Learning to Do HTN Planning

Okhtay Ilghami and Dana S. Nau
Department of Computer Science
and Institute for Systems Research
University of Maryland
College Park, MD 20742-3255
USA
{okhtay, nau} @cs.umd.edu

Abstract

We describe the HDL algorithm, which learns HTN
domain representations by examining plan traces pro-
duced by an expert problem-solver. Prior work on learn-
ing HTN methods required everything to be given in
advance except for the methods’ preconditions, and the
learner would learn the preconditions. In contrast, HDL
has no prior information about the methods.

In our experiments, in most cases HDL converged fully
with no more than about 200 plan traces. Furthermore,
even when HDL was only halfway to convergence, it
usually was able to produce HTN methods that were
sufficient to solve more than 3/4 of the planning prob-
lems in the test set.

Introduction

A big obstacle to the development of planning systems for
practical applications is the difficulty of obtaining domain-
specific knowledge to help guide the planner. Such infor-
mation is essential to provide a satisfactory level of perfor-
mance (e.g., speed of planning, speed of convergence, per-
centage of problems solved correctly, and so forth), but it
can be difficult to get domain experts to spare enough time
to provide information detailed and accurate enough to be
useful, and it can be even harder to encode this information
in the language the planner uses to represent its input. Con-
sequently, it is important to develop ways to learn the neces-
sary domain-specific information automatically. In this pa-
per, we present an eager and incremental learning process
for learning such information that is supervised by an expert
who solves instances of the problems in that domain.

This paper focuses specifically on Hierarchical Task Net-
work (HTN) planning, in which a planner formulates a
plan by recursively applying methods that decompose fasks
(symbolic representations of activities to be performed) into
smaller subtasks until primitive tasks are reached that can be
performed directly by applying classical planning operators.

This paper presents a new algorithm called HDL (HTN
Domain Learner) which overcomes some significant limita-
tions of previous work on learning HTN domains:

e Previous work on learning HTN domains (Ilghami et al.

2005) required all information about the methods except

Copyright (© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Héctor Muiioz-Avila
Department of Computer Science and Engineering
Lehigh University
Bethlehem, PA 18015
USA
munoz@cse.lehigh.edu

for their preconditions to be given to the learner in ad-
vance, so that the only thing for the learner to learn was
the methods’ preconditions. In contrast, HDL starts with
no prior information about the methods.

e In (Ilghami et al. 2005), each input plan trace (i.e., the
tree representing the method instances used to decompose
an initial task list all the way down to primitive tasks)
needed to contain a lot of information so that the learner
could learn from it: At each decomposition point in a plan
trace, the learner needed to have all the applicable method
instances, rather than just the one that was actually used.
HDL does not need most of that information. At each de-
composition point, it only needs to know about one or at
most two methods: The method that was actually used to
decompose the corresponding task, and one (if there are
any) of the methods that matched that task but whose pre-
conditions failed (to serve as a negative training sample).
We present experimental results that reveal the speed with

which HDL converges in different situations. In most cases

HDL needed no more than about 200 plan traces to converge

fully, and in some cases it needed only about 70 plan traces.

Furthermore, in every case that we examined, even when

HDL was only halfway to convergence, it was able to pro-

duce HTN methods that were sufficient to solve about 3/4 of

the problems in the test set.

Algorithm

The pseudo-code of HDL is given in Figure 1. Its subrou-

tines are as follows:

e ComputeState(O,S,I1,loc) computes the world state af-
ter applying the first loc operators of the plan trace II with
the initial world state .S using the operators in O.

o ExtractRelevant(S, I) where S is a normalized' state
and [is a task list. It returns predicates in a given normal-
ized state that can potentially be relevant to the particular
instance of a method currently being considered.?

e CE(v,5,b) is an implementation of the Candidate Elimi-
nation algorithm on the version space v with training sam-

"HDL requires the same notion of normalization that was used
in (Ilghami et al. 2005). Normalization replaces constants in dif-
ferent training examples that play the same role with one variable
in order to generalize the input facts.

2See (Ilghami et al. 2005) for more details.

