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ABSTRACT 

There is probably not a single area in computer science 

in which use is not made of the mathematical structure known as a 

tree. Many of the properties of trees are little understood, and 

this dissertation is concerned with some of them. Specifically, 

the relationships between depth of tree search and quality of 

behavior in decision making are studied. 

The well-known problem reduction approach to problem 

solving intrinsically involves tree searching. Problem reduction 

trees and game trees are basically the same, and using the 

problem reduction approach may be viewed as formulating the 

problem to be solved as a decision problem on a game tree. If 

correct results are to be guaranteed when using problem 

reduction, substantial portions of this tree must be completely 

searched, which is physically impossible for very large trees. 

In the field of game playing, good results have been 

obtained by searching the game tree to some arbitrary depth and 

heuristically estimating its characteristics beyond that depth. 

For such a heuristic game tree search, there is a consensus that 

the quality of the decision improves as the search depth 

increases, but this agreement is based purely on empirical 

evidence. 

The author has developed a mathematical theory modeling 

the effects of search depth on the probability of making a 

correct decision using a heuristic game tree search. This 
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research has produced the surprising result that there is an 

infinite class of game trees for which searching deeper does not 

increase the probabil ity of making â  correct decision, but 

instead causes the decision to become more and more random. The 

dissertation contains a mathematical proof of this statement, 

experimental verification of it, and a discussion of its 

significance for decision making in general. 

This work has been supported in part by a National 

Science Foundation graduate fellowship, and in part by a James B. 

Duke graduate fellowship. 
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CHAPTER 1 

INTRODUCTION 

Problem Reduction 

There is probably not a single area in computer science 

in which use is not made of the mathematical structure known as a 

tree. Trees have many unusual and surprising properties. For 

example, infinite trees often have uncountably many branches, and 

trees usually have as many or more nodes at level n than at all 

previous levels combined. Many of the properties of trees are 

little understood, and this dissertation is concerned with some 

of them. Specifically, the relationships between depth of tree 

search and quality of behavior in decision making are studied. 

One of the more common uses of trees in computer science 

is in problem reduction. This is the process of solving a 

complex problem by dividing it up into smaller problems. Every 

time a problem is divided into subproblems, the situation can be 

modeled by a tree of one level in which the root node represents 

the original problem and its children represent the subproblems. 

As the subproblems are in turn divided into sub-subproblems, and 

so forth, a tree of many levels is generated. When subproblems 

are found which are simple enough to solve directly, their 

solutions are used to construct a solution for the original 

problem. 

Problem reduction trees are studied in decision analysis 

under the name of decision trees [LAI, ST1, TU1], They are of 
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interest in many different areas of computer science, including 

theoretical computer science [AH1, CHI], pattern recognition 

[ST2, T01], program synthesis [BI1] , theorem proving [Nil, L01, 

SL1, VA1], game playing [BA3, BI2, FU1, GR1, HA1, JA1, KN1, LI1, 

NA1, Nil, R01, SA1, SL1, TR1, TR2], and other areas [DAI, JA1, 

Nil, SHI]. Every problem reduction tree has an equivalent 

canonical representation in which the nodes are partitioned into 

two classes, which are known variously as "and" nodes and "or" 

nodes, min nodes and max nodes, and so forth. What this 

representation means is discussed in more detail later. 

Problem Reduction as Decision Analysis 

Problem reduction can be described as solving a problem 

by recursive decision-making. For example, when problem 

reduction is used in theorem proving, each step in the reduction 

corresponds to asking whether some statement in first order logic 

can be proved using various combinations of simpler statements, 

and this is decided by determining whether the simpler statements 

are themselves provable. When problem reduction is . used in 

program synthesis, the decisions are concerned with whether a 

program specification can be represented as a series of simpler 

specifications, and this is decided by deciding how the simpler 

specifications must be represented. 

In decision analysis, it is standard to model problem 

reduction as the playing of a game between the decision maker and 

an opponent, whom we will call Max and Min, respectively. Min 

Fault trees [BA2] are also problem reduction trees, but 
we are not concerned with them here. 
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may either be a malicious opponent, as in the case of a real 

game, or may be a representation of the unpredictable responses 

of Max's environment to his actions. The problem reduction tree 

is called a decision tree or game tree, and the canonical tree 

mentioned at the end of the previous section corresponds to a 

game in which Max and Min make moves in strict alternation. The 

two types of nodes in this game tree are those at which it is 

Max's move and those at which it is Min's move. 

In this game-playing model, problem reduction corresponds 

to looking ahead. The problem of winning the game from the 

current position is attacked by reducing it to the problems of 

winning the game from each of the possible next positions. These 

problems are further reduced in the same way, and so on, until 

the end of the tree is reached. At this point, the payoffs 

corresponding to each leaf node are determined, and are used to 

compute for the other nodes of the tree what are known in 

decision analysis and mathematical game theory as utility values. 

Max's action in making the decision then consists of moving from 

the root node of the game tree to whichever of its children has 

the largest utility value. 

Depending on the problem domain, the utility values may 

be computed according to any of a number of different criteria 

[LAI, TU1], In a real game situation, where Min is assumed to be 

malicious, the maximin criterion is normally used. This is also 

the criterion most often used in computer science applications, 

although it is not called by that name. 

In computer science applications, the usual situation is 

that each leaf of the tree has the value one or zero, depending 
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on whether or not the corresponding primitive problem can be used 

to solve its parent problem. In this case, the use of the 

maximin criterion corresponds to recursive "and" and "or" 

operations. This is why computer scientists often refer to 

problem reduction trees as "and-or" trees. 

In computer game playing, a wider range of utility values 

is used, and here the values are referred to as minimax values. 

Luckily, computer scientists have used this term only in 

situations where the maximin and minimax criteria are equivalent 

according to von Neumann's minimax theorem [LAI, 0W1, SI1, TU1] . 

"Maximin values" would actually be a more proper term. 

The Problem of Search Depth 

Since the number of nodes in a tree generally increases 

exponentially with the depth of the tree, searching a tree of any 

larĝ . depth is usually a time-consuming task. In fact, many of 

the problems which are normally attacked by searching trees have 

been shown to be NP-hard [AH1, CHI, KA1]. 

When a problem reduction tree is large, it is usually 

infeasible to search the entire tree. For this reason, much of 

the computer science research on problem reduction techniques has 

been directed at procedures which can be guaranteed to find a 

correct solution without looking at every node in the tree (for 

example, the MESON system in theorem proving [L01] and the 

alpha-beta procedure in game playing [KN1, Nil]). But the 

guarantee of correct results still requires complete search of 

some portions of the tree, and problem reduction trees are often 

so large that this is physically impossible. 
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In game playing computer programs, good results have been 

obtained by the heuristic procedure of searching the tree only to 

some severely limited depth, estimating the utility values of the 

nodes at that depth, and then proceeding, in the usual manner, to 

compute utility values for the shallower nodes in the tree as if 

the estimated utility values were in fact correct. [BI1, GR1, 

HA1, JA1, KN1, Nil, R01, SA1, SL1, TR1, TR2]. This technique, 

which we shall call heuristic game tree searching, is used 

implicitly in "real life" decision situations, although it does 

not seem to have been studied by decision analysts. To what 

extent it has been used or can be used in some applications is 

unclear. In theorem proving, for example-, there has not been 

much interest in using the computer to find probable proofs of 

theorems until quite recently [DEI, RA1]. 

When heuristic game tree searching is used, it is almost 

universally agreed that increasing the search depth improves the 

quality of the decision. There have been some dramatic 

demonstrations of this with game playing computer programs [BI2, 

R01, TR1, TR2], However, such results are purely empirical. The 

author knows of no previous theoretical investigation of the 

effects of search depth on the quality of a decision. 

This dissertation is concerned with a mathematical theory 

modeling the effects of searching deeper on the probability that 

a decision is correct. The results of the research are stated 

assuming the use of "minimaxing," i.e., the maximin criterion 

mentioned earlier. As discussed in Chapter 8, the results should 

also extend to situations in which other decision criteria are 

used. The major result of this study is that contrary to the 
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conventional belief, there is a large class of game trees sach 

that as long as the search does not reach the end of the tree (in 

which case the real utility values could be computed), deeper 

search will consistently cause the decision to become more and 

more random, rather than increasing the probability that it is 

correct. As an example, Figure 1.1 duplicates a figure from 

Chapter 4 which shows how the probability of correct decision 

varies. 

This idea may seem counter-intuitive. One might suppose 

that since searching deeper gives more information, it cannot 

fail to improve the decision quality. But the reader should keep 

in mind that the evaluation function produces estimates of the 

utility values, and these estimates may often be in error. There 

are some game trees for which searching deeper causes the real 

information to be lost in errors and noise. 

Chapter 2 is a presentation of the mathematical model 

which is used in the dissertation. Chapter 3 is a description of 

an infinite class of game trees having a regular enough structure 

that useful theorems can be stated about them. Chapters 4, 5, 

and 6 provide the central mathematical results of the 

dissertation. These results are experimentally verified at the 

end of Chapter 4 and in Chapter 7. Concluding remarks appear in 

Chapter 8. 
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probability 
of correct 
decision 

search 
depth 

FIGURE 1.1.—Probability of correct decision as a 
function of search depth on the game tree r(lrl), for five 
different classes of evaluation functions. On P(l,l), the 
probability of correct decision is 0.5 if the choice is made at 
random. For each of the five classes, this value is approached 
as the search depth increases. 



CHAPTER 2 

A MATHEMATICAL MODEL 

Introduction 

In order to set up a mathematical model for heuristic 

game tree searching, several formal definitions are needed. This 

chapter contains most of them, along with explanations and 

examples. 

In this dissertation, the word "game" is used to mean a 

zero sum, two person, perfect information game between two 

players, in which the outcome is not determined even partially by 

chance (as would occur in dice games and most card games). In 

addition, the number of possible moves among which a player can 

choose at each position in a game is restricted to be finite 

(although it may be very large). However, we do not require that 

every game end in a finite number of moves. 

The above restrictions yield a class of games including 

such parlor games as chess, checkers, othello, go, nim, tic-tac-

toe, and so forth. However, the model is certainly not 

restricted to parlor games! 

In addition to the above restrictions, we shall only 

consider games in which the play alternates strictly between the 

two players, and in which there are no draws. These two 

restrictions can easily be removed, and are stipulated mainly to 

simplify the mathematics. Any game GQ in which a player can make 

several moves in a row may easily be transformed into a game G, 
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with strict alternation of play, simply by inserting null moves 

for one player or the other wherever necessary. If G, contains 

draws, it may easily be transformed into two games G„ and G. 

without raws, simply by mapping draws into wins and losses, 

respectively. The properties of GQ are easily determined from 

the properties of G~ and G3. 

With a little more work, it may also be possible to 

remove several of the other restrictions, but the author has not 

paid much attention to this question. This provides a topic for 

future research. 

Game Trees 

Since all games under consideration are between two 

players, it is convenient to call those players Max and Min. 

Game positions in which Max has won or has a forced win we label 

"+", and game positions in which Min has won or has a forced win 

we label "-". Since the games we are considering do not have 

draws, it is simple to prove inductively that every game position 

is a forced win for either Max or Min. Thus, every position is 

labeled either •+" or "-" (but not both). 

The set of all possible courses a game might take can be 

represented by a game tree in which the root node corresponds to 

the starting position of the game, and the children of each node 

correspond to the positions which can be reached in one move from 

that node. Game trees are defined formally in Definition 2.2, 

and an example game tree is shown in Figure 2.1. 

Definition 2._1. If G is a tree, then N(G) denotes the 

set of nodes of G. A leaf of G is a node g € N(G) which has no 
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FIGURE 2.1.—A portion of an arbitrary %ame tree. Min 
are indicated by the horizontal line segments drawn, beneath 

children. 

Definition 2_.2_. A game tree is a tree G such that— 

1. N(G) is partitioned into two sets, called max nodes and min 

nodes, in such a way that every child of a max node is a min 

node, and vice versa; 

2. N(G) is partitioned into two sets, called "+" nodes and "-" 

nodes, in such a way that each min node is a "+" node if and 

only if all of its children are "+" nodes, and each max node 

is a '*-" node if and only if all of its children are "-" 

nodes; 

3. every node of G has a finite number of children. 

Max nodes correspond to game positions where it is Max's 

move, and min nodes correspond to positions where it is Min's 
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U 

FIGURE 2.2.—Examples of S, T, U, and V nodes. 
Min nodes are indicated by the horizontal line segments drawn 
beneath them. 

move. For finite game trees, "+" nodes and "-" nodes correspond 

to forced wins for Max and Min, respectively. This is not 

necessarily true on infinite game trees, since they represent 

games which may not always end. However, it is useful to require 

"+" and "-" labels on all nodes of all game trees. 

According to Definition 2.2, every game tree node is 

classified according to whose move it is and who has a forced 

win. Thus there are four different types of nodes, as defined in 

Definition 2.3 below. Examples of these nodes are given in 

Figure 2.2. 

Definition 2_.3̂  Let G be a game tree. S is the set of 

all "+" max nodes of G. T is the set of all "+" min nodes of G. 

U is the set of all "-" min nodes of G. V is the set of all "-" 

max nodes of G. Members of S, T, U, and V are called Ŝ  nodes, T 

nodes, U nodes, and V nodes, respectively. 

Definition 2.4_. S and U nodes are called critical nodes, 

for it is only at these nodes that it makes a difference which 

move is chosen. T nodes and V nodes are called noncritical 

nodes. 
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From Definition 2.3, it is obvious that— 

1. the successors of an S node are always T and U nodes; 

2. the successors of a T node are always S nodes; 

3. the successors of a U node are always V and S nodes; 

4. the successors of a V node are always U nodes. 

A U node is to Min what an S node is to Max, so S and U 

nodes have the same kinds of properties. A similar statement 

holds for T and V nodes. Several of the classifications and 

properties of game tree nodes are summarized in Table 2.1. 

TABLE 2.1.—Characteristics of game tree nodes. 

Type S T U 
Sign "+" •+" 
Player to move Max Min Min 
Critical node . . . . . . Yes No Yes 
Types of successor nodes . T,U S V,S 

V 
•i if 

Max 
No 
U 

Evaluation Functions 

In game playing and other decision-making situations, 

people may reason in a manner similar to the following: 

If I move to position A, then my opponent will 
probably move to position B, which will leave me in a bad 
position. However, if I move to position C, then my 
opponent will not have any good moves. Therefore, I'll 
move to position C. 

Such reasoning implicitly involves estimating how good various 

game positions are. Although* it is not understood how human 

beings make such estimates, game playing computer programs 

generally make them by using heuristic evaluation functions. 

These are functions which map game positions into numbers 

indicating how good the positions are estimated to be. A high 
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number means that the position is estimated to be good, say, for 

Max (and therefore bad for Min); a low number means the reverse. 

For example, an evaluation function for chess might take into 

consideration which pieces are on the board, where they are and 

how mobile they are, who has control of the center of the board, 

whether either player's king is exposed, and so forth. The 

estimations made by an evaluation function are usually somewhat 

(and sometimes drastically) inaccurate. For the evaluation 

functions used in today's best chess playing computer programs, 

there are situations under which obvious forced loss positions 

can be made to look as good as desired, and vice versa [TR1], 

Formally, an evaluation function is any mapping from the 

set of nodes of a game tree into a set of numbers. If the 

evaluation function is to be one which can be implemented on a 

computer, then the set of numbers must be finite (although 

perhaps very large). For convenience, we take this set to be 

{0,l,...,r}, where r is an arbitrary integer. Then evaluation 

functions may formally be defined as follows. 

Notation _2.1_. Except where otherwise stated, G denotes a 

game tree, g denotes a node of G, and r denotes a nonnegative 

integer. 

Definition 2.5. r is the set {0,1,...,r}. 

Definition £.6^ An evaluation function on G is any 

function e: N(G) -> r. EQ f is the set of all such functions. 

(Thus if G is finite, then | E„ I = |N(G)|r+1.) 
<J , r 

Note that Definition 2.6 places no restriction on how 

accurate or inaccurate an evaluation function must be. Every 

function from N(G) into r is considered to be an evaluation 
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function, including functions that return inaccurate values on 

leaf nodes of G. At each leaf node, one or the other of the 

players has won the game, and some readers may prefer that no 

matter how inaccurate an evaluation function is elsewhere, it 

should aj: least be able to detect who has won. Given such a 

restriction, the definition of an evaluation function would 

instead be as follows. 

Let L(G) be the set of leaf nodes of G, and let M(G) be 

the set of non-leaf nodes. Let E' be the set of all functions 
ta, r 

e: M(G) -> r, and let f: L(G) -> r be defined by 

f(g) = 0 if g is a "-" leaf, 

= r if g is a "+" leaf. 

Then E~ would be defined as {e U f: e G E' -, }. 
u,r u,r 

Definition 2.6 was chosen because it is both simpler and 

more general than the above definition. However, which 

definition is used is of no great importance, and the reader is 

welcome to use either one. 

If e is a good evaluation function, then e(g) will 

generally be high if g is a "+" node and low if g is a "-" node. 

However, e will sometimes make mistakes; i.e., there will be some 

"-" nodes to which e gives high evaluations and some "+'1 nodes to 

which e gives low evaluations. For example, having more pieces 

than one's opponent correlates with having a good position in 

chess, but it does not always mean that the position is a good 

one. With an error-free evaluation function, tree search would 

not be necessary, for perfect play could be obtained by directly 

evaluating each possible successor to the current position, and 

choosing the one of highest value. 
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Since an evaluation function can be any function from 

N(G) into f, it follows that for almost any property one might 

want to state about the behavior of evaluation functions in terms 

of increasing search depth, a function can be constructed which 

fails to have that property. By increasing or decreasing its 

accuracy at positions far down in the tree, an evaluation 

function can be made to give either good or bad results at large 

search depths. 

A convenient way to avoid this difficulty is to develop a 

model which makes probabilistic rather than universal predictions 

about the behavior of evaluation functions. This is the course 

chosen here. 

When setting up a probabilistic model of a set of 

deterministic objects, the usual procedure is to categorize the 

objects in terms of whatever features are considered to be 

relevant, and to consider each object X as a random element from 

the equivalence class of all objects having the same features as 

X. The feature which we shall choose to consider important for 

an evaluation function is how "good" it is, averaged over all 

nodes in the game tree. 

Let e 6 E_ be an evaluation function. If G is a finite b, r 

game (such as chess or checkers), one way to characterize e's 

average behavior is to tabulate the number of nodes for which e 

returns each of the numbers in its range. More specifically, 

suppose we let Q = (q0,q.. ,... ,q ) , where each q. is the number 

of nodes g of G such that e(g) = i. (For an example, see the 

first part of Table 2.2.) Then for each Q, the set 1L n of all 

evaluation functions e such that Q = Q is a set of evaluation 
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functions which in some sense behave similarly. 

TABLE 2.2.—The computation of U and Q. for an arbitrary 
evaluation function e. 

0 

number of nodes g 
such that e(g) = i 

5i 

21 

21 

14 

14 

11 

11 

27 

27 

number of "+" nodes 
g such that e(g) = i 

number of "-" nodes 
g such that e(g) = i 

number of "-" nodes 
g such that 4-e(g) = i 

19 

0 

2 

13 

1 

2 

10 

13 

23 

27 

0 

19 

46 

The problem with the above characterization is that in 

general, both good evaluation functions and bad ones may have the 

same q. values, and thus E_ _ may contain evaluation functions 
l o, r , y 

of widely varying accuracy. We want to put good and bad 

evaluation functions into different equivalence classes. 

If e is a good evaluation function, then e(g) will 

usually be high if g is a "+" node and low if g is a "-" node, 

and if e is a bad evaluation function, then e(g) will usually be 

low if g is a "+" node and high if g is a "-" node. For the rest 

of this chapter only, let us define the operator "*" by 

e*(g) = e(g) if g is a "+" node, 

= r-e(g) if g is a ,,-H node. 

If e is good, then e'(g) will usually be high, regardless of 

whether g is a "+" node or a "-" node. If e is bad, then e'(g) 
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will usually be low. 

For G finite, let Q = (q0,q-,, . . . ,q ) , where for each 

i G r, q. is the number of nodes g of G such that e'(g) = i (for 

example, see Table 2.2). If e is good, then q. will usually be 

small if i is small and large if i is large, and vice versa if e 

is bad. If we let Er , „ be the set of all evaluation functions 
<jf r ,y 

e for which Q = Q, the evaluation functions in E« Q can be 

said to have the same average accuracy. 

From the above, it appears that the sets Er n may be a 
<J , r , y 

reasonable way to characterize the performance of evaluation 

functions. But to have equivalence classes of evaluation 

functions based on this characterization, we must know that the 
sets E„ „ ~ are a partition of E„ . This is shown in Theorem b,r ,y L>,r 

2.1 below. The proof of this theorem makes implicit use of the 

following propositions. 

Notation 2 ^ . For the rest of this chapter only, Q 

denotes a vector (q0»qi»•••iqr)r where each qi is a nonnegative 

integer, and where qQ + qx + ... + q = |N (G) |. 

Proposition _2._1. If G is finite, then— 

1. the operator "'" maps EQ one-to-one onto EG r; 

2. e'1 = e for every e 6 En : 
tj, r 

3. the operator "'" maps Er n one-to-one onto Er _ n, and vice 

versa. 
Statement 3 of Proposition 2.1 tells us that 

EG,r,Q " { e : e* S ^G.r.Q1 and fG,r,Q = t e ! e' S EG,r,Q»" 

In this dissertation, a proposition is a statement whose 
proof is obvious. Thus all propositions are stated without 
formal proofs. 
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Proposition 2̂.2̂. Let G be finite, and let X be the set 

of all vectors Q = (qQ,q ,...,q ) satisfying Notation 2.2. Then 

{E\, _: Q G X} is a partition of En . 

Theorem 2_.l̂  Let G be finite, and let X be the set of 

all vectors Q = (q^q.,... ,q ) satisfying Notation 2.2. Then 

{E^ '. Q G X} is a partition of E^ G,r,Q b,r 

Proof. Propositions 2.1 and 2.2 are used implicitly 

throughout this proof. 

U E = {e: e' G U E } = {e: e' G E } = E 
QGX G'r'Q QGX G , r , Q G , r G'r* 

Furthermore, if Q G X, then 

EG,r,Q " <e'! e S fG,r,Q> * *• 

Suppose P ^ Q. Then 

EG,r,P n EG,r,Q = {e: e' G *G,r,P> n <e: e> G EG,r,Q} 

" {e: e' G *G,r,P n E'G,r,Q} 

Thus {E„ ^ n : Q G X } i s a p a r t i t i o n of E~ . c>,r ,y b , r 

A 

If G is finite, then E-, ^ is a finite set which is 
ij, r ,y 

totally determined by G, r, and Q. If we consider e to be chosen 

at random from a uniform distribution on this set, then Q 

determines the probability density function (or p.d.f.) for the 

values returned by e. In particular, the following result is 

true. 

Theorem 2_.2_. Let G be finite. If e is taken from a 

uniform distribution on Er n, then for every g G G and i G f, 

2 
The symbol "A" 1S used to mark the ends of proofs. 
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Pr [e(g) = i I t is a "+" node] 

= Pr [e(g) = r-i I t is a "-" node] 

q i 
- I N ( G ) r 

In order to prove Theorem 2.2, the following lemma is 

needed. 

Lemma 2_._1. Let G be finite and g G N (G) . If e is taken 

from a uniform distribution on En „ _, then for each i 6 r, 
wf r, y 

Pr [e(g) = i] = q./|N(G)|, independent of g. 

