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Abstract
We describe in this paper a new method for extracting 

knowledge on Hierarchical Task-Network (HTN) planning
problems for speeding up the search. This knowledge is
gathered by propagating properties through an AND/OR
tree that represents disjunctively all possible
decompositions of an HTN planning problem. We show
how to use this knowledge during the search process of our
GraphHTN planner, to split the current refined planning
problem into independent subproblems.

We also present new experimental results comparing
GraphHTN with ordinary HTN decomposition (as
implemented in the UMCP planner). The comparison is
performed on a set of problems from the UM Translog
domain - a large HTN transportation domain that is
considerably more complicated than the well known
“logistics” domain.

Finally, so that we could compare GraphHTN with action-
based planners such as IPP and Blackbox, we translated the
UM Translog domain into a STRIPS-style representation.
We found that GraphHTN performed considerably better
on UM Translog than IPP and Blackbox.

Introduction

In previous work (Lotem, Nau, and Hendler 1999) we
developed the GraphHTN algorithm, a hybrid planning
algorithm that does Hierarchical Task-Network (HTN)
planning (Sacerdoti 75, Currie & Tate 1985) using a
combination of HTN-style problem reduction and
Graphplan-style planning-graph generation (Blum &
Furst 1997).

In this paper we extend that work and present the
following new results:

1. We show a new way to extract properties of HTN
planning problems that speed up the search. The new
properties are propagated through GraphHTN’s
planning tree – an AND/OR tree that is used to
represent disjunctively all possible HTN decompositions
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of a planning problem. The search algorithm exploits
these properties for splitting the current refined
planning problem into independent subproblems. We
show that by solving the independent subproblems
separately and then merging their solutions the planner
searches through a significant smaller search space and
achieves significant performance improvement over
solving the planning problem as a whole.

2. We have compared GraphHTN with UMCP (Erol et al.
1994a, Tsuneto et al. 1998), a traditional HTN planner,
on a set of problems from a large HTN domain: UM
Translog (Andrews et al. 1995). The UM Translog
domain is an order of magnitude larger in size and
number of features than, for example, the well known
logistics domain. This comparison is more meaningful
than previous results (Lotem, Nau, and Hendler 1999),
since the original motivation for HTN planning was to
handle large domains.

3. We have compared GraphHTN with Blackbox and IPP
on the UM Translog domain. To perform this
comparison, we needed to translate UM Translog into a
STRIPS-style action representation. To do so, we
developed an algorithm for translating HTN planning
domains into STRIPS-style domains, that works
correctly if the HTN domain contains no recursive
methods. We describe our experience at using this
translation. We found that the algorithm produced a
domain that was too big for both IPP (Koehler et al.
1997) and Blackbox (Kautz & Selman 1998) to handle
successfully.

To overcome that problem we also tried encoding the
UM Translog domain into a STRIPS-style domain by
hand, directly from the initial domain description. The
resulting domain was still too large for Blackbox on our
computer. It was compact enough that IPP could handle
it, but IPP still ran considerably less efficiently on this
problem than GraphHTN.

This paper starts with a short background section on HTN
and the GraphHTN planner. It describes how the new
properties are propagated through the planning tree and
exploited to identify independent subproblems. Then it
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describes the translation of UM Translog into a STRIPS-
style domain. All the performance tests are presented in
the Tests and Results section. We conclude with
conclusions and suggestions for future work.

Background

HTN Planning
HTN planning is an AI planning methodology that creates
plans by task decomposition. The planning problem is
specified by an initial task network, which is a collection
of tasks that need to be performed under specified
constraints.

The planning process decomposes tasks in the initial task
network into smaller and smaller subtasks until the task
network contains only primitive tasks (operators). The
decomposition of a task into subtasks is performed using a
method from the domain description. The method
specifies how to decompose the task into a set of subtasks.
Each method is associated with various constraints that
limit the applicability of the method to certain conditions
and define the relations between the subtasks of the
method.

HTN planners traditionally use classical refinement search
for finding a plan. However, new approaches for solving
HTN problems include the encoding of HTN problems
into a propositional satisfiability problems (Mali &
Kambhampati 1998; Mali 99) and GraphHTN (Lotem,
Nau, and Hendler 1999).

