ARTIFICIAL INTELLIGENCE 257

An Investigation of the Causes of
Pathology in Games™

Dana S. Nau

Computer Science Department, University of Maryland,
College Park, MD 20742, U.S.A.

Recommended by Judea Pearl

ABSTRACT
Game trees are a useful model of many kinds of decision-making situations, and have been the subject of
considerable investigation by researchers in both artificial intelligence and decision analysis.

Until recently it was almost universally believed that searching deeper on a game tree would in general
improve the quality of a decision. However, recent theoretical investigations [8—10] by this author have
demonstrated the existence of an infinite class of game trees for which searching deeper consistently
degrades the quality of a decision.

This paper extends the previous work in two ways. First, the existence of pathology is demonstrated in a
real game (Pearl’s Game) using a real evaluation function. This pathological behavior occurs despite the
fact that the evaluation function function increases dramatically in accuracy toward the end of the game.
Second, the similarities and differences between this game and a related nonpathological game are used
as grounds for speculation on why pathology occurs in some games and not in others.

1. Introduction

Game trees are a useful model of many kinds of decision-making situations.
For this reason they have been a subject of considerable investigation both in
artificial intelligence and in decision analysis.

Making a decision on a game tree involves searching the tree to compute
utility values for the nodes of the tree. Since the number of nodes in the tree
usually grows exponentially with the depth of the tree, it is usually not feasible
to do a complete search of a large game tree, even when pruning techniques
such as the alpha-beta algorithm [1, 4, 5, 13] are used.

Artificial intelligence researchers have obtained good results by searching

* This work was supported in part by a General Research Board award to the author from the
University of Maryland, and in part by NSF grant ENG-7822159 to the Laboratory for Pattern
Analysis at the University of Maryland. -

Artificial Intelligence 19 (1982) 257-278
0004-3702/82/0000-0000/$02.75 © 1982 North-Holland

258 D.S. NAU

game trees to some limited depth, using a static evaluation function to estimate
the utility values of the nodes at that depth, and then proceeding, in the usual
manner,! to compute utility values for the shallower nodes of the tree as if the
estimated values were correct [2, 3, 5, 13, 16]. Until recently there was almost
universal agreement that when such a heuristic game tree search is done,
increasing the depth of the search improves the quality of the decision.
However, a recent investigation by this author [8-10] showed that, given a
certain theoretical model of the errors made by an evaluation function, there
exists an infinite class of game trees which are pathological in the sense that as
long as the search does not reach the end of the tree (in which case a correct
decision could be guaranteed), searching deeper will not increase the prob-
ability that a decision is correct, but will instead cause the decision to become
increasingly random.

This paper extends the previous work in two ways.

First, a game called Pearl’s game is analyzed mathematically, and is shown to
be pathological when the obvious evaluation function for that game is used. It
is notable that this game was not invented for the purpose of demonstrating
pathology, but was developed by Judea Pearl [15] for the purpose of analyzing
the efficiency of game tree search procedures. Furthermore, pathology occurs
in this game despite the fact that the evaluation function used for the game
increases dramatically in accuracy as the end of the game approaches.

Second, a game closely related to Pearl’s game is devised which is shown not
to be pathological. The differences between this game and Pearl’s game
provide grounds for speculation on why pathology occurs in Pearl’s game but
not in games such as chess or checkers.

Section 2 describes Pearl’s game. In Section 3, the quality of play in Pearl’s
game is analyzed as a function of the search depth when a minimax search is
used. Section 4 uses the equations derived in Section 3 to provide numerical
results which demonstrate the existence of pathology and describes a Monte
Carlo simulation which corroborates the numerical results. Section 5 describes
the related nonpathological game, and demonstrates its lack of pathology by
means of a similar Monte Carlo simulation. Section 6 contains conclusions and
speculations.

2. Pearl’s Game

Judea Pearl [15] has described a class of two-player zero-sum games which he
developed for use in analyzing the efficiency of various game tree search
procedures [14]. This section describes the original class of games, generalizes
it slightly, and discusses an appropriate evaluation function. Pearl’s game

!In artificial intelligence research, ‘minimaxing’ is normally used, and the utility values are called
‘minimax values’. This corresponds to the maximin criterion of decision analysis [6, 21].

CAUSES OF PATHOLOGY IN GAMES 259

refers to the entire class of games; each member of the class is called a Pearl
game.

2.1. The original game

As originally described, Pearl’s game is played on a chessboard measuring 2°
by 2¢ rather than 8 by 8, where c is a positive integer. The initial playing board
for a game in this class is constructed by randomly assigning each square of the
board the value 1 with probability p, or the value 0 with probability 1— p,
where p is a constant and 0 =p =< 1.

The two players move in strict alternation. A move for the first player
consists of dividing the board in half vertically, and discarding one half. A
move for the second player consists of dividing what is left of the board in half
horizontally, and discarding one half. The play continues in this manner until
only one square is left. If the square has value 1, the player who made the last
move wins. If it has value 0, his opponent wins.

2.2. A generalization

Every game in the class described above always takes 2¢ moves to play no
matter what moves the players make. We can augment the class to contain
games taking d moves to play, where d may be either even or odd, by letting
the playing board measures d'%? squares by 2/4? squares rather than 2¢ by 2¢. If
d is odd, the first player will always have the last move; if d is even, the second
player will always have the last move. This ‘last player’ we call Max, and his
opponent we call Min.

For every game in this class, the corresponding game tree is a complete
binary game tree of depth d. Game tree nodes where it is Max’s (or Min’s)
move we call max (or min) nodes, respectively.

