
A General Paradigm for A.I. Search Procedures*

Dana S. Nau, Vipin Kumar, and Laveen Kanal

Computer Science
Laboratory

Department,

ABSTRACT

This paper summarizes work on a General Branch
and Bound formulation which includes previous
formulations as special cases and provides a
unified approach to understanding most heuristic
search procedures developed in A.I.

for Pattern Analysis
University of Maryland, College Park, MD 20742

I. INTRODUCTION -

A wide class of problems arising in Operations
Research, decision making and Artificial
Intelligence can be (abstractly) stated in the
following form:

Given a (possibly infinite) discrete set X
and a real-valued objective function F
whose domain is X, find an optimal element
x* S X such that F(x*) = miniF(x)lx e

Exhaustive enumeration of this set X for
determining an optimum element is too inefficient
for most practical problems. Hence, procedures
(e.g. Branch and Bound [LAW66], A*, At)*, Alpha-Beta
[NIL80], and B* [BER79]) have been developed to
solve various versions of this problem efficiently
by utilizing problem-specific knowledge. The
underlying idea of such procedures is to decompose
(or split) X into smaller and smaller sets. The
utility of this approach derives from the fact that
in general most of these sets will be pruned (or
eliminated from further consideration), whence only
a small fraction of X need be enumerated. In this
paper we summarize a general abstract formulation
Of Branch and Bound(B&B), which extends previous
work by many researchers (e.g. Mitten [MIT70];
Lawler and Wood [LAWNS], Balas [BAL681, Smith
[SMI791, Reingold, Nievergelt, and Deo [REI77],
Horowitz and Sahni [HOR781, Kohler and Steiglitz
[KOH741, and Ibaraki [IBA781). Until recently,
only upper and lower bounds were used for pruning
in B&B procedures (hence the name Branch and Bosjnd ---
1. Many A.I. search procedures (A*, AO*, alpha-

* This work was supported by NSF Grant
7822159

ENG-
and NSF Grant MCS81-17391 to the

Laboratory for Pattern Analysis at the University
of Maryland.

beta, etc.) use more sophisticated dominance
relations to prune the sets, although they perform
branching (i.e., set splitting) in a similar form.
This caused at least some of the confusion
(CPOH721, CHAL711, [MAR78]) as to whether A*, AO*
and other heuristic procedures are really Branch
and Bound.

The addition in B&B of the new concept of
dominance in pruning was introduced by Kohler &
Steiglitz [KOH74] and further investigated by
Ibaraki [IBA781. Our formulation of B&B simplifies
and generalizes the idea of dominance: we allow a
set to be pruned when at least one of the remaining
sets contains an optimal element. All other
pruning techniques can be considered as special
cases of this approach.

We have shown CNAU821 that A* and AO* are
special cases of our general B&B formulation.
Similar results can be given for SSS*, Alpha-Beta,
B*, etc. ([KAN8ll,[KUM81l,[KUM821).

II. THE BASIC CONCEPT OF GENERAL BRANCH & BOUND - ------ -

Our basic concept of General Branch and Bound
is the procedure below. (comments are indicated by
double slashes (ll//fl)):

procedure PO:
1. ACT := EX) // ACT is the current active set //
2. loop
3. if ACT = EZI for some Z

and Z is a singleton {z) then
4. return z

7.

endif
SEL :=

//
SPL :=

select(ACT)
select some of the sets in ACT //
split(SEL)

8. ACT :=
//
//
//
//

9. repeat
end PO

// split the sets in SEL //
prune((ACT-SEL) U SPL)
remove the selected sets from //
ACT, replace them by the newly //
generated sets, and then prune //
unneeded sets from ACT //

ACT, the
subsets of x.

active &, is a collection of
select, the selection function, is

any function which returns a collection SEL C ACT.
The domain of select is the set of all possible
values which ACT might have at line 6 of PO.

120

From: AAAI-82 Proceedings. Copyright ©1982, AAAI (www.aaai.org). All rights reserved.

split, the splitting function, has as its
domain the set of all possible values which the
collection SEL might have at line 7 of PO.
split(SEL) returns a collection SPL of subsets of X
such that--

1. every set in SPL is a subset of some set in
SEL;

2. u iY' I Y' 6 SPL) q U EY 1 Y 6 SEL); i.e., the
sets in SPL contain precisely those elements
which are members of the sets in SEL.

prune, the pruning function, has as its domain
the set of all possible values which the collection
of sets

R= (ACT-SEL) u SPL
might have at line 8 of PO. prune returns a
collection of sets R' C R such that
min {F(y) I y6Y for some Y6R') =

min {F(y) 1 y6Y for some Y6R);
l.e., at least one of the minimum elements of R is
also present in R'.

In CNAU821, this concept is developed more
fully by dealing with the ways in which the members
of the active set ACT are represented, and the use
of problem-dependent auxiliary data in the
selection, splitting, and pruning functions. In
[NAU82], it is also shown how formulations of B&B
in the literature are special cases of GBB.

