  -~) to execute Since Solve-EBW exits 

af ter  O ( m )  = O ( n )  steps, this means  i t  runs m t ime O ( n  ~) 

All o f  the moves  made  by Solve-EBW preserve plan op t lmaht?  except for 

the moves  made  in Step 7 Algor i thm Solve-EBW-Opt lmal ly  shown below ~s 

Identical  to Solve-EBW, except  that  Step 7 ~s modi f ied  to make  all possable 

choices nondetermlnis tacal ly  Thus,  as pro~ed in &ppendix & Sol~e-EBW- 

Opt imal ly  is guaranteed to find an op t imal  p l a n - - a n d  the length of  th~s 

plan is m - q + r, where t as the m i n i m u m  n u m b e r  of  t imes that  Step 7 ~s 
executed in any of  the execut ion traces of  Solve-EBW-Opt lmal ly  

Algorithm Solve-EBW-OptimaUy(l, G) 
Step 1 I f  G contains  any blocks not in I, then (I, G) is not solvable, so 

exit with failure 

Step 2 Const ruc t  the graph H(G) ,  and use it to check whether  or not G 

is consis tent  I f  G is inconsistent,  then ( I  G) is not solvable so exit w~th 
failure 

Step 3 S ~ I 
Step 4 I f  S is consis tent  with G, then exit with success 

Step 5 If  S contains  clear blocks h and c such that  f;s posit ion is not 

consis tent  with 6, G contains  on(b,c) ,  and c's positaon ~s consistent w~th 

G then m o v e  b to ~ and go to Step 4 

Step 6 I f S  contains  a clear block b such that  b's positaon is not consastent 

with G and there is no c such that  G contains  on(b,c) ,  then the posation 

on(b ,  1-) as consistent  with G, so move  b to the table and go to Step 4 
Step 7 At this point ,  every clear block whose posatlon is not consastent 

with G as in a deadlocked set Nondetermlnisticall ;y move  one of  these blocks 

to the table, and then go to Step 4 

3 2 NP-completeness 

For  use in proving  NP-comple teness  results about  EBW, we follow the 
s tandard  procedure  for  conver t ing op t imiza t ion  p rob lems  into yes /no  deci- 
sion p rob lems  We define E B W  PLAN to be the following decision p rob lem 

Given  an EBW prob lem (I, G) and an integer L > 0, is there a 
plan for this p rob lem of  length L or less 9 
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To show that EBW PLAN is NP-hard, we need to show that an NP- 
complete problem reduces to EBW PLAN For this purpose we use the 
FEEDBACK ARC SET problem, which can be stated as follows 

Given a digraph (V, E)  and a posmve integer k, is there a set of  
edges F such that IF I ~< k and the digraph ( V , E - F )  is acychc9 

This problem IS known to be NP-complete [10, p 192] 
In Appendix B, we show that EBW PLAN is NP-complete, by showing that 

FEEDBACK ARC SET reduces to EBW PLAN and that EBW PLAN can be 
solved nondeterminlStlcally in polynomial time using Solve-EBW-Optlmally. 
From this, it follows that finding optimal plans in EBW is NP-hard The 
fact that Solve-EBW-Optlmally will find optimal plans nondeterminlstically 
in polynomial time suggests that finding optimal plans in EBW is no worse 
than NP-hard--and in Appendix B we prove that this is true 

3 3 Completely specified goal states 

Primitive Blocks World (PBW) is the special case of  EBW in which the 
goal formula specifies a single state PBW PLAN is the following decision 
problem 

Given a PBW problem (I, G) and an integer L > 0, is there a 
plan for this problem of length L or less? 

Although PBW has been thought to be a simpler problem domain than 
EBW, it turns out that planning in PBW IS basically equivalent to planning 
in EBW In particular, given any solvable EBW problem, one can easily 
add additional conditions to the goal formula G to produce a completely 
specified goal state G', in such a way that any optimal plan for the modified 
problem is also an optimal plan for the original problem 

Before describing how to do this in the general case, we first illustrate 
the idea using Sussman's anomaly, 2 which is shown in Fig. 4. The desired 
goal state G' must contain on(a, b) and on(b, c), and it cannot mention any 
other blocks since no other blocks are mentioned in I In G', c is below the 
other two blocks, so c must be on the table Furthermore, a is above the 
other two blocks, so a must be clear Thus, G' must be the state 

{on(a, b), on(b,  c), on(c, T) ,  clear(a)} 

For the general case, let B = (I, G) be any solvable EBW problem, and 
let F be the formula consisting of  the following "on" atoms 

• every "on" atom in G, 

2This EBW problem was proposed by Allen Brown [ 20, p 127], and popularized by Sussman 
[191 
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Initial state 
1 = {clear(~ ) on(c a)  on (a  T) 

c lear(h)  on(h  T)} 

Goal tormula 
¢, = {on(a hi  on(h  ~)} 

F~g 4 Sussman s anomal~ 

• every atom on(b,c) in 1 such that b's posmon in 1 is consistent with 

G, 
• an atom o n ( b , T )  for ever~ block b such that nothing is below t) m G 

and b's position m I ts inconsistent with G 

Then G' is the state consisting of F plus an atom clear(h) for ever.~ block 

b at the top of a maximal stack in F 
Since Go_ G', every plan for B' = (I,G') is also a plan for B As shown 

in &ppendl,~ C G' is the final state produced b5 Solxe-EBW(I, GI and b.~ 
every execunon trace of Solve-EBW-Opnmalb (1, G) From this it tollows 

that every opttmal plan for B' is also an optimal plan for B 
What this means is that planning in EBW and planning m PBW are 

basically equivalent If ~you have a planner that will find optimal plans 
for PBW problems, and if you want to find an opnmal plan for an EBW 
problem B, then you can do this b> computing B' as described above, and 
using ~our planner on B' Thus all of  our results about EBW apply equally 
well to PBW finding non-optimal plans is easy, finding optimal plans is NP- 
hard, resolving deleted-condition mteracnons is eas>, resolving deadlocks is 
difficult, etc In fact the theorems and proofs in Appendices A and B apply 
to PBW with no modifications except for replacing "EBW" by' "PBW" 

4. Why EBW planning is hard 

In this secnon, we show that the d l f f i c u l t 5  of planning in EBW is not 
due to deleted-condmon interactions, but instead due to the difficulty of 
determining the best walt to resolve multiple deadlocks We also discuss the 
difference between deadlocks and deleted-condInon interactions 

4 1 The dt{ficultv o[ te~olt'mg multtple deadlocl,~ 

To see that deadlocks make planning difficult in EBW, consider our 
proof  that EBW PLAN is NP-hard This proof (see Appendl\ B) involves 
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Table 2 
Successive states generated by Solve-EBW on Sussman's 
anomaly 

State Block Position Consistent 
with G 

~ _ _ ~  a a on 7- No 
b b on 7- No 
c c on a on 7- No 

a a on T No 

c c on T Yes 

a a on T No 
b b on c on 7- Yes 

- ~  c c on 7- Yes 

a a on b on c on T Yes 
b b on c on 7" Yes 
c c on 7" Yes 

reducing FEEDBACK ARC SET to EBW PLAN For each digraph (V, E) ,  
our reduction produces an EBW problem B, such that finding a set of  k 
blocks that resolves all deadlocks in B corresponds to finding a feedback arc 
set of  size k in (1I, E )  But the difficulty of finding a small feedback arc set 
makes the FEEDBACK ARC SET problem NP-hard Thus, the difficulty of  
finding a small set of  blocks that resolves all deadlocks makes EBW PLAN 
NP-hard. 

