
Conditionalization: Adapting Forward-Chaining Planners
to Partially Observable Environments

Ugur Kuter Dana Nau Elnatan Reisner
Department of Computer Science

and Institute for Systems Research
University of Maryland,

College Park, MD 20742, USA
{ukuter,nau,elnatan}@cs.umd.edu

Robert Goldman
Smart Information Flow Technologies

(d/b/a SIFT, LLC)
211 N. First St., Suite 300

Minneapolis, MN 55401, USA
rpgoldman@SIFT.info

Abstract

We provide a general way to take forward-chaining
planners for classical planning domains and condition-
alize them, i.e., adapt them to generate policies for
partially observable planning domains.

For domain-configurable planners such as SHOP2,
TLPlan, and TALplanner, our generalization tech-
nique preserves the ability to use domain knowledge to
achieve highly efficient planning. We demonstrate this
experimentally in two problem domains. The experi-
ments compare PKS and MBP (two existing planners
for partially observable planning) and CondSHOP2, a
version of the HTN planner SHOP2 created by apply-
ing our conditionalization method.

To our surprise, PKS and MBP could solve only the
simplest problems in our test domains. In contrast,
CondSHOP2 solved all of the test problems quite eas-
ily. This suggests that the ability to use domain knowl-
edge may be not just desirable but indeed essential for
solving large problems in partially observable domains.

Introduction
One of the biggest limitations of classical AI plan-
ning is the assumption that the entire initial state is
known at planning time. A more realistic assump-
tion is that the planner only knows part of this in-
formation at planning time, and the rest must be ac-
quired at plan-execution time, through observations
or queries. This means the planner must construct
a plan that includes both sensing actions and con-
ditional execution of the actions in the plan. Sev-
eral planning algorithms have been formulated to do
this; examples include PKS (Petrick & Bacchus 2002;
2004) and MBP (Bertoli et al. 2001b).

This paper provides the following contributions:
• We provide a general way to take forward planners for

classical planning domains and conditionalize them,
i.e., adapt them to generate policies for partially ob-
servable planning domains. For domain-configurable
planners such as SHOP2 (Nau et al. 2003), TLPlan
(Bacchus & Kabanza 2000), and TALplanner (Kvarn-
ström & Doherty 2001), our generalization technique
preserves their ability to use domain knowledge to
achieve highly efficient planning.

• We provide experimental comparisons of PKS and
MBP (two previous planners for partially observable
planning domains) with CondSHOP2, a version of the
HTN planner SHOP2 created by applying our con-
ditionalization method. The experimental domains
include adaptations of the Unix domain that the
authors of PKS used in their experiments, and the
Robot Navigation domain that the authors of MBP
used in their experiments.

• In our experiments, CondSHOP2 outperformed PKS
and MBP; but it did so much more dramatically than
we had anticipated: PKS and MBP could solve only
the simplest problems in our test domains, but Cond-
SHOP2 solved all of the problems quite easily. This
suggests that the ability to use domain knowledge
may be not only desirable but indeed essential in or-
der to solve large problems in partially observable
planning domains.

Formalism
Chapter 2 of (Ghallab, Nau, & Traverso 2004) gives
two formalisms for classical planning: the classical and
state-variable representations. The two representations
are completely equivalent, in that each can be trans-
formed to the other in linear time. Our formalism is
based on the state-variable representation, which can
be summarized as follows. There is a finite set of state-
variable symbols V and a finite set of constant symbols
C. A state-variable assignment is a pair (v, c), where
v ∈ V and c ∈ C. A state is a set s of state-variable
assignments that includes exactly one assignment for
each v ∈ V . A planning operator o includes a set of
preconditions pre(o) and a set of effects eff (o), both of
which are sets of state-variable assignments. An action
is any ground instance of a planning operator. A goal
is a set g of state-variable assignments that includes at
most one assignment for each v ∈ V .

We can extend the state-variable representation to
include partial observability. Due to space constraints
we must omit the details, but here’s a quick summary:
• A partial state is a set s of pairs (v, x) that includes

exactly one pair for each v ∈ V , where each pair (v, x)
is either a state-variable assignment or an expression

U. Kuter, D. Nau, E. Reisner, and R. Goldman. Conditionalization: Adapting
forward-chaining planners to partially observable environments. In ICAPS 07
Workshop on Planning and Execution for Real-World Systems, Sept. 2007.

of the form (v, unk) to indicate that v’s value isn’t
known. A completion of s is any complete state that
contains all of the state-variable assignments in s.
K(s) is the set of all completions of s.