This class can be augmented to include games having complete b-ary game
trees for arbitrary b, by allowing the playing board to measure 5%% by b4
and redefining a move to consist of dividing the board into b pieces (rather
than just 2) and retaining only one of them. Each such game we call a b-ary
Pearl game of depth d, and we call b the branching factor of the game.

The playing board and game tree for a Pearl game with b =2 and d = 4 are
shown in Fig. 1.

2.3. A restriction on p

Let G be the game tree for a b-ary Pearl game of depth d. We denote the root
of G by root(G). It is easy to see that each node of G is either a forced win or
a forced loss for Max if both players play perfectly. Such nodes we call win
nodes and loss nodes, respectively. For example, a terminal node of value ‘1’ is
a win node and a terminal node of value ‘0’ is a loss node.

260 D.S. NAU

1 0 0 1
0 1 0 1
1 1 1 0
0 0 1 1
i10(0]1
0f1]0([0
1{7T]1]{0
olol1T 11
110 017
0f 1 011
111 110
0r 0 111
T10 7171 0[] 1[0
011 0]0 0[] T[1
1 0 1 0] i1 1110
0 141104 LO 01 [1 11 11
0] (O{[1] {1}i0 11110 oHol (11 1 {1 ol

FIG. 1. A playing board for a 2-ary Pearl game of depth 4, and the corresponding game tree. Each
Min node is indicated by an arc through the edges leaving the node. Note that Max has a forced
win, as indicated by the solution tree drawn in boldface.

Let p,, be the probability that root(G) is a win node. If p is the probability
that a terminal node of G has the value ‘I’, then according to the Last Player
Theorem [11],

(1) if p> w,, then limyx ppy = 1;

(2) if D < wp, then limd_m Pba = 0,

(3) if p = w;, then

“{1 —w, if dis odd,
Ped =1, if d is even,

where w; is the unique solution in the interval (0, 1) of the equation (1 — x)* = x.
Thus the probability that Max has a forced win converges to 1 or 0 when the
probability that a terminal node is a win is above or below w;, respectively.
According to [11] this convergence is generally quite rapid.

Since we are interested in games where both players have a reasonable chance
?f winq_ing, we will only consider games for which p=w, For b=2, w, =
5(3—V5)~0.382. Other values of w, are given in Table 1.2

2 The importance of w, in game tree searching has also been investigated by Pearl [14]) and
Baudet [1].

CAUSES OF PATHOLOGY IN GAMES 261

TaBLE 1. Approximate values of w, for b=1,2,...,50

b Wp b Wp b Wy b W b Wy

1 0.50000 11 0.15560 21 0.10271 31 0.07872 41 0.06463
2 0.38197 12 0.14745 22 0.09955 32 0.07700 42 0.06352
3 0.31767 13 0.14024 23 0.09662 33 0.07536 43 0.06246
4 027551 14 0.13382 24 0.09387 34 0.07380 44 0.06144
5 0.24512 15 0.12805 25 0.09130 35 0.07231 45 0.06045
6 022191 16 0.12283 26 0.08889 36 0.07088 46 0.05950
7 0.20346 17 0.11809 27 0.08662 37 0.06952 47 0.05858
8 0.18835 18 0.11375 28 0.08448 38 0.06822 48 0.05770
9 0.17570 19 0.10977 29 0.08245 39 0.06697 49 0.05684
10 0.16492 20 0.10610 30 0.08054 40 0.06577 50 0.05601

2.4. An evaluation function for Pearl’s game

As is widely known, it is unfeasible to do a minimax search of a game tree
unless the tree is very small. Hence, minimaxing requires searching to some
arbitrary depth of the tree and using a heuristic evaluation function to
estimate the minimax values of the nodes at this depth. If the value returned by
the function is high, it should mean that the node is probably a forced win, and
if the value is low, it should mean that the node is probably a forced loss.

Let g be a node in a Pearl game, and let g, and g, be two of g’s children.
Both g; and g, are rectangular boards containing 2* squares for some k, and
each square has a random value 1 or 0.

If g, has more ‘1’ squares than g, it would seem more likely that g; is a
forced win then that g, is a forced win. It is easy to prove that this is true using
induction. As a special case, if the fraction of ‘1’ squares in g, exceeds w, and
the fraction of ‘1’ squares in g; is less than w,, then (as we discussed earlier) it is
quite likely that g, is a forced win and g, is a forced loss. Thus the number of
‘1’ squares in a game position is a reasonable evaluation function for a node in
a Pearl game. We denote the number of ‘1’ squares in a node g by e(g).

3. A Mathematical Analysis of Minimaxing in Pearl Games
Let g be a node in a game tree G, and suppose the subtree rooted at g has
depth d or greater, for some d. We define the depth d minimax value of g by

e(g) ifd=0,
es(g) = 4 min{e;_1(g")| g’isachildof g} if g is aminnode,
max{e,_(g)| g’ isachildof g} if g isa max node.

Choosing a move at g using a depth d minimax search means choosing that

262 D.S. NAU

child of g which has the best depth d — 1 minimax value (so that the nodes at
depth d relative to g determine the decision). By the ‘best’ value we mean the
highest value if Max is to move, or the lowest value if Min is to move. If several
nodes (say, J of them) receive this same value, then the player must choose
among them at random. If I of them are forced win nodes, then the probability
of making a ‘correct’ move (i.e., a move to a position from which the player can
force a win) is thus I/J. Hence the probability that a decision is correct depends
on the accuracy of the depth d — 1 minimax values of g’s children.

In this section we discuss how to compute the probability of correct decision
in Pearl games when minimaxing is used. Eqgs. (1) through (16) apply to b-ary
Pearl games for arbitrary b, but because of computational difficulties with the
general case, (17) through (32) apply only to binary Pearl games.

