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ABSTRACT

This paper presents and explores a comprehensive mathematical model for human
leukocyte antigen serology, based on a mathematical formalization of the concept of
specificity. This model is general enough to take into account such factors as absorption,
elution, cross-reactivity, and incomplete immunization, The paper includes a presentation
of the relevant immunological background and a short discussion of the underlying
computational difficulty of the basic problems. Upper and lower bounds are detived for
the minimal number of specificities required to explain a given set of HLA reactions, and
it is shown that the numbers of antibodies and antigens involved must be no less then this
minimal number of specificities. Other techniques and theorems are also presented to aid
in reducing and analyzing HLA reaction matrices.

I. INTRODUCTION

Research into the problem of isolating and defining histocompatibility
(HLA) antigens, antibodies and specificities is at present a subject of
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intensive immunological research. HLA antigens are found in human tissue
cells and are presumed responsible for the acceptance and rejection of
transplanted tissue; thus the exploration of the properties of these antigens
is of practical as well as theoretical interest.

The first work known to us which gives an explicit mathematical defini-
tion and treatment of the comcept of specificity is that of Nau and
Woodbury [13] and Nau [12] (from which a number of results have been
incorporated). The results in this paper extend the previous work and
explore the relationships between antigens, antibodies, and specificities, and
are useful in analyzing histocompatibility reaction matrices in order to
determine the underlying antigens, antibodies, and specificities.

Section II of this paper is a presentation of relevant immunological
background at a level designed to introduce these concepts to people not
familiar with the field. It may be skimmed by readers having a thorough
knowledge of this material, except for the last three paragraphs, which are
important in justifying the mathematical model presented in Sec. I

Section I is devoted to presenting and further justifying our mathemati-
cal model of antigen, antibody, and specificity interactions and the various
resultant immunologic reactions between human ftissue and antisera.
Among other things, the model accounts for such factors as cross-reactivity,
absorption, and elution. Furthermore, we point out that computationally,
the problem of finding specificities is a very hard one, in the sense that it
falls into a class of problems for which ne fast algorithms are known or are
ever likely to be found.

Section IV further develops the mathematical material and presents a
number of heuristics to aid the researcher in analyzing histocompatibility
reactions. Upper and lower bounds are derived for the minimal number of
specificities required to explain a given reaction matrix, and it is shown that
the numbers of antigens and antibodies involved cannot be less than this
minimal number of specificities.

Section V presents an order-theoretic approach to the analysis of histo-
compatibility reactions. Some material from previous sections is derived
from a new perspective, and additional techniques are developed. In partic-
ular, an example incorrectly analyzed by Ciftan [6] is completely analyzed.

II. IMMUNOLOGICAL DISCUSSION

This section presents some basic information about immunologic reac-
tions and is intended for those for whom this information is novel. It then
leads into a summary of what is known about the special case of the HLA
antigens and their reactions. We need first to give some terms and their
meanings.

An antigen is a substance which when introduced into an individual
provokes a reaction .(immune response) which is specific and which usually
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has memory. This is to say that the response is most intense when measured
against the inducing antigen and that it occurs more-rapidly and is stronger
when the individual encounters the antigen for a second time. Immunity is
the function of the hmphoid system, which includes many small mono-
nuclear cells (rmphocytes) which are present in small organs called lymph
nodes and which also circulate in the blood. There are two major compo-
nents of the immune response: one is a celfular response, and the other is a
humoral or antibody response. While we will not here be concerned with the
ceflular response, as background information it may be noted that it results
in the formation of effector T (or thymus-dependent) cells which can combine
with the antigen, and suppressor T cells which regulate this response. The
humoral or antibody response requires the activity of a second set of
lymphoid celis (B cells). which in mammals are first observed in the fetal
yolk sac and later in the bone marrow. The B cells include cells which
excrete a special type of protein called immunoglobulin. There are interac-
tions between various subclasses of B and T cells.

The set of all descendants of a single B cell is called a clore. A set of B
cells all of which are in the same clone produce the same chemical species
of immunoglobulin. Such immunoglobulin is called monoclonal. Mono-
clonal antibodies are very rarely encountered. Most frequently, several
clones are stimulated and a rather heterogeneous mixture of antibodies is
produced. The term anmtiserum is often used to describe a mixture of
antibodies.

Immunoglobulins have as their basic structure one protein (polypeptide
chain) with a molecular weight of approximately 50,000 daltons (heavy
chain), which is bound covalently to a smaller protein of approximately
25,000 daltons (light chain). The N terminal ends of the heavy chain and
light chain have an intimate relationship to each other and are usually held
together by a disulphide bond located near the C terminal end of the light
chain. The combination of light and heavy chains provides the active site of
the immunoglobulin. It is probable that all immunoglobulins are antibodies,
but the presence of an antibody can only be recognized following its
combination with an antigen. Thus to some extent the definition of antigen
and antibody is circular. An antigen is something that incites an antibody
{among other things); an antibody is an immunoglobulin that combines
with antigen in an exothermic reaction. The conformation of light and heavy
chains varies from antibody to antibody and is largely dependent upon the
linear arrangement of amino acids in certain sequences of the variable
portions of the light and heavy chains. This variability is extreme in the first
110 amino acids from the N terminal end and cvonsists of several variable
regions each up to 10 amino acids in length and separated by short constant
regions. The remainder of the light chain and most of the heavy chain have
a relatively constant amino acid sequence,
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The chemical bonding between antiserum and antigen occurs in a
relatively small site called a ligand of the antigen molecule. (Antisera are
remarkably selective and attack preferentially antigenic structures virtually
identical with those of the immunizing antigen.) There are many different
classes of immunoglobulin. Most consist of dimers of 2 light and 2 heavy
chains with a small amount of carbohydrate attached to the heavy chain.
Some (IgA) contain an additional structure called a secretary piece, which is
essential for transportation across membranes, while others (e.g., IgM)
consist of pentamers of dimeric light and heavy chains. The constant
portion of the immunoglobulin chain has little or no affinity for antigen, but
has numerous biologic properties, the most noteworthy of which confer the
ability to bind to certain cell membranes through Fc¢ receptors on those
membranes, and to activate and fix the first of a cascade of enzymes called
complement. These properties are manifested after the active site on the
antibody has combined with an antigen or when the antibody molecules are
aggregated by some physical treatment.

An antibody response is usvally induced by injecting antigen into a
suitable recipient. Sometimes a large volume is required, as for example in
the production of sera for commercial applications, in which case a large
animal such as a horse or goat acts as a recipient. For experimental
purposes laboratory animals (including rabbits, rats, and even mice) are
used, each species having peculiar advantages and sometimes disadvan-
tages.