Because the invariance:
min{F(x>lx 6 X) = min(F(x)lx 6 Y for some Y 6 ACT)
remains true through out the execution of the
procedure PO, it is easy to see that, at
termination, PO finds an optimum element of X.

In various problem domains, it is possible to
easily compute lower bounds on the F-values of the
elements of subsets of X present in the active list
ACT. These bounds can be used to perform pruning
by the prune function. Also suppose that: (i) the
lower bound on a singleton set {x} is always F(x),
and (ii) the selection function is best-first,
i.e., the set chosen from ACT by the function
select is always the one having the least lower
bound. Then it can be shown that the first
singleton set selected by the select function will
be an optimum element of X. This makes the
procedure even more efficient. In this case, PO
can be rewritten as follows.

procedure P3B: //best-first GBB//
1. ACT3 := {Xl
2. loop //the main loop//

Z:
if ACT3 =0 then return VnknownV1 endif
SEL3 := select3(ACT3)

2
if SEL3 is a singleton (x) and goal(x) then

return x

ii:
else

SPL3 := split3(SEL3)
9. ACT3 := prune3tACT3 - SEL3, SPL3)
10 endif
11. repeat
end P3B

III. A"

The well-known A* algorithm [NIL~OI is a
procedure for finding a least-cost path on a graph.
To consider A* as a special case of GBB, we note
that each node on the OPEN list of A* actually
represents a path P from the source node to n. The
set X consists of all paths from the source node to
any goal nodes, and P represents the subset of X
consisting of all extensions of P to goal nodes.
This allows A* to be rewritten as an instantiation
of P3B as follows.

procedure P7: // A*, rewritten //
2. ACT7 := list containing the null path

from s to s

2:
GEN7 := NIL
while ACT7 f NIL do

5. IPI := select7tACT7)
// select first member P of ACT7 //

6. insert P into GEN7

ii:
if goal7(P) then

return P
9. else
10 SPL7 := split7(iPj)
11 ACT7 := ACT7 - IPI
12 for every path Pn in SPL7 do
13 for every Q in ACT7 or GEN7 do
14 if tip(Q)=n and L7(Q) 5 L7(Pn) then
1 I- ,,3 goto PRUNE // prune Pn //
i \5 elseif tip(Q)=n and L7(Pn) < L7(Q)
17 then call remove7(Q)
18 endif
19 endfor
20 parent := P
21 ACT7 := insert7(Pn,ACT7)

// insert Pn into ACT7 after all //
//nodes n such that f'(n) < f'(Pn)//

22. PRUNE: endfor
23. endif
24. endwhile
25. return lVunknownV1
end P7

procedure remove7(P)
1. if P 6 ACT7 then remove P from ACT7 endif
2. if P 6 GEN7 then remove P from GEN7 endif
3. for every Q such that parent(Q)=P do
4. call remove7(Q)
5. endfor
end

(1)

(2)

(3)

(4)

remove7

The active list (ACT7), which corresponc: +, '?
the OPEN list in the usual formulation of A",
is a set of paths from the source node to
various nodes in the graph.

goal7(P) holds only if P is a path from the
source node to a goal node.

select7(ACT7) returns the first member of
ACT7. This is the path P in ACT7 having the
least lower bound L7(P), where L7(P) = cost(P)
+ h(tip(P)), and h is the usual A* heuristic
function.

split7(P) returns the paths created by
expanding the tip node of P.

121

(5) insert7(P,ACT7) inserts P into ACT7 just after
the last path Q in ACT7 such that L7(Q) <
L7(P). It is shown in [NAU82] that the
pruning done in P7 satisfies the properties of
a pruning function.

IV. AO' - -

AO* [NIL801 is a procedure for finding a
least-cost solution graph in a hypergraph (a
formalization of an AND/OR graph). To consider AO*
as a special case of GBB, we note that the search
graph maintained in AO* actually represents a
collection of partial solution graphs. The set X
is the set of all complete solution graphs of the
hypergraph searched, and each partial solution
graph P represents the subset of X consisting of
all extensions of P to complete solution graphs.
The partial solution graph found in AO* by tracing
the marked nodes is the one having the least lower
bound. Thus AO" can be rewritten as an
instantiation of P3B as follows.

procedure P9: //AO*, rewritten//
1. ACT9 := the partial solution graph

containing only the source nodes
2. loop

//the test below will never succeed, and is
included merely to illustrate that P9 is
an instantiation of P3B//

3. if ACT9 =,0'then return "unknown" endif
4. SEL9 := selectg(ACT9)
5. if SEL9 is a singleton (r} and goal (r) then
6. return r

ii:
else

SPL9 := splitg(SEL9)
9. ACT9 := pruneg(ACT - SEL9, SPL9)
10. endif
11. repeat
end P9

The functions used above are defined as follows.

(1) The active set (ACT9), which corresponds to
the search graph G in Nilsson's formulation of
AO*, is the set of all partial solution graphs
in G.

(2) goal9(P) holds only if P is a complete
solution graph.

(3) select9 returns the member P of ACT9 having
the least lower bound L9(P). This happens to
be the partial solution graph found in
Nilsson's version of AO* by tracing the marked
connectors.

