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ABSTRACT 

This paper summarizes work on a General Branch 
and Bound formulation which includes previous 
formulations as special cases and provides a 
unified approach to understanding most heuristic 
search procedures developed in A.I. 
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I. INTRODUCTION - 

A wide class of problems arising in Operations 
Research, decision making and Artificial 
Intelligence can be (abstractly) stated in the 
following form: 

Given a (possibly infinite) discrete set X 
and a real-valued objective function F 
whose domain is X, find an optimal element 
x* S X such that F(x*) = miniF(x)lx e 

Exhaustive enumeration of this set X for 
determining an optimum element is too inefficient 
for most practical problems. Hence, procedures 
(e.g. Branch and Bound [LAW66], A*, At)*, Alpha-Beta 
[NIL80], and B* [BER79]) have been developed to 
solve various versions of this problem efficiently 
by utilizing problem-specific knowledge. The 
underlying idea of such procedures is to decompose 
(or split) X into smaller and smaller sets. The 
utility of this approach derives from the fact that 
in general most of these sets will be pruned (or 
eliminated from further consideration), whence only 
a small fraction of X need be enumerated. In this 
paper we summarize a general abstract formulation 
Of Branch and Bound(B&B), which extends previous 
work by many researchers (e.g. Mitten [MIT70]; 
Lawler and Wood [LAWNS], Balas [BAL681, Smith 
[SMI791, Reingold, Nievergelt, and Deo [REI77], 
Horowitz and Sahni [HOR781, Kohler and Steiglitz 
[KOH741, and Ibaraki [IBA781). Until recently, 
only upper and lower bounds were used for pruning 
in B&B procedures (hence the name Branch and Bosjnd --- 
1. Many A.I. search procedures (A*, AO*, alpha- 
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beta, etc.) use more sophisticated dominance 
relations to prune the sets, although they perform 
branching (i.e., set splitting) in a similar form. 
This caused at least some of the confusion 
(CPOH721, CHAL711, [MAR78]) as to whether A*, AO* 
and other heuristic procedures are really Branch 
and Bound. 

The addition in B&B of the new concept of 
dominance in pruning was introduced by Kohler & 
Steiglitz [KOH74] and further investigated by 
Ibaraki [IBA781. Our formulation of B&B simplifies 
and generalizes the idea of dominance: we allow a 
set to be pruned when at least one of the remaining 
sets contains an optimal element. All other 
pruning techniques can be considered as special 
cases of this approach. 

We have shown CNAU821 that A* and AO* are 
special cases of our general B&B formulation. 
Similar results can be given for SSS*, Alpha-Beta, 
B*, etc. ([KAN8ll,[KUM81l,[KUM821). 

II. THE BASIC CONCEPT OF GENERAL BRANCH & BOUND - ------ - 

Our basic concept of General Branch and Bound 
is the procedure below. (comments are indicated by 
double slashes (ll//fl)): 

procedure PO: 
1. ACT := EX) // ACT is the current active set // 
2. loop 
3. if ACT = EZI for some Z 

and Z is a singleton {z) then 
4. return z 

7. 

endif 
SEL := 

// 
SPL := 

select(ACT) 
select some of the sets in ACT // 
split(SEL) 

8. ACT := 
// 
// 
// 
// 

9. repeat 
end PO 

// split the sets in SEL // 
prune((ACT-SEL) U SPL) 
remove the selected sets from // 
ACT, replace them by the newly // 
generated sets, and then prune // 
unneeded sets from ACT // 

ACT, the 
subsets of x. 

active &, is a collection of 
select, the selection function, is 

any function which returns a collection SEL C ACT. 
The domain of select is the set of all possible 
values which ACT might have at line 6 of PO. 