The antigen can vary greatly, The majority are chemical compounds.
Common examples are tetanus toxoid—a formalin-treated extract of the
tetanus organism—and bovine serum albumin. Some antigens are relatively
simple, consisting for example of a synthetic random copolymer of several
aminc acids. In general an antibody response develops best when the
antigen exceeds a minimum molecular weight (e.g., 10,000 daltons), is
chemically heterogeneous, and differs markedly in species of origin from
the recipient. Bovine serum albumin, an example cited above, is a strong
immunogen for a rabbit but would be less good for a sheep and very poor
for another bovine. Antigens are considered to require two components:
one is called the carrier and is of necessity macromolecular; the second is
usually small, sometimes consisting of as few as 5 amino acids, and
constitutes the ligand or immunodominant site. Not infrequently a single
short sequence of a large molecule may serve as the ligand, the remainder of
the same molecule serving as the carrier. It is easy to see then that several
amino acid sequences or carbohydrate side chains of a single antigenic
substance can function as antigens. A recipient may respond to one or
several of these ligands or may fail to respond to any, the difference in
responsiveness often being determined by genetic factors.
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Genetic factors can be of several classes. One class of genes controls the
capacity to respond immunologically. These are called immune response
genes, and every species appears to possess many such genes. A second
class of genes determines anmfigen structure. Thus in immunization using
antigens from a donor animal or human, if the species of origin of the
antigen and the species or origin of the antibody producer shared a
structural gene for the same amino acid sequence, then that protein or
peptide would not function as an antigen. It is generally the case that no
individual mounts an antibody response against a structure which is ex-
posed on the suifaces (cell-surface antigen) of the tissues of his own body.
This phenomenon was named by Paul Ehrlich horror autotoxicus, and
indeed, when an individual does recognize and respond to antigens found in
its own body, autoimmunity and autoimmune disease are likely to develop.

' We now turn to the special case of antibodies made against cell-surface
determinants of higher animals. The following statements are based on
observations of all vertebrate animals studied, but have special reference to
man. There are obvious differences between species, and there are also
differences within a single species, which may be gross (as between a poodle
and a bulldog) or may be so slight as to require laboratory tests to detect
them. The immunologist and biochemist can recognize many differences in
structure within a species. One such set of structures is found on the surface
membrane of the cells of the body. These antigenic surface features are
called alloantigens. Best known are the alloantigens of the A and B blood
groups, the ligands or determinants of which are carbohydrates, and the Rh
antigens, which are proteins. Alloimmunization by alloantigens (immuniza-
tion within a species) induces alloantibedies. Alloantibodies will react
against cells of the immunizing donor; they will also react with cells of other
individuals of the same species having the same genetic determinants and
therefore the same anfigenic markers. Interestingly, they will occasionally
react with similar antigens of other members of the species. Since this
reaction is not one between antibody and its komologous antigen, it is
usually qualitatively and quantitatively less strong, and is usually referred to
as cross-reaction. Cross reactivity has long been studied in other branches of
immunology. Antibodies to the ligand (or hgpfens) dinitrobenzene cross
react very strongly with trinitrobenzene, less strongly with dinitrotoluene,
and only weakly with trinitrotoluene. The strength of binding, called
affinity, can be measured quantitatively with great precision and gives a
measure of the intensity of cross-reactivity between such simple ligands.

The antigen-antibody reactions against lymphocytes or tissue cells are
much more complex, and precise measurements are difficult. Immune
responses in the human against tissues or cells from other humans would in
fact have received only cursory atiention if it were not for the fact that such
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responses are important in platelet, white-cell, and bone-marrow transfu-
sion, in the transplantation of tissues and organs, in the relationship
between mother and fetus, and in the association between certain genetic
markers of leukocytes and a variety of diseases. Because of these practical
considerations many laboratories have investigated human lewkocyte
alloantigens, have generated considerable volumes of data and are in need
of help in the interpretation of these data. Although there are many
antigens on the surface of tissue cells, those of one particular genetic system
are paramount in their biologic significance. This system is called HLA4, It
has been most extensively studied on blood lymphocytes, but it is also
present on other elements in the blood—especially blood platelets, which are
particles, smaller than lymphocytes, essential for the coagulation of bloed.
The HLA antigens are also found on the cells of the kidney, heart, skin,
liver, and other organs and tissues of the body.

The name HLA was originally given to a series of glycoproteins of
molecular weight approximately 55,000 daltons with some superficial re-
semblance to the immunoglobulins in that the basic structure is a
glycoprotein which is associated with a smaller peptide. As with the im-
munoglobulins, the heterogeneity of HLA resides in its amino acid
sequence. However, there are many important differences: the HLA mole-
cule has a hydrophobic portion which is inserted into the cell membrane,
variations appear to involve only isolated amino acids rather than longer
sequences, and the “light chain” is a well-known protein calied B,-micro-
globulin. B,-microglobulin has a molecular weight of 11,000 daltons and
shows no variability between individuals.

At first only one series of HLA antigens was recognized. It was soon
realized that there were two and later at least three different series each
coded for by a separate genetic locus. The three known loci are called
HILA-4, HLA-B, and HLA-C. HLA-A, B, and C series antigens are de-
tected by the cytotoxicity test, which will be explained later. A fourth locus,
HLA-D, is identified by a completely different procedure called the mixed
lymphocyte reaction (MLR). Each HLA locus exists in several variant
forms. There secems to be at least 20 variants or alleles at the A locus, an
equal number at the B locus, at least 5 at the C locus, and at least 8 at the D
locus. To further complicate the system, at least two more genetic loci are
known to exist within the HLA system. These code for a different type of
protein which is not associated with B,-microglobulin and which is found in
abundance on B lymphocytes but not present on platelets. (Its existence on
T cells is disputed.) One of the B-cell loci is located at or near HLA-D,

The genetic complex HLA, with its minimum of & genetic loci, is located
on the 6th chromosome. Since the 6th chromosome is an autosome, each
individual has information coding for 12 antigenic molecules. To simplify
this discussion we will not further be concerned with products of those
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genes expressed only on B cells, nor with HLA-C or HLA-D. Emphasis will
be on the products of HLA-A and HLA-B; thus individuals may be thought
of as having only 4 HLA antigens. The mathematician may bear in mind
the problems likely to be encountered when the additional 4 or more loci
are to be analyzed.

Most of the antisera used in testing for HLA antigens come from women
who have borne children, and result from immunization of the mother
against the fetus. Since the fetus usually differs from the mother by one
HLA-A and one HIL.A-B antigen, the majority of such sera contain two
distinct antibodies. These can be separated by manipulations called absorp-
tion and elution. To absorb, the serum is mixed with platelets known to
carry only one of the relevant antigens. The corresponding antibody com-
bines with the absorbing platelet, which is then mechanically removed,
carrying the bound antibody with it. (The residual fluid is called absorbed
antibody—rather a misnomer.) The platelets are then treated with an acid
solution, releasing the bound antibody. Again mechanical removal yields a
clear solution which contains the second antibody. As an example, suppose
a given serum contains anti-HLA-A3 and anti-HLA-B7. Then absorption
with platelets from a donor who had A3 but not B7 would remove anti-A3
and leave anti-B7 in solution. The anti-B7 solution would be called “ab-
sorbed anti-B7”. Acid treatment of the platelets would release the anti-A3
antibody; this would be called “anti-A3 eluate™. Differential elution removes
weakly bound antibodies by weak acidification and progressively more °
strongly bound antibodies by progressively stronger acidification, thus
producing several different eluted fractions. If every sample of cells which
removes any reactivity from a serum removes all reactivity, then the serum
is said to be operationally monospecific.