• For each v ∈ V , there may or may not be a sensing
action observe(v) that assigns to v whatever value it
senses at execution time.

• The ordinary non-sensing actions are the same as be-
fore. If an action a is applicable to a partial state s,
then it is applicable to every completion of s.

• Instead of a plan, we have a policy π over par-
tial states. To avoid exponential blowup, we rep-
resent π as a state-based policy, i.e., a set of pairs
π = {(Si, ai)}k

i=1, where Si is a set of partial states
and ai is the action to execute in each of those partial
states.

• A policy π solves a partially observable planning
problem P whose initial state is s0 if π solves ev-
ery planning problem that can be produced from P
by replacing s0 with a completion of s0.

• A partially observable classical (POC) planning prob-
lem is a 4-tuple P = (L,O,N, s0, g), where L is the
planning language, O is the set of operators, N is
the set of sensing actions, s0 is the initial partial
state, and g is a set of state-variable assignments.
A completion of P is any classical planning problem
P ′ = (L,O,N, s′

0, g) such that s′
0 is a completion of

s. K(P) is the set of all completions of P .
• We use the obvious generalization of the state-

transition function γ to partial states, and usual defi-
nition of a policy’s execution structure. The execution
structure for π is a directed graph Σπ whose nodes
are all of the partial states that can be reached by
executing actions in π, and whose edges represent
the state transitions for those actions. If there is a
path in Σπ from s1 to s2, then we say that s1 is a
π-ancestor of s2 and s2 is a π-descendant of s1. If
one of the π-descendants of a state s is itself, then we
say that s is a cyclic state in π.

Theorem 1 π is a solution for P iff π is a solution
for every completion of P . (Proof omitted due to space
constraints.)

Conditionalizing Forward Planners
We now describe a general way to take forward-chaining
planners for classical planning, and conditionalize them,
i.e., translate them into planners that find solutions to
POC planning problems. The basic idea is to take an
abstract planning procedure that includes the classi-
cal planners as instances, and translate it into a proce-
dure that can solve POC planning problems. The same
translation will then apply to all of the instances.

As our abstraction of forward-chaining classical plan-
ners, we use the FCP procedure that appeared in (Kuter
& Nau 2004). This procedure is shown in Figure 1.
FCP is general enough to include many (perhaps most)

Procedure FCP(L, O, s0, g, α);
π ← ∅; s ← s0

loop
if s satisfies g then return(π)
A ← {(s, a) | a is a ground instance of an operator

in O, a is applicable to s, and a ∈ α(s)}
if A = ∅ then return(failure)
nondeterministically choose (s, a) ∈ A
π ← π ∪ {(s, a)}
s ← γ(s, a)

Figure 1: FCP, the abstract forward-chaining classical
planner in (Kuter & Nau 2004).

Procedure CondFCP(L, O, N, s0, g, α)
π ← ∅; S ← {s0};
loop
if S = ∅ then return(π)
select a partial state s ∈ S and remove it from S
if s does not satisfy g then

if s %∈ Sπ then
A ← {(s, a) | a is a ground instance of an

operator in O ∪N , a is applicable
to s, and a ∈ α(s)}

if A = ∅ then return(failure)
nondeterministically choose (s, a) ∈ A
if a is a sensing action then

let v be the state-variable for a
S′ ← {(s− {(v, z)|z %= c}) ∪ {(v, c)} |

c ∈ range(v)}
S ← S ∪ S′

else
S ← S ∪ {γ(s, a)}

π ← π ∪ {(s, a)}
else if s is a cyclic state in π then

return(failure)

Figure 2: Our conditionalization of FCP. The under-
lines indicate how the FCP coding is embedded in
CondFCP.

forward-chaining planners as instances—including, for
example, several well-known domain-configurable plan-
ners, such as TLPlan (Bacchus & Kabanza 2000),
SHOP2 (Nau et al. 2003), and TALplanner (Kvarn-
ström & Doherty 2001).