Proof. \Er, ~| is equal to the multinomial coefficient b,r,y 

IN (G) | \ |N(G) | 1 
ll q2 * * * q r ] q 0 l q l l " •' qr 

Let g G N(G) . Then 

K e P E • &(a) - i)\ - ( | N ( G ) | - 1 ) I 
l { e 6 E G , r f Q * e ( ^ - 1 } I " q 0 ! . . . q T ^ l ( q . - l ) . q . + 1 i . . . q ^ ' 

| { e e E : e (g ) = i } | 
so Pr [ e ( g ) = i | e G EQ Q ] = 'j^f—n 

u , r , y 

q i 

IN(G) r 

A 

Proof of Theorem 2 . 2 . Accord ing to P r o p o s i t i o n 2 . 1 and 

Lemma 2 . 1 , i f e i s t a k e n from a uni form d i s t r i b u t i o n on from 

E 

independent of g. But therefore, 

G^r Q, then for every i G r, Pr [e« (g) = i] = q^llUG)!, 
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Pr [e(g) = i | g is a "+" node] 

= Pr [e* (g) = 1 | g is a "+" node] 

= Pr [e>(g) = i] 

|N(G) | ' 

and 

Pr [e(g) = r-i | g is a "-" node] 

= Pr [e'(g) = i | g is a "-" node] 

= Pr [e' (g) = i] 

<3i 

IN (G) I * 

A 
According to Theorem 2.2, the value of e(g) if g is a "+" 

node has the discrete p.d.f. 

f<x> • T N W T l f x e ? -

- 0 elsewhere, 

and the value of e(g) if g is a "-" node has the discrete p.d.f. 

q 
f ( x ) = -[NTGTT i f x € f ' 

= 0 e l sewhere . 

The nonzero values of f and f may be represented by the vector 

P = (f(0),f(l),...,f(r)) 

= (f(r),f(r-1),...,f (0)) 

= Q/|N(G) | . 

For example, let Er n be as in Table 2.2, and let e be 

a randomly chosen member of E- r.. If g 6 N(G) is a " + " node, 
ui r, Q 

then Pr[e(g)=0] = 2/80, Pr[e(g)=l] = 2/80, Pr[e(g)=2] = 7/80, 

Pr[e(g)=3] = 23/80, and Pr[e(g)=4] = 46/80. If g is a ,,-n node, 

then Pr[e(g)=0] = 46/80, Pr[e(g)=l] = 23/80, Pr[e(g)=2] = 7/80, 
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Pr[e(g)=3] = 2/80, and Pr[e(g)=4] = 2/80. Thus 

P = (2/80, 2/80, 7/80, 23/80, 46/80). 

The point of the last several pages is that our endeavor 

to find a natural way to classify evaluation functions in terms 

of their "goodness" has led to a set of equivalence classes, each 

of which is characterized by a distinct vector P = (pQ,p,,...,p ) 

in such a way that if e is a random member of the class, then 

(2.1) Pr [e(g) = i] = p£ if i is a "+" node, 

= p . if i is a "-" node. 

If Pi is large for i large and small for i small, then the 

equivalence class contains "good" evaluation functions, and if p* 

is small for i large and large for i small, then it contains 

"bad" functions. 

So far, we have only considered finite games, because the 

equivalence classes Er n cannot be constructed when G is 

infinite. However, the property of equation (2.1) can easily be 

extended to infinite games, by means of the following 

definitions. 

Definition 2_.J7- A probabil ity vector is a vector 

P = (p0, p ^ , pr) , where 0 _< p^ < 1 for each i, and where 

P0 + Pi + .•• + Pr = 1. 

Definition 2_.8̂  If P is a probability vector, the p.d.f. 

determined by P is the discrete p.d.f. 

f(i) = Pi if i 6 r, 

= 0 otherwise. 

If f is the p.d.f. for some random variable X, then P is called 

the probability vector for X. 
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Definition .2.£« If P = (pQ, plf ..., pr) , then 

rev P = (pr, pr_1, ..., p 0). Note that P = rev rev P. 

Definition 2^10. An r-vector is a probability vector 

P = (P0* Pi/ •••* P r)• 

Notation 2̂ _3* Except where stated otherwise, P denotes 

an ?-vector. 

Definition 2_-.ll. Let P be an r-vector. A P-function on 

a game G is an evaluation function e which associates with each 

g G N(G) an independent random variable e(g) from the p.d.f. 

determined by P if g is a "+" node, or from the p.d.f. determined 

by rev P if g is a "-" node. If e is a P-function, then P is the 

probability vector for e. 

Readers may wonder what advantage there is to introducing 

the definition of a probability vector, when it appears to be 

identical in its properties to a discrete p.d.f. The answer is 

that a probability vector carries an additional piece of 

information: the number of entries in the vector. For example, 

if we are given a probability vector P = (p~, p., ..., p ) for an 

evaluation function e, then we know that the probability vector 

for e(g) is P if g is a ,,+" node and rev P if g is a "-" node. 

If we are given only the p.d.f. f determined by P, then we know 

that the p.d.f. for e(g) is f if g is a "+" node, but we do not 

know the p.d.f. for e(g) when g is a "-" node unless we are also 

given the value of r. 

Choosing a Correct Move 

A typical technique for attempting to minimize the 

effects of errors in evaluation functions is to try to predict 

http://2_-.ll


- Chapter 2 - 23 

what may happen in the future as a result of each of the possible 

moves one can make. It is not well understood how humans do 

this, but in the case of computer programs, it is done by 

searching a game tree to some arbitrary depth, applying the 

evaluation function to the nodes at this depth, and propagating 

the values back to the children of the node representing the 

current position, by means of a procedure called minimaxing. 

As pointed out in Chapter 1, the the term "minimaxing" is 

used here in a somewhat different sense than in the minimax 

theorem of mathematical game theory. Perhaps the most 

significant difference is that here it refers to operations that 

are performed on estimated consequences of various decisions, 

rather than on known payoffs. As an illustration, let us return 

to the example used at the beginning of the previous section: 

If I move to position A, then my opponent will 
probably move to position B, which will leave me in a bad 
position. However, if I move to position C, then my 
opponent will not have any good moves. Therefore, I'll 
move to position C. 

The player who did this reasoning made his decision using what is 

known in computer science as a depth 2 minimax search (see 

Chapter 1). 

Suppose it was Max who did the above reasoning. If Max 

had done a depth 0 search, he would simply have chosen a move at 

random. If he had done a depth 1 search, he would have looked 

only at positions A and C, and chosen whichever one looked better 

to him. But instead, he looked one level deeper, in an attempt 

to predict what Min's response would be. Max expected Min to 

make whichever reply was worst for Max, according to Max's 

estimates of the values of the positions. Therefore, he chose a 
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move which minimized the damage he thought could be done by Min. 

Had he been explicitly using an evaluation function, the value 

Max would have assigned to position A would have been the minimum 

of the evaluation function values for each of Min's possible 

moves from position A. This number is called the depth 1 minimax 

value for A. 

Minimax values are defined formally in Definition 2.13 

below. For d > 0, choosing a move using a depth d minimax search 

consists of computing the depth d-1 minimax values for each child 

of the current node, and moving to the child having the highest 

value. If several nodes share this same value, the choice is 

made at random among them. If d = 0, then the choice is made at 

random among all possible moves. 

Definition 2̂ ,12̂  If g is a node with n children, then 

the children are c-,(g) , c2(g)* •••* c (g). 

Notation 2_._4. Except where otherwise stated, d is a 

nonnegative integer which denotes a search depth. 

Definition 2.13. If e G En _ and g 6 N (G), then the 
— — ta, r 

depth d minimax value for g using e is 

e,(g) = e(g) if d = 0 or g is a leaf, 

= max {e,_,(gl): g' is a child of g} 

if g is a max node which is not a leaf, 

= min {e, ,(g')- g" is a child of g} 

if g is a min node which is not a leaf. 

As an example, suppose Max is choosing a move using a 

depth 3 minimax search on the tree of Figure 2.3. Suppose that 

the evaluation function returns the values 10, 2, 3, 6, 11, 9, 0, 

14, 8, 5, and 6 on the nodes at depth 3 of the tree. Then by 
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depth 0 (current position): 

10 

Max's move 

minimax values: 
depth 1: 

Min's move 

minimax values: 
depth 2: 

Max's 
move 

values: 
depth 3: 

FIGURE 2.3.—Minimax values computed using a depth 3 
minimax search on the game tree of Figure 2.1. The values are 
computed as described in the text. 

Definition 2.13, the depth 0 minimax values for these nodes are 

these same values, as indicated in the figure. The figure also 

gives the depth 1 minimax values for the nodes at depth 2 and the 

depth 2 minimax values for the nodes at depth 1, as computed 

according to Definition 2.13. Based on these values, Max would 

choose to move to the depth 1 node having the value 14. 

If G is a game tree, then the only nodes of G for which 

it matters which move is chosen are the critical nodes; i.e., the 

S and U nodes. Obviously, each player is trying to choose a node 

leading to a forced win for himself. Thus, if g is a critical 

node, a correct move from g is a move to a "+" child of g if g is 

a max node, or to a "-" child of g if g is a min node. For 
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example, in the game tree of Figure 2.3, the only correct choice 

for Max is the node having the value 14. 

In the game tree of Figure 2.3, suppose tha , the third 

depth 1 node had received the value 15 rather than 6. Then Max 

would have chosen this node instead. Since the node is a "-" 

node, this decision would have been incorrect. If this node had 

received the value 14, then Max would have chosen at random 

between it and the second depth 1 node, and thus would have made 

a correct decision with probability 1/2. 

If e is a P-function, then the errors it makes are 

assumed by Definition 2.11 to be stochastically independent, and 

the probability of correct decision depends on the probability 

vectors for the random variables (ê _i (91): 9' is a child of g}. 

Based on the following definitions, Theorem 2.3 gives a formula 

for the probability of choosing the correct move at a critical 

node in a game. 

Definition 2̂ _14. D(G,g,P,d) denotes the probability of 

making a correct decision at a critical node g G G using a depth 

d minimax search and a P-function e. 

Definition 2. L5. If e is a P-function on a game G and 
Q 

g G N(G), then the probability vector for ©d(9) is called P ,. 

Definition 2.16. Let X,, X0, ..., X„ be random variables — — lr 2 n 

from probability distribution functions determined by the 

r-vectors P,, P2, ..., P , respectively. Then the probability 

vectors for 

max (X,, X2, ..., X ) and min (X,, X2, ..., X ) 

are called 

maxp (Plf P2, ..., Pn) and minp (Plf P2, ..., P n), 
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respectively. 

Definitions 2.13, 2.15, and 2.16 immediately give the 

following result. 

Proposition 2̂.3̂. If g G N (G) is not a leaf, e is a P-

function, and d > 0 is an integer, then 

P G r~G 
g 

- , = maxp {Pai d: g' is a child of g} if g is a "+" node, 

.G = minp {P , rf: g' is a child of g} if g is a "-" node. 

Theorem 2̂ 3_. Let g be a critical nonleaf node of G. Let 

m be the number of children of g having the same sign ("+" or 

"-") as g, and n be the number of children of opposite sign. Let 

e be a P-function on G, and let 

H = max {e,_, (g'): g' is a child of g} if g is a max node, 

= min {ed_-,(g') : g' is a child of g} if g is a min node. 

Then 

D(G,g,P,d) = ̂  if d = 0, 

m n • r 
= 2 1 ^ ^ 1 Pr [I = i and J = j | H=k] if d > 0, 

i=l j=0 3 k=0 

where I is the number of children g' of g having the same sign as 

g such that ^-i^') = H, and J is the number of children g1' of 

g having the opposite sign from g such that ed_i(9'') = H* 

Proof. Suppose that g is a max node (i.e., that Max is 

choosing the move). If d = 0, then Max is not searching at all, 

so his choice is at random from among the children of g. Thus 

since there are m+n children of g and m of them are "+" nodes, 

D(G,g,P,0) -J5_. 

If d > 1, then choosing a move using a depth d search means 

computing the values e,, (c.(g)) for i = 1,2,...,m+n, and 
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choosing whichever of cx (g) , c2 (g) r ..., cm+n(g) receives the 

value H. If I+J of the nodes get this value, the move must be 

chosen at random from among them. The choice will be a correct 

one if and only if the move is to a "+" node. Thus, given I and 

J, the probability of correct decision is -T+J*
 B u t ^ varies 

randomly over r, and I and J vary randomly from 0 to m and 0 to 

n, respectively. Thus 

m n . r 
D(G,g,P,d) = I I -,4T I Pr [I = i and J=j | H=k] 

i=0 j=o 1 J k=0 

m n . r 
= 2 2 ^4- 2 Pr [I=i and J=j | H=k]. 

i=l j=0 D k=0 

The proof is similar if g is a min node. 

A 
Obviously, determining D(G,g,P,d) for an arbitrary node g 

of an arbitrary game G can be very complicated. However, for 

certain kinds of games, the task is more reasonable. Some of 

these games are discussed in the next chapter. 

There is one situation in which D(G,g,P,d) is quite 

simply determined. That is when P = (p ,p ,...,p ) is such that 

p. = 0 for i < r/2 (i.e., all entries in the left-hand half of P 

are zero). In that case, e(g,) > e(g2) whenever g, is a "+" node 

and g~ is a "-" node, so D(G,g,P,d) = 1, independent of d. 

Definition 2_._17. If the probability vector P is as in 

the above paragraph, then P is perfect. Otherwise, P is 

imperfect. 

Since a perfect probability vector defines a class of 

perfect evaluation functions, one might suspect that such vectors 

are not very numerous. This is indeed the case. From 
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* P-

FIGURE 2*. 4.—The set of all probability vectors 
(p0,p,,p2) forms a triangular plane segment. The set of all 
perfect probability vectors (pn,plfp9) consists of the single 
point (0,0,1). u L z 

Definitions 2.7 and 2.10, it follows that the set of all 

f-vectors forms an r-dimensional simplex (for example, see Figure 

2.4). Since the [r/2]+l leftmost entries of a perfect f-vector 

3 must be zero, the set of perfect f-vectors forms a 

[(r-l)/2]-dimensional simplex. But the second simplex is of 

measure zero in the first one. This proves the following. 

Proposition 2.4^. Almost all f-vectors are imperfect. 

The square brackets are used here to denote the 
"greatest integer" or "floor" function. 

4 
For those unfamiliar with this term, a property is said 

to hold for almost all points in a set if it holds everywhere but 
on a subset of measure zero [JA2]. 
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This means that the probabi l i ty of choosing a perfect 

r -vector from any continuous p .d . f . over the set of a l l r -vectors 

is 0. This r e su l t p a r t i a l l y explains why i t i s so d i f f i c u l t to 

find perfect evaluation functions for games that are too large to 

analyze exhaustively! 
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CHAPTER 3 

"HOMOGENEOUS" GAMES 

The Basic Definition 

According to the proof of Theorem 2.3, the probability of 

correct decision at any critical node g depends on the 

probability vectors for the minimax values of g's children. On 

most game trees, these vectors depend heavily on what the game 

tree looks like below g, and so it is very difficult to make any 

general statements about how the probability of correct decision 

varies with search depth. We now consider a class of game trees 

which have a regular enough structure that such statements can be 

made. 

Definition 3_.l* Let m ̂  1 and n > 1 be integers, and let 

x be one of the letters S, T, U, and V. Then P (m,n) *s the 

unique infinite game tree such that— 

1. the root of p (m,n) is an x node; 

2. every critical node in rx(m,n) has m children of the same 

sign and n children of opposite sign; 

3. every node of P (m,n) has m+n children. 

Ps(m,n) is illustrated in Figure 3.1. 

Notation 3 ._1. Most of the results to follow are 

independent of which of Ps(m,n), PT(m,n), P„(m,n), and P-.(m,n) is 

being considered. Therefore, P(m,n) denotes any one of these 

four trees. 
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FIGURE 3.1.—The tree rQ(m,n) 

Truncation 

F(m,n) has a number of interesting properties which are 

explored in the next few chapters. The relevance of these 

properties to finite games is that infinitely many finite games 

may be formed from P(m,n) simply by truncating it in whatever way 

is desired. This is formalized below. 

Definition 3̂.2̂. The truncation of a tree G is any tree 

G' such that— 

1. every node of G1 is a node of G; 

2. the root of G1 is the root of G; 

3. for every nonleaf node g of G', the children of g in G' are 

precisely the children of g in G. 
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Definition 3̂ 3.* An (m,n)-game is a finite truncation of 

P(m,n) . 

Proposition ^.K Let d _> 0 be an integer, G be an 

(m,n)-game, and g 6 N(G). If the subtree of G having g as its 

root is complete to at least depth d, then the probability vector 

for ed(g) in G is the same as the probability vector for ed(9) in 

P(m,n), and D(G,g,P,d) = D(r(m,n),g,P,d). 

Proposition 3.1 allows us to prove results about ffnwn) 

with the assurance that they also apply to all sufficiently large 

(m,n)-games. 

Independence Results 

Some of the nicer properties of F(nwn) are— 

1. the probability vector for any S node g of r(m,n) is 

independent of g, and similarly for the T, U, and V nodes; 

2. the probability of correct decision using any P-function and 

searching to depth d depends solely on P and d. 

These properties are proved in Theorem 3.1 and Corollary 3.2.1 

below. 

Definition 3_.4̂  Let P and Q be r-vectors. Then 

maxpm^n(P,Q) = maxp(P,..,,P,Q,...,Q) 

and m l n pm,n ( p' Q ) • ninp(Pr...,PfQr...,Q), 

where in each case there are m occurrences of P and n occurrences 

of Q. 

Lemma 3_._1. Let P , f P ? , . . . , P be r - v e c t o r s . Then 

(3 .1 ) m a x p ( P , , P 2 , . . . , P ) = rev m i n p ( r e v P , , r e v P 2 , . . . , r e v P ) 

and 

( 3 . 2 ) m i n p ( P , , P 2 , . . . , P ) = rev maxp( rev P , , r e v P 2 , . . . , r e v P ) . 
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Proof. We prove equation (3.1); the proof of equation 

(3.2) is similar. 

Let X^, x2f ..., X be random variables from the discrete 

probability density functions f, , f2 r ...r fn determined by Pw 

P„, ..., P , respectively, and let X = max (X-̂ X,,, . . . ,X ) . Then 

from Definition 2.16, the probability vector for X is 

maxp(P1,P2,...,Pn). 

For i = 1,2,...,n, let Yi = r-X,. Then the p.d.f. for Y. 

is g*(x) = f.(r-x), so the probability vector for Y. is rev P.. 

Let Y = min(Y1,Y2f..•fYn). Then from Definition 2.16, the 

probability vector for Y is minp(rev P-^rev P2,...,rev Pn) /
 so 

the probability vector for r-Y is 

rev minp(rev P-,,rev P2,...,rev Pn) . 

But for all real x, 

Pr [X < x] = Pr [max(X1,X2, .. . ,Xn) _< x] 

= Pr [min(Y1,Y2,...,Yn) _> r-x] 

= Pr [Y _> r-x] 

= Pr [r-Y < x] . 

Thus X and r-Y have the same p.d.f., and hence the same 

probability vector. 

A 

Theorem 3_*1. Let s and s1 , t and t' , u and u* , and v and 

v' be distinct S, T, U, and V nodes, respectively, in F(m,n), and 

let m ̂  1 and n > 1 be integers. Then for every integer d ̂  0, 

0 . 3 ) ' p i : ; r 7 = * V J T • - v p u ! " ' n ) = " v * y « f 

and 

(3 4) pHnwn) = pr(m,n) = P( 
[S'q) F t , d *f ,d r e v v , 

< m ' n > = r e v P1 , ( m ' n > . d v 1 , d 
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Proof (by induction on d). From Definitions 2.11, 2.13, 

and 2.15, 

F(m,n) . f(m,n) . p F(m,n) _ P(m,n) . 
s,0 ' s' ,0 *' Ft,0 ' *t' ,0 ' F' 

pr(m,n) = pP(m,n) , pF(m,n) pr(m,n) = p 
pu,0 pu',0 r e v p' a n a pv,0 pv',0 r e v F" 

Thus the theorem holds for d = 0. 

Suppose the theorem holds for d = k. Then for every T 

c h i l d g of s or s ' , p' ( m / n ) = p ' t
( m / n ) , and for every U c h i l d g ' 

of s or s ' , P , ( m ' n ) = P1 ( r a , n ) . But s and s1 each have m T g , K u , K 

c h i l d r e n and n U c h i l d r e n , so from Propos i t i on 2.3 and Def in i t i on 

3 . 4 , 

p r (m,n) _ F(m,n) _ ,pP(m,n) F(m,n) 
P s ,k+1 " p s ' , k + l m a x p m , n ( P t , k ' P u , k ]' 

S i m i l a r l y (but a l so using D e f i n i t i o n 2 . 9 ) , 

p r (m,n) = pP(m,n) = . p H * ' n > , r e v p H * ^ ) ) , 
u ,k+l u ' , k + l rm,n v t , k u,k '' 

whence from Definitions 2.9 and 3.4 and Lemma 3.1, 

rev P[(- ;;> = rev P [ < ^ > = ^ V ^ f ™ .#•.">, 

. pr(m,n) . pr(m,n) _ ps,k+l " Fs",k+l" 

Thus equation (3.3) holds for d = k+1. The proof for equation 

(3.4) is similar. 

A 

Notation 3_._2. Let s, t, u, and v be any S, T, U, and V 

nodes of P(m,n), respectively. Then Theorem 3.1 allows us to 

define 

m,n . P(m,n) m,n P(m,n) 
bd ~ Ps,d ' xd " pt,d 

um,n = pF(m,n) a n d vm,n = pP(m,n) 
d u,d a v ,d 

When the superscripts m and n are obvious, they are omitted. 
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Corollary 3.1.1. 

SQ = TQ = P and UQ = VQ = rev P, 

and for every integer d ̂  0, 

S, = rev U, and T. = rev V,. 

Proof. This is merely a restatement of Theorem 3.1 and 

the first few lines of its proof using Notation 3.2. 

A 
C o r o l l a r y 3_.K_2. For e v e r y i n t e g e r d >_ 0 , 

S d+1 = m a x P m , n < W ' T d+1 = m i n P m , n ( S d ' S d ) ' 

Ud+1 = m i n P m , n ( V d ' S d > ' a n d Vd+1 = m a x P m , n < U d ' U d > -

P roo f . Immediate from N o t a t i o n 3 .2 and t h e p roof of 

Theorem 3 . 1 . 

A 

Definition 3_.j5. If P = (pQ, p, ,... ,p ) is an r-vector and 

i € r, then (P)i = p. and (P)i . - £^=i pk. (Thus if i > j then 

(P). . = 0.) 

The probability of correct decision at a critical node g 

of a game tree using a depth d search depends on the probability 

vectors for the depth d-1 minimax values of the children of g. 

Theorem 3.2 gives a formula for computing the probability of 

correct decision on P(m,n) in terms of these values. 

Theorem 3_.2:. Let g be a critical node of F(m,n) . If P 

is an r-vector for fr(m,n) and d > 0 is an integer, then 

m n . r 
D(r(m,n) ,g,P,d) = X 1 -J^- 2 A(m,i,k,T, ,) A(n, j , k,U, ,) 

i=l j=„ ^J k=0 a"i a L 

m n . r 
= 1 \ -j-ri- l B(m,i,k,V, ) B(n, j , k, S . , ) , 
i = l j=o 1 + :I k=0 a i a L 
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where A(h,i,k,Q) = (!?) ( (Q) k)
 1 ( (Q) 0 f k - 1 ) h ~ X 

and B(h,i,k,Q) = (*?) ((Q)k)
X {(Q)k+1^f)

h~1, 

and where 0 is taken to be 1. 

