
Controlled Search over Compact State Representations,
in Nondeterministic Planning Domains and Beyond

Ugur Kuter and Dana Nau
University of Maryland,

Department of Computer Science and
Institute for Systems Research,

College Park, Maryland 20742, USA

Abstract

Two of the most efficient planners for planning in nondeter-
ministic domains are MBP and ND-SHOP2. MBP achieves
its efficiency by using Binary Decision Diagrams (BDDs) to
represent sets of states that share some common properties, so
it can plan for all of these states simultaneously. ND-SHOP2
achieves its efficiency by using HTN task decomposition to
focus the search. In some environments, ND-SHOP2 runs
exponentially faster than MBP, and in others the reverse is
true. In this paper, we discuss the following:
• We describe how to combine ND-SHOP2’s HTNs with

MBP’s BDDs. Our new planning algorithm, YoYo, per-
forms task decompositions over classes of states that are
represented as BDDs. In our experiments, YoYo easily
outperformed both MBP and ND-SHOP2, often by sev-
eral orders of magnitude.

• HTNs are just one of several techniques that are originally
developed for classical planning domains and that can be
adapted to work in nondeterministic domains. By combin-
ing those techniques with a BDD representation, it should
be possible to get great speedups just as we did here.

• We discuss how these same ideas can be generalized for
use in several other research areas, such as planning with
Markov Decision Processes, synthesizing controllers for
hybrid systems, and composing Semantic Web Services.

Introduction
An active area of automated-planning research is how to
plan in nondeterministic domains, in which the actions may
have multiple possible outcomes. Planning in nondetermin-
istic domains is much harder than in classical (i.e., determin-
istic) planning domains: the algorithms must reason about
all or most of the possible execution paths, and the sizes of
the solution plans may grow exponentially.

Two of the most promising approaches for planning in
nondeterministic planning domains are the following:

• Planning as model checking. Here, substantial speedups
have been achieved (Cimatti et al. 2003; Rintanen 2002;
Jensen & Veloso 2000) by using Binary Decision Dia-
grams (BDDs) (Bryant 1992) to compactly represent sets
of states that share common properties. Under the right
conditions, this approach provides exponential speed-ups

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

as demonstrated with the MBP planner (Bertoli et al.
2001; Cimatti et al. 2003).

• Planning with search control. Many planning algorithms
developed for classical planning domains use search-
control techniques that can be generalized to work in
nondeterministic domains (Kuter & Nau 2004). These
search-control techniques can constrain the planner’s
search to just a small portion of the search space. For
example, the Hierarchical Task Network (HTN) decom-
position techniques used in SHOP2 (Nau et al. 2003)
have been generalized in this fashion, producing a plan-
ner called ND-SHOP2 (Kuter & Nau 2004). In some
cases, ND-SHOP2 is exponentially faster than MBP, and
in some cases the reverse is true.

In this paper, we discuss how to combine the two tech-
niques, and show that the combination of the two works
much better than either one alone. Our new planning al-
gorithm, YoYo, does HTN-based task decompositions over
BDD-based representations of classes of states. In our ex-
periments, YoYo was never dominated by either MBP or
ND-SHOP2, and could easily deal with problem sizes that
neither MBP nor ND-SHOP2 could scale up to. Further-
more, YoYo could solve problems about two or three orders
of magnitude faster than MBP and ND-SHOP2.

We also discuss several potential generalizations of our
ideas. One promising direction is to use other types of
search-control mechanisms from classical planning, such as
the control rules used in TLplan (Bacchus & Kabanza 2000)
and TALplanner (Kvarnström & Doherty 2001). Also, there
is good potential for generalizing our ideas to other research
areas, such as planning with Markov Decision Processes,
synthesizing controllers for hybrid systems, and composing
Semantic Web Services.