As shown in Figure 1, FCP starts with an initial state
s0, and explores other states by successively choosing
and applying planning operators until it reaches a state
that satisfies the goal formula g. The pruning function
α(s) is used to prune the search space. Rather than
trying all of the actions applicable to s, FCP only tries
the ones that are both applicable and returned by α.

For example, in SHOP2, the search is controlled by a
set of methods that decompose tasks into subtasks, and
α(s) is the set of all actions a applicable to s such that
a can be produced by applying methods to the current
task network. In TLPlan, the search is controlled by
a formula φ written in Linear Temporal Logic (LTL).
For each state s, α(s) is the set of all actions a applica-

ble to s such that the successor state γ(s, a) satisfies a
progressed formula, Progress(s, φ).

Figure 2 shows CondFCP, our conditionalized version
of FCP. If a planning algorithm A can be described as
an instance of FCP, then the conditionalization of A is
CondA, the corresponding instance of CondFCP. Using
this technique, we can easily write conditionalizations
of TLPlan, SHOP2, TALplanner, and several other for-
ward planners that are instances of FCP.

Like FCP, CondFCP plans forward from S0, but the
success criterion is more complicated. In FCP, a plan π
is a solution if its final state satisfies the goal condition
g. In CondFCP, in order for a policy to be a solution,
every path in π’s execution structure must lead to a
partial state that satisfies g. Thus, CondFCP essen-
tially performs an AND-OR search (Nilsson 1980) over
a space of partial states, where the AND branches are
represented by the set S and the OR-branches corre-
spond to the choice of the actions.

Every time CondFCP considers a partial state s from
S for expansion, it first checks whether s satisfies the
goal g. If so, it ignores s and selects another partial
state from S. If s does not satisfy the goal, then Cond-
FCP chooses an action for s using its pruning function
α. The pruning function α generates a set of accept-
able actions that are applicable in s. More specifically,
in a partial state s, α either returns a ground instance
of a planning operator (i.e., an action in the classical
planning sense), or it returns a sensing action to be ap-
plied in s. In the former case, CondFCP simply inserts
the successor state γ(s, a) generated by applying a in s.
The latter, on the other hand, means that the current
policy being formulated by CondFCP needs to gather
information about a state variable at this point during
its future execution. Thus, CondFCP inserts into S
all possible partial states that are successors of s that
might be generated by applying the sensing action in s
during execution. This makes the planner “execution
robust” in the sense that the planner always generates a
plan that specifies what to do for each possible outcome
of a sensing action during execution.

CondFCP performs successive iterations until there
are no partial states left in S. This means that from ev-
ery partial state that is reachable from the initial state
s0 by applying the actions in π, a goal state is reach-
able; thus, π is a solution to the input POC planning
problem and CondFCP returns π.

CondFCP’s pruning function is analogous to FCP’s,
and the pruning function for a classical planning do-
main can generally be used in partially observable ver-
sions of the domain. As an example, recall that for
TLPlan, the pruning function α for a planning problem
P returns all actions applicable to s such that γ(s, a)
satisfies Progress(s, φ), where φ is a search-control for-
mula. If P ′ is a partially observable version of P, then
α could work for P ′ as follows. If the formula φ can be
evaluated in a partial state s, then α returns all actions
applicable to s as above. If the planner needs addi-
tional information about a state variable v to evaluate

φ in s, then α specifies v, if there is a sensing action that
corresponds to it. Then, for each partial state s′ that
is a successor of s given that sensing action, α returns
all actions applicable in s′ such that γ(s′, a) satisfies
Progress(s′, φ).

It’s not hard to show that FCP and CondFCP are
both sound (i.e., they don’t return plans that are not
solutions), and conditionally complete (they can find
every solution whose actions are returned the pruning
function). The following theorem provides a bound on
CondFCP’s time complexity; we omit the proof due to
space constraints.
Theorem 2 Let A be an instance of FCP, and P =
(L,O,N, s0, g) be a POC planning problem. Suppose
we run CondA on P with a pruning function α that
runs in polynomial time, and CondA returns a solution
π. Then CondA’s running time is polynomial in |Σπ|,
where |Σπ| is the size of the execution structure of the
solution for π. (Proof omitted due to space.)