Proof. Suppose g is an S node, and let H be as in 

Theorem 2.3. If g' is a "+" child of g, then g' is a T node, so 

from Notation 3.2 and Definition 3.5, 

Pr t e ^ g ' ) = k] = {T6_1)k 

and Pr [e^g'J < k] = ( T ^ ) ^ , ^ 

for every k G r. Let I be the number of "+" children g' of g 

such that ed-i(9') = H- F o r a 1 1 o t n e r "+" children g'1 of g, 

e, ,(g'') < H. But g has m "+" children. Therefore, for each 

i G r, 

Pr [I = i | H=k] = (m) i ( v l ) k ) 1 (<Vi>o,k-i> 

= A(m,i,k,Td_1), 

where 0 is taken to be 1. Similarly, for each j G r, 

n, 

m-i 

n-n 
Pr [J=j | H=k] = (V) ((Ud.1)k)

J ((Ud.^Q^,!) 

= A(n,j,k,Ud_1), 

where J is the number of "-" children g' of g such that 

,0 (g1) = H and 0 is taken to be 1. But according to 

Definition 2.11, I and J are stochastically independent. 

Therefore, for each i G f and j G r, 

Pr [I=i and J=j | H=k] = A(m,i,k,Td_1) A(n,j,k,Ud_1), 

so by Theorem 2.3, 

(3.5) D(r*(m,n) ,g,P,d) 

m n . r 
= I I y+r ± A(m,i,k,Td_1) A(n,j,k,Ud_1) . 
i=l j=0 J k=0 

Suppose g is a U node. Then by a similar argument, we 

get 
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(3.6) D(r(m,n) ,g,P,d) 

m n . r 
* * T + T > • B ( m , i f k , V d _ 1 ) B ( n f j , k r S d _ 1 ) . 

i=l i=0 J k=0 

But from Corollary 3.1.1 and Definitions 2.9 and 3.5, 

= (•) ( ( V ^ W 1 ( ( V d . ! ) , . ^ ^ ) 1 1 1 - 1 

= B ( m , i , r - k , V d _ 1 ) , 

and similarly, A(n,j,k,U d_ 1) = B ( n , j , r - k , S d _ 1 ) . Thus 

r r 
1 A(m,i,k,Tri , ) A(n,j,k,U H , ) = i. B(m,i ,k,Vfl ,) B(n , j ,k, S , ,) , 

k=0 k=0 a -1 a x 

so the quantities in equations (3.5) and (3.6) are equal. 

A 

Corollary 3_.2^_1. Let g and g' be any two critical nodes 

o f H ( m , n ) . Then D(P(m,n),g,P,d) = D (r(m,n) ,g',P,d) . 

Proof. For d - 0, the proof is immediate from Theorem 

2.3. For d > 0, the proof is immediate from Theorem 3.2. 

A 
Notation 3_._3- Corollary 3.2.1 allows us to denote 

D(F(m rn) rg rP rd) by D (P,d). When the values of m and n are 
in / n 

obvious, this quantity is further abbreviated as D( P , d ) . 
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CHAPTER 4 

A PATHOLOGICAL GAME 

Introduction 

This chapter is devoted to showing that the game tree 

P(lrl) has a property called pathology. The meaning of this term 

is the following. Let P be imperfect, and suppose someone is 

using a P-function to choose moves in the game P(l,l). Contrary 

to what one might expect, increasing the search depth does not 

improve the quality of play. Instead, as the search depth is 

increased, the probability of choosing a correct move approaches 

0.5. This is exactly the same probability of correct decision 

one would obtain in this game by choosing moves totally at 

random. 

In Chapter 6, this result is generalized to all of the 

P(m,n). The relevance of this to finite games is the following: 

since every (m,n)-game is a truncation of P(m,n) , the same kind 

of result holds for every (m,n)-game as long as the search does 

not reach the end of the game tree. At the search depths that 

are used in many real games, this does not occur until very late 

in the game, at which point one of the players often has a strong 

advantage. 

In order to prove that P(l,l) is pathological, a number 

of preliminary theorems are needed. The following two sections 

contain these results. Following them is a section containing 

the formal definition of pathology and a proof that P(l,l) is 
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pathological. 

The final section is a discussion of relevant experimental 

results. 

Theorems About Probability Vectors 

The following theorems provide ways to compute the 

functions maxp and minp. They are stated in a more general form 

than is necessary for this chapter, so that they will be useful 

in later chapters as well. 

Theorem 4.1. Let P,, P~, ..., P be r-vectors, and let — — 1 2 n 

P = maxp (PQf P-jy . .., Pn) and Q = minp (PQf P1#... f Pn) . Then for 

each i 6 r, 

(4.1) (P) 0 | i = n (Pj)0/i and (P) i f r = 1 - n (l-(Pj)lfrJ, 

and 

(4.2) (Q), r = H (P.), r and (Q) . = 1 - n ( i - ( p ^ ) n i). 

Proof. For i = l,2,...,n, let Z. be a random variable 

from the p.d.f. determined by P., and let Z = max (Z.,Z_,...,Z ). 

Then from Definitions 2.16 and 3.5, 

n n 
(P)n . = Pr [Z < i] = n Pr [Z. < i] = n &A) a «••• 

0,i - j = 1 i - j = 1 3 o.ri 
Thus from Definition 3.5, for each i S r, 

(P)i,r = X " <p>0,i-l = 1 ~ ^ j ' 0 , 1 - 1 = 1 - ^ - ^ j J l . r ) -

This proves statement (4.1); the proof is similar for statement 

(4.2). 

A 
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As an example, let P, = (0.1, 0.2, 0.3, 0.4) and 

P2 = (0.25, 0.25, 0.25, 0.25). Then 

(P)0 0 = (.1) (.25) = 0.025, 

(P)0 1 = (.1+.2) (.25+.25) = 0.150, 

(P)Q 2 = (.1+.2+.3) (.25+.25+.25) = 0.450, 

and {P)Q 3 = (.1+.2+.3+.4) (.25+.25+.25+.25) = 1.000. 

Corollary 4^.^. If P and Q are as in Theorem 4,1, then 

for each i 6 r, 

( p ) i = 4 ( pj }o,i - 4 (pj>o,i-i 
3=1 3 

n n 

n ( P j ) i , r - . 

D = l J ' D 

Proof. Immediate from Theorem 4.1. 

and (Q)i = H (Pj) i r r " H (Pj)i+ifr-

A 
To continue the previous example, 

(P)Q = 0.025 - 0.000 = 0.025, 

(P^ = 0.150 - 0.025 = 0.125, 

(P)2 = 0.450 - 0.150 = 0.300, 

and (P)3 = 1.000 - 0.450 = 0.550, 

so P = (0.025, 0.125, 0.300, 0.550). 

Corollary 4̂ _1.2̂  As a special case of Corollary 4.1.1, 

if n = 2, then 

<P>i = (Pi)i (P2>0,i-1
 + (p2)i (

pi)o,i 

and (Q)i = (Pi)i (P2)i+l,r
+ <p2)i (pl)i,r* 

Proof. The proof follows by simple algebraic 

manipulation of the equations of Corollary 4.1.1. The details 

are left to the reader. 

A 
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To continue the example again, 

(P) = 0.1 (0) + 0.25 (.1) = 0.25, 

and 

(P)1 = 0.2 (.25) + 0.25 (.1+.2) = 0.125, 

(P)2 = 0.3 (.25+.25) + 0.25 (.1+.2+.3) = 0.300, 

(P)3 = 0.4 (.25+.25+.25) + 0.25 (.1+.2+.3+.4) = 0.550, 

so as before, P = (0.025, 0.125, 0.300, 0.550). 

Corollary 4.1.3. If P = maxp „(Pnr P 0)/ then 
in f n x £ 

and 

< P >0 , i - < < P l > 0 , i ) m ( ( P 2 > 0 , i ) n 

( P ) l = 1 - (l-((^)ifr)
m) d - ( ( P 2 ) i / r ) n ) . 

I f P = minpm n(Pir P 2 ) / t h e n 

m n 

and 

\ 

< p > l , r " < < p l > i , r > << P 2>i , r> 

( P ) 0 f l = l - ( i - ( ( P 1 ) 0 , i ) " ' ) ( i - ( ( p
2 ) o , i ' n » -

Proof. Immediate from Definition 3.4 and Theorem 4.1. 

Corollary 4_«_l-4_- Let P be an r-vector, m ^ 1 and n >_ 1 

be integers, and S,, T-,, U,, and V, be as in Notation 3.2. If 

i G r, then— 

m / /,i s v n 
1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

(S 

(S 

(T 

(T 

(U 

(U 

(V 

(V 

d+1 

d+1 

d+1 

d+1 

d+1 

d+1 

d+1 

d+1 

n 
0,1 = <<Td>0,i> <<Ud>0,l> » 

I,r - 1 - (l-(Td)lrr)
m (l-(»d>i,r)"» 

o,i = 1 " ( 1- ( S^o,i» m + n' 

l,r " '^d'i.P 

o,i " 1 - < 1-<Vo,i> m «1-«sd'o,i>n' 

l,r " « vdli,r)' <<sd'l,r'n' 

0,1 = «Vo,i> m + n<-

I . , " 1 " a-(»d>i,r>,"+n-
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Proof. Immediate from Corollary 3.1.2 and Corollary 

4.1.3. 

A 

Coro l l a ry £-.l-5_. Let P be an f - v e c t o r , m ^ 1 and n >_ 1 

be i n t e g e r s , and S , , Td , U,, and V, be as in Nota t ion 3 .2 . If 

i € r , then— 

lm ( S d + 2 ) 0 , i 

= <x " ^-^of0
m+n)m ( 1 ~ ( 1 - ( V o , i ' m ( 1 - ( s d ) o , i ) n ' n ' 

2 - < T d + 2 > i , r = C1 " ( 1 - ( T d ) i f r J m ( 1 - ( u d ) l f r , n , t t f n | 

3 - < U d + 2 > i , r 

= (i - ( i - ( u d ) U r ) m + n ) m ( i - ( 1 - ( T
d ) i / r ) m ( 1 - ( u d ) i , r ) n ) n ; 

4 - < v d+2>0, i = C1 * ( 1 - ( V d ) 0 f i ) m ( l - ( S d ) 0 / i ) n ) m + n . 

P r o o f . Immediate from C o r o l l a r y 4 . 1 . 4 . 

A 
Coro l l a ry 4^_1.6^ As a s p e c i a l case of Coro l l a ry 4 . 1 . 5 , 

if m = 1 and n = 1, then 

(Td+2>i,r = f1 " ^ V i . r ^ - O ' d ' i . r " 2 

a n d < u d+2>i ,r " (1 " ( l - ( U d ) i , r ) 2 ) d - ( l - ( T d ) 1 # r ) ( l - ( U d ) i / r ) ) . 

P r o o f . Immedia te from C o r o l l a r y 4 . 1 . 5 . 

A 

Theorems About Sequences 

The following theorem about functions and sequences is of 

major importance in proving the results in the next several 

chapters. 

Notation 4_.]L. If f is a function, then f (x) = x, and 

for every integer n > 0, f (x) = f(f (x)). 
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Theorem 4.2. Let f (x ) be c o n t i n u o u s over t h e i n t e r v a l 

[ a , b ] , w i t h f (b ) = b . Suppose t h a t f o r a l l x G [ a , b ) , f ( x ) > x 

and f (x ) < b . Let c G [ a , b ] . Then a < f n ( c ) < b for e v e r y 

i n t e g e r n >̂  0 , and 1 im f n ( c ) = b . 
n->co 

P roo f , F i r s t we p rove by i n d u c t i o n t h a t a _< f n ( c ) <_ b 

fo r e v e r y i n t e g e r n ^ 0. The s t a t e m e n t h o l d s fo r n = 0 , s i n c e 

a < c _< b . Suppose i t h o l d s f o r n = i . Then e i t h e r f (c) = b f 

whence 

f 1 + 1 ( c ) = f f f ^ c ) ) = f (b ) = b , 

or e l s e f 1 ( c ) G [ a , b ) , whence 

a _< f1 (c) < f ( f 1 (c) ) < b . 

Thus , t h e s t a t e m e n t h o l d s fo r e v e r y i n t e g e r n >̂ 0 . 

Suppose f 1 ( c ) = b fo r some i . Then f n ( c ) = b fo r a l l 

n ^ i , whence 1 im f n ( c ) = b . Suppose f 1 ( c ) i- b fo r a l l i . Then 
n->co . 

f 1 ( c ) G [ a ,b ) fo r a l l i and f1 1 { c ) = f ( f 1 ( c ) ) > f 1 ( c ) f so 

{ f n ( c ) } ° ° _ n i s a bounded monotone i n c r e a s i n g s e q u e n c e , which 

t h e r e f o r e must have a l i m i t z G [ a , b ] . But t h e r e f o r e , s i n c e f i s 

c o n t i n u o u s , 
z = l im f n ( c ) = l im fn+1 (c) = l im f ( f n ( c ) ) = f ( z ) . 

n->co n->co n->co 

The o n l y z G [ a , b ] for which t h i s can be t r u e i s z = b . 

A 

C o r o l l a r y £-.2«.l« L e t f ( x ) b e c o n t i n u o u s ove r t h e 

i n t e r v a l [ a , b ] , w i t h f ( a ) = a . Suppose t h a t fo r a l l x G ( a , b ] , 

f (x ) < x and f ( x ) > a . Let c G [ a , b ] . Then a < f n ( c ) < b fo r 

e v e r y i n t e g e r n >̂  0 , and l im f (c) = a . 
n-Xx> 

P r o o f . S i m i l a r t o t h e p roof of Theorem 4 . 2 . 

A 
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Lemmas 4.1 and 4.2 can be proved as corollaries of some 

more general theorems which are proved in later chapters. 

However, proving those theorems requires considerable preliminary 

mathematical work. Since Lemmas 4.1 and 4.2 are easy to prove 

anyway, it is easier to let the general results wait until later. 

Lemma 4_.1< Let 0 < xQ < 1 and 0 < yQ < 1, with not both 

xQ = 1 and yQ = 0. For every integer n >_ 0, let 

xn+l = f
1 " ^ - V ^ V ) 2 

and yn+1 = (1 - (l~yn)
2) d - (l-xn)(l-yn)). 

Then for every integer n ̂  0, 

0 < xn < l and ° <. Yn < 1# 

and not both xn = 1 and yn = 0. 

Proof {by induction on n). By its hypotheses, the lemma 

holds for n = 0. Suppose it holds for n = i. For 0 _< x £ 1 and 
2 

0 £ y £ 1, (1 - (1-x)(1-y)) is an increasing function of x and 

y, so 

x.+1 = (1 - (1-x.)(1-y.))
2 > (1 - (1-0)(1-0))2 = 0 

and x.+1 = (1 - (1-x.)(l-yi))
2 < (1 - (1-1)(l-l))2 = 1. 

Similarly, 0 _< Yi + 1 < 1. Suppose that 

(4.3) xi+1 = (1 - (1-Xi) (l-yi))
2 = 1. 

Then (1 - (l-xi)(1-y.)) = 1, whence 

(4.4) X£ = 1 or Yi = 1* 

Suppose further that 

yi+1 = (1 - (1-Yi)
2) (1 " (l-*i)(l-yi)) = 0. 

Then either 1 - (1-y^2 = 0 or 1 - (1-x^ (1-y^ = 0. The latter 

alternative contradicts equation (4.3), so it must be that 
2 

1 - (1-y.) = 0, whence y. = 0. But thus from statement (4.4) it 
follows that x. = 1, which contradicts the induction hypothesis. 
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Thus n o t b o t h x ^ + 1 = 1 and y j + i = °» 

A 
Lemma £.2_. For e v e r y i n t e g e r n >_ 0 , l e t x and y be a s 

in Lemma 4 . 1 . Then n o t b o t h l ira x„ = 1 and l im y„ = 0 . 
. n v n 

n->co n->co 

P r o o f . Because of Lemma 4 . 1 , o n l y t h e f o l l o w i n g t h r e e 

c a s e s need be c o n s i d e r e d . 

Case 1: x . = 1 f o r some i , and 0 < y < 1 f o r a l l n . 

Then x . + 1 = (1 - ( 1 - 1 ) ( 1 - y . ) ) = 1, 

so by i n d u c t i o n , x - 1 f o r e v e r y n ^ i . Thus fo r e v e r y n >_ i , 
y n + l = ( 1 " ( 1^n ) 2 ) ( 1 - d-Ud-Yn*) = X " ( 1 - y n

) 2 ' 
2 

But if we let a = y, and b = 1, then f(y) = 1 - (1-y) satisfies 

the hypotheses of Theorem 4.2. Therefore, from Theorem 4.2, 

lim y = 1 J 0. 
n->co 

Case 2_: 0 _< x < l for all n, and y- = 0 for some i. 

Then yi+1 = (1 - (1-0)
2) (1 - (1-x.) (1-0)) = 0, 

so by induction, y = 0 for every n >̂  i. Thus for every n :> i, 

2 
But if we let a = 0 and b = x., then f(x) = x satisfies the 

hypotheses of Corollary 4.2.1. Therefore, from Corollary 4.2.1, 

lim x = 0 ̂ 1. 
n-Xo 

Case 3: 0 < x < 1 and 0 < y < 1 for all n. — — n n — 

Suppose lim x = 1 and lim yn = 0. 
n->co n->co 

Then t h e r e i s an N such t h a t f o r e v e r y i n t e g e r n > N, 

0.9 < x < 1 and 0 < y„ < 0 . 1 . n n 

Let n > N. Then 
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y n + l = U - ^ n ^ <X " d - x n ) ( l - y n ) ) 2 

= ( 2 y n - y n } ( x n + y n - x n y n ) 

• < 2 - V y n ( x n < 1 - y n ) + y n
) 

> 1.9 y n ( 0 . 9 2 + 0 ) = 1.539 y n , 

so by i n d u c t i o n , y n + i > 1 .539 1 y fo r e v e r y i n t e g e r i >_ 0 , whence 

y . > 1 f o r some i , which c a n n o t o c c u r . Thus n o t b o t h 

l im x = 1 and l im y = 0 . 
n . n 

n-Xx> n->co 
A 

Theorem 4 . 3 . For e v e r y i n t e g e r n > 0 , l e t x and y be — — — n •* n 

a s in Lemma 4 . 1 . Then l im x - y „ = 0 . 
v n n n->co 

P r o o f . For e v e r y i n t e g e r n ^ 0 , 

2 
n+l n J n n n 

2 
and y , . = (2y - y ) (x +y - x y} , 

•'n+l : n J n n 2 n n ^ n ' ' 
s o x n + l - y n + l = (xn+VxnV ^rT^'V"^!!'> 

* (xn+yn-xnV ( 1"V < W • 
Thus by i n d u c t i o n , 

n 
( 4 . 5 ) * n + i - y n + 1 = < x 0 - y 0 ) .H d - y i ) ( x i + y i - x i y i ) . 

From Lemma 4.1, 0 £ x £ 1 and 0 £ yn £ 1, from which it follows 

that 0 £ 1 -y n £ !
 a n d ° 1 xn+yn~xnyn — 1' w n e n c e 

n 
(4.6) 0 < JI (1-y.) £ 1 

" i=0 

and 

n 
(4.7) 0 £ H (x.+y.-x^) £ 1. 

i=0 
Case 1: l im y j* 0 o r l im y n i s u n d e f i n e d . 

n-Xx> n->co 
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Then there is an G in the interval (0,1) such that for infinitely 

many integers i >̂  0, y. > G, whence 1-ŷ  < 1-G. Thus 

n 
lim JI (1-y^ = 0. 
n->co i=0 

But from equations (4.5) and (4.7) , 

| x n-y n ' = lxo-yo' n u^oI*I+Yr^o 

< l x n - y 0 | (1) H ( l - y . ) , 
u u i=0 

so 1 lm x - y „ = 0. 
« s ^ x n n n-xx) 

Case 2 : l im y = 0 . 
n->co n 

Then by Lemma 4 . 2 , e i t h e r l im x ^ 1 or l im x i s u n d e f i n e d . 
n n 

n->co n->co 

Thus t h e r e i s an G in t h e i n t e r v a l ( 0 , 1 ) such t h a t fo r i n f i n i t e l y 

many i n t e g e r s i >_ 0 , 0 < x . < 1-2G and 0 _< y^ < G, whence 

0 _< x . + y . - x . y . < 1-2G + G - 0 < 1-G. 
n 

Thus lim n (Xi+yi"*^) = 0. 
n->co i=0 

But from equations (4.5) and (4.6), 

"V^n 1 * |xO-yo! .J0 d-ViJtXi+yi-x.y.) 

n 
< |x0-y0l (1) H (xi+yi-xiyi) f 

so l im x n ~ y n = 0. 
n->co 
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The Pathology Theorem for £(,1,1.) 

As discussed earlier, the goal of this chapter is to 

prove that P(lfl) is pathological. This is done in Theorem 4,4 

below. In order to prove this theorem, we first need a formal 

definition of pathology. 

If g is a critical node of G having m children of the 

same sign and n children of opposite sign, then according to 

Theorem 2.3, the probability of making a correct decision when 

choosing moves totally at random is —™— = D(G,g,P,0), independent 
3 •* m+n 

of P. Thus, pathology may be defined as follows. 

Definition 4̂ _1. Let P be a probability vector. If G is 

a game tree such that 
lim D(G,g,P,d) = D(G,g,P,0) 
d-XD 

for every g S N(G), then G is P-pathological. 

In order to prove Theorem 4.4, one final lemma is needed. 

Lemma 4.̂ 3. Let P be an r-vector and d > 0 be an integer. 

Then D± (P,0) = -j, and 

Dlfl(Pfd+l) = J Q (Td)k (U-d)0,k-l
 + l j 0 < V k <Ud>k' 

Proof. From Theorem 2.3, D-^ -^iPrO) = Y + I = -jt and from 

Theorem 3.2, 

1 1 . r 
D, .,(P,d+l) = % % -A^r % A(l,i,k,T ) A(l,j,k,Ud) 1 , 1 i=l j=0 X J k=0 a a 

t 1 r-= I j^r ± (T,)k A(l,j,k,Ud) 
j=0 1 + => k=0 d k d 

1 1 r- i 1-i 

j=0 1+J k=0 < T d > k ( < u d > k > : < < U d > 0 , k - l > 
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= i o (Td'k '"o'o.k-i + * Jo <Td>k (Ud>k-

Theorem 4_.4̂  P(l,l) is P-pathological for every 

imperfect r-vector P. 

Proof. Let P be an imperfect r-vector. Then from 

Definition 2.17, there is an integer k such that 0 <_ k _< r/2 and 

(P). > 0. Suppose that (Tn). = 1 for some i. Then from 
K. u i, r 

Corollary 3.1.1, (P). = 1. But then i < k, so 
i f r 

k _< r / 2 = r - r / 2 < r -k < r - i , 

so from C o r o l l a r y 3 . 1 . 1 and D e f i n i t i o n s 2 .9 and 3 . 5 , 

< V i , r " < r e v P ) i , r " < p >0 , r - i > <P>0,k.> <p>k > »• 

Thus for each i G r , n o t bo th ( T n ) . „ = 1 and ( U n ) . „ = 0, so by 

C o r o l l a r y 4 . 1 . 6 and Theorem 4 . 3 , 

(4 .8 ) l i n j ^ ( T 2 d ) 1 / r - ( U 2 d ) i f r = 0. 