The GraphHTN Planner
GraphHTN is a hybrid planning algorithm that does HTN
planning using a combination of HTN-style problem
reduction and Graphplan-style planning-graph generation.
The algorithm builds two explicit data structures that
represent disjunctively all the possible solutions: the
planning graph (Blum & Furst 1997) and the planning
tree (Lotem, Nau, and Hendler 1999).

The planning tree is an AND/OR tree that expresses all
the possible ways to decompose the initial task network
using the HTN methods. The planning graph in the
context of GraphHTN states which tasks of the planning
tree are applicable at each time step, and which facts
might be true after each time step. Figure 1 presents an
example for a planning tree of a simplified planning
problem in the UM Translog domain. The initial task
network is represented by the two transport tasks at the
top of the tree (transporting p1 from L1 to L4, and
transporting p2 from L2 to L4). Transport(p1, L1, L4) can
be decomposed either to the Carry-direct subtask which
uses the t1 truck, or to the one which uses t2, and so forth.

The algorithm works as follows. Like the Graphplan
algorithm, it incrementally increases the length of the plan
being searched. In each iteration, it extends the planning

tree by performing only task decompositions that might
generate actions for the current time step. Only the actions
that have been generated so far in that process are used for
extending the planning graph. When certain conditions
hold, the algorithm starts to search for a solution within
the planning tree and the planning graph. If no solution is
found for the current plan length, the plan length is
incremented and the whole process repeats.

GraphHTN produces plans in the Graphplan format,
where several actions may occur at the same time if they
do not interfere with each other. The GraphHTN
algorithm is sound and complete, and is guaranteed to
report the plan with the shortest parallel length if a plan
exists. The next subsection describes the search algorithm
of GraphHTN, a required background for understanding
the new enhancements.

The Search
The goal of the search algorithm is to find a solution
subtree within the planning tree. A solution subtree T’ is
a subtree of a planning tree T with the following
properties:
(1) The root of T is included in T’.
(2) If an instance of a compound task t is included in T’

than exactly one of t’s children is included in T’.
(3) If an instance of a method m is included in T’ than all

the subtasks of m are included in T’.
(4) Each node n in T’ is assigned with two properties:

start time and end time. start time is the earliest time
step in which an action in the subtrtee of n starts. end
time is the latest time in which an action in the
subtree of n is finished. The primitive tasks in T’ with

Figure 1: A planning tree for a simplified version of UM
Translog. The ovals represent methods, and the rectangles tasks
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their start time assignment define the solution plan
(the “solution”)

(5) The preconditions of the primitive tasks in T’ and the
constraints of the methods in T’ are all satisfied when
the solution plan is performed.

The highlighted subtrree in Figure 1 is an example for a
solution subtree. The time interval [start, end) indicates
the start and end time assigned to the corresponding task.

The search for a solution subtree is performed in top-down
right-to-left manner. The top-down direction means that
nodes are selected for the solution tree only after the
selection of their ancestors. The right-to-left direction
means that the algorithm selects the tasks that it will try to
finish at time t before selecting the set of tasks to be
finished at t – 1. During the search the algorithm
maintains two types of sets:

 Taskst – the set of tasks the algorithm is committed to
examine for selection at time t.

Subgoalst – the set of facts that the algorithm is committed
to make true for time t. These commitments are the result
of including in the solution tasks whose precondition have
not yet been established.

At time t the algorithm scans the tasks in taskst and
decides for each task whether to select it (assigning to it
the end time t+1) or to postpone its selection to an earlier
time step (adding it to taskst-1). For a selected task, the
algorithm selects a decomposition method and adds the
subtasks that can be performed last (i.e., have no successor
subtasks within the method) to taskst. The selection of a

primitive task pt leads the assignment of the start time t to
pt and to certain ancestors of pt (those that pt is their first
offspring to be performed). When a start time is assigned
to a task, certain predecessors of the task are added to
taskst-1 (those whose all successors are already assigned
with a start time). During that process the algorithm
inserts the preconditions of the tasks that start at time t
into subgoalst. The algorithm avoids from selecting tasks
that are mutually exclusive or tasks that delete facts in
subgoalst+1.