120 

From: AAAI-82 Proceedings. Copyright ©1982, AAAI (www.aaai.org). All rights reserved. 



split, the splitting function, has as its 
domain the set of all possible values which the 
collection SEL might have at line 7 of PO. 
split(SEL) returns a collection SPL of subsets of X 
such that-- 

1. every set in SPL is a subset of some set in 
SEL; 

2. u iY' I Y' 6 SPL) q  U EY 1 Y 6 SEL); i.e., the 
sets in SPL contain precisely those elements 
which are members of the sets in SEL. 

prune, the pruning function, has as its domain 
the set of all possible values which the collection 
of sets 

R= (ACT-SEL) u SPL 
might have at line 8 of PO. prune returns a 
collection of sets R' C R such that 
min {F(y) I y6Y for some Y6R') = 

min {F(y) 1 y6Y for some Y6R); 
l.e., at least one of the minimum elements of R is 
also present in R'. 

In CNAU821, this concept is developed more 
fully by dealing with the ways in which the members 
of the active set ACT are represented, and the use 
of problem-dependent auxiliary data in the 
selection, splitting, and pruning functions. In 
[NAU82], it is also shown how formulations of B&B 
in the literature are special cases of GBB. 

Because the invariance: 
min{F(x>lx 6 X) = min(F(x)lx 6 Y for some Y 6 ACT) 
remains true through out the execution of the 
procedure PO, it is easy to see that, at 
termination, PO finds an optimum element of X. 

In various problem domains, it is possible to 
easily compute lower bounds on the F-values of the 
elements of subsets of X present in the active list 
ACT. These bounds can be used to perform pruning 
by the prune function. Also suppose that: (i) the 
lower bound on a singleton set {x} is always F(x), 
and (ii) the selection function is best-first, 
i.e., the set chosen from ACT by the function 
select is always the one having the least lower 
bound. Then it can be shown that the first 
singleton set selected by the select function will 
be an optimum element of X. This makes the 
procedure even more efficient. In this case, PO 
can be rewritten as follows. 

procedure P3B: //best-first GBB// 
1. ACT3 := {Xl 
2. loop //the main loop// 

Z: 
if ACT3 =0 then return VnknownV1 endif 
SEL3 := select3(ACT3) 

2 
if SEL3 is a singleton (x) and goal(x) then 

return x 

ii: 
else 

SPL3 := split3(SEL3) 
9. ACT3 := prune3tACT3 - SEL3, SPL3) 
10 endif 
11. repeat 
end P3B 

III. A" 

The well-known A* algorithm [NIL~OI is a 
procedure for finding a least-cost path on a graph. 
To consider A* as a special case of GBB, we note 
that each node on the OPEN list of A* actually 
represents a path P from the source node to n. The 
set X consists of all paths from the source node to 
any goal nodes, and P represents the subset of X 
consisting of all extensions of P to goal nodes. 
This allows A* to be rewritten as an instantiation 
of P3B as follows. 

procedure P7: // A*, rewritten // 
2. ACT7 := list containing the null path 

from s to s 

2: 
GEN7 := NIL 
while ACT7 f NIL do 

5. IPI := select7tACT7) 
// select first member P of ACT7 // 

6. insert P into GEN7 

ii: 
if goal7(P) then 

return P 
9. else 
10 SPL7 := split7(iPj) 
11 ACT7 := ACT7 - IPI 
12 for every path Pn in SPL7 do 
13 for every Q in ACT7 or GEN7 do 
14 if tip(Q)=n and L7(Q) 5 L7(Pn) then 
1 I- ,,3 goto PRUNE // prune Pn // 
i \5 elseif tip(Q)=n and L7(Pn) < L7(Q) 
17 then call remove7(Q) 
18 endif 
19 endfor 
20 parent := P 
21 ACT7 := insert7(Pn,ACT7) 

// insert Pn into ACT7 after all // 
//nodes n such that f'(n) < f'(Pn)// 

22. PRUNE: endfor 
23. endif 
24. endwhile 
25. return lVunknownV1 
end P7 

procedure remove7(P) 
1. if P 6 ACT7 then remove P from ACT7 endif 
2. if P 6 GEN7 then remove P from GEN7 endif 
3. for every Q such that parent(Q)=P do 
4. call remove7(Q) 
5. endfor 
end 