It can be shown that for some deterministic imple-
mentations of CondFCP, the worst-case running time
is polynomially bounded by FCP’s worst-case running
time, when both running times are expressed as func-
tions of the size of the returned policy. CondSHOP2,
our conditionalized version of SHOP2, is such a case.

Experimental Evaluation
When writing pruning functions—e.g., the HTN meth-
ods for a planner like SHOP2 or the LTL control rules
for a planner like TLPlan—the usual strategy is to try
to minimize the amount of backtracking that will need
to be done, by pruning all but a few of the applicable
actions.

In classical planning problems, this approach has
been quite successful. For example, (Bacchus & Ka-
banza 2000) and (Nau et al. 2003) describe problem
domains in which the planner goes directly to a solu-
tion with almost no backtracking—effectively turning
what might otherwise have been an exponential-time
search into a polynomial-time search instead.

This section experimentally examines how well the
same technique works on partially observable plan-
ning problems. For our experiments, we implemented
CondSHOP2, the conditionalizaton of the HTN plan-
ner SHOP2 (Nau et al. 2003). We compared its per-
formance and scalability with PKS (Petrick & Bacchus
2002; 2004) and MBP (Bertoli et al. 2001b), two plan-
ners that we believe to represent the state of the art
in planners for partially observable planning problems.
We ran all of our experiments on an 2.16 GHz Intel Core
Duo MacBook laptop computer, running Linux Fedora
Core 6 via a virtual machine with 256MB memory.

Unix domain. We compared PKS and CondSHOP2
on a modified version of the Unix domain on which PKS
was tested in (Petrick & Bacchus 2002). In Petrick &
Bacchus’s planning problems, the only Unix operations
available to the planner were cd, cdup, and ls; and the

PKS

CondSHOP2

Figure 3: Average running times of CondSHOP2 and
PKS in the Unix domain, as a function of the number of
files. Only one data point is shown for PKS because it
exceeded our 30-minute time limit on larger problems.

task was to look through a directory structure to find
the locations of various files. In our planning problems,
the task was to locate the files and move them to various
destinations, and the available Unix operations were cd,
cdup, ls, mv, cp, and rm.

Since CondSHOP2 is an HTN planner, its pruning
function α is computed via a set of HTN methods. We
wrote HTN methods to induce an ordering f1, . . . , fn

on the files to be moved. When none of the files has
been moved, α returns the actions to find f1 and move
it; when f1 has been moved, α returns the actions to
find f2 and move it; and so forth. Dealing with the files
in this order avoids the exponential blowup that would
occur if the planner examined all of the orderings in
which the actions could be done.

Figure 3 shows the results of our first experiment.
Each data point is the average of 20 random problems.
If a planner did not return a solution for one or more
problems within the alloted time (30 minutes per prob-
lem) or overflowed the available memory, we omitted
the corresponding data point. For PKS, we only have
a data point for n = 1, because for n > 1, PKS was
unable to solve problems within the alloted time.

Partially observable Robot Navigation domain.
We compared PKS, MBP, and CondSHOP2 on a mod-
ified version of the Robot Navigation domain. The
original Robot Navigation domain provided a fully ob-
servable nondeterministic environment for tests of MBP
(Bertoli et al. 2001b), ND-SHOP2 (Kuter & Nau 2004),
and other planners. It consists of a building with 8
rooms connected by 7 doors. In the building, there is
a robot and there are a number of packages in various
rooms. The robot is responsible for delivering packages
from their initial locations to their final locations by
opening and closing doors, moving between rooms, and
picking up and putting down the packages. The robot
can hold at most one package at any time.

To make the domain deterministic, we omitted the

PKS CondSHOP2

Figure 4: Average running times of the three planners
in partially observable Robot Navigation problems, as
a function of the number of packages. PKS has only
one data point because it exceeded our 30-minute time
limit on larger problems. MBP is not shown because it
ran out of memory on all problem sizes.

“kid doors” (doors that could open and close at ran-
dom). To make it partially observable, we assumed that
initially, the robot doesn’t know what packages are in
each room and where those packages need to go.

Figure 4 shows the results of our comparison of all
three planners. As before, each data point is an average
of 20 random problems. As before, if a planner did not
return a solution for one or more problems within the
alloted time (30 minutes per problem) or overflowed
the available memory, we omitted the corresponding
data point. PKS’s only data point is for one package,
because it ran out of time in problems where there was
more than one package. There are no data points for
MBP because it ran out of memory regardless of the
number of packages.