The YoYo Planner
The YoYo planner (Kuter et al. 2005) was developed
for planning in nondeterministic domains under the full-
observability assumption – that is, the world can be com-
pletely observed at runtime. In nondeterministic domains,
an action may have multiple outcomes but no probabilities
and utilities are associated with them. A planner does not
know which outcome will actually occur when an action is
executed; so, it generates plans that guarantee to reach the



MBP

NDSHOP2

Yoyo
0

100

200

300

400

500

2 3 4 5 6

Number of Preys

A
vg

. C
PU

 T
im

es
MBP NDSHOP2 Yoyo

Figure 1: Average running times (in sec.’s) of YoYo,
ND-SHOP2, and MBP on hunter-prey problems as a func-
tion of the number of prey in a 4 × 4 grid. MBP could not
solve problems with 5 and 6 prey within 40 minutes.

goals, no matter what happens during execution.
YoYo combines task-decomposition techniques as in HTN

planning with compact state representations using Binary
Decision Diagrams (BDDs) as in planning via Symbolic
Model Checking. In YoYo, domain-specific search-control
strategies encoded as HTNs constrain the planner’s search
to small portions of the state spaces. BDDs, on the other
hand, provide a way to compactly represent classes of states
as propositional formulas and transform those formulas to
perform the search in YoYo more efficiently.

YoYo does HTN decompositions over BDD-based repre-
sentations of classes of states as follows. In a set S of states
represented as a BDD, a possible HTN decomposition of a
task t specifies (1) a set of subtasks and (2) a subset S′ of S
in which the particular decomposition of t is possible. Thus,
decomposing a task t in a set S of states represented by a
BDD yields two sub-BDDs — one that represents S′ and
and the other that represents the rest of the states S \ S′ in
which other possible decompositions for t must be tried.

YoYo recursively generates BDD-task pairs in the way
outlined above. The BDD in each such pair represents a
set of states that share some common properties, so that the
associated task can be achieved in all of these states simulta-
neously. If a BDD-task pair is generated such that there is no
possible way of achieving the task in the states represented
by the BDD then this is a failure point; so, YoYo backtracks
and tries other possible HTN decompositions. Otherwise,
YoYo continues with planning until the tasks in all of the
generated BDD-task pairs correspond to primitive actions.
This terminates the planning process successfully and the
set of all generated BDD-action pairs is a solution plan.

We compared YoYo with the two state-of-the-art plan-
ners in nondeterministic domains, namely ND-SHOP2 and
MBP. ND-SHOP2 is an HTN planner based on explicit
state representations (Kuter & Nau 2004). MBP implements
BDD-based planning algorithms (Bertoli et al. 2001) but
cannot use search control as in ND-SHOP2 or YoYo.

For all our experiments, we used a 900MHz laptop with

0 5 10 15 20 25 30

5x5

6x6

7x7

8x8

9x9

10x10

G
rid

 S
iz

e

Avg. CPU Times

MBP ND-SHOP2 Yoyo

Figure 2: Average running times (in sec.’s) of YoYo,
ND-SHOP2, and MBP on hunter-prey problems as a func-
tion of the grid size, with one prey. ND-SHOP2 could not
solve problems with larger grids due to memory overflows.

256MB memory, running Linux Fedora Core 2. We set the
time limit for the planners as 40 minutes. Our experimental
testbed was a simple variant of a pursuit-evasion game de-
scribed in (Koenig & Simmons 1995). In this domain, there
is a hunter and one or more prey in a grid world. The goal
for the hunter is to catch all the prey. The nondeterminism
for the hunter is introduced through the actions of the prey:
at any time, the prey can take a move in the world indepen-
dent from the hunter’s move. For a detailed description of
our experimental setup, see (Kuter et al. 2005).

Figure 1 shows the results on one experimental set, in
which we used a 4 × 4 grid world and varied the num-
ber of prey in the world. Each data point is the average
of 20 randomly-generated problems. We encoded the fol-
lowing search-control strategy for ND-SHOP2 and YoYo
using HTNs: “choose a prey and chase it until it is caught,
then choose another prey, and so on, until all of the prey are
caught.” This prunes away large portions of the state space
during planning since, when the hunter is chasing a prey, it
need not reason about the locations of the other prey.