While the binding of antibody with antigen is generally visualized as a
“lock and key”-type interaction, it is not immediately apparent how this
applies to a large molecule such as the HLA glycoprotein; which is far too
large to be included in the active site of an antibody. The globular structure
of immunoglobulin can be demonstrated by x-ray diffraction and structural
analysis based on amino acid sequences. These studies show a hollow core
in which the ligand fits. At present, immunologists do not know the
structure of the ligand, and it may be several years before this information
is available. In the meantime, the identity of antigenic specificities and the
nature of cross reactivity must be deduced. For a. variety of reasons it is
unlikely that carbohydrate is responsible for HLA specificity, and the
protein sequence is believed to be important. The ligand could be a
pinched-up loop; it could be an immunodominant loop, in which a linear
sequence of amino acids would determine conformation and charge; or it
could involve the coincidence of several separated amino acids brought
together solely by the folding of the molecule. Thus cross reactivity could
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occur if two individuals had a nearly identical amino acid sequence in the
immunodominant loop, if the loop were shifted slightly because of dif-
ferences somewhere else on the molecule, or if there were slight differences
in folding. While slight differences in composition or form of the antigen
can make a difference in the antigen, different individuals probably “see”
the same antigen in a slightly different manner, and it is very rare for two
anti-HLA antibodies of the same general specificity to react in an identical
manner when tested on a large panel of donors. Differences in the number
and spacing of antigenic molecules or in the ionic charge of adjacent
molecules may also contribute to differences in binding. Finally, it was
clearly shown by Landsteiner that antibodies could often react with two
molecules of radically different composition. This abberation can now be
largely explained on the basis of similarities in three-dimensional structure,
but it does offer a warning that a knowledge of the amino acid sequences of
two cross-reactive antigens may not immediately explain cross reactivity.

Experimental determination of the presence of antigens is usually done
by an indirect reaction called the cytotoxicity test. As stated earlier, the
combination of antibody with antigen is exothermic and also results in
changes which, among other things, permit the fixation and activation of
complement. The exothermic reaction is a primary one, and in an ideal
situation a measure of the heat of combination would give much informa-
tion about the reaction of aniibody and its cellular target. In practice this is
inconvenient, and the immunologist is forced to the fixation of complement.
This is at best a secondary event, and its measurement is subject to several
sources of error. The test itself consists of mixing lymphoid cells from the
blood of an individual with a small quantity of antibody. After incubation a
source of complement, usually from rabbit serum, is added and, after a
further incubation activation of complement, is detected by adding a dye.-
Dead cells are permeable to the dye and become stained. Live cells are
impermeable and remain refractile and unstained, There are many varia-
tions in technique and in the indicator used, but the method described is
most widespread in its acceptance, and the results of different procedures
are highly correlated.

The antibody used comes from one of two main sources: women who
have borne children (multip sera), as mentioned earlier, and subjects who
have been injected with lymphocytes from another individual (planned
immunization). Parous women frequently become sensitized by the passage
of cells across the placenta during successive pregnancies, so the specificity
of multip serum depends upon the antigenic relationship between mother
. and child and is somewhat random. Planned immunization permits the
selection of donors and recipients who differ only at the HLA characteristic
selected. However, both types of antisera can contain a rich variety of
antibodies, some of which are not detectable by cytotoxicity testing, and the
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existence of many of which is therefore not suspected. An antibody which
does not fix complement can be present in a serum containing a comple-
ment-fixing antibody and can compete with it. If the two antibodies had
identical reactivities the effect of the mixture would be to weaken the
complement-dependent cytotoxicity reaction. If the two antibodies in the
same serum had different reactivities, the presence of the second antibody
would be unsuspected and its effects might only be inferred by the failure of
the serum to lyse cells carrying the relevant specificity. Alternatively, the
interaction of two antibodies in a serum with a lymphocyte might cause cell
death where each antibody acting alone might not.

An important facet of HLA testing is that of the reaction strength,
measured in terms of the portion of cells killed by a given antiserum [4]. If
samples of lymphoid cells from several different individuals are each tested
against the same set of antisera, the results may be tabulated in the form of
a matrix in which each entry is a measure of the strength of reaction
between a particular sample of cells and a particular sample of sera. The
situation is complicated by the fact that the strength of each reaction
depends on the presence or absence of cross reactivity or of more than one
reacting antigen-antibody pair; the strength, age, and concentration of the
antiserum; preferential reactivity against a subpopulation of cells; and other
factors. In addition, the measured reaction strength may vary with the
subjective responses of the observer, and some of the data may be missing
Of in error.

A model which adequately deals with the problem of varying reaction
strengths is one which notes that the population of cells has subpopulations
(e.g. the subpopulation of B cells in the population of small lymphocytes
which includes B cells and T cells) which have been found to have
specificity contents which are subsets of the total [7). By physically separat-
ing the various subpopulations, we can reduce the problem to one in which
either virtually all cells are killed or else virtually none are. This allows us to
simplify the problem by partitioning the set of possible reaction strengths
into two values: reaction, denoted by 1, and no reaction, denoted by 0.
Thus, we may represent the data obtained from such an experiment by a
Boolean incidence matrix in which each row represents the reactions of
some cell to each of the sera, and each column represents the reactions of
some serum to each of the cells.

From the outset it has been emphasized that the antigen is detected only
through the antibody and that the reactivity of the antibody is known only
through some function of its reaction with antigen. Thus in HLA serology
the definition of specificities is entirely arbitrary. In the early evolution of
knowledge of the system van Rood determined the reactions of 64 un-
selected multip sera against cells from 100 unrelated individuals. He com-
pared the reactions serum by serum and could thus allocate certain anti-
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genic specificities to cells from some donors and serum specificities to
antisera reacting against those cells. This practice has been followed by all
subsequent investigators.

III. THE MATHEMATICAL MODEL

At present, immunologists do not have chemical tools at their disposal to
isolate individual antigens, antibodies, and specificities. Thus, the identifica-
tion of these entities must be done by studying reaction matrices. Given a
set of cells, a set of sera, and a tabulation of the reactions between them, it
is the task of the tissue typer to find assignments of sets of antigens to the
cells, sets of antibodies to the sera, and specificities to the antigens and
antibodies which adequately explain the tabulated reactions.

One essential property of an adequate explanation is that a serum cannot
attack a cell unless at least one of the antibodies in the serum has a
specificity in common with one of the antigens in the cell. We may
formulate this mathematically as follows. Let C be a set of cells, D be a set
of antisera, and the relation R C C X D be the relation defined by ¢ R4 iff
the serum o reacts with cell ¢. Then we must find (1) a set 4 of antigens, (2)
a set B of antibodies, (3) a relation U CAX B defined by aUb iff the
antibody b attacks the antigen 4, (4) a map g: C—27{g(c) is taken to be the
set of antigens contained in the cell ¢], and (5) a map k: D—2% [h(d) is
taken to be the set of antibodies contained in the serum ] such that if c€C
and d € D, then ¢ Rd iff there exist a € g(c) and b € h(d) such that ¢ Ub. In
such a case we say that U, g, and & explain R. Note that we are using the
usual mathematical notation 24 to represent the set of all subsets of 4, as
well ‘as the notation ¢Rd to denote (c,d)ER. We shall also use |4| to
represent the cardinality of 4. Note that g and # above may equivalently be
thought of as relations gCc C XA and AC D X B.

NOTATION 3.1

Generally, throughout the rest of this paper, whenever we refer to
variables 4, B, C, D, R, U, g, and k, they will be as defined above. Note
that 4, B, C, and D are finite sets.