3.1. Computation of probability distributions for minimax values

Let g be a node in a Pearl game G, and let h(g) be the height of g in G, i.e.,
the number of moves from g to the end of the game. Then the number of
squares in the node g is sq(g) = b"®. This is the maximum possible value of

e(g).

Since each square in g independently receives value 1 with probability p and
0 with probability 1 — p, we have

Prle(g)= i1 h(g) = K1 = (*9&)wi1 - wpysor. 0

We denote the events that g is a win or loss node by win(g) and loss(g),
respectively. From the definition of conditional probability,

Prle(g)=i| h(g) = k, win(g)] =

_ Pr{win(g), e(g) =i | h(g) = k]
Pr{win(g) | h(g) = k]

_ Pr{win(g) | e(g) =i, h(g) = k] Prle(g) = i | h(g) = k])
Pr[win(g) | h(g) = k] '

Prle(g)=i| h(g) = k] is given by (1).
According to the Last Player Theorem,

. W, if k is even,
Priwin(e) | k(&)= k1={1" ki 3)

The subtree of G rooted at g is a b-ary Pearl game of depth h(g). Since its
terminal node values are independent, each possible configuration of i ‘I’
values and sq(g)— i ‘0’ values is equally likely. Thus

CAUSES OF PATHOLOGY IN GAMES 263

Pr[win(g) | e(g) = i, h(g) = k] = Wj (i k) / (ngw) , @

where W,(i, k) is number of b-ary Pearl games G’ of depth k for which
e(root(G")) = i and win(root(G")).
In a manner similar to the above, we obtain
Prle(g) =i | h(g) = k, loss(g)] =

_ Prloss(g), e(g) = i | h(g) = k]
Prlloss(g) [h(g) = k]

_ Prfloss(g) | e(g) =i, h(g) = k] Prle(g) = i | h(g) = k]

Prlloss(g) | h(g) = k] ®
Prlloss(g) | () = k = {, ™ 1S even. ©

and
Prloss(g) | e(g) = i, h(g) = k] = L, (i, k)/ (qu(g)> : @

where L,(i, k) is the number of b-ary Pearl games G’ of depth k for which
e(root(G") = i and loss(root(G")).
Note that

Wi(i, k) + Ly(i, k) = (ngg)) . @®)
Substituting into (2) and (5) yields
Prle(g) =i | h(g) = k, win(g)] =

_ Wy.k) <Sq§g)>w"(1 — W,)
(sq(8)> (ws if k is even, else 1 — w,)

— W,(i, K)wi(1— Wb)bk_i . ©)
(wyif k iseven, else 1 — wy)°

Prle(g) = i| h(g) = k, loss(g)] =

Lb(. k: (Q(g))w 1- wb)sq(g)—'
(SQSE)) (1 - w, if k is even, else w;)

__ LG, k)wh(1 — w,)P (10)
(1—w; if k iseven, else w;)

264 D.S. NAU

3.2. Computation of W, and L,

W;(i, k) and Ly(i, k) can be computed recursively. For k =0 the game tree
rooted at g consists of a single node, whence

W(0,0)=0 and L(0,0)=1; (1
W(@1,00=1 and L(1,0)=0. (12)

Every Pearl game G’ of even depth has a min node as its root. Such a node
can be a win only if all b of its children are wins. Thus if k is even,

b
Wii.k)= 3 [IWu. k1) (13)
PREAI
and
. b* .
LyGi k)= (l.)— W, (i, k). (14)

where u; is the number of ‘1’ squares in the jth child of root(G").
Every Pearl game G’ of odd depth has a max node as its root. Such a node
can be a loss only if all b of its children are losses. Thus if k is odd,

b
L.k)= 3 T]Lyw k1) (15)
WS
and
. b* .
Wb(l’ k): (i >_Lb(l’k)’ (16)

where the u; are as before.

The computation of W;(i, k) and L,(i, k) as specified by (15) and (16) is
rather complicated. This can be simplified in the case b =2. In this case,
Ws(i, k) can be computed independently of L,(i, k) in the following manner.

If k is even (13) reduces to

Wi(i, k) = i Wolu, k —1D)Wy(i —u, k — 1), a7

where r; = max(0, i — 2¥"') and r, = min(j, 2*°1).
If k is odd there are three ways that the event {win(g), e(g) = i, h(g) = k} can

CAUSES OF PATHOLOGY IN GAMES 265

occur. One is if both of the children of g are wins. The number of ways for this
to occur is

i Wi, k = DWili — u, k — 1), (18)

u=ry

where r; and r, are as in (17).
The second way is if the first child of g is a win and the second is a loss. The
number of ways this can happen is

2 Wz(u, k- 1)L2(l - Uu, k— 1) =

u=ry

=S Wi k- 1)((2k_;) — Wili— u, k- 1)) .

m i—
u=ry

(19)

The third way is if the first child of g is a loss and the second is a win. The
number of ways this can happen is also given by (19).

Thus for k odd, the total number of ways the event {win(g), e(g)=1i,
h(g)= k} can occur is

Wz(i, k) = i Wz(u, k— 1)W2(l — U, k - 1)

+2 2 Wi, k — 1)((1.2:) — Wi — u, k — 1))
- i Wiu, k — 1)[(1.2:) Wi u k- 1)] . 20)

3.3. The probability of correct decision

Suppose a player is choosing a move at some node g of height k in a b-ary
Pearl game, using a minimax search to depth d. To avoid computational
difficulties we restrict b = 2. If one of g’s children (say, g,) is a forced win and
the other (g) is a forced loss, then we define a correct move to be a move to g;
if the player is Max, or to g, if the player is Min. Since we are only interested in
the probability of making a correct decision in the case where it makes a
difference what move is made, we do not define a correct move if both children
are forced wins or both are forced losses.?