To see that deadlocks are the only thing that makes planning difficult in 
EBW, note that in Solve-EBW-Optlmally, the only time nondetermlnlsm is 
required is to resolve a deadlock For EBW problems that contains no dead- 
locks, Solve-EBW-Optlmally will never enter Step 7, which is the only step 
where nondetermlmsm occurs Thus, for such problems, the deterministic 
algorithm Solve-EBW will always find an optimal plan in time O(n 3) 

To illustrate this, below we consider two EBW problems one without 
deadlocks, and one with deadlocks 

Example 1. Consider Sussman's anomaly (shown in Fig 4) a and b are 
not in deadlocked sets, because there are no blocks below them In  I ,  and 
c is not in a deadlocked set, because there is no block below it in G Thus 
Sussman's anomaly contains no deadlocks, so Solve-EBW can solve it easily, 



234 \ OUl)ta l ) Y  \ a l l  

i 

a d g h 

b c h / 

( [ I I~l 

The lnltml slate 1 

! 

! 

l h l  , 

Fh~ goal stat~ (, 

Fig 5 In this problem, different wa \s  ol resolving the d~adlocks produce plans of  d~tferent 
lengths 

as we now show 
Table  2 shows the successtve states and posi t ions generated b? Solve- 

EBW on Sussman ' s  anomaly  Imtlally,  none of  the blocks are m posi t ions 

consis tent  with G, and nei ther  a nor  b can be m o v e d  to positrons consistent  
with G c can be m o v e d  to a positron consistent  wtth G by moving  it to the 

table, so Solve-EBW does this m Step 6 Once this is done the posi t tons of  

a and  b are still inconsis tent  with G, but  b ' s  posi t ion can be made  consistent  

with G by moving  it to c, and  Solve-EBW does this m Step 5 At this point,  

a ' s  posi t ion is mcons ls ten t  with G but  can be made  consistent  with G by 
mov ing  it to b, and  Solve-EBW does this m Step 5 Now the current  state 

is consis tent  with G, so Solve-EBW exits wtth success in Step 4 

Example  2, Consider  the EBW prob lem shown m Fig 5 This  p rob lem 

contains  six deadlocked sets {a}, {d},  {g}, {a , j} ,  {d , j } ,  and { g , j }  In the 

initial state, every clear block is in one of  these deadlocked sets Moving  
a, d, or  g to the table resolves two deadlocks and moving  j to lhe table 

resolves three deadlocks  Thus  moving  j to the table might  appea r  to be 

the mos t  a t t ract ive  c h o i c e - - b u t  it will not result m an op t imal  plan 

Every plan for this p rob lem that  mvolves  m o v m g  block j to the table 
contains  at least 16 act ions However ,  there are plans for this p rob lem that  

do not  m o v e  j to the table and  contain  only 15 actions For  example,  below 
are two plans p roduced  by two of  the nonde te rmlms t l c  execution traces of  

Solve-EBW-Opt lmal ly  one m which j ~s moved  to the table and one in 

which ~t is not  

(1) m o v e ( j , k , T ) ,  m o v e ( a  h T),  m o v e ( b , ~ , T ) ,  m o v e ( h , l , b )  
m o v e ( a , T , l ~ ) , m o v e ( d , e , T ) , m o v e ( e  / , T )  m o v e ( /  m e)  
m o v e ( d ,  T, l), m o v e ( g ,  h, T),  m o v e ( h ,  t, T ) ,  m o v e ( m ,  T,  h ) 

m o v e  (g,  T, in ), m o v e  ( f ,  T, t ), move  (c, T, [ ), mo~ e (j,  T, c ) 

(2) m o v e ( a , b , T ) ,  m o v e ( b , ~ , T ) ,  m o v e ( d  e T) ,  m o v e ( e ,  / ,  T)  
m o v e  ( g, h, T ), m o v e  (h, l, 2/- ), mo~ e ( J ,  T, l ), move  (~, T, f ) 
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move (j, k, c), move (k, 1, b), move (a, T, k),  move (1, m, e),  
move (d, T, l), move(m,  T, h), move(g,  T, m) 

The reason why moving j to the table ~s not part of  any optimal plan is that 
although moving j to the table resolves three deadlocks ({a, j}, {d, j} ,  and 
{g, y}), it leaves three other deadlocks unresolved ({a}, {d}, and {g}), and 
the only possible way to resolve these deadlocks is to move a, d, and g to 
the table But moving a, d, and g to the table resolves all of the deadlocks 
involving j ,  leaving no need to move j to the table 

4.2 Deadlocks versus deleted condttlons 

It is important to understand that deadlocks are d~fferent from deleted- 
condmon interactions In a deleted-condition interaction, the side-effect of 
achieving one condmon ~s to delete some other condition that wall be needed 
later In contrast, in a deadlock sttuatlon there are several goal conditions 
left to be achieved, none of  which can be directly achieved Of  the actions 
avadable to achieve subgoals for these goals, some will achieve several 
subgoals at once, and the question is which of  these actions to use 

Below, we illustrate the difference between deadlocks and deleted-condi- 
tion interactions, by describing two planning problems one that contains 
deleted-condition interactions but no deadlocks, and one that contains a 
deadlock but no deleted-condmon interactions 

Example 3. Sussman's anomaly (see Fig 4) is well-known as an example of 
a planning problem m which deleted-condition interactions occur regardless 
of  the order in which one tries to achieve the goals 

(1) Suppose one tries to achieve on (a, b) first and on(b, c) second The 
way to achieve on (a ,b )  is to move c to the table and a to b But 
once this has been done, one must undo on(a,  b) in order to achieve 
on(b ,c )  

(2) Suppose one tries to achieve on(b, c) first and on(a, b) second The 
way to achieve on(b ,c )  is to move b to c But once this has been 
done, one must undo on(b, c) m order to achieve on(a,  b) 

However, as shown in Example 1, Sussman's anomaly contains no deadlocks 

Example 4. Consider the planning problem shown in Fig 6 In the initial 
state, a is above c and b is above d, and in the goal state, a is above d 
and b is above c, so {a, b} is a deadlocked set However, in this problem, 
neither goal ordering produces deleted-condition interactions 

(1) Suppose one tries to achieve o n ( a , d )  first and on(b, c) second The 
way to achieve o n ( a , d )  is to move b to the table and then move a to 
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a t) , 

I 

i i [ 

Inmal  slate 
I ={c l ea r ( a )  o n ( a , ~ )  on(~ T) c lea i (h)  

on(h  d )  o n ( d  2")} 

CToal to~ mula 
~, = {on(b,~ ) on (a  a)}  

Fig 6 A problem thal contains a deadlock but no d e k t e d < o n d m o n  interactions 

d Once this has been done, the wa5 to achlexe on(h,~ ) is to move 

b to c and this does not delete on(a,d) 
(2) Suppose one tries to achieve o n (b ,~ )  first and o n ( a  d)  second The 

way to achieve on(b ,  c) ~s to move  a to the table and then move  h to 
c Once this has been done the way to achae~e o n ( a , d )  is to move 
a to d, and this does not delete on(b  ~ ) 