Given: O, the set of operators in an HTN domain D = (T, M, O)
I={IL,...,I,}, asetof task lists
S ={5,...,5,}, aset of world states
IT = {II4,...,II,}, a set of plan traces, one per HTN planning problem (I;,S;,D)
Returns: M, a set of learned methods
V'S, a set of version spaces each of which represents the precondition of one of the learned methods
HDL(O,1,5,10)
M=0,VS=0
FOR each plan trace I1; € 11
FOR each non-leaf or failure node n in II;
Let loc be the number of leaf nodes that occur before n
S; = ComputeState(O,S;,11;,loc)
IF n is an non-leaf node that decomposes a non-primitive task NT to a task list (¢1,. .., tx)
Let 6~ be the normalizer for this decomposition
IF there is no method that decomposes (NT)0~! to (t1, ...
Create a new method m that does this decomposition
Initialize a new version space v that corresponds to m

,£1,)0~! THEN

M=MUJ{m},VS=VS{ {v}

RemoveDeadMethods(O, M,V S)
RemoveRedundantPreconditions(O,M,V S)
RETURN {M,V S}

FOR each applicable method in n with version space v and normalizer 6!
CE(v,ExtractRelevant(Normalize(S!,0—1),I), TRUE)

FOR each inapplicable method in n with version space v and normalizer !
CE(v,ExtractRelevant(Normalize(S!,0—1),I), FALSE)

Figure 1: The HDL Algorithm

ple S. The third argument is a boolean variable determin-
ing wether S is a positive or negative training sample.

¢ RemoveDeadMethods(O,M,V'S) removes methods
that are dead (i.e., methods that can never be used to solve
any planning problem because some of the preconditions
of the nodes in the decomposition tree produced by their
application can not be satisfied). Note that since each
method’s version space can potentially represent more
than one candidate for what that method’s precondition
can be, this function should try all the possible combina-
tions of related methods before labeling a method as dead.

e RemoveRedundantPreconditions(O,M,V'S) removes
all the redundant preconditions of methods (i.e., the pre-
conditions that are always verified in the lower levels of
the task hierarchy and therefore are not needed in the
higher levels). Since each method’s version space can
represent more than one candidate for that method’s pre-
condition, this function should try all the possible combi-
nations of related methods before labeling a precondition
as redundant.

HDL starts by initializing the set of known methods M to
an empty set. Then, for each non-leaf node n of each given
plan trace, it checks if the decomposition associated with n
is already presented by a known method. If not, HDL creates
a new method and initializes a new version space to repre-
sent its precondition. Then, positive and negative training
samples are extracted from non-leaf or failure nodes in each
plan trace, and corresponding version spaces are updated.
Note that in the normal case, each such node must provide
us with one positive and one negative training sample. There
are two exceptions to this: First, in some cases there is no
negative training sample associated with a node (i.e., all the

methods are applicable, thus giving HDL potentially sev-
eral positive and no negative training samples). Second, in
case of failure nodes, there is no positive training sample
associated with the node (i.e., none of the methods are ap-
plicable, thus giving HDL potentially several negative and
no positive training samples). After updating the appropri-
ate version space for all training samples, the dead methods
and redundant preconditions are removed in that order (The
order is important since the removal of dead methods can
produce redundant preconditions).

Empirical Evaluation

There always exists a finite training set that causes HDL to
converge to a single domain consistent with the training set.
In this Section, we discuss our experiments to figure out how
many plan traces are needed to converge on average.

Two domains are used in our experiments: The first one
is the blocks world, where our HTN implementation, with
6 operators and 11 methods, is based on the block-stacking
algorithm discussed in (Gupta & Nau 1992). The second
domain is a simplified version of Noncombatant Evacuation
Operation (NEO) planning (Mufioz-Avila et al. 1999), with
our HTN implementation of 4 operators and 17 methods.

NEO domains are usually complicated, requiring many
plan traces to learn them. It is difficult to obtain these plan
traces, and even if we had access to the real world NEO plan
traces, human experts would need to classify those traces
and assess the correctness of the concepts learned by HDL,
a very time-consuming process. To overcome this problem,
we decided to simulate a human expert. We used a correct
HTN planner to generate planning traces for random prob-
lems in our domains. Then we fed these plan traces to HDL

180 -+
160 -

Number of Blocks, Blocks World

s Needed

P N Y

o N b

o O O
L

Plan Traces N
N A O O
O O O O
L L L L

o

1600
1400
=l

Need
- -
o N
o O
o O
Il Il

800
600

Plan Traces Ne:

400 -
200 +

1 2 3 4 5 6 7 8 9 1 11
Training Set, NEO Domain

Figure 2: Number of plan traces needed to converge in Blocks world(left) and NEO domain (right).