3 Actually, the choice of move may still make a difference if both nodes are forced wins or both are
forced losses. This could occur, for example, if one player’s evaluation function were more accurate on
the nodes of the subtree rooted at g; than on the nodes of the subtree rooted at g;. However, we have
no way to predict such an occurrence.

266 D.S. NAU

Since Max moves to the node of highest minimax value and Min moves to
the node of lowest minimax value, a correct decision will be made if e;-,(g,) >
e4-1(g2), and an incorrect decision will be made if e,-(g1) < e4-1(g2). If es—1(g:) =
e4-1(g2), then the player must choose among g; and g, at random, whence the
probability of correct decision will be 1/2. Hence the probability of correct
decision at g is

D(d, k) = Prles_1(g1) > ea-1(g2)] + %Pr[edvl(gl) = e4-1(82)]

= > {Prles (g)) =+ 1, ean(g2) =]

j=0

+3Prles 1(g1) = esi(g2) =)}, @n

since sq(g,) = sq(gy) = 2¥'. If we define

mw(i, d, k) = Prle.(g) = i | h(g) = k., win(g)] (22)
and

ml(i, d. k) = Prles(8) =i | h(g) = k. loss(g)] , (23)
then

D(d, k)= 2k201 {mw(j+1,d—1,k—Dml(j,d—1,k—-1)

—ml(+ 1, d- 1k~ 1)
+dmw(j,d—1,k—1)—mw(j+1,d—1,k—1)]
x[ml(j,d—1, k-1 -mlG+1,d—1,k— 1]}

2k-1

= > Imw(j,d— 1L k—D+mw(j+1,d—1,k-1)]

j=0
X[mi(j,d—1,k—1)-ml(j+1,d-1,k—1)]. @4
kWe now discuss how to compute mw and ml. Since e(g) is never greater than
T 000~ Prie(e) = 2Ihe) = k win(o)] 29)
and

ml(2%, 0, k) = Pr{e(g) = 2* | h(g) = k, loss(g)] (26)

for k =0, 1,2, These values can be computed from (9) and (10). From (9) and

CAUSES OF PATHOLOGY IN GAMES 267
(10) we can then recursively compute

mw(i, 0, k) =mw(i + 1,0, k) + Pr{e(g) = i | h(g) = k, win(g)] 27)

and

ml(i, 0, k)=ml(i + 1,0, k) + Prfe(g) = i | h(g) = k, loss(g)] , (28)

for i=2"1to0 0.

Suppose k is even, g is a node of height k with children g, and g,, and d < k.
Then g is a min node, so e,(g)=i only if e;_(g:)=i and e, ,(g,) = i. Further-
more, g is a win only if both g, and g, are wins, so

mw(i, d, k) = Pr{e,(g) = i | win(g,), win(g>)]
= Prle,_1(g1) = i | win(g,), win(g,)]
X Prle,-1(g2) = i | win(g1), win(g»)]
= Prles-1(g1) = i | win(g1)]Pr[es_1(g2) = i | win(gy)]
=(mw(i,d—1, k- 1))y. (29)

But g is a loss if either g, or g; is a loss, so

ml(i, d, k) = Prle,(g) = i | loss(g)]
= Prle(g) = i | loss(g1), loss(g,)]Pr{loss(g1), loss(gz) | loss(g)]
+ Prles(g) = i | loss(g1), win(g2)]Pr[loss(g), win(g:) | loss(g)]
+ Prfes(g)= i | win(gy), loss(g2)]Pr{win(gy), loss(g2) | loss(g))]
= Prles-1(g1) = i | loss(g1)]Pr[es-1(g2) = i | loss(g2)]
X Prfloss(g1), loss(g2)]/Pr{loss(g)]
+ Prles-1(g1) = i | loss(g1)]Prles-1(g2) = i | win(g,)]
x Prloss(g:), win(g,)/Pr[loss(g)]
+Prles-1(g1) =i | win(g)]Pr{es-1(g2) = i | loss(g,)]
X Pr{win(gy), loss(g2)]/Prlloss(g)]

_mlG, d— 1, k — 1V (wy)’
1- W»

2 ml(i, d—1, k~ Dmw(i,d— 1, k — Dwy(1— wy)
1- Wy ’

(30)

268 D.S. NAU

Suppose k& is odd instead of even. Then g is a max node, so eq(g) <i only if

ea-1(81) <i and e, 1(g2) <i. Now, g is a win if either of g, or g, is a win, so as
with (30),

mw(i, d, k) = 1 — Prles(g) < i | win(g)]
:1—{Pd@4@0<ihﬂMgMPd%4@ﬁ<ilwm@ﬂ]

X Pr[win(g;), win(g,)}/Pr[win(g)]

+ Prles-1(g1) < i | win(g,)]Pr{es-1(g2) < i | loss(g,)]
X Pr[win(g,), loss(g,)]/Pr[win(g)]

+ Prles-1(g1) < i | loss(g)]Pr[es-1(g2) < i | win(gy)]
 Prlloss(g.), win(g2)/Pr{ win(g))}

. [(1 —mw(i, d— 1, k — D)P(w,)
a 1-w,

oL mw(i d = Lk~ D)1~ ml(, d = 1, k = D)ws(1 - wz)] _

1+ W»>
@31
But g is a loss only if both g, and g, are losses, so as with (29),

ml(;, d,)= 1—Prles(g) < i|loss(g)]
= 1—(Pr{es-1(g:) < i | loss(g1)]Prles 1(g2) < i | loss(ga),,
=1-(1-mi(i,d—1, k—-1))>.