If X={x,...,x,} and Y={yp,,...,»,} are finite sets and PCX X Y is a
relation, then the Boolean incidence matrix for P is the matrix [m,], where
my=1if x;Py; holds and m;=0 otherwise. Since a binary relation and its
Boolean incidence matrix completely determine each other, we shail use
these terms synonymously herein; thus a row of P shall be a row of the
Boolean incidence matrix for P, etc. Note that the Boolean incidence
matrices for R and U above are, respectively, the cell-serum reaction matrix
for C and D and the antigen-antibody reaction matrix for 4 and B. Thus
we shall refer to R and U, respectively, as the cell-serum reaction relation
(or matrix) and the antigen-antibody reaction relation (or matrix).
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If we are given sets of cells and antisera, and if we are told what
serological specificities are possessed by each cell and serum, the reaction
matrix between the cells and sera is completely determined from this data.
The problem which faces the tissue typer is the inverse one of discovering
the serological specificities given the reaction matrix. There are in general a
number of different possible ways that specification could be assigned to
give a particular reaction matrix; the problem is to find that particular
assignment of specificities which actually is responsible. Those doing this
research will generally already have some idea which ceils or sera possess
which specificities, but some of these assignments may be in error, and the
properties of some cells or sera will be unknown. Thus the researchers may
provisionally hypothesize that certain antigens and antibodies contain cer-
tain specificities, and then test them against additional cells and sera (e.g.
by running absorption and elution experimenis) to see if this hypothesis
remains consistent with the new data. More frequently, they may run across
violations of assumptions in the course of their work. For example, HLA
specificities which had been worked out for Caucasian populations required
considerable revision when other groups were tested [14].

It is easy to see that the set of all reactions due to a single serological
specificity is the Cartesian product of the set of all cells containing the
specificity and the set of all antisera containing the specificity. Thus, when
analyzing a reaction matrix, it is natural to suspect that blocks of “1”
elements in the matrix which are expressible as Cartesian products may be
caused by the same serclogical specificity. This motivates the following
definition: '

DEFINITION 3.2

Let X and Y be sets and P C X X ¥ be a relation. Then SCX XY is a
P-specificity if (1) § C P and (2) there are sets X' C X and ¥’ C ¥ such that
S=X'xY".

If R is as defined previously, then every serological specificity for R is an
R-specificity, but there may be many R-specificities which are not serologi-
cal specificities. When it is necessary to distingnish them from serological
specificities, we shall refer to specificities as defined above as formal
specificities. ‘

In analyzing a reaction matrix, we would not consider our analysis
complete unless every reaction could be explained by some serclogical
specificity. Since we shall be trying to identify serological specificities by
locking at formal specificities, we are led to make the following definition.

DEFINITION 3.3

If X and Y are sets and P C X X Y, then a P-specificity cover (or P-cover)
is a class 8={8),...,5.} such that each S;€S is a P-specificity and
S]USZU"' USk=P.




254 DANA S. NAU ET AL.

This notation is different from that used in [12], but it is conceptually
equivalent and syntactically simpler.

If U is an antibody-antigen reaction relation which explains a cell-serum
reaction relation R, then every U-specificity gives rise to an R-specificity, as
shown in Theorem 3.4 below. Similarly, every U-cover gives rise to an
R-cover, as shown in Corollary 3.5. Thus, in particular, if we can find a set
of serological specificities forming a U-cover, we will have completely
accounted for all the reactions in R. The proofs of these two results are very
simple, but we shall first need the following mathematical notation, which is
fairly standard.

NOTATION

If PCX XY is a relation, then the domain of P (DomP) is the set
{xEX|xPy for some yeY}, and the range of P (RanP) is the set
{yEY|xPy for some xEX ).

Thus if § is a serological specificity, Dom S and Ran.§ are the sets of all
cells and sera, respectively, which possess the specificity S.

THEOREM 3.4

Let A, B, C, D, R, U, g, and h be given, and let S be a U-specificity. Let
T={ceC|glc)nDom S~} X {d ED|Md)NRanS+*=F}. Then T is an
R-specificity. (We say that T is induced by 8.)

Proof. T is obviously a Cartesian product. Thus we need only show
T C R. Suppose ¢Td, there are a €g(c) and b Eh(d) such that aSh. But
then alUb, so cRd. H

COROLLARY 3.5

In the above, let S={S,...,8,) be a U-cover. Then T={T,,..., T} is an
R-cover, where for each i, T, is the specificity induced by S;. (We say that T is
induced by 8.)

Proof. By Theorem 3.4, each T; is an R-specificity. If ¢ Rd, then there
are a € g(c) and b =h(d) such that ¢ Ub. But then a S; b for some S, whence
Cﬂd.’l"hus TIUT2U"’LJT,C&R. .

Given 4, B, C, D, R, U, g, and A, not every R-cover is induced by a
U-cover, for the reason that not every R-specificity is induced by a
U-specificity. However, as shown in Theorem 3.8, if we are given only C, D,
and R, then for every R-cover there exist some A, B, U, g, and h for which
there is a U/-cover inducing the R-cover. In analyzing a cell-serum reaction
matrix R, we are often more interested in the serological specificities
causing the reactions than in the particular antigens and antibodies contain-
ing these specificities. This theorem allows us simply to hypothesize R-
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specificities to be serological specificities, with the confidence that if we find
a specificity cover in such a way, it will be possible to postulate antigen and
antibody content for the cells and sera and serological specificity content
for the antigens and antibodies consistent with this hypothesis.

DEFINITION 3.6

Let X and Y be sets, and PC X XY be a relation; let xE€X, yeY,
X'CcX,and Y'C7. Then

(I) X'P={ye¥|xPy for some xEX"'},
(2) PY'={x€X|xPy for some yEY'},
(3) xP={x}P, and

) Py="P{y}.

Note that if X={x,...,x,,}, then the elements of the set x,P correspond
to the “I” e¢lements of the ith row of P. Thus, in keeping with our
identification of P with its Boolean incidence matrix, we shall refer to x, P
as the ith row of P. Thus if X' C X, then X'P is the union of the rows of P
corresponding to the elements of X'. For example, if X were a set of cells
and P were a reaction relation, then XP would consist of all antisera in the
set Y which would attack some cell in X.

Similar comments hold for the columns of P.

DEFINITION 3.7

If f:X-»Y is a function and X’ C X, then f(X)={y € Y¥|y=f(x) for
some x EX'}.

Note that X' PN Y’ #@ iff X'N PY == ¢4 iff there are x€ X' andyE Y’
such that x Py. Thus in our definition of R and U at the beginning of this
section, we could have replaced “¢ Rd iff there exist a4 and b€ B such
that a UB” by “c Rd iff g(c)U N A(d)==@” or by “c Rd iff g(c)n Uk(d)+
g”.

THEQOREM 3.8

If C, D, and R are given and T={T,...,T,) is an R-cover, then there
exist A, B, U, g, and h together with a U-cover S={8,...,8,} such that U
explains R and S, induces T, for each i. '

Proof. Let A={ay,...,a} and B={b,...,b,} be sets of cardinality k,
and put (@, b)e U iff i=;. For c€C and d €D, put g(c}={g|cEDom 1;}
and h(d)={b|d ERanT}}. Put S;={(a.b)} for each i. Obviously 8=
{S8),...,8;} is a U-cover. Suppose ¢ Rd. Then ¢ T;d for some i, so g, Eg(c)
and b, Ek(d), but g; Ub,. Conversely, if there are o, Eg(c) and b; Eh(d) such
that a; Ub;, then i=/, so ¢T,d, s0 cRd. Thus U explains R. By an almost
identical argument, each S; induces 7.. W '
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Of the other mathematical models of the HLA system known to us, most
(e.g. [4, 6, 16]) have assumed either total immunization, absence of cross-
reactivity, or both, Our model requires neither of these restrictions. Absence
of total immunization is obviously no problem herein, for nowhere do we
make any assumptions about the degree to which any individuals have been
immunized against any others. However, to show that our model deals
adequately with cross-reactivity requires a bit more discussion.