5. Generalizations of EBW 

Although EBW is the best-known version of  the blocks world, it is nol 
the o n b  one For  example,  Winograd 's  original version of  the blocks world 
[23] included comphca t lons  such as pyramids  and blocks of  different sizes 
Below, we consider three such general lzanons of  EBW 

(1) VBW, m which there can be blocks p?ramlds,  and frustums ot 
pyramids,  all o f  which mat  ~ar:y in size, and no object a can sit on 
an object whose top face is smaller than a's bot tom face 

(2) LBW, in which the table can hold o n b  a hmi ted  number  of  blocks 
(3) VLBW, which has the features of  both VBW and LBW 

Our  results for these planning problems can be summarized  as lbllows 

(1) Planning m VBW is so similar to planning m EBW that all o f  our  
results about  planning m EBW ap p b  equally well to VBW 

(2) LBW reqmres different  planning algorithms than the ones we pre- 
sented earher  for EBW, but  its t ime complexlt5 is not v e ~  different 
f rom EBW's Eroding a non-opt imal  plan is eas:y, finding an opn-  
real plan is NP-hard  but  no worse, and optimal  plans can be found 
nondetermlmst~cally In polynomial  t ime 

(3) Planning in VLBW is more  difficult In particular there are VLBW 
problems for which the shortest plan has exponential  length 

The details appear  below 
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5 1 Blocks worm wlth varymg block sizes 

Varying Block-Szze Blocks World (VBW) is like EBW, except that for 
each block b there is a positive integer kb denoting the size of b's bottom 
face, and a nonnegatlve integer h b <~ k b denoting the size of b's top face 
(b is a pyramid if hb = 0, and i t  lS a frustum of a pyramid if hb < kb) 3 
Just as in EBW, each block b either is clear or else has a unique block a 
sitting on it--but a can sit on b only if b's top face ~s at least as large as a's 
bottom face 4 Thus, move(b,c,d) has the same preconditions as in EBW, 
plus the requirement that either d = T or else kb ~ hd 

VBW PLAN is the following decision problem 

Given a VBW problem (I, G,K) (where K is a hst giving the 
sizes of each block's top and bottom faces) and an Integer L > 0, 
is there a plan for this problem of length L or less9 

In VBW, a formula F is consistent if and only if the following conditions 
are satisfied 

(1) F contains no atoms of the form "on(T,  x ) "  
(2) The Hasse diagram H ( F )  consists of one or more disjoint acychc 

paths, with each clear block at the beginning of a different path 
( 3 )  ka <~ hb for all blocks a and b such that F contains on(a ,b)  

The first two conditions are identical to those required in EBW, and it is 
easy to check the third condition Thus, JUSt as in EBW, one can check the 
consistency of a VBW formula in time O(n) 

Using the above definition of consistency, all of the results we stated earlier 
for EBW hold for VBW as well, with only minor modifications needed in 
the proofs (we leave these modifications as exercises to the reader) A hst 
of these results appears later, in Section 6 

It is easy to see that the same results also apply to other generalizations 
of EBW that are not as general as VBW For example, for each b we could 
require hb = kb, in which case the blocks may vary in size but pyramids 
and frustums are not allowed. Or for each b we could require kb = 1 and 
h b E {0,  1 }, in which pyramids are allowed, frustums are not allowed, and 
all blocks must be the same size In such cases, the same results still hold 

3Since b's top and bottom faces are both square, it is immaterial whether hb and kb denote 
area, perimeter, or the length of an edge bounding the face 

4Another possible generahzat~on would be to allow more than one block to sit on b s~multa- 
neously In that case, whether other blocks could be placed on b would depend on where a is 
located on b, making the problem much more comphcated 



' Bl,)(ks world ~ttttl hm; ted  tatde capac;tv 

L;mt ted [at)le-Capatttv Blo~/,s it otld (LBW) is like EBW except that 

throe can be at most  h n u m b e r  of  blocks sitting d~rectl) on the table Thus  

m o ~ e ( b  c , d t  has the same precond~tmns as m EBW, plus the r e q m r e m e n t  

that  ~f d = ]- then the currenl  state S mus t  contain less than h a toms  ot 
the form "'on ( ~ , / -  )'" 

G~xen an LBW prob lem H = (1 ,G h) (where h is the s~ze ol the table t  

checking whether  or not B ~s solvable ~s somewhat  more  compl ica ted  than 

for EBW and VBW problems,  but  11 can still be done m low-order  po lynomml  

t~me Below we explain how to test whether  B is sol~able, and how to find 

a (not necessarfl.~ op t imal )  plan lot  B ~f it Js solxable 

(1 I I f  h = 2, then B is solxable if and only if I contains  at most  two 

maximal  stacks G m e n t m n s  no block not m e n n o n e d  m 1 and 1 can 

be t l ans fo rmed  to a state consistent  with G by m o x m g  blocks f rom 

one ot these stacks to the other  I f  this can be done, then ~t xxelds a 

plan of  length at most  t,t and this is an opt imal  plan 

(2) l f h  -> 3 then B lS sol~able f f a n d  onl.x if ( I  G) is a solxable EBW 

prob lem and nmther  1 nor  G contains  mo le  t h a n / l  a toms  of  the form 

"'on( \ ,  T)'" I f  these cond l tmns  aie satisfied, then b x examining  the 
Hasse dm gram  t f ( G )  ~t ~s easy to find a state G' consistent wqth G 

such that  G' contains  at most  h maximal  stacks An> plan for ( I, ( , ' )  
is also a plan fol ( I ,  ( , )  Let 311 11~ 1I;,, be the maximal  stacks in 

(, '  ,ahere h' ~ h We can p rodu t e  a plan fol (I  G ' )  m the following 
manne r  

• Moxe all blocks to t ~ o  temporarx  stacks 7~ and 7~ This  will take 

less than in moves  

• ( o n s t r u c t  the stacks IIi ~11~ 11;;, ~, b~ m o ~ m g  blocks back 

and lorth between 71 and T, to expose blocks that  can be m o v e d  

d~rectlT~ to thmr  final positrons The numbm of  moves  this will 

~eqmre is less than 

tH + {in 1 ) +  + ( a + l ) = m ( m + l ) - l , ( a + l )  

where /, is the total n u m b e r  of  blocks m / I ; , ,  ~ and ~I;,, 
• Mo~ e all r emain ing  blocks in T~ to the top of  I1~, and all remain ing  

blocks m T~ to the top of  M:, creating temporar~ stacks 1[ and 
1,* on top of  11~ and M3, respectp,'el'~ Th~s will take less than /, 

mo~ es 
• ( ' ons t ruc t  /I/,, i and M;,, by mox mg blocks back and forth between 

T~ and T~ to expose blocks that  can be m o v e d  dlrectl3 to thmr  final 
p o s m o n s  The  n u m b e r  of  moves  th~s will iequlre ~s less than 

~ + ¢/,- l ) +  + 1 = / , ( /~  + 1) 
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The length of the above plan is less than m(m + 1 ) + 2m 

The above technique can be modified to produce a plan of length 
O ( m l o g m )  = O(nlogn) by sorting the blocks in Tl and T2 into an appro- 
priate order before starting to construct the stacks M, The details of this 
modification are left to the reader 

LB W PLAN is the following decision problem 

Given an LBW problem (I, G, h) and an integer L > 0, is there 
a plan for this problem of length L or less 9 