In contrast, CondSHOP could solve all of the prob-
lems very quickly. The reason for its fast performance is
again due to the pruning function α. As before, α was
computed via HTN decomposition, and we wrote HTN
methods that enforced a fixed order in which Cond-
SHOP2 would seek and deliver the packages. As be-
fore, this avoided an exponential blowup in the size of
the search space.

A very simple domain. Although we had expected
PKS and MBP to do worse than CondSHOP2 in the
above two experiments, we were quite surprised that
they failed so completely. To investigate this further,
we created a very simple version of the partially observ-
able robot navigation domain, in which (1) there is only
one package to deliver, (2) the package’s destination is
known in the initial state, and (3) rather than allowing
the package’s initial location to be any of the 8 rooms
in the domain, we restricted the initial location to be
any of just r different rooms, where 2 ≤ r ≤ 8.

Figure 5 shows the performance of all three planners
as a function of r in this very simple domain. Each data

PKS

MBP

CondSHOP2

Figure 5: Average running times of the three plan-
ners in a much simpler version of the Robot-Navigation
problem with only one package, as a function of the
number r of possible rooms the package might be in.
MBP has no data point for r = 5 because it ran out of
memory on one of those problems.

point is an average of 20 random planning problems.
PKS solved all the problems, but with much larger run-
ning times than MBP and CondSHOP2. MBP’s run-
ning times were closer to CondSHOP2’s, but the data
point for r = 5 is missing for MBP because it exceeded
the available memory for one of these problems.

Discussion on the Experimental Results.
Our experimental results suggest that the ability for

a planner to use domain knowledge may be not only
desirable, but indeed essential, to solve planning prob-
lems in partially observable domains. Traditionally,
domain knowledge has been used in planners such as
SHOP2, TLplan, and TALplanner in order to prune
their search space; i.e., to prune actions that are irrel-
evant to the solution(s) of a planning problem. Un-
der partial-observability, we observed that this prop-
erty still holds and the conditional planner, i.e., Cond-
SHOP2 in this case, would benefit from it since it has
the ability to exploit such knowledge due to our general-
ization technique. However, we also observed that this
ability not only enables the planner to prune actions,
but also allows it to choose what observation (i.e., sens-
ing) needs to be done in a solution plan generated by
the planner. In other words, the ability to use domain
knowledge enabled CondSHOP2 in these experiments
to prune the irrelevant observations/sensing from the
plans. We hypothesize that this made the planner very
efficient in comparison to PKS and MBP because both
PKS and MBP, the best of our understanding, explore
search space where the branching factor is not only de-
termined by the actions applicable in a state but also
the number of possible observations/sensing that can
be done in that state.

Some additional remarks on the performance of PKS
and MBP in these experiments also are in order. Note
that, although PKS and MBP have been tested on a

Unix domain and a Robot Navigation domain in previ-
ous studies on these planners (Petrick & Bacchus 2002;
2004; Bertoli et al. 2001a; Pistore, Bettin, & Traverso
2001), these domains are much simpler than the ones
we considered in this paper. In particular, to the best
of our knowledge, PKS was previously tested on simple
variants of Unix domain that include only the relevant
actions for the planning problems: e.g., in (Petrick &
Bacchus 2002), the Unix domain had only three actions
(namely cd, cdup, and ls); and the task was to look
through a directory structure to find the locations of
various files as we mentioned above. Our Unix domain
above, on the other hand, involves moving and copy-
ing files around the directory structure as well, which
increases the size of the search space for PKS expo-
nentially. Similarly, although previous works report
performance results for MBP in the Robot Navigation
domain, those result were on the planning algorithms
implemented in MBP for fully-observable planning in
nondeterministic domains. To the best of our knowl-
edge, the partial-observable planning algorithms in
MBP have not been tested in the Robot Navigation do-
main above — note that the studies partial-observable
planning with MBP reported in (Bertoli et al. 2001b;
2006) mentioned a robot domain, however that is a dif-
ferent and simple domain for illustration purposes only.