Thus for b=2, k=0,1,...,d=0to k, and i =0 to 2%, mw(i, d, k) can be
computed from (25) through (30).

4. Numerical Results for Pearl’s Game

4.1. Analytical results

Let g be a node of height k in a binary Pearl game, and suppose one child of g
is a forced loss node and the other is a forced win. Then the probability of
correct decision D(d, k) at g for all search depths d=1,2,...,k may be
computed from the equations in Section 3.

A computer program was written to do these computations. Its output is
given in Table 2 and Fig. 2. As can be seen from Fig. 2, D(d, k) tends to
increase with d for k <7. But as k increases, it is increasingly common for
D(d, k) to decrease as d increases (as long as d <k —2).

It was unfeasible to run the program for k > 15, because the computation

269

0001 !

000°1 0001 4
11080 0001 0001 £l
SPSS0 60050 0001 0001 [}
I0bS'0 ¥2SS'0 01Cs'0 000'L 0001 11
18¢S°0 9IvS0 ¥26S0 CTLISO 0001 0001 o1
POrs'0 85SS°0 BE9SO0 LV6S0 ST6STO Q00T 0001 6
8ISS'0 OI9S°0 €vLS'O 0S8S°0 YOV9'0 OIBS'O 000'T 0001 8
¢SS0 0L95°0 LOBS'O 98650 88190 $959'0 98690 000'1 000'T L
685S°0 COLS'O ¥SBS'O PC09'0 6929°0 TOS9'0 0SOL'0 €869'0 000 0001 9
1€96°0 0SLS'0 T68S'0 SLO9'0 €629'0 +8S9°0 11690 SIPL0 T9080 000 0001 S
6950 S6LS0 I¥6S0 80190 I€€9'0 LLS9'0 9€69°0 08CL0 +06L°0 <TSC8O 000T 0001 14
OPLS'0 19850 €009°0 HLI90 LLE9O0 LT990 TC690 66CL0 LZLL'O €0EBO 67680 0001 0001 €
2080 ¥C65°0 0OLO90 SECI0 BEY9'0 TI99°0 TS69'0 SSTL'O0 S8IL'0 SLOB'O H#TL80 LET6D 0001 000T T
v88S°0 €109°0 (09190 6290 +IS9'0 8PL90 900L0 90£L0 8YIL'0 1S08°0 16¥8°0 8I060 ¥LP6'0 0001 1

Sl 4 el Cl1 11 (1]} 6 8 L 9 S 4 € 4

CAUSES OF PATHOLOGY IN GAMES

Zm s1 umm padio} e Suraq apou [eurula) e Jo Anjiqeqord ayy oseo yoes uy roured [IeoJ ATeurq
e ur ¥ 1ySioy spou pue p yidep yoreos Jo uonaunj € se (¥ ‘p)(7 UOISIIIP 1091100 Jo AN[Iqeqold g T1av],

270 D.S. NAU

5 d

FIG. 2. Probability of correct decision D(d, k) as a function of d, for d=1,2,..., k-2 If
d=k—1ord=k, then D(d, k)= 1, as indicated by the dotted lines.

takes exponentially increasing time and space requirements.* However, the
author expects that the tendency for D(d, k) to decrease as d increases holds
for all k >15. A rigorous proof of this would be quite difficult because of the
complexity of the expressions used to compute D(d, k).

Some readers have speculated that the reason pathology does not occur on
games such as chess or checkers is that the evaluation functions in such games
become more accurate toward the end of the game, thus making deeper
searches more accurate. Experts on game-playing computer programs con-
sulted by this author disagree with such statements [17, 20], but it is interesting
to consider the same issues with respect to Pearl’s game.

One easy way to measure the accuracy of e(g) as a function of the distance k
from g to the end of the game is to look at the probability of correct decision at
¢ when evaluating g’s children directly. This probability is D(1, k), which is
graphed as a function of k in Fig. 3. Note that e increases exponentially in
accuracy as the end of the game approaches. Thus deeper searches make
use of board information which is dramatically more accurate, and the
pathological behavior illustrated in Fig. 2 occurs despite this fact.

4 The program was started with k = 16 on a Vax 11/780, and had taken about 48 hours of CPU
time without finishing, when the system crashed.

CAUSES OF PATHOLOGY IN GAMES 271

DU,k
1o}

5 +—ak

) 5 0 5

Fic. 3. D(1, k) as a function of k. This provides a measure of the accuracy of e(g) when g is at
distance k from the end of the game.

4.2. Monte Carlo simulation results

Rather than using the mathematical results from Section 3, it is also possible to
estimate the probability of correct decision on binary Pearl games using Monte
Carlo simulation techniques. This can be done as follows.

Given k and some positive integer n, create n binary Pearl games of depth
k —1, using a random number generator to determine which squares have
value 0 and which have value 1. Let m be the number of games that are forced
wins. Ford=1,2,...,kandi=0,1,...,2“" Jet

number of win trees whose depth

mw'(i, d =1, k=1)= d — 1 minimax value is i or greater s (33)
ml'G,d -1,k —1)= ;umber of loss trees whose depth n-m. (34)

— 1 minimax value is i or greater

For all i and d, mw'(i,d—1, k — 1) approximates mw(i,d—1,k—1) and
ml'(i, d — 1, k — 1) approximates ml(i,d— 1,k —1). Thus an approximation
D'(d, k) of D(d, k) can be computed using (24).