Since EBW is a special case of LBW, it is clear that LBW PLAN is 
NP-hard But optimal plans for LBW problems can be found nondetermln- 
istically in polynomial time Thus, LBW PLAN is NP-complete, and it can 
be shown that LBW is no worse than NP-hard These results are proved in 
Appendix D 

Since EBW is a special case of LBW, it is clear that deadlocks are difficult 
to solve in LBW However, we did not investigate whether or not deleted- 
condition interactions are hard to solve in LBW This is still an open 
question 

5 3 Blocks world wtth varymg block stzes and hmlted table capacity 

Varymg Block-Szze, Llmtted Table-Capacity Blocks Worm (VLBW) is like 
EBW, except that it incorporates the features of both VBW and LBW for 
each block b, the top and bottom faces have sizes hb and kb respectively, and 
the table has a capacity hr .  Thus, move(b, c, d) has the same preconditions 
as in EBW, plus the requirement that either kb <~ ha, or else d = T and the 
current state S contains less than h:r atoms of the form "on(x,  T ) "  

VLB W PLAN IS the following decision problem 

Given a VLBW problem ( I ,G,K)  (where K is a list giving the 
table capacity and the sizes of each block's top and bottom faces) 
and an integer L > 0, is there a plan for this problem of length 
L or less 9 

VLBW PLAN includes VBW PLAN as the special case in which hT- >/ the 
total number of blocks Thus since VBW PLAN is NP-hard, so is VLBW 
PLAN 

In EBW, VBW, and LBW, the problem of finding an optimal plan is 
NP-hard, but it can be solved nondetermlniStlcally in polynomial time In 
contrast, there are some VBW problems for which nondetermInlsm will not 
enable us to produce a plan in polynomial time, because the shortest plan 
has exponential length We prove this in Appendix E by showing how to 
reduce the Towers of Hanoi problem to VLBW in polynomial time, in a 
manner that preserves plan length 
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The abo~e consaderatlon suggests that VLBW PLAN is not m NP, but does 
not demons t ra te  at conclusl,~ely Even though one cannot  produce an optamal 

plan nondetermlnlStacall 3 m polynomial  time, l[ still might be possible to 
de termine  the length o f  that plan nonde te rmlmst lca lb  m polynomial  rime 

This can be done m certain special cases, such as the Towers of  Hanm 
problem [ 1 ] and certain generahzat lons  of  it [ 11 ] but we have not explored 

whether  or not it can be done m general Thus, we do not know whether  ol 
not VLBW PLa, N is m NP 

6. Summary of results 

In the previous sections, we ha'~e shown the followmg 

(1) Gaven an Elementary Blocks World (EBW) problem, one can tell In 
t ime O ( n l o g n )  whether  or not it as solvable If  it is sol~able then 
one can produce  in t ime O ( n )  a plan that moves  no block more than 

twice, and in t ime O(n  ~) a plan whose length is no more than twice 
opt imal  

(2) Given an EBW problem and a posm, ,e  integer L the problem of  
answering whether  there ~s a plan of  length L or less ~s NP-comple te  
Thus, the problem of  finding an optimal  plan is NP-hard  However ,  it 
as no worse than NP-hard,  and there is a nondete rmlmstm algorithm 
that can s o b e  it in tame O ( n  3 } 

(3) If an EBW problem contains no deadlocked sets, then one can find an 
optamal plan determinlStlcall~ in tame O(n  3) Thus, the NP-hardness  

of  finding an optimal  plan IS due to deadlocks 
(4) Deadlocks are different f rom de le ted-condmon lnteractmns In pamc-  

ular there are some problems that contain deadlocks but  no deleted- 
condi t ion anteractmns, and other  problems that contain deleted- 

c o n d m o n  interactions but  no deadlocks 
(5) Given an EBW problem, in t i m e  O(H 3 ) one can formulate  additional 

condltaons to add to the goal formula,  to produce a comple teb  spec- 
ified goal state such that any optimal  plan for achm'vlng this state is 
also an opt imal  plan for the original problem Thus, all o f  the abo,~e 
results also apply to PBW (the special case of  EBW m which the goal 
state is completely specified) 

(6) A_ll of  the above results also apply to VBW (a generallzatmn of  EBW 
tn which there can be pyramids,  frustums of  pyramids,  and blocks 
of  different  sazes) Fur thermore ,  the? also apply to other  ~erslons of  
the blocks world mtermedia te  between EBW and VBW (for example 
ff we restrict VBW to disallow frustums, or to allow pyramids but 
reqmre all blocks to ha're the same size) 
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(7) LBW (a generalization of  EBW in which the table capacity is limited) 
requires different planning algorithms than the ones we developed 
for EBW, but its time complexity is not very different In low-order 
polynomial time, one can tell whether or not an LBW problem is 
solvable, and produce a plan of  length O ( n l o g n )  if the problem 
is solvable. Given an LBW problem and a positive integer L, the 
problem of answering whether there is a plan of  length L or less is 
NP-complete, so the problem of finding an optimal plan is NP-hard. 
However, the problem is no worse than NP-hard, and there is a 
nondetermlnlStaC algorithm that can solve it in polynomial time 

(8) In VLBW (a generalization of  EBW which incorporates the features 
of  both VBW and LBW), planning is more difficult Given a VLBW 
problem and a positive integer L, the problem of answering whether 
there is a plan of length L or less is NP-hard There is no non- 
deterministic polynomial-time algorithm to find optimal plans for 
VLBW problems, because there are some VLBW problems in which 
the shortest plan has exponential length 

7. Related work 

The first results on the computational complexity of blocks-world planning 
appeared at AAAI-91 These included our NP-completeness proof for PBW 
PLAN [12], and Chenoweth's NP-hardness proof for a problem we will 
call MPBW PLAN [5] Since PBW is a special case of  MPBW, our result 
subsumed Chenoweth's--but his proof and examples were different from 
ours, and they are worth discussing here because they provide additional 
insight into the nature of  blocks-world planning. 

Multiple-Copy Primitive Blocks World (MPBW) is lake PBW except that 
more than one block can have the same name. M P B W  PLAN is the following 
decision problem 

Given an MPBW problem (I, G) and an integer L > 0, is there 
a plan for this problem of length L or less9 

One of Chenoweth's examples [5, Fig 2] is an example of  a particular 
kind of deleted-condition interaction which is sometimes called "creative 
destruction" [4] In this example, some of the goal conditions are satisfied 
in the initial state, and one can produce a non-optimal plan that preserves 
these conditions, but in order to produce the optimal plan one must undo 
them 