Suppose that (T ). = l for some i S r. By Corollaries 4.1.4 
i l , r 

and 3 . 1 . 1 , 

< T l > i , r " < < S 0 > i , r > 2 " < < p > i , r > 2 ' 

so ( P ) . = 1. Thus a s b e f o r e , k < r - i , so from C o r o l l a r i e s v ' l , r — 

4 . 1 . 4 and 3 . 1 . 1 , 

< V i , r " < V i , r ( S 0 » i , r = ( V 0 > i , r ( P ) i r r 

" ( V 0 ' i r r " < r e v P ' i , r = < P > 0 , r - i > <P>0,k > ( P ' k > °" 

Thus fo r each i G r , n o t b o t h (T,)_. _ = 1 and ( U , ) . = 0 , so by 

C o r o l l a r y 4 . 1 . 6 and Theorem 4 . 3 , 

( 4 . 9 ) l im ( T 2 d + 1 ) i / r - ( U 2 d + l ) i = 0 . 

From e q u a t i o n s (4 .8 ) and ( 4 . 9 ) , l im ( T d ) i r - ( u
d ) i r = 0. Thus 

d->co ' ' 
f o r each i G r , 
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(4 .10) l im ( T d ) r ( U d ) . 
d-Xo 

= ^ ( ( T d ) i , r - < T d ) i + l , r ) - ^ U d ) i , r - ( U d ) i + l f r ) 
d-Xo ' 

= ^ S x , ^ i r r - ^ d ^ r " d i ^ < T d > i + l , r - ( u d > i + l , r 

= 0-0 = 0 . 

But by Lemma 4 . 3 , 

D (Pfd+1) = I (T d ) i (U d ) 0 i_! + £ .2 ( T d ) i ( U d ) i 
' 1=0 1=0 

r i -1 
= i l o ^ d ' i . ! 0

( ( T d ' j + < U d » j - ( T d » j ) 

+ 1 . f 0 < ( T d ' i ) 2 + ( T d ) i ( ( U d ) r ( T d ) i ) 

+ 7 J 0 < < T d ) i ) 2 + 7 j 0 ' T d ) i ( ( U d ) i - ( T d > i ' 

" 7 <2> J 0 < T d>i ^ < T d > j + 7 io'^d'i'2 

r i-1 , r 
+ . V T d > i . s

n
( ( u d ) j - ( T d ) j ' + 7 , s '^'inUdJi-tTcDi) 

1=0 j = 0 J J 1=0 

\ i0<Td)i 2„<Td)j + i io(Td ) j 4 + 1
( T d ' i + ? j 0

( ( T d ) i ) 

+ . 1 < ( U d ) j - ( T d ) j ) . ? <Td>i + 7 . S <<Ud>i-(Td>i> ( T d ) i 
j = 0 l = j + l 1=0 
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r i-1 r 

= •? i o ( T d ) i s = 0
( T d ) i + i = L ( T d ) 3 + <Td,i) 

r i ^ 
+ ?0<<

ud)j-(Td»j)(Td)j+l,r
 + f .!0

((ud)i-(Td)i)(Td'i 

= \ (i) (i) 

+ jf0((
|Jd)j-(Td»j)<Td»j+l,r

 +1 i|0
((Ud)i-(Td>i'<Td»i-

so since 0 < (Td) . + 1 £ 1 and 0 < (Td) i _< 1 for every i 6 r, it 

follows from equation (4.10) that 

lim Dn ,(Pfd+1) 
d-Xx> i'1 

= f (i) (i) + i i ^ . | o ( ( " d ) r ( T d ) j ^ T d ) J + i , r 

+ ^ i 1 ^ A ( ( U d>r< T d>i>< T d>i d->co 1=0 

= ^ + A i ^ < ( 0 d > r < T d » i > « I d ) i + l f t 
1=0 d->co 

+ ^ K i1™ ( ( u d ) r ( T d > i > ( T d » i 
1=0 d->co 

1 L 1 I 1 
z i=0 i=0 ^ 

A 

Experimental Results 

Writers of game playing computer programs generally try 

to select good evaluation functions for use in their programs. 

As discussed in Chapter 2, good evaluation functions have "good" 

probability vectors (i.e., probability vectors P such that (P). 

is large for large i and small for small i), and perfect 
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evaluation functions have perfect probability vectors (see 

Definition 2.17). 

According to Proposition 2.4, almost all probability 

vectors are imperfect. For such vectors, Theorem 4.4 states that 

on T(l,l) it makes no difference whether P is good or bad—the 

probability of correct decision approaches 1/2 as the search 

depth increases. For perfect probability vectors, the 

probability of correct decision is 1, independent of the search 

depth, so searching is useless in this case as well. This latter 

fact is illustrated experimentally in Appendix B. 

The behavior predicted by Theorem 4.4 has been tested 

numerous times experimentally, and the results have never failed 

to be in accordance with the theorem. In fact, it was by 

conducting these experiments that the author gained the insights 

which led to the proof of the theorem. The results of a 

representative sample of tests are given in Tables 4.1 through 

4.5, and summarized in Figure 4.1. 

Suppose e is a P-function and g is a critical node. Then 

g is either an S node or a U node. Choosing a move from g using 

a depth d minimax search involves computing the depth d-1 minimax 

values for the children of g. If g is an S node, then the 

children of g are T and U nodes, and so the probability of 

correct decision D(P,d) may be computed from the probability 

vectors T^_1 and Ud_2 using the formula given in Theorem 3.2. 

According to Theorem 3.2, this same formula works if g is a U 

node. Tables 4.1 through 4.5 give the values of T. ,, Ud_,, and 

D(P,d) for various values of P and d, as computed using the 

computer program of Appendix G. The values of P were chosen to 
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provide a wide variety of examples, and yet keep the presentation 

reasonably concise. 

Table 4.1 is for a probability vector P whose entries 

increase linearly from left to right: the vector (1,2,3,4)/10. 

In accordance with Corollary 3.1.1, TQ = P and U„ = rev P. The 

probability of correct decision at depth 1 is 0.75; thus, the 

vector is a fairly good one. But as predicted by Theorem 4.4, 

T, , and U, , become more and more alike as d increases, and d-1 d-1 

D(P,d) decreases monotonically to 1/2. At depth 11, 

D(P,d) = 0.500, correct to three decimal places. 

Table 4.2 is for a fairly bad vector: the reverse of the 

vector of Table 4.1. For depth 1, the probability of correct 

decision is as much below 1/2 as it was above 1/2 in Table 4.1, 

but the convergence is slightly faster this time. 

Table 4.3 is for a very good probability vector—one 

whose entries increase exponentially from left to right. This 

vector is the normalization of the vector (5 , 5 , 5 , 5 , 5 ). 

In this case, the probability of correct decision is initially 

very high, and the convergence is slower than in Table 4.1. 

Table 4.4 is for the reverse of the vector of Table 4.3. 

Interestingly enough, although the probability of correct 

decision is initially much lower than in Table 4.2, the 

convergence is considerably faster. 

Table 4.5 is for the vector (.2,.2,.2,.2,. 2) . As one 

would expect in this case, the probability of correct decision is 

1/2 at all search depths. 

According to the proof of Theorem 4.4, P(l,l) is 

pathological because T, and U, look more and more alike as d 
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approaches infinity. As shown in Tables 4.1 through 4.5, the way 

that this happens is that one entry in each vector converges to 

1, and the rest converge to 0. Which entry approaches 1 and 

which entries approach 0 depends on whether d is odd or even. 

The minimax values used to make a decision at odd search 

depths have the probability vectors T2, and U2d* When P is 

imperfect, both of these vectors converge to a vector 

Q = (0,0,...,0,1,0,0,...,0), which has at least as many "0" 

entries to the left of the "1" entry as to the right of it, and 

usually more. This means that for large odd search depths, both 

minimax values are large, and thus both moves look good. 

Similarly, the probability vectors governing the decision at even 

search depths are T2d+, and U2d+,, which both converge to rev Q. 

This means that for large even search depths, both minimax values 

are small, and thus both moves look bad. This "manic-depressive" 

behavior is further discussed in Chapters 5 and 7. 

For both odd and even search depths, as the search depth 

increases, all moves tend more and more strongly to receive 

exactly the same minimax value. Thus, the choice of what move to 

make becomes more and more a random one. 
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TABLE 4.1.—Minimax values and probabilities of 
correct decision for P(l,l) at various search depths, 
using the probability vector P = (.1,.2,.3,.4). 

d-1 U d-1 D(P,d) 

1 0.10 0.20 0.30 0.40 
3 0.08 0.30 0.41 0.21 
5 0.03 0.37 0.52 0.08 
7 0.00 0.36 0.63 0.01 
9 0.00 0.27 0.73 0.00 

11 0.00 0.14 0.86 0.00 
13 0.00 0.04 0.96 0.00 
15 0.00 0.00 1.00 0.00 

0.40 0.30 0.20 0.10 0.750 
0.19 0.40 0.32 0.09 0.639 
0.05 0.45 0.45 0.05 0.560 
0.00 0.40 0.59 0.01 0.522 
0.00 0.28 0.72 0.00 0.507 
0.00 0.15 0.85 0.00 0.502 
0.00 0.04 0.96 0.00 0.500 
0.00 0.00 1.00 0.00 0.500 

2 0 . 1 9 0 . 3 2 0 . 3 3 0 . 1 6 
4 0 . 1 7 0 . 4 8 0 . 3 2 0 . 0 4 
6 0 . 0 9 0 . 6 6 0 . 2 5 0 . 0 0 
8 0 . 0 2 0 . 8 2 0 . 1 6 0 . 0 0 

10 0 . 0 0 0 . 9 2 0 . 0 8 0 . 0 0 
12 0 . 0 0 0 . 9 8 0 . 0 2 0 . 0 0 
14 0 . 0 0 1 .00 0 . 0 0 0 . 0 0 

0 . 4 6 0 . 3 3 0 . 1 7 0 . 0 4 0 . 6 8 9 
0 . 2 8 0 . 5 0 0 . 2 1 0 . 0 2 0 . 5 9 3 
0 . 1 2 0 . 6 8 0 . 2 0 0 . 0 0 0 . 5 3 5 
0 . 0 3 0 . 8 3 0 . 1 4 0 . 0 0 0 . 5 1 0 
0 . 0 0 0 . 9 2 0 . 0 8 0 . 0 0 0 . 5 0 2 
0 . 0 0 0 . 9 8 0 . 0 2 0 . 0 0 0 . 5 0 0 
0 . 0 0 1 .00 0 . 0 0 0 . 0 0 0 . 5 0 0 

TABLE 4 . 2 . — M i n i m a x v a l u e s and p r o b a b i l i t i e s of 
c o r r e c t d e c i s i o n f o r F ( l , l ) a t v a r i o u s s e a r c h d e p t h s , 
u s i n g t h e p r o b a b i l i t y v e c t o r P = ( . 4 , . 3 , . 2 , . 1 ) . 

d - 1 U d - 1 
D ( P , d ) 

1 0 . 4 0 0 . 3 0 0 . 2 0 0 . 1 0 
3 0 . 0 8 0 . 3 0 0 . 4 1 0 . 2 1 
5 0 . 0 1 0 . 1 9 0 . 6 0 0 . 2 0 
7 0 . 0 0 0 . 0 7 0 . 7 9 0 . 1 4 
9 0 . 0 0 0 . 0 1 0 . 9 2 0 . 0 7 

11 0 . 0 0 0 . 0 0 0 . 9 8 0 . 0 2 
13 0 . 0 0 0 . 0 0 1 .00 0 . 0 0 

0 . 1 0 0 . 2 0 0 . 3 0 0 . 4 0 0 . 2 5 0 
0 . 0 5 0 . 2 3 0 . 4 2 0 . 2 9 0 . 4 3 5 
0 . 0 1 0 . 1 7 0 . 6 0 0 . 2 2 0 . 4 8 0 
0 . 0 0 0 . 0 7 0 . 7 9 0 . 1 5 0 . 4 9 5 
0 . 0 0 0 . 0 1 0 . 9 2 0 . 0 7 0 . 4 9 9 
0 . 0 0 0 . 0 0 0 . 9 8 0 . 0 2 0 . 5 0 0 
0 . 0 0 0 . 0 0 1 .00 0 . 0 0 0 . 5 0 0 

2 0 . 6 4 0 . 2 7 0 . 0 8 0 . 0 1 
4 0 . 5 0 0 . 4 2 0 . 0 8 0 . 0 0 
6 0 . 4 0 0 . 5 7 0 . 0 3 0 . 0 0 
8 0 . 2 8 0 . 7 2 0 . 0 0 0 . 0 0 

10 0 . 1 4 0 . 8 6 0 . 0 0 0 . 0 0 
12 0 . 0 4 0 . 9 6 0 . 0 0 0 . 0 0 
14 0 . 0 0 1 . 0 0 0 . 0 0 0 . 0 0 

0 . 4 6 0 . 3 3 0 . 1 7 0 . 0 4 0 . 3 9 6 
0 . 4 4 0 . 4 5 0 . 1 0 0 . 0 0 0 . 4 6 6 
0 . 3 8 0 . 5 9 0 . 0 4 0 . 0 0 0 . 4 8 9 
0 . 2 7 0 . 7 3 0 . 0 0 0 . 0 0 0 . 4 9 7 
0 . 1 4 0 . 8 6 0 . 0 0 0 . 0 0 0 . 4 9 9 
0 . 0 4 0 . 9 6 0 . 0 0 0 . 0 0 0 . 5 0 0 
0 . 0 0 1 .00 0 . 0 0 0 . 0 0 0 . 5 0 0 
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TABLE 4.3.—Minimax values and probabilities of correct 
decision for fT(l,l) at various search depths, using the 
probability vector P = (1,5,25,125,625)/781. 

d 

1 
3 
5 
7 
9 
11 
13 
15 
17 
19 
21 

2 
4 
6 
8 
10 
12 
14 
16 
18 
20 
22 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.01 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.01 
0.01 
0.02 
0.04 
0.06 
0.07 
0.05 
0.01 
0.00 
0.00 
0.00 

0.01 
0.03 
0.05 
0.08 
0.13 
0.15 
0.11 
0.05 
0.01 
0.00 
0.00 

T xd-l 

0.03 
0.06 
0.12 
0.22 
0.38 
0.58 
0.80 
0.95 
1.00 
1.00 
1.00 

0.06 
0.12 
0.22 
0.37 
0.56 
0.74 
0.87 
0.95 
0.99 
1.00 
1.00 

0.16 
0.28 
0.44 
0.56 
0.53 
0.34 
0.16 
0.04 
0.00 
0.00 
0.00 

0.28 
0.44 
0.56 
0.51 
0.31 
0.11 
0.02 
0.00 
0.00 
0.00 
0.00 

0.80 
0.64 
0.41 
0.17 
0.03 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.64 
0.41 
0.17 
0.03 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.80 
0.64 
0.41 
0.17 
0.03 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.80 
0.64 
0.41 
0.17 
0.03 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

u d - l 

0.16 
0.28 
0.44 
0.56 
0.53 
0.33 
0.13 
0.02 
0.00 
0.00 
0.00 

0.16 
0.28 
0.44 
0.58 
0.56 
0.39 
0.21 
0.06 
0.01 
0.00 
0.00 

0.03 
0.06 
0.12 
0.22 
0.38 
0.59 
0.81 
0.95 
1.00 
1.00 
1.00 

0.03 
0.06 
0.12 
0.22 
0.38 
0.58 
0.79 
0.94 
0.99 
1.00 
1.00 

0.01 
0.01 
0.02 
0.04 
0.07 
0.08 
0.06 
0.02 
0.00 
0.00 
0.00 

0.01 
0.01 
0.02 
0.03 
0.04 
0.02 
0.01 
0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

D(P,d) 

0.996 
0.990 
0.972 
0.927 
0.839 
0.711 
0.583 
0.515 
0.501 
0.500 
0.500 

0.994 
0.983 
0.953 
0.889 
0.779 
0.648 
0.551 
0.509 
0.501 
0.500 
0.500 

TABLE 4.4.—Minimax values and probabilities of correct 
decision for r(l,l) at various search depths, using the 
probability vector P = (625,125,25,5,1)/781. 

d-1 U d-1 D(P,d) 

1 0.80 0.16 0.03 0.01 0.00 
3 0.00 0.01 0.06 0.28 0.64 
5 0.00 0.00 0.01 0.15 0.84 
7 0.00 0.00 0.00 0.04 0.96 
9 0.00 0.00 0.00 0.00 1.00 
11 0.00 0.00 0.00 0.00 1.00 

2 0.96 0.04 0.00 0.00 0.00 
4 0.95 0.05 0.00 0.00 0.00 
6 0.98 0.02 0.00 0.00 0.00 
8 1.00 0.00 0.00 0.00 0.00 
10 1.00 0.00 0.00 0.00 0.00 

0.00 0.01 0.03 0.16 0.80 
0.00 0.01 0.03 0.19 0.77 
0.00 0.00 0.00 0.13 0.87 
0.00 0.00 0.00 0.04 0.96 
0.00 0.00 0.00 0.00 1.00 
0.00 0.00 0.00 0.00 1.00 

0.80 0.16 0.03 0.01 0.00 
0.92 0.08 0.00 0.00 0.00 
0.98 0.02 0.00 0.00 0.00 
1.00 0.00 0.00 0.00 0.00 
1.00 0.00 0.00 0.00 0.00 

0. 
0. 
0. 
0. 
0. 
0. 

0. 
0, 
0. 
0. 
0. 

004 
435 
486 
498 
500 
500 

420 
485 
498 
500 
500 
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TABLE 4.5.—Minimax values and probabilities of correct 
decision for P(lrl) at various search depths, using the 
probability vector P = (.2,.2,.2,.2,.2). 

d 

1 
3 
5 
7 
9 
11 
13 
15 
17 
19 
21 

2 
4 
6 
8 
10 
12 
14 
16 
18 
20 

0.20 
0.08 
0.01 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.36 
0.24 
0.11 
0.03 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.20 
0.22 
0.15 
0.05 
0.01 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.28 
0.41 
0.55 
0.67 
0.73 
0.78 
0.85 
0.92 
0.98 
1.00 

Td-1 

0.20 
0.30 
0.41 
0.50 
0.51 
0.46 
0.39 
0.27 
0.15 
0.04 
0.00 

0.20 
0.26 
0.30 
0.30 
0.27 
0.22 
0.15 
0.08 
0.02 
0.00 

0.20 
0.28 
0.37 
0.43 
0.48 
0.54 
0.61 
0.73 
0.85 
0.96 
1.00 

0.12 
0.08 
0.03 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.20 
0.13 
0.06 
0.01 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.04 
0.01 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.20 
0.08 
0.01 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.36 
0.24 
0.11 
0.03 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

u d - l 

0.20 
0.22 
0.15 
0.05 
0.01 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.28 
0.41 
0.55 
0.67 
0.73 
0.78 
0.85 
0.92 
0.98 
1.00 

0.20 
0.30 
0.41 
0.50 
0.51 
0.46 
0.39 
0.27 
0.15 
0.04 
0.00 

0.20 
0.26 
0.30 
0.30 
0.27 
0.22 
0.15 
0.08 
0.02 
0.00 

0.20 
0.28 
0.37 
0.43 
0.48 
0.54 
0.61 
0.73 
0.85 
0.96 
1.00 

0.12 
0.08 
0.03 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.20 
0.13 
0.06 
0.01 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.04 
0.01 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

D(P,d) 

0.500 
0.500 
0.500 
0.500 
0.500 
0.500 
0.500 
0.500 
0.500 
0.500 
0.500 

0.500 
0.500 
0.500 
0.500 
0.500 
0.500 
0.500 
0.500 
0.500 
0.500 
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\ M> d 
8 10 12 14 16 18 20 

FIGURE 4.1.—Probability of correct decision as a 
function of search depth for five different probability vectors. 
From top to bottom, the curves are for the vectors 
(1,5,25,125,625)/781, (.1,.2,.3,.4), (.2,.2,.2,.2,.2), 
(.4,.3,.2,.l), and (625,125,25,5,1)/781. 
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CHAPTER 5 

THE "LAST PLAYER" THEOREM 

Introduction 

A complete n-ary game tree of depth d is a game tree for 

which every node has exactly n children, with the exception that 

the nodes at depth d are all leaves. On such a tree, the same 

player (say, Max) always has the last move. It is shown in this 

chapter that for the large majority of such trees, Max has a 

forced win at the beginning of the game. As discussed at the end 

of this chapter, this effect provides an intuitive explanation 

for the "manic-depressive" behavior described at the end of 

Chapter 4. 

Suppose G is a complete n-ary game tree of depth d, whose 

leaf nodes are independently randomly labeled "+" and "-", with a 

fixed probability p of any given leaf being labeled "+". Let Max 

be the player who always has the last move. If d is odd, then 

Max also has the first move in the game; if d is even, then Min 

has the first move. A forced win for Max on G requires the 

existence of a certain set of paths in G leading to "+" leaves. 

This is illustrated in Figure 5.1 for n = 2 and d = 4. According 

to Theorem 5.3, if d is large and p exceeds a cutoff value which 

depends on n, then the probability of Max having a forced win on 

G (and on many other trees) approaches 1 as d increases. Since 

the cutoff value approaches 0 as n increases, this behavior 

occurs for most values of n and p. 
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FIGURE 5.1.--A binary tree of depth 4 with a forced win 
for Max. The forced win requires the, existence of a set of "+" 
nodes such as the ones indicated. The signs of the other nodes 
do not matter. 

Theorem 5.3 is sometimes called the "last player" 

theorem. Although its proof is different in several respects 

from the proof of Theorem 4.4, there are also certain 

similarities, and the preliminary results needed to prove Theorem 

5.3 are also important in later chapters. These results are 

presented in the following two sections, which are followed by a 

section containing a presentation and discussion of Theorem 5.3. 

Theorems about Sequences 

In Chapter 4, much use was made of recursively defined 

sequences whose definitions involved expressions of the general 

form (1 - (l-x)a (1-y) ) c . Such sequences appear quite 

frequently in the following pages. The following theorems aid in 

analyzing their properties. 

Theorem 5_..l. Let n >_ 1. Then there is exactly one 

x G [0,1] such that (1-x)n = x. 



- Chapter 5 - 62 

Proof, Let f (x) = (l-x)n - x. Then (1-x)n = x if and 

only if f (x) = 0. f (0) = 1 and f (1) = -1, so by the 
j. n n n •* 

intermediate value theorem, there is a point zn G (0,1) for which 0 

fn(zQ) = 0. 

Suppose there is another point z, G (0,1) such that 

f (zn) = 0. Without loss of generality, we may assume that nv 1 

zn < z.. Then by the mean value theorem, there is a y 6 (zfi,z,) 

such that f '(y) = 0. But n 

fn'(x) = n (l-x)
n_1(-l) - 1 = -n (1-x)11"1 - 1, 

so if f ' (y) = 0, then (l-y)11"1 = -1/n < 0. But since 0 < y < 1, 

this cannot be. Thus z, cannot exist. 

A 
N o t a t i o n 5_.2_. For n >_ 1 , t h e un ique x G (0 ,1 ) for which 

(1-x) = x i s c a l l e d w . 
n 

We are only interested in w for integers n > 2. 
J n J — 

However, most of the properties we need to prove about w may be 
proved just as easily for every real n > 1. 

Corollary 5.1.1. If 1 < m < n, then wm > w . _i _ _ _ _ ' m n 

Proof. Let 1 < m < n, and suppose w _< w . Then 

wn = (^V < U - V < (1-wm} = wm' 

which is a contradiction. 

A 
Corollary 5..1.2. Let n >_ 1 and x 6 [0,1]. If x < w , 

then (l-x)n > Wn. if x > wR, then (l-x)
n < wn# if x = wn, then 

(1-x) = w . v ' n 

Proof. Obviously, (1-x) is decreasing for x G [0,1]. 