Figure 2 presents a search scenario for the tree in Figure
1. The search is for a plan with eight time steps (0 to 7).
Initially the two transport tasks are inserted into tasks7.
The algorithm then scans and handles the tasks in tasks7,
and builds the list tasks6 of tasks to be scanned at time step
six.

Propagating Properties in the Planning Tree

In earlier versions of GraphHTN, the search process
pruned the search space by using information that was
propagated forward through the planning graph:

1. Which facts are reachable from the initial state, and
which actions are applicable at each time step. Only
applicable actions could be selected for a solution.

2. Which actions are exclusive to each other and therefore
cannot be selected for the same time step.

This information is associated with time steps and does
not supply clues to the search algorithm on the possible
consequences of selecting a specific decomposition
method for a time step. We assumed that by propagating
certain properties through the planning tree, in the
opposite direction to the search (bottom-up, left-to-right)
the search process will be able to make better decisions on
how to search as it goes right-to-left, top-down.

Therefore, we associate to each node n of the planning
tree information about which facts could be added
(PosAdd), deleted (PosDel), or required as a precondition
(PosPre) as a result of selecting n for the solution. The
next section describes how that information can be used to
identify independent subproblems.

We explain how the PosAdd set of facts is computed.
PosDel and PosPre are computed in a similar way. Since
the search is performed top-down, right-to-left, we define
the PosAdd facts to be either facts that could possibly be
added by actions in the subtree of n (PosAddBy), or facts
that could possibly be added by actions in the subtrees of
nodes, that are necessarily ordered before n
(PosAddBefore).

For example, in the planning tree described in Figure 3,
the PosAdd set of door-closed(t1) includes four facts that
are computed as follows:Figure 2: An example for the decisions and actions that are

taken in searching for a solution that is eight time steps
long, in the planning tree in Figure 1.
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• Door-closed(t1) is part of the PosAddBy set and is
propagated upward from subtasks of the Door-closed(t1)
task.

• At-vehicle(t1, L1), Door-open(t1), and At(p1, t1) are
part of the PosAddBefore set and are propagated from
subtasks that are ordered before the Door-closed(t1)
task.

The exact equations for computing PosAddBy,
PosAddBefore, and PosAdd appear in Figure 4. The sets
are computed by a single scan of  the planning tree in
roughly a depth first manner, at the beginning of the
search process. Therefore, the time complexity for
computing the properties is O(N) where N is the number
of nodes in the planning tree. That computation does not
change the overall time complexity of GraphHTN since
O(N) is already required for building the tree. Empirically,
the computation of the properties added less than 1% to
GraphHTN’s running time. For efficiency purposes, each
property was encoded as a bit-vector, where each bit
represents a different possible fact in the domain.

Identifying Independent Subproblems

Several works in the past (Korf 1987, Yang, Nau, and
Hendler 1992, desJardins and Wolverton 1998) dealt with
different ways for reducing the complexity of planning by
working separately on smaller subsets of the original
problem whose solutions can be merged. While our
motivation is similar, our approach is different. We try to
identify splitting opportunities that occur as a result of
refining of the planning problem during the search,
opportunities that do not necessarily exist in the original

planing problem prior to its refinement. For example, in a
two-package transportation problem, if the planner assigns
each package to a different truck at some stage of the
search, then the problem can be split into independent
subproblems: each of which is responsible for transporting
a single package.

By identifying independent subproblems during the search
and solving them independently we can achieve a
significant complexity reduction. If a problem has two
independent subproblems but the planner does not take
advantage of the independence, then the cost of solving
the problem behaves approximately according the
following model:

TotalCost = Cost(subp1) * Cost(subp2)

If the planner handles the subproblems separately, then
the cost is:

TotalCost = SplitCost +Cost(subp1) +  Cost(subp2) +
               MergeCost

If SplitCost and MergeCost are relatively small, the
splitting approach is cost effective.  So the question is how
to efficiently identify subproblems that can be split.

During the search process, GraphHTN selects at each time
step t the set of tasks that it will try to finish at time t and
defines a refined problem to be solved at time t –1.