This example is interesting because it suggests that in MPBW, unlike 
PBW, deleted-condition interactions might be hard to solve However, this 
is still an open question, because Chenoweth's proof that MPBW PLAN 
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is NP-hard  does not depend  on dele ted-condi t ion interact ions Instead, 1t 

depends  on a p rob lem somewhat  s imilar  to the p rob lem of  resolwng mult iple  

deadlocks  

Chenoweth ' s  p roo f  o f  NP-hardness  is b~ reduct ion f rom 3SAT Given  

a 3SAT prob lem with m clauses and n ~arlables he generates an M P B W  
prob lem m which L = 3n + 5m + 1 For each t (t = 1 n) ,  there are 

two blocks n a m e d  u,, at the tops ot two large stacks For  each t one of  the 

two u, 's  must  be m o v e d  to the top of  a block n a m e d  ~,,, and the quest ion 

is which u, to mo, ,e  I f  we mo~e  the wrong one then later m the plan we 

will haze  to mo~e  one or more  blocks t emporar i ly  to the table rather  than 

mo~ing  them d l rec tb  to their  final positions, whence the resulting plan will 

be longer than L 

The  abo~e p rob lem is s imilar  to the prob lem of  resolving mult iple  dead-  

locks m PBW In both problems,  if  we make  the wrong choice, then too 

man?  blocks mus t  be m o v e d  temporarf l?  to the table rather  than d~rectly to 

their  final p o s m o n s  Howevel ,  the two prob lems  are not ldenUcal I f  no two 

blocks ha~e the same name,  then for a wrong choice to force us to move  

extra blocks to the table, we must  have blocks which m u t u a l b  block each 
others" p rog re s s - - and  th~s led to our d e f i n m o n  of  deadlock But if  more  

than  one block can have the same name,  then one can find other  ways for 

a wrong choice to force us to mo~e  extra blocks to the t a b l e - - a n d  that is 

what  Chenoweth  dad 

8. Discussion and conclusions 

In this paper,  we have  discussed a well-known planning doma in  which we 

call the E lementa ry  Blocks World  (EBW) We have shown that  in EBW and 
in several  o ther  related planning domains ,  the p rob lem of  finding shortest-  

length plans is NP-ha rd  (but no worse) ,  even if the goal state is complete ly  

specified These results are interesting for two reasons 

(1) 

(2) 

For the special case of  EBW in which the goal state is c o m p l e t e b  

specified, different  p lanning researchers have had conflicting Intu- 

itions about  the dlfficult~ of  f inding shortest-length p l a n s - - a n d  our  

results answer  the quest ion 
Planning in EBW is difficult for an unexpected reason One of  the 
p r imary  roles of  EBW in planning research was in the discovery 
and invest igat ion of  dele ted-condi t ion interact ions such as creat ive 
dest ruct ion and  Sussman ' s  anomaly  [4,15,16,18-21], in which the 
plan for achieving one goal or  subgoal deletes another  goal or subgoal 
However ,  our  results show that  in EBW and several related planning 
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a c 

Inmal state 
I = {clear(b), on (b ,T) ,  

clear(d),on(d,T), 
clear (a), on(a, c), on (c, T)} 

Goal formula 
G = {on(a,b),on(c,d)} 

Fig 7 In this problem, mowng a to b enables us to move c to d 

domains, such Interactions can easily be handled by a simple hill- 
climbing strategy. The complexity of planning in these domains is 
Instead due to the difficulty of resolving multiple deadlocks 

To clarify the significance of deadlocks, we now formulate a domain- 
independent explanation of them 

8 1 Enabhng-condtt ton mteracttons 

Let us define an enabhng-condttton mteractton to be a situation in which 
some action Invoked to achieve one goal G1 also makes it easier to achieve 
another goal G2 For example, in Fig. 7, the action move (a, c, b) achieves the 
goal on(a,  b), but It also has the side-effect of  clearing c, making It easier 
to achieve the goal on (c ,d )  As another example, consider the following 
situation (based on [22]) 

John lives two miles from a bakery and two miles from a dairy 
The two stores are one mile apart John has two goals to buy 
bread and to buy milk 

If John goes to the bakery to buy bread, then this puts him closer to the 
dairy, malong it easier for him to buy milk Hayes-Roth and Hayes-Roth's 
transcript of  someone "thinking aloud" while planning a hypothetical day's 
errands illustrates how people look for such interactions when formulating 
plans [13, p 254]: 

In section 6, the subject asks, "What is going to be the closest 
one 9'' This question Indicates a strategic decision to plan to 
perform the closest errand next in the procedural sequence 

If a problem contains more than one enabhng-condltlOn interaction, then 
it can be difficult to determine which set of actions will produce the best 
plan. For example, if actions A and B both achieve goal G1, and A also aids 
in achieving goal G2, then we might prefer action A to action B--but  if B 
also aids in achieving goal G3, then it may no longer be clear which of A and 
B we should prefer The difficulty of resolving such tradeoffs is illustrated 



in some of  the repeated re~,sions that Ha~es-Roth  and Ha}es-Roth  s subject 
makes  to h,s plan [13, pp 246-247]  

In this paper  we have seen tv~o cases o! mult ,ple  e n a b h n g - c o n d m o n  

mterac t ,ons ,  and m both cases, these interact ions make  it NP-ha rd  to find 
an op t imal  plan 

(1) 

(2) 

Cheno)teth's planning ppohlem [5] which ~ e  discussed in Sect)on 7 

This p rob lem occurs in a version of  the blocks world m which more  

than one block can have the same name  In it, there are two different 

blocks n a m e d  u,, and we can achieve the goal on(u , ,  ¢,,) b} mo~lng 

ei ther  one of  them to ~,, -ks s,de-effects these two possible mo~es  

make  d,fferent  sets o f  goals easier to ach,exe later o n - - a n d  thus ~t Js 

not clear which o f  the two moves  we should prefer  This  same kind 

o f  difficulty occurs for mult iple  ~alucs of  t, making  it NP-ha rd  to 
find an o p n m a l  plan 

Re~olvmg mulltple deadlo~l,s For example  suppose the set o f  blocks 

D, = {a,h} is deadlocked Then before we can move  a and h to 
their  final posmons ,  we must  resolve lhe deadlock b x mov ing  e,the~ 

a or h out of  the wa,~ Now suppose that  a ~s also m some othel 

deadlocked set D2, and t) ~s also m some other  deadlocked set D~ 

Then  mov ing  a out o f  the way will also resolve D2, and mo~ mg h out 

o f  the way will also resolve D~ Thus  these two poss,ble moves  will 

have  s~de-effects o f  making  daffe, ent sets o f  goals eas~er to achieve 

later on, so ~t is unclear which of  of  the two moves  we should preter  

Cs we d,scussed m Sect,on 4 1, m the general case of  this problem ~t 

IS NP-ha rd  to find an o p n m a l  plan 

8 2 Future wopl~ 

Our  results suggest several quest ions for future r e sea rch - - fo r  example  

whether  or not there are any other  impor tan t  kinds o f  goal and subgoal 

interactions,  and  how easily ~anous  kinds of  interact ions m~ght be handled 

m var ious  p lanning  domains  Recent  studies of  the comple \ , t )  ot p lanning 

have  shown that  even w~th very restricted planning operators ,  domain -  
independen t  planning ~s an extremely d,fficult task [3 ,7-9]  But if one 

could character ize what  makes  var ious mte r acnons  east  or hard to handle 
across var ious  classes of  planning domains ,  th~s might make  it possible to 
produce  planners  that,  a l though not complete ly  domain- independen t ,  are 
efficient across significant classes of  planning domains  For example ,  in 
s i tuat ions where the only possible in te racnons  are certain restricted kinds of  
enabllng-condxtion and  de l e t ed -condmon  lnteracnons,  the work descr ibed 
m [24,25] provides  some efficient a lgori thms for merging plans to ach,e~e 

mult iple  goals 
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Appendix A. Theorems and proofs for Section 3.1 