If an antiserum has been shown to be monospecific and yet reacts with
more than one antigen, then it is cross-reactive. Conversely, if an antibody
is cross-reactive and if we could obtain a monoclonal serum containing it,
the serum should be monospecific and yet reactive with more than one
antigen. The way that sera are shown to be monospecific is by running
absorption and elution experiments and noticing that all cells which remove
any activity from the serum remove all activity. We thus need to model the
processes involved in absorption and eluction. In order to do this, we first
need some more mathematical notation.

DEFINITION 3.9

(Here we use the conventional immunological notation for absorbed and
eluted sera.) If A, B, C, D, R, U, g, and h are given, with ceCand d€ D,
then the absorbed serum d/ ¢ is the serum whose antibody content A(d/c) is
h(d)—g(c)U, and the eluted serum eld/c is the serum whose antibody
content k(eld/c) is A(d)nig(c)U.

Example 3.10
If g{e)={ai,a:}, h(d)={by,b,}, and «, Ub; iff i=j, then

h(d/c) =h(d)—g(AAU={b,b;} —{a,,a} U
= {blabS}_ {blst} = {bs},

and

h(eld/c)=h(d)Ng(c)U=(b,,bs} N {a1,a;} U
={b,b;} N {b,b;}={h}.

Note that according to our definition, it will always be the case that
h(d/c)u h(eld/c)=h(d). In actual practice this is not always so. When
absorption and elution experiments are run, the original serum may some-
times display reactivity found in neither the absorbed nor the eluted sera,
and it may sometimes fail to display some of the reactivity found in these
sera. This is due to damage to the antibody molecules incurred during
absorption and elution and to the increased concentration of an antibody in
the absorbed and elated sera, which can cause previously unobserved
reactivity to be displayed.
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Producing an absorbed or eluted serum is in effect adding a new column
to a reaction matrix. However (except in the case of the unexpected
reactivities mentioned in the above paragraph), this column has the special
property that a serum & will possess exactly those specificities possessed by
one or more of its absorbed sera or eluted sera. Thus when examining
R-specificities in order to try to determine serological specificities, we want
to look only at those R-specificities S such that d ERan S iff 4 /cERan§ or
eld/cERanS. We need to be sure that we can find an R-cover consisting
only of such specificities. We prove that this is possible in Theorem 3.13;
this theorem is illustrated in Example 3.14. We first need an intermediate
result: '

LEMMA 3.11

Let PCX XY be a relation, let T be a P-specificity, and suppose Dom T
C Pz for some z€ Y. Then S is a P-specificity, where DomS=Dom T and
RanS=RanT U ({z}. (We say that T is an exterision of S to z.) The domain
of T may be extended in a similar manner.

Proof. Suppose xSy. Then xEDom7, and either yERanT or else
y=z. Hy&RanT, then xTy, so xPy. If y=2z, then xeDomT C Py, so
xPy. Thus § C P. The proof for extending the range of 7T is similar, W

DEFINITION 3.12
An R-specificity S is consistent iff

(1) if  =Ran S, then d/c ERans§ or eld/c ERan $ for every cell ¢ such
that both d/c and eld/¢ are in D, and
(2) f d €D and d/cERan s or eld/c ERan S, then d ERan S.

Thus a consistent R-specificity is one which appears in a serum if and
only if it appears in the absorbed serum, the corresponding eluate, or both.

THEOREM 3.13

Any R-cover can be used to generate a consistent R-cover of the same
cardinality .

Progf. let S={5},...,5) be an R-cover, and let §;ES8. For each
d €D, we perform the following operation on S,. If 4 /cERans;, then
Dom S, CRd/cCRd, and similarly for eld/c. In these two cases, we use
Lemma 3.11 to extend S, to 4. Otherwise, if d €Ran S, d/c € D-RanS;; and
eld/c€D-Rans, then we remove d from RanS,. ¥ we perform this
operation on the d € D in an order such that we do not perform it on o until
after performing it on every d/c€ D and every eld /¢ € D, then the result-
ing R-specificity, which we call 7}, is consistent. We let T= {1),...,T;}.

We must now show that every (c,d)E R is in some T.€T. We do this by
induction on the number of times d has been absorbed and etuted. Let




258 DANA 8. NAU ET AL.

(¢c,d)ER. Since S is an R-cover, (¢,d)ES; for some ;. If there are no
elements d/¢’ or eld/ ¢’ in D, then (c,d) could not have been removed from
S, by the process we went through to create T}, so {¢c,d) € T,. For the case in
which there are elements d/¢’ or eld/c’ in D, we assume as our induction
hypothesis that every (c,d/c) € T; for some 7, and every (¢,eld/ic)€T; for
some T,.

Case 1. For every ¢’, either d/c¢'@&D or eld/c’'&D. Then (¢,d) could
not have been removed from S, by the process we went throught to create
T, so (c,d)ET,.

Case 2. For some ¢, d/¢' €D and eld/c € D. Then either {c,d/cYER
or (¢c.eld/c)ER.

Case 2a. (c,d/c’yER. Then by our induction assumption, (¢,d/c}E€ T}
for some 7. But because of the process we went through to create T}, this
means that (¢, d)& 7.

Case 2b. (c,eld/cYER. As above.

Thus it follows that T is an R-cover. I

Example 3.14. Consider the incidence matrix in Table 1 for a reaction
relation R between cells ¢,, ¢5, ¢35, ¢4, and ¢s and sera dy, dy/c, eld,/c, dy, di,
and d,. The members S,, S,, S5, Sy of the R-cover S have their elements
enclosed by circles, boxes, triangles, and ovals, respectively. d;/cERan§),
and eld,/c ERans,, so S; and S, can be extended to d, by the process of
Theorem 3.13. This process also removes 4, from Ran S;, since neither 4,/¢
nor eld;/c is in RanS;. S, remains unchanged by the process. Thus the
resulting R-specificities T, T, T, and T, which are represented in Table 2,
comprise a consistent R-cover T.

Since every induced R-specificity is due to the antigenic content of the
cells and sera containing that specificity, we would want every induced
R-specificity to be consistent. This is indeed true in our model, as shown by
Theorem 3.15 below. This provides additional confirmation of the accuracy
of the model.

Table 1
Math Analysis of HLLA Serology

d d,/c eld/c do dy dy
[ A @ 0 @ 0 A
) A O 0 O 0 A\
C3 Q n 1 0 0
ey 0 1 1 0
o | AN o | o | A
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Table 2

d dy/e eld,/e dy ds d,
Cy @ G A
2 @ (U A
c3 0 0
cy 0
Cs 0 A

THEOREM 3.15

IfA,B,C, D, R, U, g, and h are given and S is a U-specificity, then the
R-specificity T induced by S is consistent.

Proof. Suppose d ERanT. Then there exists b €a(d)NRanS. If d/cE
D and eld/c € D, then either bEd/c or bEeld /¢, s0 from the definition of
T, either d/cERanT or eld/cERanT.

Suppose d/cERanT. Then there exists bEh(d/c)nRanS. If dED,
then bEh(d/c)Ch(d), so d ERanT by the definition of T, Similarly for
eld/c. W

We conclude this section with an informal discussion of what is meant
by NP-hardness and NP-completeness, and how these concepts relate to the
specificity problem.