Thus if x < w , then (1-x) > (1-w ) = w , and if x > w , then 
n n n n 

( l - x ) n < (1-w ) n = w . I t i s m e r e l y a r e s t a t e m e n t of Theorem 5 . 1 ' n n 
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to say that (l-x)n = w when x = w . 

Corollary 5_._1._3- lim w = 0, and the convergence is 
n->co 

monotonic. 

Proof. Let 0 < G < 1. Then 0 < 1-G < 1, so there is an 

N such that for every n > N, 0 < (1-G)n < G. From Corollary 

5.1.2, if G < w then (1-G) > w . which is a contradiction. — n — n 

Thus G > w . Thus, since w > 0 for every n, lim w = 0 . By n n v n 
n->co 

Corollary 5.1.1, the convergence is monotonic. 

A 
Obviously w, = -*, and it is easy to show using the 

3 - \/5~ quadratic formula that w~ = ~—-—. Indeed, although this is 

not germane to the dissertation, it can easily be shown that w 

is irrational for every integer n ̂  2. Table 5.1 gives 

approximate values of w, through w,-n. 

Graphically, w can be thought of as the intersection of 

the functions y = (1-x) and y = x. For n > 1, w is also the 

unique intersection in the interval (0,1) of the functions 

y = (1 - (1-x) ) and y = x. This is proved in Lemma 5.1, and is 

illustrated for w„ in Figure 5.2. This fact is quite important 

in later developments. For example, Theorem 5.2, from which the 

"last player" theorem follows almost as a corollary, states the 

limit of the sequence x.,, = (1 - (l-x-)n)n in terms of w . 
i + l l n 

Lemma 5_.l̂. Let n > 1, and let 

gn(x) = (1 - (l-x)
n)n - x 

for all real x. Then g has exactly one root in the interval 
3n 

(0,1). This is at x = w . 
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TABLE 5.1.—Approximate values of 
A larger table appears in Appendix A. 

w n' for n = 1,2,...,50. 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

w 
n 

.50000 

.38197 

.31767 

.27551 

.24512 

.22191 

.20346 

.18835 

.17570 

.16492 

n 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

w 
n 

.15560 

.14745 

.14024 

.13382 

.12805 

.12283 

.11809 

.11375 

.10977 

.10610 

n 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

w« 
n 

.10271 

.09955 

.09662 

.09387 

.09130 

.08889 

.08662 

.08448 

.08245 

.08054 

n 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

w„ 
n 

.07872 

.07700 

.07536 

.07380 

.07231 

.07088 

.06952 

.06822 

.06697 

.06577 

n 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

w„ 
n 

.06463 

.06352 

.06246 

.06144 

.06045 

.05950 

.05858 

.05770 

.05684 

.05601 

FIGURE 5.2.—Sketches of y = (1-x) , y = (1 -
and y = x. 

(1-x)2)2, 
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Proof. 

so w is a root of g . n 3n 

Suppose g has roots x, and x2 in (0,1), with x, < x2. 

In addition, 0 and 1 are roots of g , so from the mean value 

theorem, there are points y., y2, and ŷ  such that 

0 < yx < x1 < y2 < x2 < y3 < 1 

and gn' (y^ = gn' (Y2) = 9n' <y3) = 0. 

Therefore, applying the mean value theorem again, there are 

points z, and z2 such that 0 < y, < z, < y2 < z2 < y3 < 1 and 

V (zl} = q n " ( z2 } = °" Now' 

gn'(x) = n
2(l-(l-x)n)n"1(l-x)n_1 - 1, 

so gn"(x) = n
2 (n-1) (1 - (l-x)n)n~2 (l-x)n~2 ((n+l)(l-x)n - 1) . 

For x G (0,1), n2(n-l) (1 - (l-x)n)n~2 (l-x)n~2 > 0, so 

g ''(x) = 0 if and only if (n+l)(l-x)n - 1 = 0. There is exactly 

one x € (0,1) for which this is true. Thus not both z, and z? 

can exist, so w is the only root of g in (0,1). 
' n 2 ^n 

A 

Lemma 5^.2* Let n > 1. Then— 

1. if 0 < x < w , then (1 - (1-x)n)n < x; 

2. if w < x < 1, then (1 - (l-x)n)n > x; 

3. if x = w , then (1 - (1-x) ) = x. 
n' 

Proof. Let g be as in Lemma 5.1. Then g (0) = 0, Jn n 
g ' (0) = -1, and as shown in Lemma 5.1, gn(x) ¥• 0 for 0 < x < w . 
Therefore, by the intermediate value theorem, 9n(

x) < ° f o r 

0 < x < w . Similarly, g (x) > 0 for w < x < 1. Statement 3 n Jn n 

follows directly from Corollary 5.1.2. 
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A 

0 
Theorem 5_.2̂  Let xn G [0,1], and let n > 1. For every 

Then— integer i >_ 0, let x.+, = (1 - (1-x^) ) . 

1. if 0 < x„ < w , then lim x^ = 0; 
i->co 

2. if w_ < xn £ 1, then lim xi = 1; 
i->oo 

3. if xn = w , then x. = w. for all i. 
O n 1 1 
Proof. Let f(x) = (1 - (l-x)n)n for every real x. If 

a = 0 and 0 < b < w , then it follows from Lemma 5.2 that f 
n 

satisfies the hypotheses of Corollary 4.2.1, whence lim x. = 0 if 
i->co 

x„ G [0,w ). If w < a < 1 and b = 1, then it follows from Lemma 
O n ' n 
5.2 that f satisfies the hypotheses of Theorem 4.2, whence 

lim x. = 1 if xn G (w ,1]. This proves statements 1 and 2. 
i—>co 
S t a t e m e n t 3 f o l l o w s i m m e d i a t e l y from Lemma 5 . 2 . 

The Theorem and a D i s c u s s i o n 

The " l a s t p l a y e r " theorem i s f i r s t f o r m a l l y s t a t e d and 

p r o v e d , and t h e n i t s meaning i s d i s c u s s e d . 

Theorem _5.3.* Let p G [0 ,1 ] , and l e t Gn d be a c o m p l e t e 

n - a r y game t r e e of d e p t h d whose l e a v e s a r e i n d e p e n d e n t l y 

randomly l a b e l e d "+" and " - " in such a way t h a t 

Pr [g i s a + node | g i s a l e a f of Gn d ] = p . Let Max be t h e 

p l a y e r who a lways ha s t h e l a s t move in ^ n d ' an<^ "' 'e t 

W , = Pr [Max has a f o r c e d win on G , ] . Then— n ,d n ,d 

1 . i f p > w , t h e n lira W , = 1; 

2 . i f p < w , t h e n lira W , = 0; 
n , v n ,d 
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3. if p = w , then W n ,d 
= 1-w if d is odd, 

= w if d is even, n 

Proof. Let g be the root of Gn d- If d = 0, then g is a 

leaf, so W „ = p. If d > 0 is odd, then Max has the first move, 

so he can force a win on G , if he can force a win from any of 
n ,d * 

g's children. Thus if d > 0 is odd, then 

Wn,d = X - d-Vd-l'"-
If d > 0 is even, then Min has the first move, so Max can force a 

win on G , only if he can force a win from each of g's children. 
n,d J * 

Thus if d > 0 is even, then 

w -, = (w , , ) n = (i - (i-w„ A o ) n ) n 

n,d v n,d-l' v x n *-?' ' 
Thus for every d >= 0, 

W 
n,2(d+l) 

so by Theorem 5.2, 

lim W 

n,d-2 

= (1 - (1-W 0 , ) n ) n , 

d->co n,2d 
= 0 

n,2d' 

if p < w , 

and 

Thus lim W 
d->oo 

and 

A 

= l 

W 0 , = w n, 2d n 

if p > w n, 

if p = w . 

ô u.1 • 1 - (1-1 im W^ 0, n,2d+l , v n,2d 
' d->co ' 

= 0 

= 1 

W 0 ,,, = 1 - (1-w ) = 1-w n,2d+l v n' n 

if P < w n, 

if p > w n, 

if p = w n. 

Theorem 5.3 says that for an n-ary tree, if the 

probability of a leaf node being a forced win is greater than w , 

the probability of the last player having a forced win approaches 

1 as the depth of the tree increases. As can be seen from Table 

5.1, w converges to 0 fairly quickly. Thus Theorem 5.3 says 

that the last player has a forced win on the large majority of 
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complete game trees with a constant branching factor and randomly 

assigned leaf values. 

The probability of the last player having a forced win 

usually approaches 1 quite rapidly as the depth increases. As an 

illustration of this, the probabilities of the last player having 

a forced win on trees of various depths and branching factors are 

listed in Table 5.2 and graphed in Figure 5.3. 

The situation modeled by Theorem 5.3 is rather different 

from that of Theorem 4.4. In particular, the nodes in the tree 

of Theorem 4.4 do not get their values in a random manner. 

However, Theorem 4.4 models a situation in which a player is 

searching a tree to an arbitrary depth and applying to the nodes 

at that depth an evaluation function which makes errors in a 

random way. These nodes are the leaves of the tree that the 

player sees (although they are not the leaves of the game tree 

itself), and the errors produced by the evaluation function make 

the values the player sees somewhat random. Strictly speaking, 

the "last player" theorem still does not apply, because these 

values are not stochastically independent of each other. 

However, one might expect the behavior predicted by the theorem 

to occur anyway. 

A depth d minimax search involves computing the depth d-1 

minimax values for the children of the current node. If d is 

odd, then the player doing the search perceives himself as being 

the last player. If the "last player" phenomenon occurs, each of 

his possible moves should tend to look like forced wins, and so 

the depth d-1 minimax values should be high. This means that the 

probability vectors for these values should tend to have their 
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TABLE 5.2.—The p r o b a b i l i t y Wn , of the l a s t p layer 
having a forced win on a complete n -a ry cgaine t r e e of depth d, for 
v a r i o u s va lues of n and d. The p r o b a b i l i t y p of a l ea f node 
being a "+" node i s 1/2 in each c a s e . 

n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

0, 
0, 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
1. 
1. 

5000 
7500 
5625 
8086 
6538 
8802 
7747 
9492 
9010 
9902 
9805 
9996 
9992 
0000 
0000 

0.5000 
0.8750 
0.6699 
0.9640 
0.8959 
0.9989 
0.9966 
0.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

0.5000 
0.9375 
0.7725 
0.9973 
0.9893 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

0.5000 
0.9688 
0.8532 
0.9999 
0.9997 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

0.5000 
0.9844 
0.9098 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

0. 
0, 
0. 
1. 
1. 
1. 
1. 
1. 
1. 
1. 
1. 
1. 
1. 
1. 
1. 

5000 
9922 
9466 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 

0.5000 
0.9961 
0.9692 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

FIGURE 5.3.—The p r o b a b i l i t y W , of the l a s t p layer 
having a forced win on a complete n-ary 'game t r e e of depth d, as 
a funct ion of d. From bottom to t o p , the curves a re for n = 2, 
4, and 6. The p r o b a b i l i t y p of a l e a f node being a "+" node i s 
1/2 in each c a s e . 
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largest entries on their right-hand sides. Similarly, if d is 

even, then the player doing the search perceives his opponent as 

being the last player, so the depth d-1 probability vectors 

should tend to have their largest entries on their left-hand 

sides. As discussed in Chapter 4 and illustrated in Tables 4.1 

through 4.5, this is indeed what happens. This phenomenon is 

again discussed in Chapter 7. 
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CHAPTER 6 

PATHOLOGY ON P(m,n) 

Introduction 

Theorem 4.4 says that P(l,l) is P-pathological for every 

imperfect P. It is reasonable to suspect that similar results 

hold for other trees as well. It would be ideal to have a 

theorem saying "given an arbitrary game tree, it is pathological 

if and only if . . ." 

Unfortunately, proving such a theorem would be very 

difficult, if not impossible. One of the key steps in the proof 

of Theorem 4.4 was the representation of the probability vectors 

for the minimax values of the nodes of F(l,l) by recursive 

formulas which were independent of the nodes of P(l,l). 

According to Corollary 3.1.2, this can be done for each of the 

P(m,n), but it cannot be done for most other game trees because 

of their irregular structure. For this reason, the mathematical 

development in the current chapter is directed solely at the 

P(m,n). The question of how the results apply to other game 

trees is discussed in Chapter 8. 

In this chapter, it is shown that for almost all 

probability vectors P, all but finitely many of the P(mrn) are 

P-pathological. This result, which is stated formally by Theorem 

6.4 and its corollaries, is the most important theoretical result 

of the dissertation. 
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To d i s c u s s t h i s r e s u l t i n more d e t a i l , we need t h e 

f o l l o w i n g d e f i n i t i o n . 

D e f i n i t i o n 6_._1. An r - v e c t o r P i s n a t u r a l i f 

min {i e r : ( P ) . > 0} = r - max {i € r : ( P ) L > 0 } . 

I f P i s n o t n a t u r a l , t h e n P i s u n n a t u r a l . 

Accord ing to t h i s d e f i n i t i o n , a p r o b a b i l i t y v e c t o r i s 

n a t u r a l i f i t ha s t h e same number of z e r o e n t r i e s a t each e n d . 

For e x a m p l e , ( 0 . 2 , 0 . 5 , 0 .3) and ( 0 , 0 , 0 . 2 , 0 . 5 , 0 . 3 , 0, 0) a r e 

n a t u r a l , b u t ( 0 , 0 . 2 , 0 . 5 , 0 . 3 , 0 , 0) i s n o t . 

If P i s u n n a t u r a l , t h e n c e r t a i n l y e i t h e r (p)rj = 0 or 

( P ) r = 0 . T h i s means t h a t t h e s e t of u n n a t u r a l f - v e c t o r s i s a 

p r o p e r s u b s e t of t h e un ion of two s i m p l e x e s of r - 1 d i m e n s i o n s 

each ( f o r e x a m p l e , s e e F i g u r e 6 . 1 ) . But t h e s e t of a l l r - v e c t o r s 

forms a s i m p l e x of r d i m e n s i o n s ( F i g u r e 6 . 2 ) , and t h e un ion of 

t h e two r - 1 d i m e n s i o n a l s i m p l e x e s i s of measure z e r o in t h e r 

d i m e n s i o n a l o n e . Th i s p r o v e s t h e f o l l o w i n g . 

P r o p o s i t i o n 6^._1. Almost a l l r - v e c t o r s a r e n a t u r a l . 

The i m p o r t a n c e of P r o p o s i t i o n 6 . 1 i s t h a t Theorem 6.4 

h o l d s f o r e v e r y n a t u r a l r - v e c t o r . T h i s means t h a t i f an r - v e c t o r 

i s chosen from any c o n t i n u o u s p . d . f . over t he s e t of a l l 

r - v e c t o r s , t h e p r o b a b i l i t y t h a t Theorem 6 . 4 does n o t a p p l y t o i t 

i s 0 . 
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p. mx 

'& 

prope 

FIGURE 6.1.—The set of aj.1 unnatural 2-yectors ̂ is a 
r subset of the union of the two line segments." ;• .: v' 

(P) 

* ( P ) 1 

FIGURE 6.2.—The set of all 2-vectors formal^ triangular 
plane segment. 
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pathological 

• m 
(1,1) 

FIGURE 6.3.—Pathological and nonpathological behavior of 
P(m,n) for a natural ^-vector P, as a function of m and n. The 
numbered areas are for reference in the text. 

Theorem 6.4 is illustrated graphically in Figure 6.3, in 

which every tree Ftn^n) is represented by the pair of integers 

(m,n). Area 1 is the area of pathology predicted by the theorem, 

and Area 2—the finite area—is an area in which game trees may 

be either pathological or nonpathological. The occurrence of 

pathology in Area 2 has been investigated experimentally, and the 

results of this experimentation are discussed in Chapter 7. 

Theorem 6.4 requires a number of preliminary results, 

which appear in the next two sections. The final section of this 

chapter consists of the proof of Theorem 6.4. 

Theorems about the Probability of Correct Decision 

The theorems in this section provide a way to prove 

pathology theorems about P(m,n), by providing conditions under 
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which the formula for the probability of correct decision given 

in Theorem 3.2 converges to —;—. 
^ m+n 

Theorem §_*1* Let P be an r-vector, and suppose that 

(P) = 1 for some t G r. Let the function A be as in Theorem 

3.2, and let m >_ 1 and n > 1 be integers. Then 

m n . r 
•*i \ ^ T A A( m^' k' p) A(nfjfkfP) = ^ 
1=1 j=0 J k=0 

Proof. In the definition of A, 0 is taken to be 1. 

This fact is implicitly used throughout the proof. 

If k 6 r, then <P)k = 0 if k f t, and (P)Q k = 0 if 

k = t. Thus for i = l,2,...,m-l and k € r, if k ̂  t, then 

A(m,i,k,P) = (™) ((P)k)
i ((PJck-l^-1 = (Ii) °1((P)0,k-l)m~i = °' 

and if k = t, then 

A ( m , i , k , P ) = ( i ) ( ( P ) k ) ( ( p ) n , k - l J =<•£>• 1 0 = 0 . 

S i m i l a r l y , f o r j = l , 2 , . . . , n - l and k 6 r , 

A ( n , j , k , P ) = (!?) { ( P ) k ) j ( ( p ) 0 / k - l ) n " j = ° ' 

m n . r 
T h e r e f o r e , 2 1 -r—- 2 A ( m , i , k , P ) A ( n , j , k , P ) 

i = l j=o 1 + : | k=0 

n r 
= £ = ^ r 1 A(m,m,k ,P) A ( n , j , k , P ) 

j=0 m+J k=0 

r r 
= ^Xn 2 A(m,m,k,P) A ( n , 0 , k , P ) + - ~ - 2 A(m,m,k,P) A ( n , n , k , P ) . 

m + u k=0 k=0 

But fo r e v e r y k 6 f, i f k ^ t , t h e n 

A(m,m,k,P) = (m) ( ( P ) k ) m ( ( P ) ^ ^ ) 0 = (1) 0m ((P)0fk_1)° = 0 . 

T h e r e f o r e , 

r r 
- ^ n ± A(m,m,k ,P) A ( n , 0 , k , P ) + -5L- ± A(m,m,k,P) A ( n , n , k , P ) m-t-u k = Q mt-n k = Q 
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A ( m f m , t , P ) A ( n , 0 , t , P ) + -£- A ( m , m , t , P ) A ( n , n , t , P ) 
m + Q . . x . „ , . . . , - , - , . . w . , . , , - , . , m + n 

(!!!) ( ( p ) j m ( ( p ) . . . j 0 ( ^ ( ( P ) j ° <<p)n , _ i ) n 

m+0 vm' v v t ' t ' v v * ' 0 , t - l ' v 0 ' ^ * ' t ' v v ' 0 , t - l 

+ iTH 0 << p >t> m < < p > o , t - i > ° <n> < < p > t > n < < p > o , t - i > ° 

m (1) l m 0° (1) 1° o n + 4 - (1) l m 0° (1) i n 0° 
m+0 v ' v ' m+n 

m m 
= 0 + m+n m+n 

A 

C o r o l l a r y 6.._!•_!. Let P be a s i n Theorem 6 . 1 . If 

l im X, = P and l im Y, = P , t h e n 
d-Xx> d d-Xx> a 

m n . r 
l im 1 i T T T % A ( m , i , k , X d ) A ( n , j , k , Y d ) = j ^ . 
d->co i = l j = 0 J k=0 

m n . r 
P r o o f . 1 Z - m - ± A ( m , i , k , X ) A ( n , j , k , Y ) 

i = l j=o 1+J k=0 

i s a c o n t i n u o u s f u n c t i o n of t h e p r o b a b i l i t y v e c t o r s X and Y. 

A 

Theorem §_.2. Let m >_ 1 and n > 1 be i n t e g e r s , P be an 

r - v e c t o r , and S , , T , , IK, and Vd be a s in N o t a t i o n 3 . 2 . Suppose 

t h e r e a r e numbers h 6 r and k G r such t h a t 

(6 .1 ) l im ( S 9 , ) n . = 1 and l im ( S ? d ) Q h , = 0 , 
d->co 2 d °'h d->co za u ' n l 

( 6 . 2 ) l im ( T 9 , ) , = 1 and l im ( T ? d ) . , = 0 , 
d-Xo 2 d * ' r d-Xo Za K + 1 , r 

(6 .3 ) l i m ( U 2 d ) k = 1 and l i m ( U 2 d ) k + 1 = 0 , 
d->co d-Xx> 

and 

( 6 . 4 ) 1 1 . ( V 2 d ) 0 h - 1 and l im (V2<J) h - 1 = 0 . 
d-Xx> ' d-Xx> 

Then F(m,n) i s P - p a t h o l o g i c a l . 
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(6 .3 ) , 

and 

P r o o f . From D e f i n i t i o n 3 . 5 and s t a t e m e n t s ( 6 . 2 ) and 

i i mJT2d>k " i i m J T 2d>k, r " (T2d>k+l,r = 1 

d->oo d->OD 

" " { U 2 d ) k = ^ ™ ( U 2 d > k , r " ( T 2 d > k + l , 
= 1 . 

d - X o *M "• d->oo 

T h e r e f o r e , f rom N o t a t i o n 3 . 3 , Theo rem 3 . 2 , and C o r o l l a r y 6 . 1 . 1 , 

( 6 . 5 ) l i m Dm ( P , 2 d + 1 ) = - j £ - . 

x , v m , n m+n 

From Definition 3.5, Corollary 4.1.4, and statement (6.1), 

i1™ (T2d+l'h = " " (T2d+l»0,h - i1™ <T2d+l»0,h-l 
H-Vn n —>m d —XT) 

m+n = 1 - (l-lim (S ) ) m n - 1 + (l-lim (S2d) _,) 
d-Xo d->oo 

= 1 - (l-l)m+n - 1 + (l-0)m+n = 1. 

From Definition 3.5, Corollary 4.1.4, and statements (6.1) and 

(6.4) , 

i i m J U 2d + l>h = \inT ( U 2 d + l > 0 , h " i i r " ( U 2 d + l ) 0 r h - l d~Xo d->oo d - X o 

= 1 - ( l - l i m ( V 2 d ) ) m ( l - l i m ( S 2 d ) h ) n 

d->oo ' d-Xx> 

- 1 + ( l - l i m ( V 2 d ) Q h _ 1 ) m ( l - l i m (S ) h _ ) n 

= 1 - (l-l)m (l-l)n - 1 + (l-0)m (l-0)n = 1. 

Therefore, from Notation 3.3, Theorem 3.2, and Corollary 6.1.1, 

(6-6) lim °m „(
p/2d) = ̂XTT-

N ' , . m,n m+n 

From e q u a t i o n s ( 6 . 5 ) and ( 6 . 6 ) , l i m Dm ( P , d ) = -=rj-r» ^ x ' J V m,n m+ n d-Xo ' 
A 

Double Sequences 

Because of Corollary 4.1.5, the proof of Theorem 6.4 

depends on the properties of double sequences of the form 
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xi+1 = (1 - (l-x.)
m(l-y.)n)m+n,-

yi+1 = (i - (i-yi)
m+n)m (1 - d-x1)

m(l-y1)
n)n. 

This section contains several results which provide tools to deal 

with these sequences. The results are stated using the following 

notation. 