Theorem A.1. Let B = (I, G) be any solvable E B W  problem, and P be any 
plan for B Then there is a plan Q for B such that [Qt ~< [P[ and Q has the 
followmg properttes" 

(1) For every block b whose posmon m I t s  consistent with G, b ts never 
moved m Q 

(2) Q moves no block more than twice 
(3) For every block b that ts moved more than once, the first move lS to 

the table 
(4) For every block b that ts moved to a locatton d ~ T, on (b ,d )  ~ G 
(5) Let b be any block that ts moved more than once Then m the state 

immediately precedmg the first time b ts moved, no block whose 
posttton ts lnconststent wlth G can be moved to a posttton consistent 
wtth G 

Proof. Suppose there is a block b whose position in I is consistent with G 
such that P moves b Below, we prove by induction that there is a shorter 
plan PI for B By applying this argument repeatedly, it follows that there is 
a plan P2 that satisfies property ( 1 ) The Induction proof is as follows 

Base case I contains on(b, T)  Then by removing from P all actions that 
move b, we still have a plan for G 

Inductton step Suppose X contains on(b, c) for some block c, and suppose 
our proof holds for all blocks below b c's position in S must be consistent 
with G, so from the induction assumption, there must be a plan P' for G 
with IP'I ~< IPI, such that c is not moved In P', first remove all actions that 
move b, and then replace all occurrences of c by occurrences of  T Then 
the resulting plan P"  is a plan for G 

Suppose that some b is moved more than twice in P2, and let move(b,  u, v ) 
and move (b, x, y ), respectively, be the first and last actions in P2 that move 
b If we replace them by move(b,  u, T)  and move(b,  T, y) ,  respectively, and 
remove all other actions that move b, then the resulting plan P3 is a plan 
satisfying property (1) such that [P3[ ~< [P2]. By applying this argument 
repeatedly, we can produce a plan P4 satisfying properties (1) and (2) 

Let b be any block that is moved more than once in P4 Then from 
property (2), b is moved exactly twice, so let the two actions that move b 
be Al = move(b,  u ,v )  and A2 = m o v e ( b , v , w )  There are two cases 

Case 1 w = T Then a plan /'5 shorter than P4 can be produced by 
removing A2 and replacing Al with move(b,  u, T)  

Case 2 w ~ T Then replacing A1 by m o v e ( b , u , T )  and A2 by 
move(b,  T , w )  will produce another plan P5 for B having length no greater 



246 \ ¢~upla It 5 \azf 

than that of  P 

By applying the above argument  repea tedb ,  it follows that there Is a plan 

P6 satisfying propert ies ( 1 ), (2),  and (3) 
In P6, for e~er? action A = m o v e ( b , c , d )  such that d #i T,  this is the last 

t ime that b is mo,~ed m P6 Therefore  unless o n ( b , d )  E G, replacing th~s 
action with move(b ,  ~ T)  will produce another  plan /'7 for B having length 
equal to that of  P' By applying this argument repeatedl~ it follows that 
there is a plan Ps satisfying propert ies  ( 1 ) - ( 3 )  and (4) 

Let b be any block m P8 that is moved  more than once, tl = m o , < ( b  ~ 7 )  
be the first actmn that moves b and S be the state lmmedlatel3 prior  to this 
acnon Suppose that in S, there IS a block e whose positron is inconsistent 
with G but  which can be mo,~ed to a position consistent with G Then 
later in Ps there must be an action .4. = m o v e (e  [ , g )  that moves e to a 
position consistent with G There  are two cases 

Case 1 g = T Since it ~s possible to mo~e e m S it 1s cer ta lnb possible 
to mo~e ~t to the table, and this cannot  possibl3 interfere with an~ o f  the 
remaining actions m P~ other  than the action 42 itself Thus, removing 4~ 
from P8 and remsert ing it Just before 4j will produce another  plan P,~ for B 
having length equal to that of  Ps 

Ca.se 2 g ~ T Then from propert~ (4) o n ( e , g )  c G But ff our 
supposit ion is true that m S e can be moved  to a posit ion consistent w~th 
G. then it must be that g 's posit ion in S is consistent w~th G It follows 
from proper ty  (1) that in the port ion of  Pb that comes after S. neither g 
nor  any of  the blocks below it ~s mo,,ed Therefore.  moving e from f to 
g before the actmn move(b . c  T)  cannot  posslbb interfere with an> of  the 
remaining actions m P~ other  than the action 4~ itself Therefore.  removing 
the action A2 from Ps and reinsertmg it just before 4~ wltl produce another  

plan P~ for B haxlng length equal to that of  P8 

By applying the above argument  repeatedly, it follows that there is a plan 
Q sansf~ylng p r o p e m e s  ( 1 ) - ( 5 )  In none of  the above steps did we Increase 

the number  of  actions in the plan, so it follows that IQI ~ IPI 

CorollaD A.2. .4 n ~' plan Q ~atts/)'lng pl opo  tte~ ( 1 ) -  ( 5 ) also hm 

m - q  ~ [QI ~ < 2 ( m - q )  

~,here m t s  the total number o! block~ and q t3 the number o[ bloc/,s in I 

whose postttons ate consistent ~,tth G 

Proof. Every block whose positron in I is inconsistent w~th G must be moved  
at least once There  are m - q  such blocks, so IQ[ >/ m - q  But Q moves 
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no block whose position in I is consistent w~th G, and the other blocks it 
moves at most twice Therefore, [QI < 2(m - q) [] 

Corollary A.3. B has an opttmal plan satlsfymg properties ( 1 )- (5) 

Proof. Let P be any optimal plan for B From Theorem A 1, [QI ~< [P[, so 
Q is also optimal [] 

Corollary A.4. All plans produced for B by Solve-EBW and Solve-EBW- 
Optimally sattsfy properties (1) - (5)  

Proof. This follows immediately from an examination of the algorithms' 
steps [] 

Corollary A.5. Solve-EBW-Optlmally wtll find an optimal plan for B 

Proof. Solve-EBW-Optlmally generates every plan for B satisfying proper- 
ties (1) - (5)  Thus from Corollary A 3, Solve-EBW-Optlmally will find an 
optimal plan [] 

Corollary A.6. The length of  an optimal plan for B ts m - q + r, where r ts 
the mmtmum number of ttmes that Step 7 ts executed zn any of the execution 
traces of Solve-EB W-Opttmally 

Proof. Immediate from Corollary A 5 [] 

Appendix B. Theorems and proofs for Section 3.2 

Lemma B.1. EBW PLAN is m NP 

Proof. The following nondetermmlstlc algorithm solves EBW PLAN in poly- 
nomial time 

Algorithm Solve-EBW-PLAN(I, G, L). If Solve-EBW-Optlmally(I, G) finds 
a plan P such that IPl ~< L, then return True Otherwise return False [] 

Definition B.2. If ( V, E)  is a digraph, then without loss of generality we may 
assume that V is the set of  integers { 1, 2, . ,p} for some p If (V, E, k)  is 
an Instance of FEEDBACK ARC SET, then we define M ( V, E, k ) to be the 
following Instance ( I ,G,L)  of  EBW PLAN, where L = 2p 2 + 2p + k, I and 
G are as defined below 
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1- 2 

The digraph 
I = {1 2} and 
k = {~1 2)~2 I)} 

I O 2  - 2  ( ) ~ 2 -  1 

,o--7 
I O 0  F 
1 10 2OO [ 

111 

112 

113 213  

The mmal stale I 

112 

all othe~ 

blocks are 

on the table 

The goal state (; 