Such a simulation has been done for n =3200 and k =3,4,...,14. The
results, which are shown in Table 3, match the results given in Section 4.1 fairly

D.S. NAU

272

0SZ9'0 TLBE'0 L6T90 006£°0 65790 +E8L'0 £919°0 BTCOE'0 CTTELI'0 8BLED E£119°0 &8¢0 o

000’1 4]
0001 0001 ¢l
000S'0 0001 000°T 4!
8560 10280 0001 0001 11
99PS 0 LPO90 SEISTHD 0001 000°1 01

0£95°0 €89¢°0 8SRS'0 LZ6S0 0001 0001 6
ISLS'0 96850 86LS(9¥E90 $SBSO 0001 000'1 8
SE8S'0 TEBS'O0 PPBSO L9900 TSPO0 95690 00O'I 0001 L
SIBS'D LEBS'O 16850 TSEY0 8BLY'D L68BYD BLESD 0001 0001 9
YC6S'0 PLBSO VHO90 PECI0 LSPOD 6599°0 £SELN 11RO 0001 000'1 S
8850 LEBS'D PvPES0 VYIEI0D 00P9'0 6£L9°0 POILO 8I6L'0 980G 0001 0001 14
PE6S' D 92650 $665°0 80C9N £E¥90 OIL9°0 9¢CL'0 OILL'0 09280 8€68'0 0001 0001 €
£019°0 8209°0 65090 99€9°'0 €6£9°0 0£L9°0 €9IL°0 TO69L'0 12080 TLL8'0O 8PI60 0001 ¢
0CT9°0 6ZI9°0 THI90 L9P9°0 96590 +¥S8Y0 TBTLO €L€9L°0 SCO8'0 +ev8'0 L9060 61560 1

Vi ¢l 41 8! o1 6 8 L 9 S % €

A12A1309dsa1 ‘UdA9 JO PpO ST ¥ se
(€0819°0) *m — [10 (L618¢°0) ‘# sorewixoidde ‘(opze Aq popIAIp SUIM JO Joquinu a3 Y M st
UM PI5I0j e Suloq 3pou [eurtnId) € Jo ANjiqeqoxd o) 9sed Yord uf 'y JO 2N[BA (oRd JO) sowres
00Z€ SuiAjoAul uouB[MUWIS O[JB)) 9JUO B Aq peonpoid ‘owed [Jeod Aleuiq B Ul ¥ 1ySidy
gpou pue p yidap yoreas jo uonouny v se (3 ‘p),(g UOISWIP 1991109 JO AN[IqRqOId "¢ 1AV],

273

CAUSES OF PATHOLOGY IN GAMES

%BLT %FT %61 %IT %ET %P0 %E0— %8T %ET %80— %II- %I'0 Jouey
%00 ¥
%00 %00 €1
%TO— %00 %00 Al
%Y0 %TO— %00 %00 I
%60 %IT %LO0— %00 %00 ot
%ET %E0— %ST— %00 %00 %00 6
BT LT %60— %60~ %S0 %00 %00 8
%6T %Y0 %PT— %ET %L1~ %F0— %00 %00 L
%OT %EO— %TT- %ET %SI— %TT— %L0— %00 %00 9
%BOE %E0— %S0— %60— %61— %IE— %80— %I0 %00 %00 S
%Yl %8I~ LT %EO0— %LT— %8T— %IT— %ED %E0— %00 %0°0 v
BT WET— %6T— %LT— %6T— BIE— %60— %I0— %S0~ %10 %00 %00 €
%OE %LO- %BT— W%IT— %0V— %TE— %ET— %I0 %LO0— %I0 %L0 %00 z
%YE %S O0- %OE— %60— %ET— %TT— %E0— %T0- %TO0— %S0— %S0 %S0 I
vl €l z 1 ot 6 8 L 9 S v € P

€ 9[qeL Ul USAIZ SE SI ¥ 2I1oym ‘A[9A110adsal ‘UdAD 10 ppo ST ¥ se ((m — 1)/((Fm — 1)
—) 10 IM/(Tm —) SUIRIUOD JOLID ¥, PI[dQe] MOI dY], ‘¢ pue g sd[qel ul uoAlf se are (¥ P),q
pue (¥ ‘P)d 21aym ‘afejuaoiad e se passaxdxa (¥ ‘PYa /(% ‘P)a — (¥ ‘p).q7) £imuenb 10110 oy, ‘¢ F1EV]

274 D.S. NAU

closely. In particular, the relative error (as shown in Table 4) is in all cases no
greater than 4%. This provides additional confirmation of the existence of
pathology in Pearl’s game.

5. A Nonpathological Game

5.1. Motivation and definitions

The preceding sections have demonstrated the existence of pathology in Pearl’s
game. It is well known that pathology does not occur in games such as chess or
checkers. For example, the most successful chess-playing computer programs
have achieved their success by searching the game tree as deeply as possible,
even at the expense of using a faster but less accurate evaluation function
[3, 16, 18, 19]. It is natural to wonder what kinds of differences between these
games and Pearl’s game might be responsible for this difference in behavior.

As pointed out in the last section, the occurrence of pathology in Pearl’s
game does not seem to be due to the evaluation function: pathology in Pearl’s
game occurs despite the fact that the evaluation function increases exponen-
tially in accuracy toward the end of the game, whereas evaluation functions for
chess are notoriously inaccurate in the endgame [17, 18].