N o t a t i o n 6^2^ x n and y n a r e a lways r e a l numbers in t he 

i n t e r v a l [ 0 , 1 ] , For e v e r y m > 1 and n > 1 , x n = xn and 

V r, = Vn- For e v e r y m > 1 , n > 1 , and i n t e g e r i > 0 , 
2 m , n , 0 20 J — — * — 

x m , n , i + l ( 1 ( 1 x m , n , i ) ( 1 ~ y m , n , i 
nx m+n ) ) 

and 

m+n, m m n. n 
V n , i + 1 = <! " ( 1 - V » , n , l > > ( 1 " ( 1 - x m , n , i ' ' ^ n , ! ' > 

The f o l l o w i n g p r o p o s i t i o n h a s a s i m p l e i n d u c t i v e p r o o f . 

The theorem f o l l o w i n g i t i s a l i t t l e more c o m p l i c a t e d . 

P r o p o s i t i o n 6^*2. Let m ^ 1 and n ^ 1. Then 0 _< xQ <̂  1 

and 0 _< yQ < 1 fo r e v e r y i n t e g e r i ^ 0 . If yQ = 0 , t h e n 

y . = 0 for e v e r y i n t e g e r i > 0. I f xn = y n • 0 , t h e n 
•'m , n , l J J — U - ' U 
x • = y . = 0 f o r e v e r y i n t e g e r i > 0 . I f y n • 1 , t h e n 

m , n , i ^ , 1 1 , 1 •* J — J u 
x • = y • = 1 fo r e v e r y i n t e g e r i > 1 . 

m , n , i ^ , 1 1 , 1 J ' — 
Theorem 6 . 3 ^ Let m ^ 1 , n >_ 1 , xQ > w m + n , and yQ > w m + n . 

l i m x™ « t = lira ym n . = 1 . 
. v m, n , l . v

 J m, n , l 
I - X D ' ' i->co ' 

P r o o f . Let z = m i n ( x n , y n ) , and fo r e v e r y i n t e g e r i > 0 , 

Then 

0 k 0 , j r 0 

l e t 

w 

« 1 + 1 = (1 - ( l - z i ) r a + n ) m + n . 

< z n < 1 , so from Theorem 5 . 2 , l im z . = 1 m+n 0 — ' . v_ i 
i->co 

We now p r o v e by i n d u c t i o n t h a t fo r e v e r y i n t e g e r i >̂  0 , 

l — m , n f i — l — J m , n , i — 

This statement holds for i = 0, because zn = min(x „ n,y n). 
0 m ,n , 0 m ,n , 0 
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Suppose i t holds for i = k. Then 

V n , k + 1 • ( 1 - <1-Xm,n,k''n <1-*B ,n f k>n>* f n 

> (1 - ( l - z k ) m ( l - z k ) " ) m + n - z k + 1 , 

and 

it ii . m+nx m ,, , , Nm , , . n> n 
* m , n , k + l = ( 1 ' ( W«,n,k ' » ( 1 " (1-xm,n,k» ' ^ B . n . k ' ' 

> (1 - ( l - z k ) m + n ) m (1 - ( l - z k ) m ( l - z k ) n ) n = zfc+1. 

From Proposition 6.2, xi,+i < 1 an<3 vk+i ^. 1 - Therefore, the 

statement holds for i = k+1. 

From the above, i t follows that 

1 im x . = 1 im v „ . = 1. 

A 
Corollary 6̂-_3̂. Ĵ- Let xQ > 0 and yQ > 0. Then there is 

an L such that whenever m > 1, n ̂  1, and m+n > L, 

lira x . = lim y . = 1 . 
i->a>m'n'1 i->ODm'nfl 

Proof. From Corollary 5.1.3, there is an L such that for 

every i > L, w. < min(xn,yn). Let m >_ 1 and n > 1 be such that 

m+n > L. Then from Theorem 6.3, 

lim : 
i->co 
lim xm n . = ym _ . •* 1. m,n,i Jm,n,l 

A 

The Main Theorem 

The results of the last two sections provide the tools 

necessary to prove Theorem 6.4. The meaning of this theorem was 

discussed in the introduction to this chapter, and the practical 

significance of the theorem is discussed in subsequent chapters. 
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Theorem 6.4. Let P be a natural r-vector. Let m > 1, 

n > 1, and 

h = min {i 6 r: (P)i > 0}. 

If w . < min ((P)K (P) r h.) > t h e n r(m,n) is P-pathological. m+n n, r—n 

Proof. Suppose w
m + n <

 m i n ((P)h ^p^r-h^' Then from 

Corollary 3.1.1 and Definitions 2.9 and 3.5, 

< C V h , r " <SS'n>0,h = <P>0.h > »m+n' 

a n d < C V h " < T S ' n ) r - h , r " < P >r-h , r > wm+n' 

so from Coro l l a ry 4 . 1 . 5 and Theorem 6 . 3 , 

" » <T2d">r-h,r " i1™ <U2d n>r-h, r = 1 

d->co d->co 

and i l m _ ( V 2 d >0,h = i l r ? ( S 2 d >0,h " *• 

But according to Definition 6.1, max {i S r: (P) . > 0} = r-h, 

whence 

<P>0,h-l = <P>r-h+l,r " °-

Thus from Corollary 3.1.1 and Definitions 2.9 and 3.5, 

<CVh+l,r " <
So"Vh-l " <p>0,h-l = ° 

•"«> < C n > 0 , h - l = <*?'"> r - h + l , r = < P > r - h + l , r = ° ' 

so from Coro l l a ry 4 . 1 . 5 and P r o p o s i t i o n 6 . 2 , 

( 12d J r - h + l , r <u2d ; r - h + l , r u 

a n d (V2d >0 ,h - l = <S2cl } 0 , h - l = ° 
for every i n t e g e r d >_ 0. Thus from Theorem 6 . 2 , T(m,n) i s P-

p a t h o l o g i c a l . 

A 

Corollary 6.«_4-_l- Let P be a natural r-vector. Then 

there is an L such that for all positive integers m and n such 
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that m+n > L, F(m,n) is P-pathological. 

Proof. Let h be as in Theorem 6.4. Then from Definition 

6.1 and Corollary 5.1.3/ there is an L such that for all positive 

integers m and n such that m+n > L, w
m + n < min((P).,(P) . ) , 

whence r(m,n) is P-pathological by Theorem 6.4. 

A 

Corollary §_*4_»2. If P i s a natura l r -vec tor , then a l l 

but f i n i t e l y many of the Ttni/n) are P-pathological . 

Proof. Immediate from Corollary 6 . 4 . 1 , 

A 
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CHAPTER 7 

EXPERIMENTAL RESULTS 

Introduction 

As with Theorem 4.4, Theorem 6.4 has been verified in 

numerous experimental tests. Indeed, it was by conducting such 

experiments that the author gained the mathematical intuitions 

which led to the proofs of both of these theorems. 

Several tables and figures were presented at the end of 

Chapter 4 which illustrated the convergence of D(P,d) to -̂  on 

P(l,l). For r(m,n) , the limiting value is —r— rather than ̂ -, but 

otherwise the behavior is much the same, and it would be 

redundant to present any more such tables here. We instead 

discuss which of the F(m,n) are pathological for a given 

probability vector, and the various ways in which this occurs. 

In addition to serving as a demonstration of Theorem 6.4, 

the experimental results presented here lend themselves naturally 

to discussions of (1) the importance of having an evaluation 

function which is capable of making fine distinctions of quality 

among different game positions, (2) how the shape of the set of 

nonpathological P(m,n) relates to our conception of what an 

evaluation function does, (3) the limiting values of the 

probability vectors for minimax values, and (4) the meaning of 

the rate of convergence of D(P,d). Each of these topics is dealt 

with in a separate section of this chapter. 
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The Importance of a_ Good Evaluation Function 

Consider an evaluation function which returns values in 

the range {5,6,...,94} . If the returned values of this function 

are rounded to the nearest multiple of 10, the resulting function 

is equivalent to one which returns values in the range 

{1,2,...,10}. This function evaluates game positions in the same 

way as the original one, but in a rougher manner. Therefore, we 

would expect the performance of the new function to be no better, 

and possibly poorer, than the performance of the first one. Just 

how much poorer is dramatically illustrated below. 

As an example, consider the probability vector 

P± = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) / 78. 

If e is a P.-function, then repeated rounding operations on the 

values returned by e produce evaluation functions having 

probability vectors 

P2 = (1+2, 3+4, 5+6, 7+8, 9+10, 11+12) / 78, 

P3 = (1+2+3, 4+5+6, 7+8+9, 10+11+12) / 78, 

P4 = (1+2+3+4, 5+6+7+8, 9+10+11+12) / 78, 

and Pc = (1+2+3+4+5+6, 7+8+9+10+11+12) / 78. 

These vectors all give similar performance on ^(l,!), as 

shown in Table 7.1. Without any further information than this, 

one might think that they would all perform similarly on each of 

the F(m,n). However, this is not the case. The first indication 

of this comes from Theorem 6.4. 

Theorem 6.4 states that for every natural probability 

vector P, T(m,n) is P-pathological whenever w is less than the 
m+n 

minimum t of the leftmost and rightmost nonzero elements of P. 

But according to Corollary 5.1.3, w decreases monotonically as 
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P5-

TABLE 7.1.—Probabilities of correct decision 
on [̂ (1,1) at various search depths for each of P.., P?f 
P , P4, and P5. 

d 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

D(Plfd) 

0.806 
0.746 
0.687 
0.635 
0.592 
0.560 
0.538 
0.524 
0.514 
0.508 
0.505 
0.503 
0.501 
0.501 
0.500 
0.500 

D(P2,d) 

0.799 
0.739 
0.680 
0.628 
0.585 
0.554 
0.533 
0.518 
0.511 
0.504 
0.503 
0.501 
0.500 
0.500 
0.500 
0.500 

D(P3,d) 

0.788 
0.727 
0.671 
0.618 
0.576 
0.546 
0.529 
0.513 
0.510 
0.503 
0.503 
0.501 
0.500 
0.500 
0.500 
0.500 

D(P4,d) 

0.774 
0.711 
0.659 
0.607 
0.564 
0.539 
0.515 
0.510 
0.502 
0.501 
0.500 
0.500 
0.500 
0.500 
0.500 
0.500 

D(P5,d) 

0.731 
0.669 
0.635 
0.585 
0.566 
0.535 
0.528 
0.512 
0.510 
0.503 
0.503 
0.501 
0.500 
0.500 
0.500 
0.500 

TABLE 7.2.—The number of trees P(m,n) which Theorem 6.4 
says need not be pathological, for each of P,, P2, P,, P., and 

Proba
bility 
vector 

PI 
P2 
P3 
P4 
P5 

Minimum of the 
leftmost and the 
rightmost entries 

t = 0.01282 
t = 0.03846 
t = 0.07692 
t = 0.12821 
t = 0.26923 

Small 
which 
(see 

est k 
wk 

Table 

338 
84 
33 
15 
5 

for 
< t 
5.1) 

Number of trees 
wh 
be 

ich need not 
patholog ical 

56616 
3403 
496 
91 
6 

m+n increases. This means that pathology must occur on every 

P(m,n) for which m+n >̂  k, where k is the smallest integer such 

that w. < t. If m+n < k-1, then pathology may or may not occur. 

Thus the number of trees which need not be pathological is 

1 + 2 + ... + k-2 = t"-lMfc-2>. 

For P, through P,., Table 7.2 gives the number of trees which need 
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not be pathological. This table indicates that the rounding 

operations which produced P~ through Pr yielded successively 

poorer probability vectors. 

Tables 7.3 through 7.7, which were computed using the 

computer program of Appendix H, tell which of the P(m,n) are P,-, 

P -, P0-, P„~r and P ..-pathological, for m = 1,2,...,22 and 2 J 4 b 

n = 1,2,...,20. As can be seen from these tables, pathology 

occurs everywhere that Theorem 6.4 says that it must occur. It 

occurs in many other places as well, but the the predictions made 

in Table 7.2 are good relative indicators of the numbers of 

nonpathological trees: the number of non-P.-pathological F(m,n) 

decreases markedly as i increases. At least several hundred and 

probably several thousand of the P(m,n) are nonpathological for 

P,, whereas none of them are nonpathological for P5. This 

dramatically demonstrates the importance of using an evaluation 

function with a large effective range. 



- Chapter 7 - 86 

TABLE 7.3.—Pathology of P(m,n) as a function of m and n, 
for the probability vector P1 = (1,2,3,4,5,6,7,8,9,10,11,12)/78. 

NOTE: An asterisk indicates 
indicates that D(P,,d) converges 
information contained In this table is 
chapter. 

pathology. Its absence 
to 1. The additional 

explained later in the 

n 
m 
111 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

= 1 

5* 

4* 

25 

25 

14 

14 

14 

14 

14 

14 

14 

04 

04 

03 

03 

03 

03 

03 

03 

03 

03 

03 

2 

4* 

4* 

34 

24 

24 

14 

14 

14 

14 

14 

13 

13 

03 

03 

03 

03 

03 

03 

03 

03 

03 

03 

3 

4* 

3* 

3* 

23 

24 

14 

13 

13 

13 

13 

13 

13 

13 

03 

03 

03 

03 

03 

03 

03 

03 

03 

4 

4* 

3* 

3* 

23 

23 

13 

13 

13 

13 

13 

13 

13 

13 

03 

03 

03 

03 

03 

03 

03 

03 

03 

5 

4* 

3* 

3* 

23 

23 

23 

13 

13 

13 

13 

13 

13 

13 

03 

03 

03 

03 

03 

03 

03 

03 

03 

6 

4* 

3* 

3* 

23 

23 

23 

13 

13 

13 

13 

13 

13 

13 

13 

03 

03 

03 

03 

03 

03 

03 

02 

7 

4* 

3* 

3* 

2* 

23 

23 

13 

13 

13 

13 

13 

13 

13 

13 

03 

03 

03 

03 

02 

02 

02 

02 

8 

3* 

3* 

3* 

2* 

2* 

2* 

13 

13 

13 

13 

13 

13 

13 

13 

03 

02 

02 

02 

02 

02 

02 

02 

9 

3* 

3* 

3* 

2* 

2* 

2* 

12 

12 

12 

12 

12 

12 

12 

12 

02 

02 

02 

02 

02 

02 

02 

02 

10 

3* 

3* 

2* 
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TABLE 7.5.—Pathology of P(m,n) as a function of m and n, 
for the probability vector P3 = (6,15,24,33)/78. 
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13 
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16 

17 

18 
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20 

21 
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NOTE: An asterisk indicates pathology. Its absence 
indicates that D(P_,d) converges to 1. Below the diagonal line 
is where Theorem 6.4 says that pathology must occur (see Table 
7.2). The additional information contained in this table is 
explained later in the chapter. 



- Chapter 7 - 89 

TABLE 7.6.—Pathology of P(m,n) as a function of m and n, 
for the probability vector P. = (10,26,42)/78. 

NOTE: An asterisk indicates pathology. Its absence 
indicates that D{P.,d) converges to 1. Below the diagonal line 
is where Theorem 6.4 says that pathology must occur (see Table 
7.2). The additional information contained in this table is 
explained later in the chapter. 
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TABLE 7.7.—Pathology of P(m,n) as a function of m and n, 
for the probability vector P5 = (21,57)/78. 

n 
m 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

= 1 

0* 

0* 

0*/ 

/o* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

2 

0* 

0*/ 

/Q* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

3 

0*/ 

/Q* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

4 

/Q* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

5 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

6 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

7 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

8 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

9 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

o* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

10 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

11 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

12 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

13 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

14 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

15 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

16 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

17 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

18 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

19 

0* 

0* 

0* 

0* 

o* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

20 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

NOTE: An asterisk indicates pathology. Its absence 
indicates that D(P_,d) converges to 1. Below the diagonal line 
is where Theorem 6.4 says that pathology must occur (see Table 
7.2). The additional information contained in this table is 
explained later in the chapter. 
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?'*„-v:-

pathological 

(1,1) 
> m 

FIGURE 7.1.—•Pathological and nonpatho-
Ibgic^l behavior of f(lttfnj for a natural proba
bility vector P, as a function of m and n. ,,--. 

The Shape of the Nonpathological Region 

Theorem 6.4 and its corollaries state that for every 

natural r-vector P, P(m,n) is P-pathological whenever the 

branching factor m+n is sufficiently large. Tables 7.3 through 

7.7 show that pathology occurs elsewhere as well; indeed, the 

shape of the region where pathology does not occur is roughly as 

shown in Figure 7.1. Not only does pathology occur when m+n is 

large, but it also occurs whenever the ratio of m to n is small. 

This corresponds well with our intuitions about what it is that 

evaluation functions measure. 

An evaluation function is supposed to return a value 

indicating whether a game position is good or bad. In the game 

of chess, for example, good positions are often characterized in 
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terms of such things as the number of pieces, their mobility, how 

well the king is protected, etc., but a good position is 

generally one from which a player has a variety of good moves, 

and a bad one is generally one from which a player has few (if 

any) good moves. 

If m/n is small, such a characterization of a good 

position cannot be made. This is because every forced win node 

in P(m,n) has many children which are forced loss nodes and only 

a few children which are forced win nodes, and vice versa. Thus 

the good positions look bad and the bad positions look good. 

Under such conditions, it is not surprising that pathology would 

occur. 

The Values of the Limiting Vectors 

When Theorem 6.4 predicts pathology, the proof of the 

theorem shows that the pathology occurs because T2d and U2d both 

converge to the probability vector (0,0,...,0,1) and T 2 d + 1 and 

U2d+1 D o t n converge to the probability vector (1, 0, 0, ... , 0) . 

This is the "manic-depressive" behavior described in Chapters 4 

and 5 in its most extreme forml In places where Theorem 6.4 does 

not predict pathology, the limiting vectors may be different, but 

the same kind of behavior still occurs. 

Let g be a critical node. Choosing a move from g using a 

depth d minimax search involves computing the minimax values 

{e,_1(g'): g' is a child of g}. For the purposes of the 

following discussion, we may without loss of generality assume 

that g is an S node (see Corollary 3.1.1). In this case, each of 

the minimax values has either T,, or Ud_, as its probability 
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vector. In practice, as d increases, these vectors converge to 

vectors of the form (0,...,0,1,0,... ,0) . More specifically, if 

we let Q. be the f-vector whose i'th entry is 1, then there are 

r r 
integers i <. o" a n d J £ ~? suc^ that (1) for d even, Td-1 c o n v e r 9 e s 

to Q. and U j , converges to Q., and (2) for d odd, T, , converges 

to rev Q. and U, ., converges to rev Q. . What this means is that j d-1 3 I 

for even search depths, every move tends to look bad, and for odd 

search depths, every move tends to look good. This "manic-

depressive" behavior, which was also discussed in Chapters 4 and 

5, has been noticed by writers of chess and checker playing 

computer programs. Indeed, the term "manic-depressive" was 

suggested to the author by Thomas Truscott [TRl], a co-author of 

the prize-winning chess playing computer program Duchess [TR2, 

R01] . 

If F(m,n) is pathological, then i = j. In this case, as 

the search depth increases, all moves tend to look more and more 

alike, so the play becomes increasingly random. 

All of this is illustrated in Tables 7.3 through 7.7. 

These tables provide information on the values of the vectors Q. 

and Q.. For trees which are not pathological, the first digit of 

each table entry is the value of i and the second digit is the 

value of j. If a tree is pathological, then i = j, so i is given 

and the pathology is indicated with an asterisk. 

In Table 7.3, for example, the entry for T(3,l) is 25. 

This means that 

lim liliV = (0,0,1,0,0,0,0,0,0,0,0,0), 
d->co 
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lim U2d-1) = (O'O'0'0'0'1'0'0'0'0'0'0) i 
d->co 

lim rf;1) = (0,0,0,0,0,0,0,0,0,1,0,0), 
d->oo ZQ 

and lim U^ f l ) m (0,0,0,0,0,0,1,0,0,0,0,0). 

d-X» ̂ a 

It can easily be seen from the proof of Theorem 6.4 that 

i = j = 0 whenever the theorem predicts pathology. Therefore, 

the table entry in such a case should be "0*". Inspection of the 

tables reveals that this is indeed so. 

Rates of Convergence 

As pointed out earlier in this chapter, the rate of 

convergence of D(P.,d) on 1̂ (1,1) is not indicative of the quality 

of P. . We now discuss what the rate of convergence does 

indicate. 

Let i and j be as in the previous section. Suppose that 

i = iQ and j = j 0 for some tree f^m^n,)) , and that i = in-l
 and 

j = j Q for the tree P(m0+l,nQ). If we consider the vectors T,' 

and Uj'n independent of game trees and extend their definitions 

to non-integer values of m and n, then there should be some point 
m,nQ 

m € (mn,mn+l) where the limiting value of T2d_-. changes from Q. 

to Q. .. Since mn and mn+l are both quite close to m, we would 
iQ-l U U 

expect the T and U vectors for r(m0,n0) and r(m0+l,n0) to 

converge more slowly than usual. Similar considerations hold 

when m, n, i and j are varied in other ways. 

The point of the above discussion is that when two 

adjacent table entries differ, the rates of convergence of the 

probability vectors (and hence of the probabilities of correct 

decision) should be slower than elsewhere. This has been 
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verified experimentally, as discussed below. 

Let us define dQ to be the smallest value of d such that 

for every d >̂  d„, every entry of each of the vectors T? ,, T2d ,, 

U?,, and Upd+1 is within 0.0005 of its limiting value. Then dQ 

is a measure of the rate of convergence of the T and U vectors, 

and hence by Corollary 6.1.1 it is a measure of the rate of 

convergence of D(P,d). Tables 7.8 through 7.12 give the values 

of dn corresponding to the entries in Tables 7.3 through 7.7. 