A problem ¢ is NP-complete if (1) it is a member of a certain fairly wide
class of problems called NP (among other things, this requires that the
problem be one requiring a yes-or-no answer), and (2) every other member
of NP can be “quickly” reduced to Q. It follows immediately that any
NP-complete problem can be quickly reduced to any other NP-complete
problem. This means that if a “fast” algorithm were known for the solution
of any one of these problems, this would immediately give us fast algo-
rithms for-solving every one of them.

We do not wish to be precise about what we mean when we say that an
algorithm is “fast” or runs “quickly”. Suffice it to say that “slow™ algo-
rithms (these are the only ones known for NP-hard and NP-complete
problems) are characterized by having large (indeed, exponential) increases
in running time for small increases in the amount of data to be handled,
whereas “fast™ algorithms are characterized by having small (i.e., poly-
nomial) increases in running time under the same conditions,

To date, many NP-complete problems have been discovered, but no
algorithm is known for any one of these problems which runs quickly in
every instance of the problem (although there are some fast algorithms
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which provide approximate solutions to some of these problems). For this
and other reasons, it is widely believed that no fast algorithm exists for any
NP-complete problem. For a good technical discussion of NP-completeness,
we refer the reader to [1], and for a more informal discussion, to [10].

Let Q be the problem of answering the question “given a reaction matrix
R and a positive integer k, does there exist an R-cover (or equivalently, a
consistent R-cover) of size k7. In [12] we prove that 0 is NP-complete by
finding a “quick” reduction of the set basis problem [15] to Q. In order to
avoid a detailed discussion of a number of concepts from the field of
computational complexity, we do not include the proof here.

The problem of actually finding an R-cover of size k, as well as the
problem of finding the smallest R-cover, is at least as hard as Q, for given
an answer lo either of these problems, we could immediately answer Q.

Thus everything we have said about the difficulty of NP-complete problems .

applies equally well to these two problems. However, these two problems
may be even harder than NP-complete problems [9]. Thus the term used to
describe them is “NP-hard™.

The import of the above discussion is that there is strong evidence that
the problem of isolating specificities (and thus antigens and antibodies) on
the basis of a reaction matrix does not admit any practical algorithmic
solution. This provides justification for approaching the problem not in an
algorithmic manner, but rather in a heuristic, intuitive one (e.g. by using
human-computer interaction). References [12] and [13] include descriptions
of an interactive computer program intended for use in this manner.

In presenting a mathematical model of HLA serology, our objective is to
find properties of this model which may be of use in analyzing histocompa-
tibility reaction matrices. In such an analysis it is often helpful to have an
idea how many antigens, antibodies, and serological specificities may be
required to explain the matrix. Thus we shall present a number of theorems
providing bounds on these numbers. The reader should note that as a result
of Theorem 3.13, all of the theorems we stated in this section hold just as
well if “R-cover” is replaced by “consistent R-cover™.

IV. SPECIFICITY CARDINALITY

Most of the theorems in this section present bounds on cardinalities of
P-covers for an arbitrary relation P. Since these theorems will usually be
used to find bounds on R-covers for cell-serum reaction matrices R, it is
first necessary to show that applying the theorems to R will enable the user
to find bounds on the number of antigens, antibodies, and serological

specificities, which appear not in R, but in the matrix U. Lemma 4.1 and

Theorem 4.2 are intended to do this.
We make the observation that if P — X X Y is an arbitrary relation, then
we can produce a P-cover by covering each row of P with a single
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P-specificity, and we can produce another P-cover by covering each column
of P with a single P-specificity. Thus we have the following result.

LEMMA 4.1

If PCXXY is a relation, then there is a P-cover of cardinality
min(| X}, ¥|).

THEOREM 4.2

If R is a reaction relation and k is the smallest cardinality of any R-cover,
then

(i) there are A, B, U, g, and h explaining R, and there is a U-cover S such
that |A|=k, |Bi=k, and |S|=k, and

(ii) for no A, B, U, g, and h explammg R can we have |A| <k, |B| <k, or
IS| <k for any U-cover S.

Proof. 1If we let A, B, U, g, h, and S be as in Theorem 3.8, (i) is
satisfied. If we had A4, B, U, g, and & explaining R with [S|<k for some
U-cover 8, then by Corollary 3.5 we would have an R-cover of cardinality
less than k. Furthermore, if [4|<k or |B|<k, then by Lemma 4.1 a
U-cover S with [S| < k would have to exist. Thus (i) holds. W

Given any reaction relation R CC X D, we can use Lemma 4.1 and
Theorem 4.2 to provide upper bounds on the numbers of antigens, anti-
bodies, and U-specificities necessary in order that an explanation of R can
exist. In particular, we can explain R with as few as min(}C|,|D|) of each.
We now present two other theorems (4.3 and 4.4) which can be used in the
same way, to provide lower bounds on these same three quantities.

THEOREM 4.3

Let P CX XY be a relation, with X ={x,,...,x,,} and Y={y,....»,}. Let
p be the number of nonidentical rows of P, and let q be the number of
nonidentical columns of P. Then no P-cover has cardinality less than

log, max(p,q).

Proof. Let 8 be a P-cover. If two rows x, P and x, P of P are different, it
must be the case that {§ €S|y, eDomS}={S&S|x,EDomS}. Given
|S|=4, there are at most 2% distinct rows. Thus log,p <|[S|. A similar
argument holds for the columns. W

THEOREM 44

Let PCX XY be a relation, and define a relation Q over the entry
positions in the Boolean incidence matrix for P by (i,7) Q(m,n) iff both x; Py,
and x,, Py, but not both x, Py, and x,, Py,. Let N be any set of pairs (i,j) such
that u Qv whenever « and v are distinct elements of N. Then there is no
P-cover of cardinality less than |N|.
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Proof. Let (i,/),(m,n)EN. Then (i,j) 2 (m,n), so there is no P-specific-
ity containing both (x;,y,) and (x,,.y,). By repeating this argument for each
pair of elements of ¥, we find that every P-cover must contain at least one
distinct P-specificity for each member of N. W

Geometrically, @ is a relation over the entries in the Boolean incidence
matrix for P which is constructed as follows: Pick any two matrix entries. If
cither is a zero, then they are not Q-related. If they are both ones, then
consider them to be opposite corners of a square. They are Q-related if and
only if the two remaining corners are not both ones. (In particular, two
entries appearing in the same row or column cannot be Q-related.) Thus
finding an N consists of finding a set of one-entries in the matrix such that
for each pair of them at least one of the corners in the square determined by
them is missing,

We remark that Proposition 3 of Ciftan [6], which bounds the minimum
number of antigens and antibodies by the size of any lower triangular
submatrix obtained by permuting the rows and columns of P, is a special
case of Theorem 4.4, in that it is equivalent to producing a restricted type of
N (as we show in [12]).-In addition, we can generally get a better bound if
we do not restrict ¥ in such a manner, as illustrated in Example 5.8.

We now present a theorem which allows us to improve the bounds given
by Lemma 4.1 and Theorem 4.3.

THEOREM 4.5

Let PCX XY be a relation, and suppose xoP is the union of some of the
other rows of P. Let P' be the restriction of P to X — {x,}. Given a P-cover of
cardinality k, we can produce a P'-cover of cardinality less than or equal fo k,
and given a P'-cover of cardinality k, we can produce a P-cover of cardinality
k. A similar vesult holds for any column P, which is the union of other columns
of P.