Definition 1 (a refined problem). A refined planning
problem in GraphHTN is the n-tupple:

<G, T, t, tasks, subgoals>

where G is the planning graph, T is the planning tree, t is
the current time, tasks is the set of tasks the planner is

Figure 3: Computing the PosAdd set by propagating the
PosAddBy and PosAddBefore set through the planning tree.
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Figure 4: The set equations for computing
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committed to examine at time t, and subgoals are the set
of subgoals that should be true at time t + 1.

Splitting the current problem into subproblems means to
split the tasks and subgoals sets into separate sets. If
certain conditions hold we call such a split an independent
split.

Definition 2 (an independent split). Let subp be the
refined planning problem GraphHTN has to solve at time
t,

 subp ≡ <G, T, t, tasks, subgoals>

and let subp1, subp2, … subpk be a set of subproblems of
the form:

subpi = <G, T, t, tasksi, subgoalsi>    ∀1 ≤ i ≤ k.

Then subp1, subp2, … subpk are an independent split of
subp, iff the following properties are held:

(a) tasks = ∪1≤ i ≤ k tasksi;

(b) tasksi  ∩ tasksj = ∅   for each 1 ≤ i, j ≤ k, i ≠ j;

(c) subgoals = ∪1≤ i ≤ k subgoalsI;

(d) subgoalsi  ∩ subgoalsj = ∅   for each 1 ≤ i, j ≤ k, i ≠ j;

(e)  For each i, j such that 1 ≤ i, j ≤ k, i ≠ j:

       (e1) PosAdd(tasksi) ∩ PosAdd(tasksj) = ∅;1

(e2) PosPre(tasksi) ∩ (PosAdd(tasksj) ∪
                                        PosDel(tasksj)) = ∅;

(e3) PosAdd(tasksi) ∩ PosDel(tasksj) = ∅;

(e4) PosPre(tasksj) ∩ (PosAdd(tasksi) ∪
                                        PosDel(tasksi)) = ∅;

(e5) PosAdd(tasksj) ∩ PosDel(tasksi) = ∅;

(e6) subgoalsi ∩ PosAdd(tasksj) = ∅;

(e7) subgoalsj ∩ PosAdd(tasksi) = ∅;

Properties (a)-(d) assures that subp1, subp2, … subpk

define a real split of the tasks and subgoals sets. Property
(e1) is a technical way to assure that the search for each
two subproblems will be performed in separate subtrees of
the planning tree. Properties (e2)-(e5) assure that the
solutions of the subproblems cannot interfere with each
other. Properties (e6) and (e7) imposes that the subgoals
will be split according to the subproblems that can achieve
them.

An algorithm for finding an independent split according
to the above definition is defined in the next subsection.
Each independent subproblem that is found in the split is
solved separately. The following proposition guarantees

                                                       
1 We define PosAdd for a set of tasks as the union of the
PosAdd’s of the individual tasks in the set. A similar
extension is used for the definitions  of PosDel and
PosPre.

that the planner can solve the independent subproblems
instead of the original problem.

Proposition. If subp1, subp2, … subpk is an independent
split of subp then

(a) The union of every set of solutions sol1, …, solk for
subp1, … subpk respectively, is a solution for subp.

(b) Every solution sol of subp is a union of solutions sol1,
sol2, …, solk for subp1, … subpk respectively

An outline of the proof.

Part (a) (soundness): the union of every set of solutions
sol1, … solk for subp1, … subpk, respectively, is a solution
for subp because: (1) subp is the union of subp1, … subpk

(properties a-d) and, (2) there are no dependencies or
interference between the solutions of the different
subproblems (properties e2-e5)
Part (b) (completeness): we define sol’i to be the set of
elements in sol that are used for accomplishing the tasks
of subpi or their predecessors. Based on properties e1-e7
we show that there is no overlap between sol’i and that for
each i, sol’i is a solution for subpi.

The Split Algorithm

The split algorithm makes use of the PosAdd, PosDel, and
PosPre sets computed for the nodes of the planning tree at
the beginning of the search. The search process calls the
split algorithm after it completes to work on the current
time step (t+1), and intends to work on the refined
problem for the earlier time step (t). At that point the
search has already defined taskst and subgolast+1 and it
passes these sets as arguments to the split algorithm.