(1) 

(2) 

(3) 

(4) 

remove7 

The active list (ACT7), which corresponc: +, '? 
the OPEN list in the usual formulation of A", 
is a set of paths from the source node to 
various nodes in the graph. 

goal7(P) holds only if P is a path from the 
source node to a goal node. 

select7(ACT7) returns the first member of 
ACT7. This is the path P in ACT7 having the 
least lower bound L7(P), where L7(P) = cost(P) 
+ h(tip(P)), and h is the usual A* heuristic 
function. 

split7(P) returns the paths created by 
expanding the tip node of P. 

121 



(5) insert7(P,ACT7) inserts P into ACT7 just after 
the last path Q in ACT7 such that L7(Q) < 
L7(P). It is shown in [NAU82] that the 
pruning done in P7 satisfies the properties of 
a pruning function. 

IV. AO' - - 

AO* [NIL801 is a procedure for finding a 
least-cost solution graph in a hypergraph (a 
formalization of an AND/OR graph). To consider AO* 
as a special case of GBB, we note that the search 
graph maintained in AO* actually represents a 
collection of partial solution graphs. The set X 
is the set of all complete solution graphs of the 
hypergraph searched, and each partial solution 
graph P represents the subset of X consisting of 
all extensions of P to complete solution graphs. 
The partial solution graph found in AO* by tracing 
the marked nodes is the one having the least lower 
bound. Thus AO" can be rewritten as an 
instantiation of P3B as follows. 

procedure P9: //AO*, rewritten// 
1. ACT9 := the partial solution graph 

containing only the source nodes 
2. loop 

//the test below will never succeed, and is 
included merely to illustrate that P9 is 
an instantiation of P3B// 

3. if ACT9 =,0'then return "unknown" endif 
4. SEL9 := selectg(ACT9) 
5. if SEL9 is a singleton (r} and goal (r) then 
6. return r 

ii: 
else 

SPL9 := splitg(SEL9) 
9. ACT9 := pruneg(ACT - SEL9, SPL9) 
10. endif 
11. repeat 
end P9 

The functions used above are defined as follows. 

(1) The active set (ACT9), which corresponds to 
the search graph G in Nilsson's formulation of 
AO*, is the set of all partial solution graphs 
in G. 

(2) goal9(P) holds only if P is a complete 
solution graph. 

(3) select9 returns the member P of ACT9 having 
the least lower bound L9(P). This happens to 
be the partial solution graph found in 
Nilsson's version of AO* by tracing the marked 
connectors. 

(4) L9(P) (the 1 ower bound mentioned in item 3) is 
the sum of all of the arc costs of P, plus the 
sum of the h-values of the tip nodes of P. 
This is the same as the value q(P) maintained 
by Nilsson. 

(5) split9(SEL9) returns the set of all partial 
solution graphs in SEL9 which contain n, where 
n is the node select in Nilsson's version of 
AO". 

(6) pruneg(ACT9 - SEL9, SPL9) returns the set of 
all partial solution graphs in the search 
graph formed by expanding the node n selected 
in Nilsson's version of AO*. 

V. CONCLUSIONS - 

We have summarized our work showing that the 
A.I. search procedures A* and AO* are special 
instances of our general branch and bound 
formulation. It can be shown that a number of 
other A.I. procedures are also special cases of 
GBB. It is possible to visualize many variations 
of existing search algorithms being generated from 
this Branch and Bound paradigm, which provides a 
theoretical basis for a better understanding of the 
performance of such algorithms and the 
relationships among them (e.g., 
[KAN81l,[KUM81l,[KUM821). In particular, we 
conjecture that all procedures for top-down search 
of problem reduction representations can be 
examined and understood as instantiations of this 
General Branch and Bound procedure. 

REFERENCES 

BAL68 

BER79 

HAL71 

HOR78 

IBA77 

IBA78 

KAN79 

KAN81 

Balas, E. A Note on the Branch-and-Bound 
Principle. Operations Research I6 (19681, 
442-444. Errata p.886. 