Proof. Suppose 8={85),...,8,} is a P-cover. For i=1,.. .k, let T,=
(DomS§;~ {x})XRan 8. Then T={T3,...,T;} is a P'-cover of cardinality
no greater than & (although it may be less than k&, since some of the T, may
be equal or some Dom S;={x,}).

Suppose T={T},...,T;} is a P'-cover. Let X'={xEX|xP Cx,P)}. By
the hypothesis of our theorem, U, yxP=x,P. Since T is a P'-cover, it
follows that for every x€X, U{RanT{x€DomT}=xP. Let T'={TE€T|x
€DomT for some x& X'}. Then RanT C x,P for every T €T'. Therefore
by Lemma 3.11 we can extend each T in T to a T” containing x. But since
UrerRanT= U, cy-xP=x,P, x,P is covered completely by the 77, and
thus if we let $={5,,...,S;}, where S;=T77 if T,€T" and §;= T, otherwise,
then S is a P-cover. N
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We can use this theorem to repeatedly add or delete unions of rows and
columns from a reaction matrix while preserving essentially the same
specificity cover. Thus for a given matrix we can improve the bounds given
by Lemma 4.1 by removing as many such rows and columns as possible,
and we can improve the bounds given by Theorem 4.2 by adding as many
such nonidentical rows and columns as possible.

We now discuss a technique which can sometimes be used to break up a
reaction matrix into smaller parts which can be analyzed independently.

DEFINITION 4.6

Let PCX XY be a relation, and let Q C P. Q is P-isolated if xP=xQ
whenever xQ @ and Py = Qy whenever Oy == g.

Geometrically, ¢ in the above definition is (not necessarily contiguous)
submatrix of P, such that each row or column intersecting the submatrix
has its “one” elements only inside the submatrix.

THEOREM 4.7
If P is a relation, Q) C P is P-isolated, and Q,= P-(,, then

(1) O, is P-isolated, and
(i) every P-specificity is either a Qy-specificity or a Q,-specificity but not
both (except in the case of the null specificity).

Proof. M xQ,5 @, then x(Q,=xP— xQ, = . Therefore if x0,+¢, we
must have xQ,=@. But xP=x0,UxQ,, so if x0,* ¢ we have xP=x(,.
Similarly, if 0,y @, Py=Q,y. Therefore (i) holds.

If §+0 is a Q,-specificity, then SCQ,=P—-(;, so S$Z7,. Thus a
non-null specificity cannot be both a Q,-specificity and a Q,-specificity.

If 8§+ is a P-specificity which is neither a @,- nor a Q,-specificity, then
SZ @, so S—0,7@, so since S§CP, we have SN(P—0)=@, ie.,
SN Q> @. Similarly, § N 0,7 . Thus there is some (x,,y) €@, N S, and
some (x5, ).} EQ,N S. Since § is a Cartesian product, (x;,5,) €5 C P. Since
@1 is P-isolated, x,0,+ @ implies that (x,,y,) € Q,. Similarly, @,y,+@.
implies that (x,,y,) € 0,, which is impossible, since @, =P—C,. W

The import of Theorem 4.7 is that if we can divide a relation P into two
P-isolated subrelations Q, and (,, then the specificities we get by analyzing
P are the same ones we will get if we analyze @, and (Q, separately.

In most cell-serum reaction matrices R, it will be unlikely that R has any
R-isolated subrelations other than R itself. However, if we can come up
with a fast (i.e., polynomial-time) algorithm to discover the R-isolated
subrelations if they exist, it will be well worthwhile to use it, since with any
NP-hard problem such as the specificity covering problem, even small
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reductions in the problem size can lead to large reductions in the amount of
work required to solve the problem. We now develop such an algorithm.

THEOREM 4.8

Let P CX XY be a relation, and define { X;}72, and { Y;} % | recursively as
Sollows:

Xi={x} for some x€EX,
Y;=X,P for i=],

and
X;=PY, for ix2.

Then Q=[(U,X)X(U,;Y)IN P is P-isolated.

Proof. Suppose xQ>@. Then x€ U,X; and xEX, for some i, Thus
xPCY, 1 CU,Y,; and xQ@=xP. Similarly, if Qy+@, Oy=Fy. R

We now present an algorithm based on Theorem 4.8 which divides P up
into subrelations of a relation P which may be analyzed independently.

Step 1. Use Theorem 4.5 to remove rows and columns of P which are
unions of other rows and columns. Use the theorem repeatedly until no
more improvement is obtainable, and call the result P’. The value of this is
that if we have removed any rows or columns which are unions of two or
more others, P’ will have more isolated subrelations than P.

Step 2. Take any row of P’, and let M be the set of all “one” elements in
the row, Alternately repeat steps 2a and 2b until no additional lines are
drawn. The set of “one” elements covered by all of the lines is a minimal
P’-isolated subrelation; ie., it contains no smaller P'-isolated subrelations.

Step 2a. Draw lines through all columns of P’ through which lines have
not already been drawn and which also contain elements in M. Replace M
by the set of ali new “one” elements which are thereby covered.

Step 2b. Draw lines through all rows of P’ through which lines have not
already been drawn and which also contain elements in M. Replace M by
the set of all new “one” elements which are thereby covered.

Step 3. Let @ be what is left of P’ after the removal of the subrelation
found in step 2. By Theorem 4.8, O is P’-isolated. Q may contain Q'-iso-
lated subrelations, and trivially these are also P’-isolated. Thus we can
extract additional P’-isolated subrelations by replacing P’ with Q and going
through step 2 again,

Note that the above algorithm produces all of the minimal P'-isolated
subrelations with at most 2m executions of step 2a and 2rn executions of
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step 2b, where m and r are the numbers of rows and columns, respectively,
in P,

V. AN ORDER-THEORETIC APPROACH

The results in this section provide a geometric sort of approach to the
problem of finding a minimal specificity cover for a reaction matrix, and
they compiement the results of the previous sections. We shall state them in
a manner requiring the least amount of definitions and background. For
generalization and extensions, see [11].

Let 4 be a set of antigens, and consider the set containing every
antibody which attacks at least one antigen of 4. According to our mathe-
matical notation, this set is AR. Note that not every set of antibodies can be
expressed in this way; ie., there may be some sets of antibodies which do
not happen to be the set of a// antibodies attacking any particular sets of
antigens. If a set of antibodies can be expressed as AR for some 4, we say
that it is a member of the row space of R. We formalize this below.

DEFINITION 5.1

Let PC X XY be a relation. The row space of P, R(P), is defined to be
{AP|A C X}. Note that @ eR(P).

Remark. The column space of P can be defined similarly, However, the
results of this section remain the same regardless whether we use the row or
column space, so for simplicitly we will not mention the column space. For
more details see [11]. '

DEFINITION 5.2

Let ¥V and W be two collections of sets. An embedding of V into Wis a
map f:V—W such that for X, Y€V, X CY iff f(X)Cf(Y). Note that
embeddings are 1-to-1, ie, f{X)=f(V)iff X=7.

We shall now present a theorem giving a necessary and sufficient
~ condition for an antigen-antibody reaction matrix to explain a given cell-
serum reaction matrix. This theorem appears as Theorem 6.2 in [11]. Note
that the theorem allows one to construct explicitly the various mapping
mentioned.