The algorithm is shown in Figure 5. The general idea
behind the algorithm is to create implicitly a dependency
graph between the tasks in tasks and to find the connected
components in that graph. These components represent
the independent subproblems. The algorithm scans the
tasks in tasks, and for each task t that has not been
classified yet, it finds its closure – the set of tasks that
depends on t or on other tasks in the closure of t. In the
worst case, the dependency between each two tasks in
tasks is checked. The cost of a single dependency check is
O(|F|) where F is the set of facts that are used as in the
planning problem Therefore, the complexity of the split
algorithm is O(|F| * |tasks|2). The algorithm is invoked
each time the search process completes the assignment of
tasks to a time step.  Empirically, GraphHTN spent less
than 3% of the overall planning time in that algorithm.

Finding Solutions for the Independent
Subproblems

The set of independent subproblems subp1, subp2, …
subpk of a subproblem subp are searched in sequence. A
failure to find a solution for one of these subproblems
means that there is no solution for subp, and a
backtracking from subp should be performed. Solving an



independent subproblem resulting in assigning start and
end time to nodes in the planning tree that participate in
the solution. As a result, when all the subproblems are
solved, the solution subtree is already marked, and no
extra merging effort is required.

Experimental Comparison

In order to examine the value of splitting planning
problems into independent subproblems we compared the
performance of GraphHTN with and without the new
splitting ability. As handling large domains is one of the
important motivations for using HTN planners, we
performed the tests on a set of problems from the UM
Translog domain (Andrews et al. 1995). The UM
Translog domain was inspired by the CMU logistics-
transportation domain (Veloso 1992), but since UM
Translog deals with various types of packages, vehicles,
and procedures for handling the packages, it is an order of

magnitude larger the CMU logistics. The UM Translog
domain is specified in HTN using 41 operators and 45
decomposition methods. Typical problems in that domain
deal with a large number of vehicles and locations (22 and
20, respectively in our test problems). The initial state of
the test problems includes about 300 facts. The results of
the performance tests are described in the Test and Results
section.

Translating HTN Problems into STRIPS-style
Problems

In general, HTN planning is strictly more expressive then
STRIPS-style planning (Erol et al. 1994). That means that
every STRIPS-style planning problem can be translated
into an HTN planning problem, but not vice versa. The
kind of HTN problems which are not translatable are those
that include unbounded recursion among their methods2.
However, in UM Translog like in many real life
applications there are no recursive methods at all. Thus
such domains can be translated in principle into a STRIPS
representation.

In order to compare GraphHTN with action based
planners such as IPP and Blackbox, we have defined an
algorithm for translating non-recursive HTN domains into
a STRIPS-style representation, and followed that
algorithm in translating UM Translog into STRIPS. The
resulting domain was too big for both IPP and Blackbox to
handle successfully.

As a second trial we encoded the UM Translog domain
into a STRIPS-style domain by hand, directly from the
initial problem description. Using that domain we were
able to run IPP on the set of problems and get performance
results. These two experiences are summarized in the next
sections.

An Algorithm for Translating HTNs to Operators

When no recursive methods exist in the domain an HTN
planning domain can be translated into a STRIPS-style
domain as follows3:

• Find all the root tasks in the domain – those tasks
which not appear as subtasks of a method. For example,
in the UM-Translog domain transport is the only root
task.

• Decompose each root task according to its available
HTN methods.

                                                       
2 By a “recursion” we mean a situation where one instance
of a method is an ancestor in the planning tree of another
instance of the same method.
3 The algorithm can be extended to handle a bounded
recursion, by starting the decomposition from the tasks in
the initial task network (i.e., translating a problem and not
just a domain)

Algorithm Split(tasks, subgoals)
  candidates = tasks;
  subp_num = 0;
  Mark all candidates as unclassified;
  foreach task t in candidates do
     candidates = candidates − {t}
     if t is unclassified then // define a new subproblem
        subp_num = subp_num + 1;
        taskssubp_num = {t}
       subgoalssubp_num = subgoals ∩ PosAdd(t);
       Mark t as classified;
        FindClosure(t, taskssubp_num, subgoalssubp_num,
                             candidates, subgoals);
     end if;
  end foreach;
end.