16
14
12
10

~ P=3/12
1 = P=5/12
- P=7/12
- P=9/12

Methods Learned
[o4]

N A O
I

10 40 70 100 130 160 190 220 250 280 310
Plan Traces Given, NEO Domain

100% -
90% -
£280% -
270% -

o
& 60% -
S 50% -
S40% A

[
$30% -

D
& 20% -
10%
%

- P=3/12
= P=5/12
- P=7/12
—~P=9/12

10 40 70 100 130 160 190 220 250 280 310
Plan Traces Given, NEO Domain

Figure 3: Speed of convergence for different training sets in NEO domain (left), and percentage of problems SHOP could solve
using the methods that had already converged (right). The total number of methods in the domain is 17.

and observed its behavior until it converged to the set of
methods used to generate these plan traces.

The HTN planner we used is a slightly modified version
of SHOP (Nau et al. 1999). SHOP, whenever more than
one method is applicable, always chooses the method that
appears first in its knowledge base. Since in our framework
there is no ordering on the set of methods, we changed this
behavior so that SHOP chooses one of the applicable meth-
ods randomly at each point. We also changed the output of
SHOP from a simple plan to a plan trace.

Generating the Training Set

For blocks world, we generated 4 sets of random problems
with 100, 200, 300, and 400 blocks. We generated initial and
goal states block by block, putting each new block randomly
and uniformly onto an existing clear block or on the table.
To generate a random NEO problem, every possible state
atom was assigned a random variable, indicating whether
or not it should be present in the initial world state (e.g.,
whether there should be an airport in a specific city), or
what value its corresponding state atom should have (e.g.,
whether the evacuation is to take place in a hostile, neutral,
or permissive environment). Our preliminary experiments
suggested that the values of most variables did not signifi-
cantly affect the number of plan traces needed to converge.
The one exception was the variable indicating if there is an
airport in a city. Therefore, we decided to assign a uniform
distribution to all random variables other than this variable,
and to perform experiments with several different values of
this variable, to which we will refer as P in this Section. We

2 11
conducted 11 sets of experiments, with P = 12, 501

Results

The results in this Section are calculated by averaging the re-
sults of 10 different randomly-generated training sets. There
was little variation in the results of each individual run: The
difference between each such result and the average of the
results (reported here) was never more than 10%.

Figure 2 compares the number of plan traces HDL needed
to converge in our two domains. The number of plan traces
needed by HDL to converge in Blocks World decreases as
larger problems are given as training samples (because more
information is provided in the plan trace of a larger prob-
lem). On the other hand, the number of plan traces needed to
converge in NEO domain is minimized when the probability
P of a city having an airport is approximately 50% (i.e., the
6th training set). When P is close to O (i.e., 1st training set),
the hard-to-learn methods are those whose preconditions re-
quire cities to have airports, because the cases where these
methods are applicable somewhere in given plan traces are
so rare that the learner cannot easily induce their precondi-
tions. When P is close to 1, the methods that are hard to
learn are the ones that do not require cities to have airports.
The probability that there is an airport whenever these meth-
ods are applicable is high. As a result, the learner cannot
induce that an airport’s presence is not required.

The first graph in Figure 3 shows the number of methods
fully learned as a function of the number of input plan traces
when P = 12, 152, 172, 15- When P is close to 0, methods
that do not use airports are more likely to be used in the
training set, which makes them easier to learn. If we believe
that the problems in the test set follow the same distribution
as the problems in the training set, it can be argued that these

quickly-learned methods are the most useful ones and there-
fore the most important to solve the problems in the test set.
The same argument can be made when P is close to 1 with
the methods that require cities to have airports.

To test our hypothesis that HDL learns the more use-
ful methods faster, we conducted another experiment. In
this experiment, HDL tries to solve problems in the NEO
domain before complete convergence is achieved. In or-
der to solve the problems, HDL used only methods whose
preconditions were fully learned, omitting all other meth-
ods from the domain. The results of this experiment when
P =2, 32 I, -2 are shown in the second graph in Figure
3. In the cases where learning was slower, i.e. P = 1—32, %,
almost 90% and 75% of problems can be solved respectively
using less than 150 plan traces although with 150 plan traces
there are respectively 3 and 7 methods out of a total of 17 yet
to be fully learned, and learning the entire domain requires
more than 200 plan traces in one case and 300 in another (see
first graph in Figure 3). This suggests that the more useful
methods have already been learned and the extra plan traces
are needed only to learn methods that are not as common.
It also suggests that HDL can be useful in solving a lot of
problems long before all methods are learned.