As shown in Figure 1, MBP’s running times grew expo-
nentially faster than those of YoYo since MBP cannot exploit
search-control strategies and its BDD-based representations
were not useful to prune irrelevant portions of the search
space. YoYo also easily outperformed ND-SHOP2 by tak-
ing advantage of BDD-based representations. ND-SHOP2,
in turn, outperformed MBP using the search-control strategy
described above, although it does not exploit BDDs.

In another experimental set (see Figure 2), we had only
one prey and varied the size of the grid. Similarly as be-
fore, we randomly generated 20 problems and run our algo-
rithms on those problems. This setting does not admit good
search-control strategies: all we can do is to “look at the
prey and move towards it.” In the absence of good strate-
gies ND-SHOP2 did not perform well in large problems
due to its explicit state representations. YoYo, on the other
hand, was exponentially better than ND-SHOP2 even with-
out good strategies due to its BDD-based state representa-



tions. It also outperformed MBP since the above strategy
helps to prune some portions of the state space.

Generalized Search Control Techniques for
Nondeterministic Planning

In (Kuter & Nau 2004), we described a way to take a class
of planners that were originally developed for classical (i.e.,
deterministic) domains and generalize them to work in non-
deterministic domains. ND-SHOP2 is a generalization of
SHOP2 (Nau et al. 2003) we developed based on that work,
along with generalizations of TLplan (Bacchus & Kabanza
2000) and TALplanner (Kvarnström & Doherty 2001).

In YoYo, we used HTNs to perform a controlled search
over BDD-based compact representations for classes of
states in nondeterministic domains. A similar approach can
be developed to use search-control rules as in TLplan and
TALplanner, specified in modal temporal logics (TL). By
combining those techniques with a BDD representation, we
should get great speedups just as we got with YoYo. Fur-
thermore, it should be possible to get even greater speedups
by developing techniques that use TL formulas and HTNs
together for controlled search over BDDs. (Bacchus & Ka-
banza 2000) points out that the two techniques for specifying
search-control strategies (i.e., HTNs and TL formulas) are
useful in different situations; thus, this is a promising ap-
proach for broadening the range of problems we could solve
efficiently in nondeterministic domains.

An important consideration with using domain-specific
search control based on HTNs or TL formulas under non-
determinism is that, in complex domains, it may not be pos-
sible to compile a control strategy for the entire domain. For
example, there may be many possible outcomes of an action,
all of which may not be anticipated in advance. However,
controlled search over BDD-based state representations will
yield significant speed-ups even if we can use them for a part
of a planning domain. Furthermore, in those parts of a plan-
ning domain for which we do not have any search-control
strategies, we can use the existing algorithms to generate
a partial solution that compansates the gap in the search-
control strategy. As an example, if we have an incomplete
set of HTNs for YoYo, we can use MBP for generating the
type of a partial solution mentioned above. This will allow
us to use our new planning algorithms in complex domains
where compiling search-control strategies is difficult.

YoYo’ing Beyond
In this section, we discuss how our ideas in YoYo and some
of the generalizations discussed in the previous section can
be applied to other research areas; in particular, planning
with Markov Decision Processes, synthesizing controllers
for hybrid systems, and composing Semantic Web Services.

Planning with Markov Decision Processes
In planning domains where actions have probabilistic out-
comes, the primary approach is based on Markov Decision
Processes (MDPs); see (Boutilier, Dean, & Hanks 1999) for
a survey. The primary difference between nondeterminis-
tic planning problems and MDP planning problems is that

the latter has rewards associated with the states, probabili-
ties and costs associated with the state transitions, and the
goal is to generate a plan that optimizes a utility function.

Many MDP solution methods have been developed to
reason over sets of states during planning. Examples in-
clude (Dearden & Boutilier 1997; Feng & Hansen 2002;
Lane & Kaelbling 2002). Among others, (Feng & Hansen
2002) describes a way for searching over BDD-based rep-
resentations in MDPs but no search-control strategies as in
YoYo. A form of search control for MDPs has been used in
Reinforcement Learning (Parr 1998; Dietterich 2000). This
approach is based on hierarchical abstractions that are some-
what similar to HTN planning. The hierarchical abstraction
of an MDP is analogous to an instance of the decomposi-
tion tree that an HTN planner might generate. However, the
abstractions must be supplied in advance by the user, rather
than being generated on-the-fly by an HTN planner.