Procedure FindClosure(t, tasks, subgoals,
                                        candidates, all_subgoals)
  foreach task s in candidates do
      if Depend(t, s) then  // add the task to the closure
         tasks = tasks ∪ {s}
        subgoals = subgoals ∪
                           (all_subgoals ∩ PosAdd(s));
         Mark s as classified;
         FindClosure(s, tasks, subgoals, candidates,
                                all_subgoals);
      end if;
  end foreach;
end;

Procedure Depend(s,t)
   Return false if all the properties e1-e5 hold for s
   and t; otherwise, return true.
end;

Figure 5: The split algorithm



• Continue to decompose the generated tasks recursively,
until no more tasks can be decomposed (termination is
guaranteed as there is no recursion among the methods).

• During that process, translate each occurrence of a
method as described in the following paragraph; and
translate each occurrence of a primitive task ad
described in the paragraph after next.

Translating occurrences of methods. If m is an
occurrence of a method than it is translated into a STRIPS
operator om as follows:
• The preconditions of om assures the completions of the

subtasks of m. If m decomposes the task instance t0 into
the subtasks t1,…, tk, then the precondition of om consist
of the propositions t1-completed,…, tk-completed, where
tj-completed is an artificial proposition that is added to
the domain to indicate the completion of the tj task.

• If the subtasks of the m are ordered, then preconditions
are produced only for those subtasks that can appear last
in the method. The completion of the other subtasks is
taken care by the translation of the order constraints, as
described in the paragraph after next.

• om has a single add effect t0-completed which indicates
the completion of t0.

As an example see Figure 6. In that example, door-closed,
which is the last subtask of the method, is the only subtask
that generates a precondition for the operator. However,
that precondition should be specific enough to represent
the exact occurrence of the method and therefore has to be
augmented by two additional arguments.

Translating occurrences of primitive tasks. If t is an
occurrence of a primitive task, then its translation ot has
the same sets of preconditions, add-effects, and delete-
effects, except that the add-effects of ot also include the
proposition t-completed.

Translating constraints. An order constraint between two
instances of subtasks: t1 < t2 is translated by adding the
precondition t1-completed to every operator that is
generated from the decomposition of t2. For example, in
the load-top method, the load subtask is ordered before
the door-closed subtask. As a result, the precondition
load-completed(?p, ?t, ?o) is added to operators that are
generated from decomposing door-closed (such as the
close-door operator).

To make things shorter we are not describing here how
the rest of the method constraints (before, after, between
and initially) are translated. In general, they contribute
additional add-effects and preconditions to existing
operators.

Translating the planning problem. An HTN planning
problem in an HTN domain is specified by an initial task

network to be performed and by an initial state. The initial
task-network is translated into a STRIPS operator (solve-
problem) exactly the way HTN methods are translated into
STRIPS operators:

• The preconditions of the solve-problem operator assure
the completion of all the tasks of the initial task
network.

• solve-problem has a single  add effect: solve-problem-
completed().    

The STRIPS planning problem is specified by an initial
state identical to that of the HTN problem and by a single
goal: solve-problem-completed().

Limitations. We used that translation algorithm to
translate a subset of the UM Translog domain into a
STRIPS-style representation. We found that:

1)  The readability of the resulting domain is poor. This is
the result of adding operators, add-effects and
preconditions to maintain the HTN constraints.

2)  In addition to “real” operators, the resulting plans also
include “artificial” operators that represent methods. It
is quite easy to filter the “artificial” operators out of the
plan. However, we cannot guarantee that the filtered
plan still has the minimal parallel length, a property
that is usually guaranteed by planners like IPP and
Blackbox.

3)  The performance of IPP and Blackbox on the resulting
problems was very poor. They were able to solve only
very simplified versions of the test problems. The main
difficulty for these planners was the large number of
instantiated actions. Since the STRIPS operators were
used to represent occurrences of HTN methods (and
occurrences of primitive tasks), they had to include
additional variables to distinguish between the
different occurrences of the same method (or between
the different occurrences of the same task). These
additional variables caused to a dramatic increase in
the number of instantiated actions.