The import of the theorem is that a given cell-serum reaction matrix
RCCXD can be explained in terms of an antibody-antigen reaction
matrix U CA X B (as i1 Sec. III) if and only if every set of sera in the row
space of R can be put in correspondence with a set of antibodies in the row
space of U in such a way that the correspondence is an embedding. Note
that in general, this embedding is not necessarily the “natural” mapping
which corresponds each set of sera to the antibodies contained by the sera.
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THEQREM 5.3

Let A, B, C, D be sets and UCAXB and R CCXD relations. The
Joliowing are equivalent:

(iy There exist maps g: C—24, h: D—2% such that for all c€ C and d €D,
cRd iff [g(ca) Ul dY=@. (Thus U can be used to explain R as in Sec.
)

(ii) There exisis an embedding f:R{(R)->R{U).

Proaf. (i) implies (ii): For C,C C, let f(C,R)=g(C)U, where C,={c€E
AlcR © C;R}. Note that f is well defined, since C;R = C,R implies C, = C,.
If C,R C C,R, C,C G, whence f(C,R)Cf(C,R).

Conversely, suppose f(C,R)Cf(C,R). If d =€ CR, then for some cEC,
cRd and thus [g(a)UINk(d)=@. Thus f(CR)NA(d)}+=Q, and thus
FICRIN h(d)+~@. Hence, for some ¢’ € Cy, g(cNUNA{(d)~E, so ¢’ Rd,
whence d €c¢'R C CyR. Thus C\R C C,R.

(ii) implies (i): For c€C, let g(c)={acd|aU Cf(cR)}. Thus g(c)U=
J(¢R). For d €D, let h(d)=B— U zgsf(¢'R). Clearly if (g(c)U)NA{d)=
J(eRYN[B— Uyerd(c'R) =0, ther cRd.

Suppose cRd, but f(cR)Nk(d)=@. Then f(cR)C U zrf{c'RYIC
J(TR), where T'=C— Rd, since ¢’R C TR and f(¢’R)Cf(TR)forall '€ T.
Since f is an embedding, ¢R c TR, which is impossible, since ¢Rd, but
dZTR. Thus [g(QUNA(d)=3. A

In the following material, we shall often be concerned with embeddings
into sets of a certain size. The following notation provides a convenient way
to generate finite sets of arbitrary size. '

NOTATION 54
We use £ to denote the set {1,...,k}.

In the following theorem, we relate the material on specificity covers to
this the material in this section. To try to motivate the theorem for the
nonmathematical reader, we preface it with the following paragraph.

Suppose R is a reaction mairix with a specificity cover {S),...,5;}. Each '
element of the row space of R is a union of some of the rows of R, and thus
may be expressed as the union of the ranges of some of the specificities of
R. If we take the set of indices of these specificities and create a map which
maps our row space element to this set, we have an embedding from R(R)
to 2%, Conversely, if we can embed R(R) in 2%, we can teverse this process
to obtain a specificity cover {§),...,8;} for R.
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THEOREM 5.5

Let C, D be sets and R C C X D a relation (see Sec. III). The following
are equivalent:

(i) There exists an R-cover, S= {8, 8}, of cardinality k.
(i) There exists an embedding f: R(R)—2k,

Proof. (i) implies (ii): Let f:R(R)—2* be given by f(C,R)={5[Rans;
CcR CCR for some c€C}. If C\R CR, then obviously f(C,R)Cf(C,R).

Observe that R=U}_ 8], whence C,R= Uiepc,mRans;. Thus if f(CR)
Cf(C3R), then C;R C C,R and f is an embedding, ‘

(1)) implies (i): For each i€k, let C;={cECli€f(cR)}, D;= NeegeR,
and S;= C; X D, If (¢,d) € S,, then clearly cRd. Thus U*_,S;CR.If cRd, it
remains to show that (¢,d) €S, for some 7 in k.

Suppose that ¢ Rd but {(c,d)& S; for all i, in particular d D, for all i
such that ¢ € C;. For each i €f(cR), there exists ¢;€ C; such that d &¢,R.
Let X ={c;i€f(cR)}. Note that d & XR.

Furthermore, XR D ¢R for all i€f(cR), and thus f(XR)D U,e F(cR)
faR)Df(cR), since iEc;R. Since f is an embedding, XR D cR, which is
impossible, since d ZXR but d EcR. Thus U4 ,S;=R. W

We now show how this material can be used to derive results which we
derived earlier by different methods. First we derive the central poritions of
the first part of Theorem 4.2.

COROLLARY 5.6

Let R be a reaction relation. Then R can be explained by the kX k identity
matrix, where k is the smallest possible cardinality of any R-cover.

Proof. By Theorem 5.5, R(R) can be embedded into 2%, whence by
Theorem 5.3, R can be explained by the kX k identity matrix, J,, since
R(Ik)=2}—c. .

We now derive the central porition of the second part of Theorem 4.2,

COROLLARY 5.7

Let R be a reaction relation and U CAX B a relation which explains R.
Then [A|,|B| > k, where k is the smallest possible cardinality of any R-cover.

Proof. Since U explains R, we have an embedding of R(R) into R(U)
by Theorem 5.3. From Lemma 4.1 and Theorem 5.5 we know that we have
embeddings of R(U), and hence R(R), into 24 and 2%, By Theorem 5.5, k is
the least integer such that R(I7) can be embedded in 2%. Thus |4|,|B|> k. m

Al
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We now present an alternative characterization of Theorem 4.3.

COROLLARY 5.8

Let R be a reaction relation with k () distinct nonempty rows (columns).
Then any R-cover must contain at least log, k (logyj) specificities.

Proof. We only prove the result for rows, since the result for columns
follows similarly. R has a cover with p elements iff R(R) can be embedded
into 2%, Since distinct nonempty rows of R are mapped into distinct
nonempty subsets of 2% and since 27 has exactly 27 distinct nonempty
subsets, k<27, whence p = log, k. W

Example 5.9. We now analyze a reaction mairix R which was incorrectly
analyzed by Ciftan [6, p. 493). We analyze it in various ways and show that the
order-theoretic approach solves the problem of finding a minimal specificity
cover for this matrix.

Let n be a positive integer > 2 and R={(i,j})|ijEn i#j}CaXn Thus R,
considered as a matrix, has 0’s on the diagonal and 1's every place else. Note
that R(R) has n+2 elements, @, n—{1}, n—{2),...,n—{n} and w it is
illustrated in Fig. 1.

By Theorem 5.4, there exists a k-element R-cover iff R(R) can be.
embedded into 2%. To embed R(R) into 2%, we can map n to &k, @ to @,-and
the set {n—(i}|i€n} in a 1-1 manner onto » elements x,,...,x, of 2 such
that X; # X, for i,j € p and i+~j. By Sperner’s lemma [3, p. 99], we can find n
such elements in 2% iff ;

M‘(i’f%l)

(where |k/2] is the greatest integer not exceeding k/2). Thus the minimal

n

FiG. 1.
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specificity cover for R has cardinality

min[k|n<(lki;21)}.

As n— o0, k—slog,n, which is close to the lower bound in Theorem 4.3.

Note that Ciftan [6, p. 493] states that » mutually exclusive antigens are
required to explain R. Our analysis shows that many fewer are sufficient.

At this point it might be instructive to compare the lower bounds of
Theorems 4.3 and 4.4 and Ciftan’s Proposition 3 (see Sec. IV) with the exact
quantity calculated above. It is easy to see that Ciftan’s result gives a lower
bound of 2 on the number of specificities required in the R-cover above.
Theorem 4.4 gives a lower bound of 3, while Theorem 4.3 gives a lower
bound of log, n.
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