We now discuss another major difference between Pearl’s game and games
such as chess or checkers which might be relevant to the occurrance or absence
of pathology. In games such as chess or checkers, the evaluation function value
of a node is usually positively correlated with the evaluation function value of
its parent. This also occurs in Pearl’s game. However, there is another kind of
dependency among node values which Pearl’s game does not have.

In games such as chess or checkers, positions are often characterized as
‘strong’ and ‘weak’. Strong nodes are likely to be win nodes, and are likely to
have high minimax values. Weak nodes are likely to be loss nodes, and are
likely to have low minimax values. Since board positions change incrementally,
a strong node is likely to have strong children, and a weak node is likely to
have weak children. Thus the minimax values of sibling nodes (or other closely
related nodes) are likely to be similar. Therefore, the game tree is likely to be
differentiated into sections containing many strong nodes and few weak nodes,
and sections containing many weak nodes and few strong nodes.

The above property does not occur in Pearl’s game. In particular, let P be a
Pearl game, and let g and g’ be any two nodes at the same depth in P. Then the
minimax values of g and g’, being functions of independent random variables,
are independent of each other.

In order to investigate games in which node strength changes incrementally,
we define a class of games which we call incremental games’ Let d be a

* The approach used here was inspired by a game tree model proposed by Newborn [12, p. 157]
and later used by Lindstrom [7, p. 41].

CAUSES OF PATHOLOGY IN GAMES 275

positive integer. We define a b-ary incremental game G of depth d as a game
having the same size playing board, the same moves, and the same criterion for
winning as a b-ary Pearl game of depth d. However, the initial playing board is
set up differently.

To set up the playing board for an incremental game G, each arc of the game
tree for G is independently, randomly given the value 1 with some probability
g or the value —1 with probability 1—¢g, where g is a constant such that
0 =g =< 1. The strength of a node g in the game tree is defined as the sum of the
arc values on the path from g back to the root. A square in the playing board
for G is given the value 1 if the corresponding terminal node of the game tree
has positive strength, and the value 0 otherwise. We arbitrarily choose g = 1/2.

We use the same evaluation function e for incremental games as we do for
Pearl games, for the same reasons. The depth d minimax value &,(g) for a node
g in an incremental game is defined in the same way as e;(g) was defined for
Pearl’s game.

Suppose a player is choosing a move at some node g of height k in a binary
incremental game, using a minimax search to depth d. If one of g’s children
(say, g1) is a forced win and the other (g,) is a forced loss, then (as with Pearl’s
game) we define a correct move to be a move to g, if the player is Max, or to g,
if the player is Min.

As with Pearl’s game, the probability of correct decision at g is thus

D(d, k) = Pr[&,-1(g1) > &s-1(g2)] + iPr{Es-1(81) = 2u-1(8))]

= > {Pr{eii(g) =)+ 1, e:(g) = /]

j=0

+3Prle, 1(81) = éa-1(g2) = /)} (35)
since sq(g;) = sq(g>) = 2¥!. If we define
mw(i, d, k) = Prles(g) = i | h(g) = k, win(g)] (36)
and
ml(i, d, k) = Pr{e,(g) =i | h(g) = k, loss(2)], 37

then (analogously to (24)),

2k-1

D(d, k)= {mw(i+1,d-1,k—1)
" X[miG,d-1, k- 1)~miG+1,d—1,k—1)]
+mw(j,d— 1, k- 1)-mw(j+1,d—1, k — 1)]
x[ml(j,d— 1,k —1)—ml(j+1,d -1, k — 1)}

276 D.S. NAU

2k-1 — o
=S mw(j,d—1,k—D+mw(j+1,d- 1, k—1)]

j=0

x[mi(j,d=1,k-1)-ml(j+1,d-1, k- 1)]. (38)

5.2. Monte Carlo simulation results

Analyzing incremental games mathematically is considerably more complicated
than analyzing Pearl games, and is not attempted here. However, since the
Monte Carlo simulation studies described in Section 4.2 gave good results, it
seems reasonable to simulate incremental games in a similar fashion.

As with Pearl’s game, we may create n incremental games of depth k — 1,
using a random number generator to determine the arc values in the game
trees. Let m be the number of games that are forced wins. For d =1,2,... k
andi=0,1,...,2%" let

number of win trees whose depth

mw'(i, d =1, k=1)= d — 1 minimax value is i or greater

(39)

ﬁ'(i, d—1,k—-1)= number- qf loss trees'wl}ose depth n—m. (40)
d — 1 minimax value is i or greater

As with Pearl’s game, mw'(i, d — 1, k — 1) approximates mw(i,d— 1,k —1) and
ml'(i, d — 1,k — 1) approximates ml(i, d— 1,k —1). Thus an approximation
D'(d, k) of D(d, k) can be computed using (38).

Such a simulation has been done for n =3200 and k =3,4,..., 14. The
results are shown in Table 5. As can be seen from this table, pathology does
not occur for any size of incremental game examined.

6. Conclusions and Speculations

Sections 2 through 4 of this paper provide a practical example of a nonintuitive
phenomenon which had previously been predicted theoretically: that in some
games or game trees, searching deeper can consistently degrade the quality of a
decision rather than improve it.

An obvious question is why pathology occurs in Pearl’s game but not in
games such as chess or checkers. Because of the markedly increasing accuracy
of the evaluation function as the end of the game approaches, the pathology in
Pearl’s game does not seem to be due to any deficiency in the evaluation
function. Indeed, the author suspects that pathological behavior would occur in
Pearl’s game for many (if not most) other reasonable evaluation functions.