Fig B 1 Adlgraph 11 b)  and lhe EB~ problem II ~,t productd b\ l l ( l  /_ /, 

• For each ~, 6 I , I contains a stack o f  2p + 3 blocks, whose names 

(from the top o f  the stack to the bo t tom)  are [ v , O , p ] ,  [ c , O  p - I I 
, [ v , O , O ] ,  [ v , I ,O]  , [c,1 p ] , a n d  [ v , I , p +  1] ( fo rexample ,  see 

Fig B 1 ) Thus,  I consists of  p stacks of  2p + 3 blocks each for a total 
o f  2p 2 + 3p blocks 

• F o r e v e ~  edge ( . ~ , v ) m l :  ( i c o n t a l n s t h e a t o m o n ( [ x  O , ~ ] , [ v , l  ~])  

For  every other  block h men tmned  m I, G contains o n ( b , / - )  For  
ever~ block b mennoned  in I such that there is no block ~ such that 
o n ( b , c )  c G, G contains c lear(b)  Thus, G specifies a state consisting 
of  [E t stacks o f  two blocks each, and 2p 2 + 3p - [E] blocks sitting on 

the table by themsel'ves 

M ( I "  E, k)  can easily be computed  in po l )nomml  t ime 
For  the rest of  this sectton, we let ( I E,  h ) be any mstance of  FEEDBACK 

ARC SET, and ( I , G , L )  = M ( I  E , h )  Note that in I, the only blocks that 

are m their  final positrons are [1 l ,p  + 1] [2 l ,p  + 1], [p I , p  + 1] 
Thus,  there are 2p 2 + 2p blocks that are not in their  final positrons 

Lemma B.3 Fo; ea¢/7 s;mple  ~ l e  ;n ( I \  E)  the;e ;s a co;;espond;n~ dead- 

loched set In (1, G) a n d  v;~e ve;~a 

ProoL Suppose (I', E )  contains a simple cycle (~,~, ~'2 , c v, ~'~ ) Then the 
edges (t'l t,2), (~'2,~'~) , (v; , , t ' l )  are in E,  so in G, we have [v l ,O  v3] 
on [ v > I , t ' l ] ,  [v2,O, v3] on [v~, l ,  v2], , and [c;, O vl] on [v l , I ,  cv] But 
m I, we have [t'l O, v2] above [Vl, l , l 'p]  [1'2, O ~'~] above [c2,1 ~'1] 
and [Cp O, vl] above [t,p,l ,  v;,_l] Thus the set 

{[U 1 O 1'2], [12, O I'~], [ / ' p , O , l ' l I }  
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xs deadlocked 
Conversely, suppose a set of blocks D is deadlocked Then in G, each block 

b ~ D must be on some other block c But from the definition of (I, G), 
this means there are v and w such that b = [v ,O,w]  and c = [w, I ,v]  
Thus, there are z l, z2, , zp such that 

D = {[zl ,O,  z2], [z2,O, z3], , [Zp, O, z1]} 

and G contains the following stacks [Zl, O,  2 2 ] on [ z2, I, zi ], [ z2, O,  Z 3 ] on 
[Z3, I, z2] ,  , [zp, O, zl]  on [zl ,I ,  zp] From the definition of (I ,G),  this 
means that (z l ,z2,  ,Zp, Zl) is a simple cycle in (V ,E)  [] 

As an example of Lemma B.3, note that in Fig B 1, the simple cycle 
( l, 2, 1 ) in (V, E)  corresponds to the deadlocked set of blocks 

{[1,0,21,  [2,0,  11} 

in (I, G) 

Lemma B.4. (I, G) has a plan o f  length L or less t f f  (V ,E)  has a feedback 
arc set o f  stze k or less 

Proof. ( ~ )  Suppose ( I ,G)  has a plan of length L or less Then from 
Corollary A 3, there is an optimal plan P of length L or less that satisfies 
the properties of Theorem A 1 Let T be the set of all blocks that are moved 
more than once in P ,  and U be the set of all blocks that are moved exactly 
once Then, from Theorem A l, each block in T is moved exactly twice 
(once to the table and once to ItS final position), so ]PI = 2]TI + IUI But 
since 2p 2 + 2p blocks are not in their final positions, IT] + IU] = 2p 2 + 2p 
Therefore, 

IT[ = [P [ -  (2p z + 2p) ~< L -  (2/) 2 -q- 2/3) = k 

For each deadlocked set D, P resolves the deadlock by moving some 
block b E D to the table From the definition of deadlock, b's final po- 
sition must be on top of  some other block, so b 6 T From the proof of 
Lemma B3, b = [v ,O,w]  for some edge (v ,w)  ~ E Thus, T contains 
blocks [v l, O, w i ], , [v s, 0 ,  w s ] such that every deadlocked set D contains 
at least one of these blocks From the proof of Lemma B 3, it follows that 
every cycle in (V ,E)  contains one of the edges (v l ,wl) ,  , (vj, ws), so 
(V ,E)  has a feedback arc set of size j ~< IT I ~< k 

( ~ )  Suppose (V ,E)  has a feedback arc set 

F ..~ ((Vl,?/~l)  , ,(~)q, Wq)} 
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such that  q ~< /, In the ope ranon  of  S o l ~ e - E B W - O p t l m a l b ~ l  Gt  Step ~, 

will never  be executed,  because G specifies the p o s m o n  of  ever~ block 

Thus,  since I contains  2p 2 + 2p blocks that are not m their  final pos~tlons, 

Step 5 o f  So lve -EBW-Opt lma lb  will be executed 2p ~ + 2p t imes Each n ine  

So lve -EBW-Opt lma lb  enters Step 7 the set of  all blocks t~ that are at thc 

top o f  their  stacks and  are not m their  final p o s m o n s  form one or more  

deadlocked sets F rom L e m m a  B 3, each such deadlocked set D corresponds  

to a s imple c~cle in ( I ,  E) ,  so at least one block [~ ~ O, tr,] ¢ D corresponds  

to an edge (t',, tv, ) ¢ k But mox mg [~':, O, tt '  ] to the table will resolx c the 
deadlock Thus  there is an execut ion trace tbr  Sol~ e - E B W - O p n m a l b  ( I ,  G) 

m which all deadlocks  are resolved b~ m o ~ m g  to the table blocks m the set 

{[¢,1,0,11,1], ,[t'q,O, tuq]}, ,~hence Step -7 is executed at most  q t imes 

Thus,  one of  the execut ion traces for So l~e-EBW-Opnmal ly  finds a plan P 
of  length 

[P/ ~< 2P -~ + 2p + q ~ 2p-' + 2p + / ,  = L [] 

Theorem B.5. EBI~ ~ P L A N  16 A'P-complete 

Proof. L e m m a  B 4 shows that  M reduces F E E D B A C K  ~.RC SET to EBW 

P L A N  Since M runs in p o b n o m m l  nine,  th~s means  that  EBW PLAN is 

NP-ha rd  But L e m m a  B 1 shows that  EBW PLAN ~s m NP Thus  EBW 
PLAN is NP-comple t e  [] 