Figure 6: The translation of an occurrence of a method into
a STRIPS-operator

If m is an occurrence of the following method:
   load-top(package ?p, truck ?t, location ?o):-
     n1: door-open(?t)
     n2: load(?p, ?t, ?o)
     n3: door-closed(?t)
   formula:
     n1 < n2 and n2 < n3 and …

then om is the following STRIPS operator:
   op-load-top-method(package ?p, truck ?t, location ?o)
      :pre door-closed-completed-for-load(?p,?t,?o)
      :add load-top-completed(?p, ?t, ?o)



To overcome some of these problems we encoded the UM
Translog problem into a STRIPS-style problem by hand,
directly from the initial problem description (Andrews et
al. 1995).

The Manual Encoding

In the manual STRIPS encoding of UM Translog we
avoided using artificial operators for representing
methods. We also tried to keep the number of instantiated
actions small (although with a somewhat limited success).

The limited expressivity of STRIPS required:

1)  Splitting some general purpose operators such as drive
into more specific operators such as drive-regular,
drive-flatbed, etc.

2)  Adding artificial add-effects and artificial
preconditions to the operators to impose order
requirements that exist in the domain.

The resulting domain was more compact than the one
generated using the translation algorithm. IPP was able to
solve planning problems in that domain, but only after
invoking its RIFO preprocessor (Nebel, Dimopoulos, and
Koehler 1997). RIFO filters out initial facts and operators
that are not relevant for solving the problem. Since
Blackbox is currently not distributed with such a pre-
processor, it was not able to solve problems in that
domain. The performance results for IPP are presented in
the Tests and Results section.

Besides these performance issues, our experience exposed
several difficulties in encoding big planning domains in
the STRIPS representation. The following example
illustrates some of these difficulties.

Example. In UM Translog it is required to obtain a permit
for transporting a hazardous package before starting the
actual procedure of transporting the package. This is a
global requirement as it is not a natural pre-requisite of
any of the actions involved in transporting of the package
(drive, load, unload, etc.). In HTN planning, we can
simply express that requirement by creating two
compound tasks: pickup which is responsible for
preparation activities such as obtain-permit; and carry,
which is responsible for carrying the package (see the
illustration in the next column). An order constraint
between the two tasks assures that any of the carry actions
starts after the completion of all the pickup actions.

In the STRIPS representation, it is not clear in advance
what will be the first action of carrying the package, so the
precondition has-permit(?p) should be added to any action
that can come first in the carrying phase.  One of these
actions is open-door(?t). Because has-permit(?p) is added

as a precondition of open-door, the package variable ?p
should be added to the open-door operator:

open-door(truck ?t,  package ?p)
  :pre has-permit(?p)
         door-closed(?t)
  :add ….

That means that open-door becomes package-specific, and
that it encodes a global requirement. Situations of that
kind cause the following problems:
1) Encoding and debugging the STRIPS-style domain

becomes difficult.
2)  Since the basic operators encode global requirements, it

is more complicated to make changes to the domain.
For example, basic operators like open-door must be
changed when the global requirement they encode is
changed (e.g. removing the requirement for a permit
for transporting a hazardous package).

3)  The need to add additional variables to operators (as
shown in the example) increases significantly the
number of the instantiated actions.

Tests and Results

Methodology
Two experiments were conducted. The first compared the
performance of GraphHTN with and without its new
ability to split a planning problem into independent
subproblems. The second, compared GraphHTN with
UMCP (Erol 1994a), (an HTN planner which uses a
classic refinement search), IPP (Koehler et al. 1997), and
Blackbox (Kautz & Selman 1998). All tests were
performed on a 400MHz Pentium II with 128MB RAM.
No performance results are shown for Blackbox as it was
not able to solve any of the problems on our machine.

The same set of problems was used for both experiments.
All the problems are from the UM Translog domain. The
problems were generated automatically for two, three, and
four packages according to the same problem patterns that
were used for testing UMCP (Tsuneto et al. 1998). The
HTN version of the UM Translog domain was used for
running GraphHTN and UMCP. The manual STRIPS
encoding of UM Translog was used for running IPP.