As can be seen in Tables 7.8 through 7.12, dQ is large 

whenever the corresponding entry from Tables 7.3 through 7.7 is 

different from one of its neighbors. This is in accordance with 

the above discussion, thus providing evidence that the rate of 

convergence of D(P,d) is not an indication of the quality of a 

probability vector, but is instead an indication of being near a 

point where a limit changes. 
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TABLE 7.8.—d 0 probability vector P, = 
as a function of m and n, for the 
(1,2,3,4,5,6,7,8,9,10,ll,12)/78. 

n 
m 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

= 1 

! 18 

16 

14 

12 

13 

9 

7 

6 

6 

6 

8 

11 

12 

7 

7 

5 

5 

5 

5 

5 

5 

4 

2 

19 

12 

10 

8 

10 

7 

6 

6 

8 

8 

9 

8 

7 

5 

5 

5 

5 

5 

5 

5 

4 

4 

3 

9 

19 

9 

11 

16 

12 

17 

9 

7 

7 

7 

6 

12 

7 

5 

5 

5 

5 

5 

4 

4 

6 

4 

8 

9 

8 

9 

7 

9 

7 

7 

5 

5 

6 

6 

8 

7 

5 

5 

5 

5 

6 

6 

6 

6 

5 

8 

7 

8 

9 

6 

10 

7 

6 

'6 

5 

6 

6 

6 

9 

6 

6 

6 

6 

6 

6 

6 

6 

6 

8 

7 

8 

9 

8 

8 

7 

6 

6 

6 

6 

6 

6 

8 

7 

6 

6 

6 

6 

8 

10 

7 

7 

10 

6 

8 

11 

12 

8 

8 

6 

6 

6 

6 

6 

6 

8 

7 

6 

6 

8 

9 

7 

7 

5 

8 

9 

6 

8 

7 

7 

9 

12 

8 

8 

8 

8 

8 

8 

8 

8 

9 

7 

7 

7 

5 

5 

5 

9 

7 

6 

8 

7 

7 

7 

7 

7 

7 

9 

9 

7 

7 

7 

9 

7 

5 

5 

5 

5 

5 

5 

10 

7 

6 

9 

7 

6 

7 

7 

7 

7 

7 

7 

7 

7 

6 

8 

7 

5 

5 

5 

5 

5 

5 

11 

5 

6 

7 

5 

6 

6 

9 

5 

5 

5 

5 

5 

6 

6 

8 

7 

5 

5 

5 

5 

5 

5 

12 

5 

6 

7 

5 

5 

6 

9 

5 

5 

5 

5 

5 

5 

6 

6 

7 

5 

5 

5 

5 

5 

5 

13 

5 

6 

5 

5 

5 

6 

11 

5 

5 

5 

5 

5 

5 

6 

6 

7 

5 

5 

5 

5 

5 

5 

14 

5 

8 

5 

5 

5 

6 

13 

5 

5 

5 

5 

5 

5 

6 

6 

9 

5 

5 

5 

5 

4 

4 

15 

5 

11 

5 

5 

5 

6 

10 

5 

5 

5 

5 

5 

5 

6 

6 

10 

5 

5 

5 

5 

5 

4 

16 

6 

7 

5 

5 

5 

6 

10 

5 

5 

5 

5 

5 

5 

6 

6 

8 

7 

5 

5 

5 

5 

4 

17 

6 

7 

5 

5 

5 

6 

10 

6 

5 

5 

5 

5 

4 

4 

6 

8 

7 

5 

5 

5 

5 

4 

18 

6 

5 

5 

5 

5 

6 

10 

6 

6 

5 

4 

4 

4 

4 

6 

6 

7 

5 

5 

5 

5 

4 

19 

6 

5 

5 

5 

4 

6 

10 

6 

6 

6 

4 

4 

4 

4 

6 

6 

7 

5 

5 

5 

5 

4 

20 

6 

5 

5 

4 

4 

6 

12 

6 

6 

6 

6 

4 

4 

• 
4 

6 

6 

7 

5 

5 

5 

5 

4 
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TABLE 7.9.—dQ as a function of m and n, for the 
probability vector P2 = (3,7,11,15,19,23)/78. 

n = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
m 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

15 

16 

8 

8 

9 

7 

6 

6 

6 

6 

6 

8 

12 

7 

7 

5 

5 

5 

5 

5 

5 

3 

9 

12 

10 

8 

10 

7 

6 

6 

8 

8 

9 

7 

7 

5 

5 

5 

5 

5 

5 

5 

3 

3 

8 

19 

9 

11 

16 

12 

17 

9 

7 

7 

7 

5 

5 

5 

5 

5 

5 

5 

4 

4 

4 

4 

8 

9 

7 

7 

7 

9 

7 

7 

5 

5 

5 

5 

5 

5 

5 

5 

5 

4 

4 

4 

4 

4 

8 

7 

7 

6 

6 

10 

7 

5 

5 

5 

5 

5 

5 

5 

5 

4 

4 

4 

4 

4 

4 

4 

8 

7 

5 

5 

6 

8 

7 

5 

5 

5 

5 

5 

5 

5 

4 

4 

4 

4 

4 

4 

4 

4 

10 

5 

5 

5 

6 

8 

7 

5 

5 

5 

5 

5 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

9 

5 

5 

5 

6 

6 

7 

5 

5 

5 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

7 

5 

5 

5 

6 

6 

7 

5 

5 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

7 

5 

5 

5 

6 

6 

7 

5 

5 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

5 

5 

4 

4 

6 

6 

9 

5 

5 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

5 

5 

4 

4 

4 

6 

9 

5 

5 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

5 

5 

4 

4 

4 

6 

11 

5 

5 

5 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

5 

4 

4 

4 

4 

6 

13 

5 

5 

5 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

5 

4 

4 

4 

4 

6 

10 

5 

5 

5 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

5 

4 

4 

4 

4 

6 

10 

5 

5 

5 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

5 

4 

4 

4 

4 

6 

10 

6 

5 

5 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

6 

10 

6 

6 

5 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

6 

10 

6 

6 

6 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

6 

12 

6 

6 

6 

6 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 
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TABLE 7.10.—dQ as a function of m 
probability vector P3 = (6,15,24,33)/78. 

and n, for the 

n 
m 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

= 1 

15 

10 

11 

7 

5 

5 

5 

5 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

2 

9 

8 

10 

7 

5 

5 

5 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

3 

7 

6 

8 

7 

6 

5 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

6 

4 

6 

6 

8 

9 

6 

6 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

6 

6 

6 

6 

5 

5 

6 

8 

9 

6 

6 

6 

6 

6 

4 

4 

4 

4 

4 

6 

6 

6 

6 

6 

6 

6 

6 

6 

5 

6 

8 

9 

8 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

8 

10 

7 

7 

4 

6 

8 

11 

12 

8 

8 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

8 

9 

7 

7 

5 

8 

4 

6 

8 

7 

7 

9 

12 

8 

8 

8 

8 

8 

8 

8 

8 

9 

7 

7 

7 

5 

5 

5 

9 

4 

6 

8 

7 

7 

7 

7 

7 

7 

9 

9 

7 

7 

7 

7 

7 

5 

5 

5 

5 

5 

5 

10 

4 

6 

9 

7 

5 

7 

7 

7 

7 

7 

7 

7 

7 

5 

5 

5 

5 

5 

5 

5 

5 

5 

11 

4 

6 

7 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

12 

4 

6 

7 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

13 

4 

6 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

14 

4 

8 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

3 

3 

15 

4 

11 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

3 

3 

3 

3 

16 

6 

7 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

3 

3 

3 

3 

3 

3 

17 

6 

7 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

18 

6 

5 

5 

5 

5 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

19 

6 

5 

5 

5 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

20 

6 

5 

5 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 
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TABLE 7. I m 
probability vector P. 

d„ as a function of m and n, for the 
= (10,26,42)/78. 

n 
m 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

= 1 

12 

16 

8 

6 

6 

6 

6 

6 

6 

6 

6 

8 

12 

7 

7 

5 

5 

5 

5 

5 

5 

3 

2 

8 

12 

10 

8 

8 

6 

6 

6 

8 

8 

9 

7 

7 

5 

5 

5 

5 

5 

5 

5 

3 

3 

3 

8 

19 

9 

11 

16 

12 

17 

9 

7 

7 

7 

5 

5 

5 

5 

5 

5 

5 

3 

3 

3 

3 

4 

8 

9 

7 

7 

7 

7 

7 

7 

5 

5 

5 

5 

5 

5 

5 

5 

5 

3 

3 

3 

3 

3 

5 

8 

7 

7 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

3 

3 

3 

3 

3 

3 

3 

6 

8 

7 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

3 

3 

3 

3 

3 

3 

3 

3 

7 

10 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

8 

9 

5 

5 

5 

5 

5 

5 

5 

5 

5 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

9 

7 

5 

5 

5 

5 

5 

5 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

10 

7 

5 

5 

5 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

11 

5 

5 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

12 
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TABLE 7 . 1 2 . -
p r o b a b i l i t y v e c t o r P 5 

•dn a s a f u n c t i o n of m and n , f o r t h e 
= ( 2 1 , 5 7 ) / 7 8 . 
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CHAPTER 8 

SUMMARY, CONCLUSIONS AND SPECULATIONS 

Summary of Results 

Game trees are a model of the problem reduction approach 

to decision making. Large game trees are physically impossible 

to search completely, so sometimes a limited search is done using 

a heuristic evaluation function to estimate the properties of the 

tree. The conventional belief about such a heuristic game tree 

search is "the deeper the search, the better the decision." We 

have examined this statement mathematically, to discover when and 

where it holds. 

The mathematical model used for this investigation has 

the following major features: (1) the classification of the nodes 

of the game tree as critical nodes (nodes where it makes a 

difference what decision is made) and noncritical nodes (where 

the decision makes no difference), (2) a stochastic model of 

evaluation function errors in terms of a probability vector which 

characterizes the "average goodness" of the function, (3) the use 

of "minimaxing" (i.e., the maximin decision criterion), and (4) a 

characterization of the quality of a decision at a critical node 

as the probability that the decision is correct. 

There is an infinite class of game trees (the trees 

P(m,n) of Chapter 3) for which the probability of correct 

decision depends only on m, n, the search depth, and the 

evaluation function's probability vector. Theorem 6.4 proves 
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that these trees are pathological in the sense that for almost 

every probability vector and for all but finitely many of the 

P(m,n), increasing the search depth does not improve the quality 

of the decision, but intead causes the decision's probability of 

correctness to converge to what it would be if moves were being 

made totally at random. 

Experimental verification of this phenomenon is presented 

at the end of Chapter 4 and in Chapter 7, where it is pointed out 

that the decisions become random because of a "manic-depressive" 

kind of behavior: as the search depth increases, all moves tend 

to look alternately good and then bad, depending on whether the 

search depth is odd or even. The mathematical results in Chapter 

5 provide intuitive motivation for why this occurs. 

Conclusions and Speculations 

As used in computer science, the problem reduction 

approach almost invariably involves computing either maxima and 

minima or Boolean sums and products. Both of these procedures 

are cases of the maximin decision criterion, which is one of 

several criteria which have been studied in decision analysis 

[LAI, TU1]. Most of these criteria involve maximization or 

minimization in a form similar enough to the maximin criterion 

that pathology theorems similar to those of this dissertation 

should hold for them as well. 

To the reader who has studied the mathematical results in 

the preceding chapters, it will be obvious that the they should 

extend to a considerably larger class of game trees than the 

P(m,n). Most other game trees are complicated enough that 
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considerably more involved proof techniques may be required; this 

provides a topic for future research. We now discuss what 

significance the results have for game trees in general. 

Judging from the success of chess playing programs such 

as Belle, Chess 4.7, and Duchess [BI2, R01, TR1, TR2], it does 

not appear that pathology generally occurs for the evaluation 

functions that they use, if it occurs for them at all. But as 

mentioned in Chapter 7, the "manic-depressive" behavior which 

occurs on the P(m,n) has also been observed to occur in computer 

programs which play chess, checkers, and other games. The author 

believes that this behavior is indicative of an underlying 

pathological tendency present in almost all game trees. This 

tendency appears to be overridden in most games by at least three 

other factors. 

First, the experimental results in Chapter 7 indicate 

that if an evaluation function can make reasonably fine 

distinctions among the relative strengths of various game 

positions, then p(m,n) is pathological only when the branching 

factor m+n is quite large, or the ratio m/n is small. Neither of 

these conditions is likely to occur consistently in most 

applications of game trees, although they may occur to some 

extent. 

Second, the P(m,n) are "homogeneous" in the sense that 

every S node looks like every other S node, every T node looks 

like every other T node, and so forth. This certainly is not 

true of most other games: some S nodes, for example, will be 

"strong" positions in the sense that most of their children will 

also be forced win nodes, and some will be "weak" positions in 
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the sense that only a few of their children will be forced win 

nodes. A good evaluation function will probably tend to evaluate 

strong positions more highly than weak ones, in which case the 

player will tend to move into game positions where m/n is large, 

so that pathology is less likely to occur. 

Third, pathology can only occur while neither player is 

searching to the end of the tree, for seeing the final results of 

a game allows perfect play. The player with the shallower search 

will have an advantage throughout most of a pathological game, 

but generally will not attain a totally unassailable position. 

Near the end of the game, the player with the deeper search will 

achieve perfect play several moves before his opponent, and thus 

may be able to recoup his losses and win the game. 

The above three factors are not well understood, and 

provide a topic for further investigation. Pathological behavior 

might possibly occur for limited periods of time even in games 

such as chess or checkers. In a situation where most moves look 

fairly similar and neither player has a distinct advantage, the 

game tree might look "homogeneous" enough for pathology to occur 

for a few moves. This is highly speculative. 

There is a fourth significant difference between the 

F(m,n) and most other games, but it is not at all clear how it 

affects the existence of pathology. This is that many games are 

more properly represented as directed graphs than as trees [LEI], 

For the P(m,n), this situation can be modeled by a 
Markov process, in which for each player there will be a steady 
state probability of his being at a forced win node when it is 
his move. The author has done some preliminary research on this 
topic, but not enough to warrant its presentation here. 
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for if a game position can result from several different 

sequences of moves, then it is represented by more than one game 

tree node. Unless the evaluation function incorporates a random 
2 

number generator, it should return the same value for each of 

these nodes. But this violates the assumption of stochastic 

independence of the errors made by the evaluation function. Just 

what effect this has needs further investigation. 

A good example of this is Bachet's game [BA1, DOl, JA1], 

This name refers to a class of games similar to nim. These games 

would be perfectly modeled as as (m,n)-games (see Definition 

3.3), except that the independence assumption is violated as 

explained above. Although the proof is not presented here, the 

author has shown that for Bachet's game, the probability of 

correct decision is completely independent of the search depth. 

This itself is an interesting contradiction to the commonly 

accepted beliefs about searching deeper. 

At the beginning of Chapter 2 and throughout the current 

chapter, topics needing further investigation have been 

mentioned. Some of them involve generalizing the mathematical 

theory, and some of them involve investigating the practical 

significance of the theory. At this point, the latter type of 

investigation would appear to be a bit more important. Not much 

work has been done on this topic, and there are several 

methodological problems which have not yet been resolved. This 

is discussed at greater length in Appendix H. 

o 
Actually, some writers ̂ f game playing programs like to 

do this, on the grounds that if the program always makes the same 
move in the same situation, a human opponent who notices this 
will have an "unfair" advantage! 
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The conclusion to be reached at this time is as follows. 

Pathology occurs almost universally on the P(m,n), and almost 

certainly on many other game trees as well. How often it might 

occur in common applications of game trees is unclear, and there 

is reason to believe that it may be hard to observe even where it 

does occur. However, it is no longer possible blithely to assume 

(as has been done in the past) that increasing the depth of a 

heuristic game tree search will improve the quality of a 

decision. 
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n 

153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
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169 
170 
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173 
174 
175 
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180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 

0, 
0. 
0. 
0, 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0, 
0. 
0, 
0. 
0. 
0. 
0. 
0, 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

w n 

,024065 
.023943 
.023822 
.023703 
.023585 
,023468 
.023352 
,023238 
,023125 
,023013 
,022902 
,022793 
,022685 
,022577 
,022471 
,022366 
,022262 
,022160 
,022058 
021957 
,021857 
,021758 
,021661 
,021564 
,021468 
,021373 
,021279 
,021186 
,021094 
021002 
,020912 
,020822 
,020733 
,020646 
,020558 
020472 
020387 
020302 
020218 
020135 
020052 
019971 
019890 
019809 
019730 
019651 
019573 
019495 
019419 
019342 
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TABLE A.I.--

n 

203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
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234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 

w n 

0.019267 
0.019192 
0.019118 
0.019044 
0.018971 
0.018899 
0.018827 
0.018756 
0.018686 
0.018616 
0.018546 
0.018478 
0.018409 
0.018342 
0.018275 
0.018208 
0.018142 
0.018076 
0.018011 
0.017947 
0.017883 
0.017819 
0.017756 
0.017694 
0.017632 
0.017570 
0.017509 
0.017448 
0.017388 
0.017328 
0.017269 
0.017210 
0.017152 
0.017094 
0.017036 
0.016979 
0.016923 
0.016866 
0.016810 
0.016755 
0.016700 
0.016645 
0.016591 
0.016537 
0.016484 
0.016431 
0.016378 
0.016325 
0.016273 
0.016222 

ix A -

Continued. 

n 

253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
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276 
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278 
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281 
282 
283 
284 
285 
286 
287 
288 
289 
290 
291 
292 
293 
294 
295 
296 
297 
298 
299 
300 
301 
302 

Wn 

0.016170 
0.016120 
0.016069 
0.016019 
0.015969 
0.015919 
0.015870 
0.015821 
0.015773 
0.015724 
0.015677 
0.015629 
0.015582 
0.015535 
0.015488 
0.015442 
0.015396 
0.015350 
0.015305 
0.015259 
0.015215 
0.015170 
0.015126 
0.015082 
0.015038 
0.014995 
0.014951 
0.014909 
0.014866 
0.014824 
0.014781 
0.014740 
0.014698 
0.014657 
0.014616 
0.014575 
0.014534 
0.014494 
0.014454 
0.014414 
0.014375 
0.014335 
0.014296 
0.014257 
0.014219 
0.014180 
0.014142 
0.014104 
0.014066 
0.014029 

n 

303 
304 
305 
306 
307 
308 
309 
310 
311 
312 
313 
314 
315 
316 
317 
318 
319 
320 
321 
322 
323 
324 
325 
326 
327 
328 
329 
330 
331 
332 
333 
334 
335 
336 
337 
338 
339 
340 
341 
342 
343 
344 
345 
346 
347 
348 
349 
350 

0. 
0. 
0, 
0. 
0. 
0. 
0. 
0. 
0, 
0. 
0, 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
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w n 

.013991 
,013954 
,013917 
,013881 
,013844 
,013808 
,013772 
,013736 
,013701 
,013665 
,013630 
,013595 
,013560 
,013525 
,013491 
,013457 
,013423 
013389 
,013355 
,013322 
,013288 
,013255 
,013222 
013189 
,013157 
,013124 
013092 
013060 
,013028 
012996 
,012965 
012933 
012902 
012871 
,012840 
012809 
012779 
,012748 
012718 
012688 
,012658 
012628 
012599 
012569 
,012540 
012511 
012482 
012453 
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APPENDIX B 

D(Pfd) FOR PERFECT P 

According to the statement of Theorem 4.4, there is an 

extremely small (see Proposition 2.4) set of probability vectors 

to which it does not apply: the set of perfect probability 

vectors. If a probability vector is perfect, searching deeper 

still does not help, for at every search depth the probability of 

correct decision is exactly 1. This is illustrated for the 

vector (0, 0, .5, .5) in Table B.l, which contains the same kinds 

of information as Tables 4.1 through 4.5. 

The reverse of a perfect probability vector is not 

perfect, and so Theorem 4.4 does apply to the vector 

(.5, .5. 0, 0). This is illustrated in Table B.2, from which it 

can be seen that the probability of correct decision approaches 

1/2 as the search depth increases. 

TABLE B.l.—Minimax values and probabilities of 
correct decision for F(lfl) at various search depths, 
using the probability vector P = (0, 0, .5, .5). 

J Vi Vi D < p ' d ) 
1 0 . 0 0 0 . 0 0 0 . 5 0 0 . 5 0 0 . 5 0 0 . 5 0 0 . 0 0 0 . 0 0 1 . 0 0 0 
3 0 . 0 0 0 . 0 0 0 . 7 5 0 . 2 5 0 . 2 5 0 . 7 5 0 . 0 0 0 . 0 0 1 . 0 0 0 
5 0 . 0 0 0 . 0 0 0 . 9 4 0 . 0 6 0 . 0 6 0 . 9 4 0 . 0 0 0 . 0 0 1 . 0 0 0 
7 0 . 0 0 0 . 0 0 1 .00 0 . 0 0 0 . 0 0 1 .00 0 . 0 0 0 . 0 0 1 . 0 0 0 

2 0 . 0 0 0 . 0 0 0 . 7 5 0 . 2 5 0 . 5 0 0 . 5 0 0 . 0 0 0 . 0 0 1 . 0 0 0 
4 0 . 0 0 0 . 0 0 0 . 9 4 0 . 0 6 0 . 2 5 0 . 7 5 0 . 0 0 0 . 0 0 1 . 0 0 0 
6 0 . 0 0 0 . 0 0 1 .00 0 . 0 0 0 . 0 6 0 . 9 4 0 . 0 0 0 . 0 0 1 . 0 0 0 
8 0 . 0 0 0 . 0 0 1 .00 0 . 0 0 0 . 0 0 1 .00 0 . 0 0 0 . 0 0 1 . 0 0 0 
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TABLE B.2.—Minimax values and probabilities of 
correct decision for r(lfl) at various search depths, 
using the probability vector P = (.5, .5, 0, 0). 

d 

1 
3 
5 
7 
9 
11 
13 
15 
17 
19 

2 
4 
6 
8 
10 
12 
14 
16 
18 
20 

0.50 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.75 
0.61 
0.54 
0.48 
0.40 
0.29 
0.16 
0.05 
0.01 
0.00 

Td-1 

0.50 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.25 
0.39 
0.46 
0.52 
0.60 
0.71 
0.84 
0.95 
0.99 
1.00 

0.00 
0.75 
0.72 
0.74 
0.78 
0.84 
0.91 
0.97 
1.00 
1.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.00 
0.25 
0.28 
0.26 
0.22 
0.16 
0.09 
0.03 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.50 
0.53 
0.51 
0.47 
0.40 
0.29 
0.16 
0.05 
0.01 
0.00 

Ud-1 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.50 
0.47 
0.49 
0.53 
0.60 
0.71 
0.84 
0.95 
0.99 
1.00 

0.50 
0.63 
0.68 
0.72 
0.77 
0.84 
0.91 
0.97 
1.00 
1.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.50 
0.38 
0.32 
0.28 
0.23 
0.16 
0.09 
0.03 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

D(P,d) 

0.000 
0.438 
0.479 
0.493 
0.498 
0.499 
0.500 
0.500 
0.500 
0.500 

0.375 
0.461 
0.486 
0.495 
0.498 
0.499 
0.500 
0.500 
0.500 
0.500 



Ill 

APPENDIX C 

A GENERALIZATION OF w 
n 

The set fw : n > 1} of Chapter 5 may be extended to a n 

more general set having analogous properties. The theorems in 

the preceding pages do not depend on this set in any way, but 

some of its properties are interesting enough to be stated here. 

The theorems stated below have proofs analogous to the proofs of 

the theorems in Chapter 5; the author can supply proofs upon 

request. 

In Chapter 5, we noted that for n > 1, w is the unique 

intersection point in the interval (0,1) of the the function 

y = (1 - (l-x) n) n and the line y = x. Let m > 1, n > 0, and 

c € (0,1], and consider the intersection in the interval (0,1) of 

the function y = (1 - ( l - x ) m ) m + n and the line of slope c which 

passes through the point (1,1). Theorem C.l states that this 

intersection point is unique. 

Theorem C.l_. Let c 6 (0,1], m > 1, and n ^ 0, and let 

/ v /i /1 \ m. m+ n , g (x) = (1 - (1-x) ) - ex + c - 1 ^c,m,nv ' v \ i i 

for all real x. Then g has exactly one root in the interval 
Jc,m,n J 

(0,1). 

Notation C.l. Let c € (0,1], m > 1, and n > 0. g — — — — 3c,m,n 

shall be as defined in Theorem C.l above, and the unique 

x 9 (0,1) for which g (x) = 0 shall be called w„ . Note v ' 3c,m ,n c,m ,n 

that according to Lemma 5.1, w, „ = w . 3 1 ,m,0 m 
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Corollary C.̂ .l̂ . Let c G (0,1] , m > 1, and n ̂  0. If 

0 < x < w , then g (x) < 0, and if w„ „ < x < 1, then c,m,n 3c,m,n c,m,n 

g (x) > 0. ^c,m,nx 

Corollary C-A'̂ .* L e t m > 1 and n >_ 0. If 

0 < x < w1 m n, then (1 - (l-x)m)m+n < x, and if v^ m n < x < 1, 

then (1 - (l-x)m)m+n > x. 