However, we also noticed that the version of PKS
that was available on the Web at the time we were doing
these experiments was not able to handle exclusive-OR
knowledge properly. We believe that this was a major
source of inefficiency for PKS in our experiments since
we depend on such knowledge in our domain encodings.
A personal communication with the authors of PKS re-
vealed that this issue will be resolved in the next version
of PKS. We are planning to conduct experiments with
that new version when it is available.

Related Work
CNLP (Peot & Smith 1992) is a partial-order causal-
link (POCL) planner (a variant of SNLP) that gen-
erates conditional plans. The actions in its plans are
annotated with contexts and reasons. Contexts indi-
cate what states of the world are possible at particular
points in the plan. Reasons are the goals which this
action helps achieve. Bookkeeping for contexts and rea-
sons is more complex than in our approach, because the
steps are only partially-ordered. Like most of the early
conditional planners, CNLP does not make a clear dis-
tinction between the state of the world and the agents’
knowledge of the world state, representing only the lat-
ter explicitly. Observing a state variable, v is mod-
eled as a non-deterministic action whose precondition
is unk(v) (there may be others, as well), and which
branches into one state where v holds, and one where
not(p) holds. For limitations of this approach to POC
planning, see (Goldman & Boddy 1994b). In the pub-
lished version of CNLP, ordering constraints from one
context could “bleed over” into other contexts, making
the the algorithm as published incomplete: it misses

some plans because unnecessary ordering relations can
cause it to fail, where the orderings were on different
contexts. We understand that Peot’s thesis includes a
revised version of CNLP that fixes this problem, but
the revised version has not been published elsewhere.

Cassandra (Pryor & Collins 1996) was a second con-
ditional POCL planner contemporaneous with CNLP.
It took a slightly different tack, more in line with
our category of POC planning. Rather than making
non-deterministic actions primary, as did CNLP, Cas-
sandra took initial-state uncertainty as primary, and
modeled non-deterministic actions as actions with ef-
fects conditional on unknown (and unknowable) propo-
sitions. Plinth (Goldman & Boddy 1994a) was another
early conditional planner, differing from Cassandra and
CNLP in being a linear (total-order) planner; POCL
planners were the dominant paradigm at that point.
This made it considerably simpler, and it avoided the
incompleteness issues of CNLP.

SADL (Golden & Weld 1996) is a language for plan-
ning and sensing that is based on ADL (Pednault 1989).
The effects of its actions include both changes to the
world state and information-gathering operations; the
latter assign values to run-time variables. It uses a
three-valued logic, with T, F, and U (for unknown).
This is necessary because SADL, like the early con-
ditional planners, does not have a representation of
world state distinguished from the agent’s knowledge of
it. SADL supports universally quantified information
goals, observational effects somewhat similar to ours,
conditional effects that are activated via secondary pre-
conditions, and universally quantified effects. Although
SADL shares several characteristics with our formalism,
we did not use it directly because it included several
features we did not need for our translation technique.

PUCCINI (Golden 1998) is a partial-order planner
built on SADL. PUCCINI is a planning engine for a
Unix softbot that has imperfect information about its
environment. PUCCINI is not a pure planner: it inter-
leaves planning and execution. The title of the paper,
“Leap Before You Look”, refers to how PUCCINI uses
conditional effects to do information gathering. To see
if a conditional effect’s secondary precondition holds,
it can execute the action and then check to see if the
conditional effect occurred.

SGP, Sensory Graphplan (Weld, Anderson, & Smith
1998), extends the well known Graphplan algorithm
(Blum & Furst 1997) in order to deal with uncertainty
in the initial states of planning problems. SGP rep-
resents this uncertainty via the set of all possible ini-
tial states that the planner could be in. Planning pro-
ceeds with generating a planning graph for each ini-
tial state in the input problem. SGP uses sensing ac-
tions in order to establish Graphplan-like mutex con-
ditions among the possible planning graphs, which in
turn, enables the planner to determine which plan-
ning graph it is in during the execution. Thus in a
sense, SGP generates a conditional plan of the form a
policy like CondFCP, represented by the set of plan-

ning graphs that the planner generates and the mu-
tex condition between those graphs. In our experi-
ments, we have not considered SGP because an ex-
amination of the experimental results in (Weld, An-
derson, & Smith 1998) has revealed that both of the
planning systems that we have used in our experi-
ments in this paper, PKS (Petrick & Bacchus 2002;
2004) and MBP (Bertoli et al. 2001a), would easily
outperform SGP in our experimental domains.