In YoYo, much of the computational machinery was for
correctly handling the possible state transitions induced by
the nondeterministic actions — a characteristic that nonde-
terministic planning shares with MDP planning. This sug-
gests that it should be possible to generalize our approach
in YoYo for solving MDPs. This requires developing new
techniques for handling the probabilities, rewards, and costs
in the state-transition operations dictated by the transforma-
tions over the BDDs and the search-control strategies.

Synthesizing Controllers for Hybrid Systems
Hybrid systems are dynamical systems that have both
continuous- and discrete-valued state variables (Lygeros,
Tomlin, & Sastry 1999; Tomlin et al. 2003). Examples
of such systems include robotic systems, tactical fighter air-
crafts, intelligent vehicle/highway systems, and flight con-
trol systems. The inherent uncertainties and interactions be-
tween the discrete and continuous components make it very
hard to synthesize optimal controllers for such systems.

Typical existing approaches for hybrid systems model the
discrete and continuous components of a hybrid system in-
dependently and generate controllers using techniques that
can exploit the interactions between the two seperate mod-
els. Examples include the use of timed automata (Alur &
Dill 1994), game-theoretic approaches (Tomlin, Lygeros, &
Sastry 2000), linear hybrid automata (Shakernia, Pappas, &
Sastry 2000), and linear programming and simulation tech-
niques (Hauskrecht & Kveton 2004).

Combinations of compact state representations and
search-control strategies can also be used in synthesizing
controllers for hybrid systems in order to abstract away from
the continuous parts of the state space, which is usually in-
finite due to the continuous-valued state variables in those
systems. This approach primarily involves developing algo-
rithms similar to YoYo that decompose the system models
into smaller and smaller models until we generate a solution
controller. Our work on YoYo suggests that this approach
will compare favorably with the existing techniques.

Semantic Web Service Composition
Semantic Web services are functionalities on the Web that
are designed to be composed, i.e., combined in workflows



of varying complexity to provide a functionality that none
of the component services could provide alone.

In (Kuter et al. 2004), we described an HTN planning al-
gorithm for composing Web Services. This algorithm uses
HTNs to describe the operational semantics of Web Services
and performs the composition process using HTN decompo-
sitions over these descriptions. Another promising approach
for composing Web Services is to use BDDs to represent
service descriptions and generate compositions by reason-
ing over them as described in (Traverso & Pistore 2004).

It should be possible to combine the above approaches
for composing Web Services in a single framework simi-
lar to YoYo. For the reasons discussed in this paper, this
approach should yield new service-composition algorithms
that are significantly more efficient than the existing ones.

Conclusions
We have described how to combine a BDD state represen-
tation with HTN search-control to achieve efficient plan-
ning in fully observable nondeterministic domains (Kuter
et al. 2005). Our experiments show that the combination
has large advantages in speed, memory usage, and scala-
bility. Promising areas for future research include (1) the
use of other search-control techniques such as TLplan’s or
TALplanner’s control rules, and (2) applications of our ap-
proach to other areas, including planning with MDPs, syn-
thesizing controllers for hybrid systems, and composing Se-
mantic Web Services.

Acknowledgments. This work was based in part on
(Kuter et al. 2005). Figures 1 and 2 are c© AAAI,
2005, and are used with permission. This work was sup-
ported in part by ISLE contract 0508268818 (subcontract
to DARPA’s Transfer Learning program), UC Berkeley con-
tract SA451832441 (subcontract to DARPA’s REAL pro-
gram), NSF grant IIS0412812, and the FIRB-MIUR project
RBNE0195k5, “Knowledge Level Automated Software En-
gineering.” The opinions expressed in this paper are those
of authors and do not necessarily reflect the opinions of the
funders.