(4) L9(P) (the 1 ower bound mentioned in item 3) is
the sum of all of the arc costs of P, plus the
sum of the h-values of the tip nodes of P.
This is the same as the value q(P) maintained
by Nilsson.

(5) split9(SEL9) returns the set of all partial
solution graphs in SEL9 which contain n, where
n is the node select in Nilsson's version of
AO".

(6) pruneg(ACT9 - SEL9, SPL9) returns the set of
all partial solution graphs in the search
graph formed by expanding the node n selected
in Nilsson's version of AO*.

V. CONCLUSIONS -

We have summarized our work showing that the
A.I. search procedures A* and AO* are special
instances of our general branch and bound
formulation. It can be shown that a number of
other A.I. procedures are also special cases of
GBB. It is possible to visualize many variations
of existing search algorithms being generated from
this Branch and Bound paradigm, which provides a
theoretical basis for a better understanding of the
performance of such algorithms and the
relationships among them (e.g.,
[KAN81l,[KUM81l,[KUM821). In particular, we
conjecture that all procedures for top-down search
of problem reduction representations can be
examined and understood as instantiations of this
General Branch and Bound procedure.

REFERENCES

BAL68

BER79

HAL71

HOR78

IBA77

IBA78

KAN79

KAN81

Balas, E. A Note on the Branch-and-Bound
Principle. Operations Research I6 (19681,
442-444. Errata p.886.

Berliner, H. The B* Tree Search Algorithm:
A Best-First Proof Procedure. Artificial
Intelligence 12 (1979), 23-40.

Hall, P. A. V. Branch-and-Bound and Beyond.
Proc. Second Internat. Joint Conf. Artif. --
Intell. (19711, 641-658. - -

Horowitz, E. and Sahni, S. Fundamentals of
Computer Algorithms. Computer Science
Press, Potomac, MD, 1978.

Ibaraki, T. The Power of Dominance
Relations in Branch and Bound Algorithms.
2. ACM 24 (19771, 264-279.

Ibaraki, T. Branch-and-Bound Procedure and
State-Space Representation of Combinatorial
Optimization Problems. Information and
Control 36 (19781, l-27.

Kanal, L. Problem-Solving Models and Search
Strategies for Pattern Recognition. IEEE
Trans. Pattern Analysis and Machine Intell. --
1 (1979), 193-201. - -

Kanal, L. and Kumar, V. A Branch and Bound
Formulation for Sequential and Parallel Game
Tree Searching. Proc. Seventh International --
Joint Conference on Artificial Intelligence,
Vancouver (AugustT9811, 569-571.

122

KAN8lb Kanal, L. and Kumar, V. Parallel
Implementations of a Structural Analysis
Algorithm. Proc. IEEE Computer Society --
Conf. Pattern Recognition and Image
Processing, Dallas (Aug. lg81), 452-458.

KOH74 Kohler, W. H. and Steiglitz, K.
Characterization and Theoretical comparison
of Branch-and-Bound Algorithms for
Permutation Problems. J.ACM 21 (1974) 140- --
156.

KUM81 Kumar, V., and Kanal, L. Branch and Bound
Formulations for Sequential and Parallel
And/Or Tree Search and Their Applications to
Pattern Analysis and Game Playing.
submitted for publication 1981.

KUM~~ Kumar, V., Nau, D. and Kanal, L. A General
Model for Problem Reduction and Game Tree
Search. working paper 1982.

LAW66 Lawler, E. L., and Wood, D. E. Branch-and-
Bound Methods: A Survey. Operations
Research 14 (1966), 699-719.

MAR73 Martelli, A. and Montanari, U. Additive
AND/OR Graphs. Proc. Third Internat. Joint --
Conf. Artif. Intell. --- (19731, l-11. -

MAR78 Martelli, A. and Montanari, U. Optimizing
Decision Trees through Heuristically Guided
Search. Comm. ACM 21 (1%'8), 1025-1039. --

MIT70 Mitten, L. G. Branch and Bound Methods:
General Formulations and Properties.
Operations Research 18 (1970)) 24-34.
Errata in Operations Research 19 (19711,
550.

NAU82 Nau, D., Kumar, V. and Kanal, L. General
Branch & Bound, and Its Relation to A* and
AO". working paper,1982.

~1~80 Nilsson, N. Principles of Artificial
Intelligence. Tioga Publ. co., Palo Alto,
CA, 1980.

POH72 Pohl, I. Is Heuristic Search Really Branch
and Bound? Proc Sixth Annual Princeton ---
Conf. Inform. Sci. and Systems (19721, 370-
33-I----

RIE77 Reingold, Nievergelt and Deo N.
Combinatorial Optimization. Prentice Hall,
1977.

SM179 Smith, D. R. On the -- Computational
Complexity of Branch and Bound Search 7- Strategies, Ph.D. Dissertation, Duke Univ.,
Durham, NC, 1979. Tech. Rep. NPS 52-79-114,
Naval Postgraduate School, Monterey, CA,
1979.

123