PKS is a simple forward-chaining planning algo-
rithm capable of performing depth-first or breadth-first
search over a space of “knowledge” states. Each knowl-
edge state specifies a particular type of knowledge that
the planner could use during planning, including facts
known at planning time and facts whose truth value
will be known at execution time. In this respect, PKS
is different than most of the early planners described
above. However, like many of them, PKS generates
conditional plans which include branching points based
on the knowledge for what is true/false at planning time
and what will be true/false at execution.

MBP is probably the best-known planner for nonde-
terministic environments. It incorporates several algo-
rithms based on symbolic model-checking (Cimatti et
al. 2003; Cimatti, Roveri, & Traverso 1998; Daniele,
Traverso, & Vardi 1999; Pistore, Bettin, & Traverso
2001). Solutions are classified as weak, strong, and
strong-cyclic, and algorithms are provided for each.
MBP has also been extended to deal with partial ob-
servability (Bertoli et al. 2001b; 2006) in nondetermin-
istic domains. In these extensions, belief states are
defined as a classes of states that represent common
observations, and compactly represented using Binary
Decision Diagrams (Bryant 1992).

Our work has been influenced by (Kuter & Nau
2004), which provided a way to take forward-chaining
planners and modify them to run in fully observable
nondeterministic planning domains. Our approach is
analogous to theirs, in the sense that we have taken
their FCP model of forward chaining planners and gen-
eralized it. However, our generalization and the formal-
ism on which it is based go in a much different direction
than theirs, since we have generalized in the direction of
partially observable deterministic domains rather than
fully observable nondeterministic domains.

Conclusions

We have presented a general technique for taking
forward-chaining planners for deterministic domains
and conditionalizing them, i.e., modifying them to pro-
duce conditional plans that solve partially observable
planning problems.

In our experiments, we had expected CondSHOP2
(the conditionalized version of SHOP2) to outperform
PKS (Petrick & Bacchus 2002; 2004) and MBP (Bertoli
et al. 2001b); and indeed it did so—but it did so in
a much more dramatic fashion than we had expected.
CondSHOP2 easily solved all of the planning problems

in our experiments, but PKS and MBP were able to
solve only the most trivial ones.

Like SHOP2, TLPlan and TALplanner are domain-
configurable planners: their input includes domain-
specific planning knowledge that it can make use of
while solving planning problems. We have not imple-
mented CondTLPlan and CondTALplanner, the con-
ditionalized versions of TLPlan and TALplanner; but
we have done an informal and approximate analysis
of their complexity on the planning domains discussed
here. Our analysis suggests that with appropriate con-
trol rules, CondTLPlan and CondTALplanner would
perform similarly to CondSHOP2 in these domains.

The above observations suggest that the ability for
a planner to use domain knowledge may be not only
desirable, but indeed essential, to solve planning prob-
lems in partially observable domains. Our current un-
derstanding is that the reason is that such an ability
might not only enable a planner to prune irrevelant ac-
tions, but also to prune irrelevant observations; i.e., it
focuses the outcome plan’s sensing to only those factors
in the world that are relevant to the goals to be achieved
by execution of the plan. We are currently working on
an extensive theoretical and experimental study of our
results to investigate this understanding more in detail.
We are also considering Contingent-FF (Hoffmann &
Brafman 2005) and POND (Bryce, Kambhampati, &
Smith 2006) as part of this experimental study as re-
cently, these planners have been demonstrated to be
effective in comparison to MBP and PKS in some plan-
ning domains.

Our conditionalization technique is compatible with
the nondeterminization technique described in (Kuter
& Nau 2004), in the sense that both techniques can be
combined, providing a way to translate classical plan-
ners into planners for domains that are both partially
observable and nondeterministic. We have developed
most of the theory for this translation, but have not
yet done an implementation and experiments. We in-
tend to do so in the near future.

Acknowledgments

This work was supported in part by DARPA’s Trans-
fer Learning and Integrated Learning programs, NSF
grant IIS0412812, and AFOSR grants FA95500510298,
FA95500610405, and FA95500610295. The opinions in
this paper are those of the authors and do not neces-
sarily reflect the opinions of the funders.