Berliner, H. The B* Tree Search Algorithm: 
A Best-First Proof Procedure. Artificial 
Intelligence 12 (1979), 23-40. 

Hall, P. A. V. Branch-and-Bound and Beyond. 
Proc. Second Internat. Joint Conf. Artif. -- 
Intell. (19711, 641-658. - - 

Horowitz, E. and Sahni, S. Fundamentals of 
Computer Algorithms. Computer Science 
Press, Potomac, MD, 1978. 

Ibaraki, T. The Power of Dominance 
Relations in Branch and Bound Algorithms. 
2. ACM 24 (19771, 264-279. 

Ibaraki, T. Branch-and-Bound Procedure and 
State-Space Representation of Combinatorial 
Optimization Problems. Information and 
Control 36 (19781, l-27. 

Kanal, L. Problem-Solving Models and Search 
Strategies for Pattern Recognition. IEEE 
Trans. Pattern Analysis and Machine Intell. -- 
1 (1979), 193-201. - - 

Kanal, L. and Kumar, V. A Branch and Bound 
Formulation for Sequential and Parallel Game 
Tree Searching. Proc. Seventh International -- 
Joint Conference on Artificial Intelligence, 
Vancouver (AugustT9811, 569-571. 

122 



KAN8lb Kanal, L. and Kumar, V. Parallel 
Implementations of a Structural Analysis 
Algorithm. Proc. IEEE Computer Society -- 
Conf. Pattern Recognition and Image 
Processing, Dallas (Aug. lg81), 452-458. 

KOH74 Kohler, W. H. and Steiglitz, K. 
Characterization and Theoretical comparison 
of Branch-and-Bound Algorithms for 
Permutation Problems. J.ACM 21 (1974) 140- -- 
156. 

KUM81 Kumar, V., and Kanal, L. Branch and Bound 
Formulations for Sequential and Parallel 
And/Or Tree Search and Their Applications to 
Pattern Analysis and Game Playing. 
submitted for publication 1981. 

KUM~~ Kumar, V., Nau, D. and Kanal, L. A General 
Model for Problem Reduction and Game Tree 
Search. working paper 1982. 

LAW66 Lawler, E. L., and Wood, D. E. Branch-and- 
Bound Methods: A Survey. Operations 
Research 14 (1966), 699-719. 

MAR73 Martelli, A. and Montanari, U. Additive 
AND/OR Graphs. Proc. Third Internat. Joint -- 
Conf. Artif. Intell. --- (19731, l-11. - 

MAR78 Martelli, A. and Montanari, U. Optimizing 
Decision Trees through Heuristically Guided 
Search. Comm. ACM 21 (1%'8), 1025-1039. -- 

MIT70 Mitten, L. G. Branch and Bound Methods: 
General Formulations and Properties. 
Operations Research 18 (1970)) 24-34. 
Errata in Operations Research 19 (19711, 
550. 

NAU82 Nau, D., Kumar, V. and Kanal, L. General 
Branch & Bound, and Its Relation to A* and 
AO". working paper,1982. 

~1~80 Nilsson, N. Principles of Artificial 
Intelligence. Tioga Publ. co., Palo Alto, 
CA, 1980. 

POH72 Pohl, I. Is Heuristic Search Really Branch 
and Bound? Proc Sixth Annual Princeton --- 
Conf. Inform. Sci. and Systems (19721, 370- 
33-I---- 

RIE77 Reingold, Nievergelt and Deo N. 
Combinatorial Optimization. Prentice Hall, 
1977. 

SM179 Smith, D. R. On the -- Computational 
Complexity of Branch and Bound Search 7- Strategies, Ph.D. Dissertation, Duke Univ., 
Durham, NC, 1979. Tech. Rep. NPS 52-79-114, 
Naval Postgraduate School, Monterey, CA, 
1979. 

123 