Theorem B.6. k m d l n g  opmnal  plans /ol EBI i  p~oblem3 is NP-hard, but no 

wOt ~e 

Proof. I f  one can find an op t imal  plan for an EBW problem,  then for any 

L one can l m m e d l a t e b  tell whether  there is a plan of  length L or less Thus  

f rom T h e o r e m  B 5, f inding an optxmal plan is NP-hard  

To  prove  that  f inding o p n m a l  plans m EBW is no worse than NP-ha rd  
we show that  ~t is Turmg-reduc~ble to EBW PLCN 5 Suppose we have an 

oracle which, gwen  an instance (I,  G. L)  of  EBW P L 4 N ,  tells whether  the 

answer  ~s yes or no Then  given ant  EBW prob lem B = ( I  G),  we can 
find the length L of  the o p u m a l  plan for B b~ repeatedly guessing a value 

for L and asking the oracle to solve (I  G , L )  Once we know L we can 
ldenufy the first act ion m an opUmal  plan by repeatedly guessing a first 
action 4 and asking the oracle to solve (I' ,  G, L - 1 ), where I '  ~s the state 
p roduced  by applying 4 to I Once we have  identif ied the first move ,  we 
can identify the subsequent  moves  m a s~mflar manne r  This  will revolve at 

mos t  po lynomla l ly  m a n y  calls to the oracle [] 

~For more details on ho~ to do this kind ot proof  we reftr the reade1 to [ I0  pp 115-1171 
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Appendix C. Theorems and proofs for Section 3.3 

Theorem C.1. Let (I, G) be any solvable EBW problem Then every execution 
trace of Solve-EBW-Optzmally(I, G) produces the same final state 

where 

G' = G1 u G2 U G3 U G4, 

GI = {on(b,c)  I on(b ,c )  E G}, 

G2 = {on(b,c)  6 I Ib's posttton in I zs consistent wtth G}, 

G3 = {on(b ,T)  I b's posttlon tn I is mconststent with G 
and for all y, on(b ,y )  ¢ G}, 

G4 = {clear(b) [ b ts the top of a maxzmal stack in G1 to G2 o G3} 

Proof. Let G' be a final state produced by any of  the execution traces of 
Solve-EBW-Optlmally(I, G) For each block b, G' contains exactly one atom 
of  the form "on(b,y)" There are three possibilmes for this atom" 

(1) If  on(b ,c )  E G, then y = c, for otherwise G' xs inconsistent with G 
(2) If  b's lmtial position is consistent with G, then Solve-EBW-Optlmally 

never moves b, so y xs the block b was on in I 
(3) If  b's initial position is inconsistent with G but G contains no atom 

of the form "on(b ,x ) " ,  then Solve-EBW-Optimally moves b to the 
table m Step 5 and never moves b again, so y = T. 

From the above, it follows that the set of  all "on" atoms in G' is G l U G2 U G3 
The clear blocks in G' are precisely those blocks that are at the tops of 
maximal stacks in G', so the set of  all "clear" atoms in G' is G4 Thus, 
G' = Gl t3 G2 U G3 t.J G4 [] 

Corollary C.2. Solve-EBW(I, G) produces G' m time O(n3), and G' ts con- 
ststent wtth G 

Proof. The execution trace of  Solve-EBW(I, G) is identical to one of  the 
execution traces of  Solve-EBW-Optlmally(I,G), and Solve-EBW runs in 
time O(n 3) Thus Solve-EBW(I, G) produces G' in time O(n 3) Thus G' is 
consistent with G, because Solve-EBW(I, G) does not exit until its current 
state is consistent with G [] 

Corollary C.3. PBW PLAN is NP-complete 

Proof. From Corollary C 2, It follows that Solve-EBW can be used to reduce 
any instance ( I ,G,L)  of  EBW PLAN to an instance (I ,G' ,L)  of  PBW 
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PLAN in polynomsal t ime Thus PBW PLAN is NP-hard  Smcc e~ery PBW 
problem is an EBW problem, tt follows from Lemma B 1 that PBW PLAN 
is m NP  [] 

Theorem C.4. Fmdmg optimal p/an~ lot PBI4 problems ts NP-hmd, but no 
WOt 5 C 

Proof. The p roof  o f  this theorem ~s basically the same as the proof  of  
Theorem B 6 The details are left to the reader  [] 

Appendix D. Theorems and proofs for Section 5 2 

Theorem D.1. L B W  PLAN t3 NP-conlplete 

Proof. Given any EBW problem (I,  G) one can easily produce an eqmvalent  
LBW problem (I, G, I, ) by letting k be the total number  of  blocks m I Thus 
since EBW PLAN is NP-hard,  so is LBW PLAN 

To see that LBW PLAN is in NP, consider the following nondetermmls t lc  

algori thm 

Algorithm Solve-LBW-Optimally(I, G, k). 
Step 1 S -- I 
Step 2 If  S is consistent w~th G, then exit w~th success 
Step 3 If  Step 4 has been executed more  than m ~ + 3m times, then exit 

with failure 
Step 4 Nondetermmlst lca l ly  select any clear block b whose poslt~on is 

not consistent  with G, and nondetermmlst~cally choose where to mo~e it 

Then  go to Step 2 

For  any LBW problem (I, G, I~ ), Sol'~e-LBW-Optlmally wdl find an opti- 
mal plan P nondetermlnlSt~cally in polynomml t~me One can tell whether  
or not there is a plan of  length L or less by checkxng whether  or not 

let-< L [] 

Theorem D.2. Fmdmg opttmal plans Jot L B W  problems t3 NP-hatd but no 
~ o t s e  

Proof. The  p roof  of  thas theorem is basically the same as the proof  of  
The o rem B 6 The details are left to the reader [] 
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Appendix E. Theorems and proofs for Section 5.3 

The Towers of Hanoi problem can be descnbed as follows there are p 
disks dl,d2, • ,dp, and three locations P,,P2,P3. Initially, all the disks are 
at location Pl, with dl on d2 on on dp The goal is to get all the disks to 
P3 by moving them one at a time, with the restriction that one cannot put a 
disk d, onto a disk dj unless t < j It is well known (for example, see [ 1 ] ) 
that the shortest plan for solving this problem has length 2 p - 1 

Theorem E.1. In polynomial time, the Towers of  Hanoi problem can be 
reduced to VLBW m a manner that preserves plan length 

Proof. Suppose we are given an instance H of the Towers of Hanoi problem 
in which there are disks dl,d2, ,dp We will map this into the VLBW 
problem B defined below 

B contains blocks bl, b2, , bp corresponding to H's disks, and three more 
blocks cl, c2, c3 to represent the locations Pl,P2,P3, respectively To insure 
that a block b, can be put onto a block bj if and only if t < j ,  we need to 
make kb, < hbj if and only if l < j We satisfy these requirements by setting 
hb, =kb, = t f o r l  = 1,2, ,p, and setting hc, =kc, = p + l  f o r l - -  1,2,3 
To insure that there can never be more than three maximal stacks, we let the 
table capacity be h~- = 3 The initial state contains three maximal stacks 

bl on b2 on o n  bp-i on bp on cl, 

c2, 
C3 

The final state also contains three maximal stacks 

Cl, 

c2, 
bl on b2 on o n  bp_! o n  bp on C 3 

Given H, one can produce B in polynomial time Clearly, each plan for 
H corresponds move-for-move to a plan for B, with the optimal plan for H 
corresponding to the optimal plan for B [] 
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