A more likely cause of pathology was investigated in Section 5. This section
described a class of games called incremental games which is identical to
Pearl’s game except for the following property: the strength of a board position

277

CAUSES OF PATHOLOGY IN GAMES

79690 1€81°0 LV69°0 STOTO LPL9'0 O0SBT'0 #4890 90610 69.9°0 +ELT'0 T9690 #6C1°0 A
0001 4
000'T 0001 el

£186'0 000'T 0001 4t

P6L6'0 L0860 000'T 000'L 11

CEL6'0 €I86'0 +086'0 000'T 0001 0l

6960 9€L6'0 TOL6'0D 00860 000'T 000'L 6

0656’0 L8960 TS96'0 S6L6'0 LEB6'0 000'T 0001 8

6£S6'0 6856'0 6L56'0 T0L6'0 S9L6'0 LLL6O 000T 0001 L

LSV6'0 ¥8P6'0 01V6'0 SS96°0 1T96°0 6€£L6'0 8LL6O 000 0001 9

29L6'0 Y6E6'0 S6C6'0 0eS6'0 LES6'0 8LS6'0 10L6°0 SSL60 000'T 0001 S

CT6'0 61E6'0 VOT6'0 SEV6'0 LTE6'0 SBY6'0 T9V6'0 TTL6'0 19L60 000 0001 v

9LI6'0 BIC6'0 9L06'0 68¢6'0 18160 L6T60 LIE6'0 I9V6°0 0S96°0 6SL6'0 000T 0001 €

Z868°0 8V68'0 LS88'0 t906'0 90060 1L060 6S06'0 80£60 L6£60 ¥996'0 €FL60 0001 T

CLLB0 LELB'O TTLRO 80680 LIBS0 P068'0 6I88'0 S606'0 L6060 99¢60 LSP6'O0 CT0960 1

p

14! el 4! 1 01 6 8 L 9 S 14 €

00T€ AQ PIPIAIP SULM JO Joquinu dy) st 3 'Z/I = b st [anjea
Suiaey 901 awed ay) jo oI ue Jo Ajiqeqoid oY) ased yoes uyf "y JO Inea yoes Ioj sowed
00Z€ Buiajoaul uone[nWIs O[Ie)) IUO ' Aq paonpoid ‘owred [ejuowolour Areulq & ur ¥ 1ySay
apou pue p yidop yaIeas Jo uonounj e se (¥ p),(7 UOISIAP 1031100 JO A)[Iqeqoi] S T1EV],

278 D.S. NAU

changes in an incremental manner so that closely related nodes (e.g., sibling
nodes) have closely related minimax values. In contrast, the relative strengths
(and the minimax values) of sibling nodes in Pearl’s game are completely
independent.

It is likely that in games such as chess and checkers the strength of a board
position changes in a fashion closer to incremental games than to Pearl’s game.
Since the class of incremental games was shown to be nonpathological for the
same evaluation function used for Pearl’s game, this suggests that the in-
cremental change in node strength in games such as chess and checkers is one
of the reasons why such games are not pathological.

REFERENCES

1. Baudet, G.M., On the branching factor of the alpha-beta pruning algorithm, Artificial In-
telligence 10 (1978) 173-199.

2. Berliner, H.J., A chronology of computer chess and its literature, Artificial Intelligence 10
(1978) 201-214.

3. Biermann, A.W., Theoretical issues related to computer game playing programs, Personal
Computing 2 (1978) 86-88.

4. Fuller, S.H., Gaschnig, J.G., and Gillogly, J.J., Analysis of the alpha-beta pruning algorithm,
Department of Computer Science, Carnegie-Mellon University, 1973.

5. Knuth, D.E., and Moore, R.-W., An analysis of alpha-beta pruning, Artificial Intelligence 6
(1975) 293-326.

6. LaValle, 1.H., Fundamentals of Decision Analysis (Holt, Rinehart and Winston, New York,
1978).

7. Lindstrom, G., Alpha-beta on evolving game trees, Tech. Rept. UUCS 79-101, Computer
Science Department, University of Utah, 1979.

8. Nau, D.S., Quality of decision versus depth of search on game trees, Ph.D. Dissertation, Duke
University, Durham, NC, 1979.

9. Nau, D.S., Decision quality as a function of search depth on game trees, Tech. Rep. TR-866,
Computer Science Department, University of Maryland, 1980.

10. Nau, D.S., Pathology on game trees: a summary of results, Proc. First National Conference on
Artificial Intelligence Stanford University, Stanford, CA (1980) 102-104.

11. Nau, D.S., The last player theorem, Artificial Intelligence 18(1) (1982) 53-65.

12. Newborn, M.M., The efficiency of the alpha-beta search on trees with branch-dependent
terminal node scores, Artificial Intelligence 8 (1977) 137-153.

13. Nilsson, N.J., Problem-Solving Methods in Artificial Intelligence (McGraw-Hill, New York.
1971).

14. Pearl, J., Asymptotic properties of minimax trees and game-searching procedures, Artificial
Intelligence 14 (1980) 113-138.

15. Pearl, J., Colloquium talk, University of Maryland, 1980.

16. Robinson, A.L., Tournament competition fuels computer chess, Science 204 (1979) 1396-1398.

17. Thompson, K., Private communication, Bell Telephone Laboratories, Murray Hill, NJ, 1981.

18. Truscott, T.R., Personal communication, Computer Science Department, Duke University,
1979.

19. Truscott, T.R., Minimum variance tree searching, Proc. First International Symposium on Policy
Analysis and Information Systems Duke University, Durham, NC (1979) 203-209.

20. Truscott, T.R., Private communication, Duke University, Durham, NC, 1981.

21. Tummala, V.M.R., Decision Analysis with Business Applications (Intext, New York, 1973).

Received February 1981 revised version received January 1982