Corollary C._l._3. Let b G (0,1], c G (0,1], m > 1, and 

n > 0 . If b < c, then wK m „ < w„ m . — D,m,n c,m,n 

Theorem C.2^ Let xQ G [0,1], m > 1, and n >_ 0. For 

Then— • v n i /i /i \ nu m+n 
e v e r y i n t e g e r l >_ 0 , l e t * i + 1 = (1 - ( 1 - x ^ ) 
1. i f 0 < x n < w. . t h e n l im x . = 0; 

- 0 l , m , n 1 - > c o i 

2 . i f w, m „ < x n < l , t h e n l im x . = 1; 
l , m , n 0 - 1 - > Q D i 

3 - i f x 0 = w l , m , n ' t h e n x i = w l , m , n f o r a 1 1 U 

Theorem C . ^ . Let c G (0 ,1 ] and m > 1. Then 

l im w„ m _ = 1 . 
. c , m , n n->ao 

Theorem £ . 4 ^ Let c G ( 0 , 1 ] and n ^ 0 . Then 

l im w„ m „ = 0 . 
v c , m , n 
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APPENDIX D 

MORE THEOREMS ABOUT DOUBLE SEQUENCES 

Many more theorems about the double sequences of Notation 

6.2 can be proved than are needed for this dissertation. Some of 

them are stated here. As with the material in Appendix C, these 

theorems are only of peripheral interest, so their proofs are not 

included. The author can furnish proofs on request. 

Theorem D.^. Let m >_ 1 and y = 0. Then there is an N 

such that for every n > N, lim x . = lim ym „ . - 0. 

i->com'n'1 i-X*1"'11'1 

Theorem D._2- Let n >_ 1 f x~ > 0, and y = 0. Then there 

is an M such that for every m > M, 
lim x . = 1 and 1im y . = 0. 
i-Xx>m'n'1 i-Xx)111'"'1 

Theorem D.3. Let m > 1 and n > 1. If lim y . = 1, 

- - i - > a ; m ' n ' 1 

then lim x . = 1. 
. v m,n . I 

Theorem D.4̂ . Let y_ > 0 and m >_ 1. Then there is an N 

such that for every n > N, lim x , = lim y . = 1. 
I-X»m'n'1 i->c0

m'n'1 

Theorem p_.j>. Let m >_ 1 and n ̂  1. Then— 

1. if 0 < x0 < y0 < 1, then for every integer i ̂  0, 

0 < Vn,l < ym,n,i < 1; 

2 . i f 0 < yQ < xQ < 1 , t h e n fo r e v e r y i n t e g e r i >_ 0, 

0 < y . < x . < 1; 
^ m , n f i m ,n , I ' 

3. if 0 < yQ = x„ < 1, then for every integer i >_ 0, 

0 < y . = x . < la 
^m,!!,! m,n, l 
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Theorem D.6. Let m ̂  1 and n ̂  1. Suppose there is an 

integer k such that 

xm,n,k+l > xm,n,k a n d ym,n,k+l > ym,n,k* 

Then for every integer i ̂  k, 

xm,n,i+l > xm,n,i a n d ym,n,i+l > ym,n,i* 

Theorem D.7^ Let n > 1 and xQ = 0. I f yQ < w , t h e n 

t h e r e i s an M s u c h t h a t f o r e v e r y m > M, 

l i m x
m « ,• = l i m ym « < - ° -

i - X ^ * 1 ' " ' 1 i - > o o n ' n f i 

I f y 0 > w r t h e n t h e r e i s an M s u c h t h a t f o r e v e r y m > M, 

l im xm n . = l i m y m n . = 1 . . v m / n , l . v m. n , l i->co ' ' i->co ' ' 
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APPENDIX E 

PATHOLOGY FOR UNNATURAL PROBABILITY VECTORS 

Because of P r o p o s i t i o n 6 . 1 , t h e p r o p e r t i e s of u n n a t u r a l 

p r o b a b i l i t y v e c t o r s a r e of s t r i c t l y s e c o n d a r y i n t e r e s t . S e v e r a l 

t h e o r e m s c o n c e r n i n g p a t h o l o g y fo r u n n a t u r a l p r o b a b i l i t y v e c t o r s 

a r e s t a t e d h e r e w i t h o u t p r o o f ; t h e a u t h o r can s u p p l y p r o o f s upon 

r e q u e s t . 

I f a p r o b a b i l i t y v e c t o r i s u n n a t u r a l , t h e n e i t h e r i t has 

more z e r o e n t r i e s a t i t s l e f t end t h a n i t s r i g h t e n d , o r v i c e 

v e r s a . These two t y p e s of u n n a t u r a l p r o b a b i l i t y v e c t o r s we c a l l 

r i g h t - s k e w e d and l e f t - s k e w e d , r e s p e c t i v e l y . For example , 

( 0 , 0, 0 . 2 , 0 . 5 , 0 . 3 , 0) i s r i g h t - s k e w e d , and 

( 0 , 0 . 2 , 0 . 5 , 0 . 3 , 0, 0) i s l e f t - s k e w e d . I n t u i t i v e l y , a r i g h t -

skewed p r o b a b i l i t y v e c t o r i s a " v e r y good" o n e , and a l e f t - s k e w e d 

p r o b a b i l i t y v e c t o r i s a " v e r y bad" o n e . 

Theorem J^.^L. Let P be a r i g h t - s k e w e d , i m p e r f e c t 

r - v e c t o r . Then for e v e r y i n t e g e r m ^ 1 , t h e r e i s an N such t h a t 

fo r e v e r y i n t e g e r n > N, P(m,n) i s P - p a t h o l o g i c a l . 

Theorem E._2. Let P be a r i g h t - s k e w e d r - v e c t o r . Then fo r 

e v e r y i n t e g e r n >_ 1 , t h e r e i s an M such t h a t f o r e v e r y i n t e g e r 

m > M, l im D (P ,d) = 1 . , . m,n d->co 

Taken t o g e t h e r , Theorems E . l and E.2 s t a t e t h a t i f P i s 

r i g h t - s k e w e d , t h e n T(m,n) can a l t e r n a t e l y be made n o n p a t h o l o g i c a l 

o r p a t h o l o g i c a l s i m p l y by i n c r e a s i n g m or n , r e s p e c t i v e l y . 
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Theorem E.3^ Let P be a left-skewed r -vec to r . Then 

there i s an N such tha t for a l l in tegers m ^ 1 and n > N, r(m,n) 

i s P-pathological . 

Theorem E.4^ For almost every left-skewed r-vector P, 

for every integer n > 1 there i s an M such tha t for every integer 

m > M, r(m,n) i s P-pathological . 

Conjecture E.l^ For every left-skewed r-vector P, for 

every integer n >_ 1 there i s an M such tha t for every integer 

m > M, P(m,n) is P-pathological . 

Taken together , Theorem E.3 and Conjecture E.l s t a t e that 

for every left-skewed r-vector P, only a f i n i t e number of the 

F(m,n) are nonpathological . If Conjecture E.l i s t r u e , t h i s 

allows Corollary 6.4.2 to be extended s l i g h t l y . 
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APPENDIX F 

ALTERNATING PATHOLOGICAL AND 

NONPATHOLOGICAL BEHAVIOR 

As can be seen from Tables 7.3 through 7.7, increasing m 

while holding n fixed can cause the limiting values of the T and 

U vectors to change several times. One might suspect that for an 

appropriate P, this would cause p(m,n) to be alternately 

pathological and nonpathological. We shall not discuss this in 

detail, but there are reasons to believe that some likely 

candidates for such a P are those P such that 

(P)Q = (1+G) wk and (P)r = (1+G) w ^ , 

<P)0,1 - (1+G) Wk-2 and (P)r-l,r " <1+G) wk-3' 

(P)0,(r-2)/2 " (1+G) Wk-r+2
 a n d (P)(r+2)/2,r = (1+G) Wk-r+l' 

where r is even, k >_ r+3 is an integer, and G > 0 is small. 

The author has written a computer program to generate 

probability vectors having the properties specified in the above 

equations, and several of them have been tested using the 

computer program of Appendix G. Alternating pathological and 

nonpathological behavior does indeed occur for several of these 

vectors. This is illustrated in Tables F.l and F.2 for the 

vector P - (.1108721768, .0184577789, .0278285401, .6653850732, 

.0358106695, .0223749103, .1192708512). These tables give the 

same kind of information as Tables 7.3 through 7.12. 
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TABLE F.l.—Pathology of F(m,n) as a function of m and n, 
for the probability vector P = (.1108721768, .0184577789, 
.0278285401, .6653850732, .0358106695, .0223749103, .1192708512). 

n 
m 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

= 1 

1 3 * 

3 * 

3 * 

3 * 

3 * 

3 * 

3 * 

3 * 

23 

2 * 

2 * 

2 * 

12 

1* 

1* 

01 

01 / 

L/o* 

0* 

0* 

0* 

0* 

2 

3 * 

3 * 

3 * 

3 * 

3 * 

3 * 

3 * 

23 

2 * 

2 * 

2 * 

12 

1* 

1* 

1* 

01 / 

' o * 

0* 

0* 

0* 

0* 

0* 

3 

3 * 

3 * 

3 * 

3 * 

3 * 

3 * 

23 

2* 

2 * 

2 * 

12 

1* 

1* 

1 * 

0 1 / 

/Q* 

0* 

0* 

0* 

0* 

0* 

0* 

4 

3 * 

3 * 

3 * 

3 * 

3 * 

3 * 

2* 

2 * 

2* 

12 

1* 

1* 

1* 

0 1 / 

' o * 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

5 

3 * 

3 * 

3 * 

3 * 

3 * 

2 * 

2 * 

2 * 

1* 

1* 

1* 

1* 

0*/ 

/Q* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

6 

3 * 

3 * 

3 * 

3 * 

2* 

2 * 

2 * 

2 * 

1* 

1* 

1* 

oy 
/ o * 

o* 

0* 

o* 

0* 

0* 

0* 

0* 

0* 

0* 

7 

3 * 

3 * 

3 * 

2 * 

2 * 

2 * 

2 * 

1* 

1* 

1* 

0*/ 

/0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

8 

3 * 

3 * 

2* 

2* 

2* 

2* 

1* 

1* 

1* 

0*/ 

/0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

9 

3 * 

2 * 

2 * 

2 * 

2 * 

1* 

1* 

1* 

\y 
' o * 

o* 

0* 

0* 

0 * 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

10 

2 * 

2 * 

2 * 

2 * 

1* 

1* 

1* 

\y 
/Q* 

0* 

0* 

0* 

0* 

0 * 

0 * 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

11 

2 * 

2 * 

2 * 

1* 

1* 

1* 

1*/ 

/ Q * 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

12 

2 * 

2 * 

1* 

1* 

1* 

1*/ 

/0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

13 

2 * 

1* 

1* 

1* 

\y 
/Q* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0 * 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

14 

1* 

1* 

1* 

\y 
/ Q * 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

15 

1* 

1* 

\y 
4* 
0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

16 

1* 

\y 
' o * 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

17 

\y 
/6* 
0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

18 

' o * 

0* 

0* 

0* 

0 * 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0 * 

0* 

0* 

0* 

0* 

0* 

0* 

19 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

20 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

0* 

NOTE: An asterisk indicates 
indicates that D(P5,d) converges 
information contained in this table is 

pathology. Its absence 
to 1. The additional 

explained in Chapter 7. 



- Appendix F - 119 

TABLE F.2.—dfi as a function of m and n, for the 
probability vector P = (.1108721768, .0184577789, .0278285401, 
.6653850732, .0358106695, .0223749103, .1192708512). 
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APPENDIX G 

A COMPUTER PROGRAM 

The computer program listed below is the final and most 

general version of a series of programs which played an important 

role in the development of this dissertation. Many of the 

mathematical intuitions leading to the proofs of the theorems in 

the dissertation were gained by using this program or its 

predecessors to compute minimax values and probabilities of 

correct decision at various search depths for many different 

probability vectors. This program was also used to generate the 

data appearing in the tables in Chapter 4, Chapter 7, and 

Appendix F. 

The program is written in C, which is the primary 

programming language for the computer system used by the author. 

The variable names used in the program are somewhat different 

than the reader might expect: when the program was written, the 

author was using the names A., B. , C., and D. for S,, T,, U,, and 
3 i l l l d d ' d 

V,, respectively. 

# 

/* 
** Syntax: level [<options>] <r>,<s> <B0> [; <C0>] 
** 
** <r> and <s> are the positive and negative branching factors, 
** and BO and CO are the starting vectors for B and C nodes. 
** The program prints Bi and Ci for i = 0 by 2 until 
** convergence is achieved. 
** If the vector CO is omitted, the reverse of BO is assumed. 
** 

** Options: 
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** -o "odd": prints Bi and Ci for i = 1 by 2 instead. 
** -b<#> "by <#>": causes only every #'th line to be printed 
** (except that the last line is always printed). 
** -t<#> "to <#>": causes execution until exactly <#> lines 
** have been printed (instead of until convergence) 
** -c "count" prints i each time 
** -e<#> "epsilon" sets epsilon (convergence test) to <#>. 
** -<#> prints <#> digits after the decimal point 
** (default is 6). 
** -d "decision" prints out the prob. of correct decision. 
*/ 

#define ELTS 20 /* max no. of elts in a pdf vector */ 
for convergence */ 

ELTS 20 /* max no. 
FUZZ .0000005 /* 

*errname "level"; 
fout; 

of elts 
to test 

char 
int 
int elts; 
int plus; 
int minus; 
int stop; 
char *cntll; 
char *cntl2; 
int byflag 1; 
int putflag 1; 
int ctflag; 
int oddflag; 
int dflag; 
int toflag; 
double epsilon FUZZ; 

main(argc, aargv) 
char **aargv; 
{ 

double aarev[ELTS]; /* reverse of A pdf vector */ 
double bb[ELTS]; /* B pdf vector */ 
double cc[ELTS]; /* C pdf vector */ 
double ddrev[ELTS]; /* reverse of D pdf vector */ 
double atof(); /* ascii to float converter */ 
register ii; 
register char **argv; 
char *p; 
int count; 

/* ignore prog name */ 
argv = aargv+1; 
—argc; 

cntll = cat (" %f", 0); 
cntl2 = cat (" %f", 0); 
/* get dash args */ 
while (argc > 0 && **argv == '-') { 

switch (argv[0] [1]) { 

case 'b': 
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byflag = atoi(&argv[0][2]); 
putflag = byflag; 
break; 

case 'c': 
ctflag = 1; 
break; 

case 'd' : 
dflag = 1; 
free (cntl2); 
cntl2 = cat (" %." , &argv[0][2], "f", 0); 
break; 

case 'e' : 
epsilon = atof (&argv[0] [2]) ; 
break; 

case 't": 
toflag = atoi(&(argv[0] [2])) ; 
break; 

case 'o' : 
oddflag = 1; 
break; 

default: 
free (cntll); 
cntll = cat (" %.", &argv[0][l], "f" , 0); 

} 
—argc; 
argv++; 

/ * must have a t l e a s t 3 more a rgs * / 
i f (a rgc<3) e r r o r ( " a r g c o u n t " ) ; 

/ * find out how many B and C c h i l d r e n an A node has * / 
p lus = a t o i ( * a r g v ) ; 
for(p= *argv++;;) { 

i f ( l * p ) e r r o r ( " e x p e c t i n g comma"); 
if(*p++ == ' , ' ) b reak; 

} 
minus = ato i (p) ; 
f o r ( I 1 = 0 ; ; i i + + ) { 

i f (*a rgv == -1 | | * * a r g v = = ' ; ' ) b reak; 
b b [ i i ] = a to f (*a rgv++) ; 

} 
e l t s = — i i ; 
i f (*argv == -1) { 

f o r ( i i = 0 ; i i < = e l t s ; i i + + ) c c [ i i ] = b b [ e l t s - i i ] ; 
} 
e l s e { 

argv++; 
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for(ii=0;;ii++) { 
if(*argv == -1 || **argv==,;,) break; 
cc[ii] = atof(*argv++); 

} 
if(—ii!=elts) error("B0 size != CO size"); 

} 

if (oddflag) { 
/* 

* In t h i s c a s e , we want to p r i n t B[2i+1] and C[2i+1] 
* so we f i r s t compute B[l ] and C[l] in terms of A[0] and D[0] 
* / 

norm ( b b , c c ) ; 
for ( i i = 0 ; i i < = e l t s ; i i++) { 

aarev[ii] = bb[elts-ii]; 
ddrev[ii] = cc[elts-iij; 

} 
revmax(aarev,aarev,bb); 
revmax(ddrev,aarev,cc); 

} 
for(count=l;;count++) { 

/ * to t r y to compensate for roundoff e r r o r : * / 
s t op = norm(bb, c c ) ; 
i f ( to f l ag ) s top=0; 

i f (count==putf lag | | s top) { 
i f ( t o f l ag ) { 

— t o f l a g ; 
if ( I t o f l a g ) s t op = 1; 

} 
pu t f l ag =+ byf lag ; 
i f ( c t f l ag ) p r i n t f ("e[%d]: " , 2*(count -1)+oddf lag) ; 
i f (df lag) p r i n t f ("D(%d): " , 2*coun t - l+oddf l ag ) ; 
f o r ( i i = 0 ; ; i i + + ) { 

printf(cntll+l,bb[ii]); 
if(ii>=elts) break; 
putchar(' * ) ; 

} 
putchar(';'); 
for(ii=0;ii<=elts;ii++) printf(cntll,cc[ii]); 
if (dflag) { 

printf(" =>"); 
decision(bb,cc); 

} 
putchar('0); 
if(stop) break; 

} 
revmax(bb,cc,aarev); 
revmax(cc,cc,ddrev); 
revmax(aarev,aarev,bb); 
revmax(ddrev,aarev,cc); 
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} 

norm(bb, cc) 
double bb[] , cc [] ; 
{ 

double suml,sum2; 
r e g i s t e r s t o p , i i ; 
suml = sum2 = 0; 
f o r ( i i = 0 ; i i < = e l t s ; i i + + ) { 

suml =+ b b [ i i ] ; 
sum2 =+ c c [ i i ] ; 

} 
s top = 1; 
for ( i i = 0 ; i i < = e l t s ; i i + + ) { 

b b [ i i ] =/ suml; 
c c [ i i ] =/ sum2; 
s t o p =& ( b b [ i i j < e p s i l o n II b b [ i i ] > 1 - e p s i l o n ) ; 
s t op =& ( c c [ i i j < e p s i l o n | | c c f i i ] > 1 - e p s i l o n ) ; 

} 

} 
r e t u r n s t o p ; 

revmax(childO,childl,result) 
double childO [] ,childl [] ,result [] ; 
{ 

static double sumO,suml,oldprod,prod; 
register index; 
double pow(); 

/* 
* for a l l i , 
* r e s u l t [ n - i ] (since r e su l t i s reversed) i s 
* " p l u s " t h power of sum from k=0 to i of 
* k ' t h e l t of f i r s t c h i l d vec to r 
* t imes "minus"th power of sum from k=0 to i of 
* k ' t h e e l t of second c h i l d vec to r 
* minus sum from j=0 to i -1 of r e s u l t [ n - j ] 
* / 

sumO = suml = 0; 
oldprod = 0; 
for(index=0;index<=elts;index++) { 

sumO =+ childO[index]; 
suml =+ childl [ index]; 
prod = pow(sumO,plus) * pow(suml,minus); 
result[elts-index] = prod-oldprod; 
oldprod = prod; 

} 

/* 
* fast exponentiation routine 
* to get around slowness of floating point simulation routines 
* calling syntax: pow (<base>, <exponent>) 
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* where <base> is double and <exponent> is integer. 
*/ 

double pow(base,ex) 
double base; 
{ 

if (ex==0) return 1; 
i f ( (ex /2) * 2 == ex) r e t u r n pow (base * ba se , e x / 2 ) ; 
r e t u r n base * pow (base , e x - 1 ) ; 

} 
d e c i s i o n ( b b , cc) 
double bb[] , cc [] ; 
{ 

double c h o o s e ( ) ; 
double pow(); 
double sum, r e s u l t ; 
double x , y ; 
r e g i s t e r i i , j j , kk; 
double c p i , cmj; 

r e s u l t = 0; 
f o r ( i i = l ; i i < = p l u s ; i i + + ) { 

cp i = choose ( p l u s , i i ) ; 
f o r ( j j = 0 ; j j < = m i n u s ; j j + + ) { 

cmj = choose (minus, j j ) ; 
sum = x = y = 0; 
for(kk=0;kk<=el ts ;kk++) { 

sum =+ ( 
pow(bb[kk] , i i ) * 
p o w ( x , p l u s - i i ) * 
p o w ( c c [ k k ] , j j ) * 
pow(y,minus- j j ) 

) ; 
x =+ b b [ k k ] ; 
y =+ c c [ k k ] ; 

} 
sum =* ( (cpi * cmj * i i ) / ( i i + j j + 0 . 0 ) ) ; 
r e s u l t =+ sum; 

} 
} 
p r i n t f ( c n t l 2 , r e s u l t ) ; 

} 

/ * n t h i n g s taken k a t a t ime * / 
/ * = n * (n-1) * . . . * (n-k+1) / kl */ 
double choose (n, k) 
{ 

double pi; /* numerator */ 
double p2; /* denominator */ 
int i; /* loop ctr */ 
double fmod(); 

pl = 1; 
p2 = 1; 
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/' 
* C(n,k) = C(n,n-k), 
* so choose the one that involves the lesser number of 
* multiplications 

V 
if (n-k < k) k = n-k; 

for (i=n-k+l; i<=n; i++) pi =* i; 
for (1=1; i<=k; i++) p2 =* i; 
pi = pl/p2 + 0.5; 
pi = pi - fmod (pi, 1.0); 
return (pi); 
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APPENDIX H 

INVESTIGATING PATHOLOGY IN PRACTICAL SITUATIONS 

It is doubtful that pathology occurs very often in common 

applications of game trees, but to what extent it does occur 

remains to be seen. Even where pathology occurs, it will 

probably not be easy to observe, as there are several unsolved 

methodological problems to be dealt with. 

For example, consider the question of whether pathology 

occurs in any commonly played parlor game. One problem is how to 

choose an appropriate game. Regardless of what game is chosen, a 

random number generator will have to be incorporated into the 

game playing program if it is to choose at random among moves 

having the same minimax values. 

There may be ways to increase the chances of pathology 

occurring in a game. As pointed out in Chapter 7, pathology 

should be more likely if the range of the evaluation function is 

reduced by a procedure such as rounding. Also, pathology might 

be more likely if a random number generator is used to introduce 

some additional error into the evaluation function. 

If pathology occurs, it may not be easy to detect. One 

might try playing a game program against itself using various 

search depths to see which side wins, but since the side with the 

deeper search will always have an advantage near the end of the 

game, a win for that side would not necessarily indicate absence 

of pathology. 
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Another approach might be to print out tables of minimax 

values, to see whether they become more alike as the search depth 

increases. There are some problems with this approach as well. 

Most evaluation functions compute their returned values by 

examining a number of features of the playing board, and some of 

these features may remain unchanged for several moves. Thus, 

there may be a high correlation between the minimax values at one 

search depth and the values at other search depths close by, 

regardless of whether these values are accurate or inaccurate. 

Since we do not know for most games which positions are forced 

wins and which ones are forced losses, interpretation of the 

tables may be very difficult. 

The author has attempted some investigation of pathology 

using a computer program which plays the game of othello [HA2], 

but little has been accomplished so far. Othello was chosen 

mainly because the computer program was already available on the 

computer system being used, and it seemed easier to modify it 

than to write a program for some other game, this may have been 

a bad idea. The program turned out to contain undiscovered bugs, 

and several more were introduced by the author's modifications. 

Their cumulative effect was to almost totally invalidate the 

results of several months of work. 

One of the major problems was lack of randomness in the 

random number generator. This caused the percentages of wins for 

each side to vary wildly during a series of several hundred games 

which the program played against itself. Finding a suitable 

This was an early version of the prize-winning othello-
playing program written by Dennis Rockwell and Thomas Truscott. 



- Appendix H - 129 

random number generator may require considerable work 
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