References

Bacchus, F., and Kabanza, F. 2000. Using temporal
logics to express search control knowledge for plan-
ning. Artificial Intelligence 116(1-2):123–191.
Bertoli, P.; Cimatti, A.; Pistore, M.; Roveri, M.; and
Traverso, P. 2001a. MBP: a model based planner. In
IJCAI-2001 Workshop on Planning under Uncertainty
and Incomplete Information.

Bertoli, P.; Cimatti, A.; Roveri, M.; and Traverso, P.
2001b. Planning in nondeterministic domains under
partial observability via symbolic model checking. In
IJCAI-01, 473–478. Seattle, USA: Morgan Kaufmann.
Bertoli, P.; Cimatti, A.; Roveri, M.; and Traverso, P.
2006. Strong Planning under Partial Observability.
Artificial Intelligence 170:337–384.
Blum, A. L., and Furst, M. L. 1997. Fast planning
through planning graph analysis. Artificial Intelli-
gence 90(1-2):281–300.
Bryant, R. E. 1992. Symbolic boolean manipulation
with ordered binary-decision diagrams. ACM Com-
puting Surveys 24(3):293–318.
Bryce, D.; Kambhampati, S.; and Smith, D. E. 2006.
Planning Graph Heuristics for Belief Space Search.
Journal of Artificial Intelligence Research 26:35–99.
Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso,
P. 2003. Weak, strong, and strong cyclic planning via
symbolic model checking. Artificial Intelligence 147(1-
2):35–84.
Cimatti, A.; Roveri, M.; and Traverso, P. 1998.
Strong planning in non-deterministic domains via
model checking. In AIPS-98, 36–43. AAAI Press.
Daniele, M.; Traverso, P.; and Vardi, M. 1999. Strong
cyclic planning revisited. In ECP-99, 35–48.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Auto-
mated Planning: Theory and Practice. Morgan Kauf-
mann.
Golden, K., and Weld, D. 1996. Representing sensing
actions: The middle ground revisited. In KR-96. 174–
185.
Golden, K. 1998. Leap before you look: Information
gathering in the puccini planner. In AIPS-98, 70–77.
Goldman, R. P., and Boddy, M. S. 1994a. Conditional
linear planning. In AIPS-94, 80–85.
Goldman, R. P., and Boddy, M. S. 1994b. Represent-
ing uncertainty in simple planners. In KR-94.
Hoffmann, J., and Brafman, R. 2005. Contingent
Planning via Heuristic Forward Search with Implicit
Belief States. In Proceedings of the 15th International
Conference on Automated Planning and Scheduling.
Kuter, U., and Nau, D. 2004. Forward-chaining plan-
ning in nondeterministic domains. In AAAI-2004.
Kvarnström, J., and Doherty, P. 2001. TALplanner: A
temporal logic based forward chaining planner. Annals
of Mathematics and Articial Intelligence 30:119–169.
Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock,
W.; Wu, D.; and Yaman, F. 2003. SHOP2: An HTN
planning system. JAIR 20:379–404.
Nilsson, N. 1980. Principles of Artificial Intelligence.
Morgan Kaufmann.
Pednault, E. P. 1989. ADL: Exploring the middle
ground between STRIPS and the situation calculus.
In KR-89, 324–332.

Peot, M., and Smith, D. 1992. Conditional nonlinear
planning. In AIPS-92, 189–197.
Petrick, R., and Bacchus, F. 2002. A knowledge-based
approach to planning with incomplete information and
sensing. In AIPS-02.
Petrick, R., and Bacchus, F. 2004. Extending the
knowledge-based approach to planning with incom-
plete information and sensing. In ICAPS-04, 2–11.
Pistore, M.; Bettin, R.; and Traverso, P. 2001. Sym-
bolic techniques for planning with extended goals in
non-deterministic domains. In ECP-01.
Pryor, L., and Collins, G. 1996. Planning for contin-
gencies: A decision-based approach. JAIR 4:287–339.
Weld, D. S.; Anderson, C. R.; and Smith, D. E. 1998.
Extending Graphplan to handle uncertainty and sens-
ing actions. In AAAI-98, 897–904.