Carry (?p, ?o, ?d)Pickup(?p)

Transport(?p, ?o, ?d)

Obtain-permit(?p) Open-door(?t)  Drive(?t, ?x, ?o)



Results
Figure 7 presents graphically the total CPU time and the
number of search nodes required for solving the problems
by GraphHTN with and without identifying independent
subproblems. Note that the diagrams are plotted with a
logarithmic scale for the time and the number of nodes.

The number of search nodes explored by GraphHTN with
the independence component was significantly smaller
than running GraphHTN without it. For problems with
three and four packages, the CPU time for solving the
problems with the independence component was
significantly shorter than solving them without it. For
problems with two packages, building the graph was the
dominant time, so there was no significant difference in
the total running times.

Figure 8 presents graphically the total CPU time and the
number of search nodes explored in solving the problems
by GraphHTN, UMCP and IPP. For GraphHTN, we used
the version with the independence component.

In comparison with IPP, GraphHTN ran significantly
faster and explored significantly smaller number of nodes.

In comparison with UMCP, GraphHTN found plans with
an optimal parallel length, while UMCP found plans,
which are not necessarily optimal. GraphHTN also solved
the problems significantly faster then UMCP.
Furthermore, UMCP was not able to solve any of the
problems with four packages. Although GraphHTN is
written in C++ and UMCP is written in Lisp, it seems that
due to the big performance gap, re-coding UMCP in C

would probably not make a big difference. Regarding the
number of search nodes, there was no big difference
between GraphHTN and UMCP. Note however, that the
amount of work and space which are required for
exploring a search node of UMCP are inherently bigger
than those which are required for exploring a node in
GraphHTN.

Discussion and Conclusions

Our work presents a new way to extract knowledge on an
HTN planning problem from its disjunctive
representation, knowledge that can be used to speed up the
search. We define a novel set of properties, associated
with the nodes of the planning tree – a disjunctive data
structure used by the GraphHTN planner to represent all
the possible decompositions of an HTN planning problem.
We show how these properties can be used by the search
to split its current refined problem into independent
subproblems. We show experimentally that by solving the
independent subproblems separately and then merging
their solutions, the planner achieves a significant
performance improvement over the alternative of not
splitting the problem. Since our approach for propagating
properties through the planning tree is quite general, we
believe it will be possible to use it for propagating other
useful properties as well.
This work also makes a step toward examining disjunctive
planners in more complex planning domains. In
particular, we have compared GraphHTN, UMCP, IPP
and Blackbox using the UM Translog domain, which
contains the following complications: (1) large number of
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Figure 7: Solving the problem with and without identifying independent subproblems – CPU time and the number of search nodes

Figure 8: GraphHTN, UMCP, and IPP – CPU time and the number of search nodes. A maximal value is assigned to problems that
were not solved by the tested planner (memory problems or others)



operators, (2) large domains of variables, (3) large initial
state, and (4) requirements on the desired order between
actions in the plan.

On the tested problems GraphHTN had a significantly
better performance than UMCP, IPP, and Blackbox
(which was unable to solve any of the problems using our
computer).

One of the important advantages GraphHTN had over
UMCP was its ability to use, during the search, disjunctive
information gathered on the problem prior to the search.
In particular, GraphHTN used information on when it is
possible to split the problem into independent
subproblems.

The comparison between GraphHTN and action-based
planners was more problematic, as the UM Translog
domain had to be translated first into a STRIPS-style
representation. For HTN problems like UM Translog in
which no recursive method calls occur, such a translation
can be done automatically. However, the result of that
translation was a non-compact STRIPS-style domain that
was too big for both IPP and Blackbox to handle. On the
other hand, the alternative approach of performing the
STRIPS encoding by hand (directly from the domain
description) was difficult and error-prone. One of the
reasons for this is the limited expressivity of the STRIPS
language, which forces one to project high level
requirements on the order of tasks to the level of actions.

In conclusion, UM Translog seems to represent a class of
planning problems that can be solved much better by HTN
planning than by action-based planning. However, some
of the approaches that were used so successfully for action
based planning (such as disjunctive planning) can be
adopted successfully to improve the efficiency of HTN
planners.

For the future, we plan to explore additional opportunities
for using HTN specific properties, and to examine
alternative approaches for searching the planning tree.
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