Related Work

HDL uses version spaces to learn domains. There are, how-
ever, other techniques, such as Inductive Logic Program-
ming (ILP) that have been used before to learn hierarchi-
cal domain knowledge. Reddy & Tadepalli (1997) introduce
X-Learn, a system that uses a generalize-and-test algorithm
based on ILP to learn goal-decomposition rules. These (po-
tentially recursive) rules are 3-tuples that tell the planner
how to decompose a goal into a sequence of subgoals in a
given world state, and therefore are functionally similar to
methods in our HTN domains. X-learn’s training data con-
sists of solutions to the planning problems ordered in an in-
creasing order of difficulty (authors refer to this training set
as an exercise set, as opposed to an example set which is
a set of random training samples without any particular or-
der). This simple-to-hard order in the training set is based on
the observation that simple planning problems are often sub-
problems of harder problems and therefore learning how to
solve simpler problems will potentially be useful in solving
more difficult ones. Langley & Rogers (2004) describes how
ICARUS, a cognitive architecture that stores its knowledge
of the world in two hierarchical categories of concept mem-
ory and skill memory, can learn these hierarchies by observ-
ing problem solving in sample domains. Garland, Ryall, &
Rich (2001) use a technique called programming by demon-
stration to build a system in which a domain expert performs
a task by executing actions and then reviews and annotates
a log of the actions. This information is then used to learn
hierarchical task models. KnoMic (van Lent & Laird 1999)
is a learning-by-observation system that extracts knowledge
from observations of an expert performing a task and gener-
alizes this knowledge to a hierarchy of rules. These rules are
then used by an agent to perform the same task.

Conclusion and Future Work

HDL is an algorithm that learns HTN domains so that they
can later be used to solve problems in those domains. Its
input consists of plan traces produced by domain experts as
solutions to HTN planning problems. Given enough plan
traces as input, HDL can learn an HTN domain that is equiv-
alent to the one that presumably was used by the expert.

In our experiments in the NEO domain, HDL learned the
most useful methods relatively quickly. This enabled it to
solve many planning problems before it had fully learned all
of the methods, using only the ones it had fully learned and
ignoring the others. For example, after only about half the
traces needed for full convergence, HDL produced methods
capable of solving about 2/3 of the problems in our test sets.

HDL is incremental: It starts to learn approximations of
the methods long before it fully learns any of them. In many
cases it should be possible, instead of ignoring the partially-
learned methods, to use these approximations to solve plan-
ning problems. We believe that by making appropriate mod-
ifications to both HDL and the HTN planner, it will be pos-
sible to start using HDL'’s output almost immediately. Our
future work will include developing techniques to do this.

Acknowledgments
This work was supported in part by ISLE subcontract

Transfer Learning program, UC Berkeley subcontract
SA451832441 to DARPA’s REAL program, and NSF grant
[IS0412812. The opinions in this paper are ours and do not
necessarily reflect the opinions of the funders.

References
Garland, A.; Ryall, K.; and Rich, C. 2001. Learning hi-
erarchical task models by defining and refining examples.
In Proceedings of the Ist Int’l Conference on Knowledge
Capture, 44-51.
Gupta, N., and Nau, D. 1992. On the complexity of blocks-
world planning. Artificial Intelligence 56(2-3):223-254.
Ilghami, O.; Nau, D. S.; Mufoz-Avila, H.; and Aha, D. W.
2005. Learning preconditions for planning from plan traces
and HTN structure. Computational Intelligence 21(4):388—
413.
Langley, P., and Rogers, S. 2004. Cumulative learning of
hierarchical skills. In Proceedings of the 3rd International
Conference on Development and Learning.
Muinoz-Avila, H.; McFarlane, D.; Aha, D. W.; Ballas, J.;
Breslow, L. A.; and Nau, D. S. 1999. Using guide-
lines to constrain interactive case-based HTN planning. In
Proceedings of the 3rd International Conference on Case-
Based Reasoning and Development, 288-302.
Nau, D. S.; Cao, Y.; Lotem, A.; and Muiioz-Avila, H. 1999.
SHOP: Simple hierarchical ordered planner. In Proceed-
ings of the 16th International Joint Conference on Artificial
Intelligence, 968-973.
Reddy, C., and Tadepalli, P. 1997. Learning goal-
decomposition rules using exercises. In Proceedings of the
14th Int’l Conference on Machine Learning, 278-286.
van Lent, M., and Laird, J. 1999. Learning hierarchical
performance knowledge by observation. In Proceedings of
the 16th Int’l Conference on Machine Learning, 229-238.