References
Alur, R., and Dill, D. 1994. A Theory of Timed Automata.
Theoretical Computer Science 126:183—235.
Bacchus, F., and Kabanza, F. 2000. Using temporal logics
to express search control knowledge for planning. Artificial
Intelligence 116(1-2):123–191.
Bertoli, P.; Cimatti, A.; Pistore, M.; Roveri, M.; and
Traverso, P. 2001. MBP: a model based planner. In IJCAI-
2001 Workshop on Planning under Uncertainty and Incom-
plete Information.
Boutilier, C.; Dean, T. L.; and Hanks, S. 1999. Decision-
theoretic planning: Structural assumptions and computa-
tional leverage. JAIR 11:1–94.
Bryant, R. E. 1992. Symbolic boolean manipulation with
ordered binary-decision diagrams. ACM Computing Sur-
veys 24(3):293–318.

Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P.
2003. Weak, strong, and strong cyclic planning via sym-
bolic model checking. Artificial Intelligence 147(1-2):35–
84.
Dearden, R., and Boutilier, C. 1997. Abstraction and
approximate decision-theoretic planning. Artificial Intel-
ligence 89(1-2):219–283.
Dietterich, T. G. 2000. Hierarchical reinforcement learn-
ing with the MAXQ value function decomposition. JAIR
13:227–303.
Feng, Z., and Hansen, E. 2002. Symbolic Heuristic Search
for Factored Markov Decision Processes. In AAAI-2002.
Hauskrecht, M., and Kveton, B. 2004. Linear Program
Approximations for Factored Continuous-State MDPs. In
NIPS-2004.
Jensen, R., and Veloso, M. M. 2000. OBDD-based univer-
sal planning for synchronized agents in non-deterministic
domains. JAIR 13:189–226.
Koenig, S., and Simmons, R. G. 1995. Real-time search in
non-deterministic domains. In IJCAI-1995.
Kuter, U., and Nau, D. 2004. Forward-chaining planning
in nondeterministic domains. In AAAI-2004.
Kuter, U.; Sirin, E.; Nau, D.; Parsia, B.; and Hendler, J.
2004. Information Gathering during Planning for Web Ser-
vices Composition. In ISWC-2004.
Kuter, U.; Nau, D.; Pistore, M.; and Traverso, P. 2005.
A hierarchical task-network planner based on symbolic
model checking. In ICAPS-2005.
Kvarnström, J., and Doherty, P. 2001. TALplanner: A
temporal logic based forward chaining planner. Annals of
Mathematics and Articial Intelligence 30:119–169.
Lane, T., and Kaelbling, L. 2002. Nearly deterministic
abstractions of Markov decision processes. In AAAI-2002.
Lygeros, J.; Tomlin, C.; and Sastry, S. 1999. Controllers
for Reachability Specifications for Hybrid Systems. Auto-
matica 35(3).
Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock, W.;
Wu, D.; and Yaman, F. 2003. SHOP2: An HTN planning
system. JAIR 20:379–404.
Parr, R. 1998. Hierarchical control and learning for markov
decision processes. PhD thesis, UC Berkeley.
Rintanen, J. 2002. Backward plan construction for plan-
ning as search in belief space. In AIPS-2002.
Shakernia, O.; Pappas, G.; and Sastry, S. 2000. Decidable
Controller Synthesis for Classes of Linear Systems. In Hy-
brid Systems: Computation and Control (LNCS 1790).
Tomlin, C.; Mitchell, I.; Bayen, A.; and Oishi, M. 2003.
Computational Techniques for the Verification and Control
of Hybrid Systems. IEEE Proceedings 91(7).
Tomlin, C.; Lygeros, J.; and Sastry, S. 2000. A Game The-
oretic Approach to Controller Design for Hybrid Systems.
IEEE Proceedings 88(7).
Traverso, P., and Pistore, M. 2004. Automated Composi-
tion of Semantic Web Services into Executable Processes.
In ISWC-2004.


