
ARTIFICIAL INTELLIGENCE 257 

An Investigation of the Causes of 
Pathology in Games* 

Dana S. Nau 
C o m p u t e r  S c i e n c e  D e p a r t m e n t ,  U n i v e r s i t y  o f  M a r y l a n d ,  

Co l l ege  P a r k ,  M D  20742,  U . S . A .  

R e c o m m e n d e d  by J u d e a  Pear l  

ABSTRACT 
Game trees are a useful model of many kinds of decision-making situations, and have been the subject of 
considerable investigation by researchers in both artificial intelligence and decision analysis. 

Until recently it was almost universally believed that searching deeper on a game tree would in general 
improve the quality of a decision. However, recent theoretical investigations [8-10] by this author have 
demonstrated the existence of an infinite class of game trees for which searching deeper consistently 
degrades the quality of a decision. 

This paper extends the previous work in two ways. First, the existence of pathology is demonstrated in a 
real game (Pearl's Game) using a real evaluation function. This pathological behavior occurs despite the 
fact that the evaluation function function increases dramatically in accuracy toward the end of the game. 
Second, the similarities and differences between this game and a related nonpathological game are used 
as grounds for speculation on why pathology occurs in some games and not in others. 

1. Introduction 

G a m e  t rees  a re  a useful  m o d e l  of many  kinds  of dec i s ion -mak ing  s i tuat ions .  
F o r  this r eason  they  have  been  a sub jec t  of cons ide rab l e  inves t iga t ion  bo th  in 
art if icial  in te l l igence  and  in dec is ion  analysis .  

M a k i n g  a decis ion on a game  t ree  involves  searching the  t ree  to  c o m p u t e  
ut i l i ty  va lues  for  the  nodes  of the  t ree.  Since the  n u m b e r  of nodes  in the  t ree  
usual ly  grows exponen t i a l l y  with the  dep th  of the  t ree,  it is usual ly  not  feas ib le  
to  do  a c o m p l e t e  search of a large  game  tree,  even when pruning  t echn iques  
such as the  a l p h a - b e t a  a lgor i thm [1, 4, 5, 13] are  used.  

Ar t i f ic ia l  in te l l igence  resea rcher s  have  o b t a i n e d  good  resul ts  by searching  
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game trees to some limited depth, using a static evaluation function to estimate 
the utility values of the nodes at that depth, and then proceeding, in the usual 
manner, 1 to compute utility values for the shallower nodes of the tree as if the 
estimated values were correct [2, 3, 5, 13, 16]. Until recently there was almost 
universal agreement that when such a heuristic game tree search is done, 
increasing the depth of the search improves the quality of the decision. 
However, a recent investigation by this author [8-10] showed that, given a 
certain theoretical model of the errors made by an evaluation function, there 
exists an infinite class of game trees which are pathological in the sense that as 
long as the search does not reach the end of the tree (in which case a correct 
decision could be guaranteed), searching deeper will not increase the prob- 
ability that a decision is correct, but will instead cause the decision to become 
increasingly random. 

This paper extends the previous work in two ways. 
First, a game called Pearl's game is analyzed mathematically, and is shown to 

be pathological when the obvious evaluation function for that game is used. It 
is notable that this game was not invented for the purpose of demonstrating 
pathology, but was developed by Judea Pearl [15] for the purpose of analyzing 
the efficiency of game tree search procedures. Furthermore, pathology occurs 
in this game despite the fact that the evaluation function used for the game 
increases dramatically in accuracy as the end of the game approaches. 

Second, a game closely related to Pearl's game is devised which is shown not 
to be pathological. The differences between this game and Pearl's game 
provide grounds for speculation on why pathology occurs in Pearl's game but 
not in games such as chess or checkers. 

Section 2 describes Pearl's game. In Section 3, the quality of play in Pearl's 
game is analyzed as a function of the search depth when a minimax search is 
used. Section 4 uses the equations derived in Section 3 to provide numerical 
results which demonstrate the existence of pathology and describes a Monte 
Carlo simulation which corroborates the numerical results. Section 5 describes 
the related nonpathological game, and demonstrates its lack of pathology by 
means of a similar Monte Carlo simulation. Section 6 contains conclusions and 
speculations. 

2. Pearl's Game 

Judea Pearl [15] has described a class of two-player zero-sum games which he 
developed for use in analyzing the efficiency of various game tree search 
procedures [14]. This section describes the original class of games, generalizes 
it slightly, and discusses an appropriate evaluation function. Pearl's game 

In artificial intelligence research, 'minimaxing' is normally used, and the utility values are called 
'minimax values'. This corresponds to the maximin criterion of decision analysis [6, 21]. 
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refers to the entire class of games; each member  of the class is called a Pearl 
game. 

2.1. The original game 

As originally described, Pearl 's  game is played on a chessboard measuring 2 c 
by 2 ~ rather than 8 by 8, where c is a positive integer. The initial playing board 
for a game in this class is constructed by randomly assigning each square of the 
board the value 1 with probability p, or the value 0 with probability 1 -  p, 
where p is a constant and 0 --< p -<: 1. 

The two players move in strict alternation. A move for the first player 
consists of dividing the board in half vertically, and discarding one half. A 
move for the second player consists of dividing what is left of the board in half 
horizontally, and discarding one half. The play continues in this manner  until 
only one square is left. If the square has value 1, the player who made the last 
move wins. If it has value 0, his opponent  wins. 

2.2. A generalization 

Every game in the class described above always takes 2c moves to play no 
mat ter  what moves the players make.  We can augment the class to contain 
games taking d moves to play, where d may be either even or odd, by letting 
the playing board measures d t~21 squares by 2 rd/21 squares rather  than 2 c by 2q If 
d is odd, the first player will always have the last move;  if d is even, the second 
player will always have the last move. This 'last player '  we call Max, and his 
opponent  we call Min. 

For  every game in this class, the corresponding game tree is a complete 
binary game tree of depth d. G a m e  tree nodes where it is Max's  (or Min's) 
move we call max (or min) nodes, respectively. 

This class can be augmented to include games having complete  b-ary game 
trees for arbitrary b, by allowing the playing board to measure b td/2j by b rdm, 
and redefining a move to consist of dividing the board into b pieces (rather 
than just 2) and retaining only one of them. Each such game we call a b-ary 
Pearl game of depth d, and we call b the branching factor of the game. 

The playing board and game tree for a Pearl game with b = 2 and d = 4 are 
shown in Fig. 1. 

2.3. A restriction on p 

Let G be the game tree for a b-ary Pearl game of depth d. We denote the root 
of G by root(G).  It is easy to see that each node of G is either a forced win or 
a forced loss for Max if both players play perfectly. Such nodes we call win 
nodes and loss nodes, respectively. For example,  a terminal node of value '1' is 
a win node and a terminal node of value '0' is a loss node. 
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FIG. 1. A playing board for a 2-ary Pearl game of depth 4, and the corresponding game tree. Each 
Min node is indicated by an arc through the edges leaving the node. Note that Max has a forced 
win, as indicated by the solution tree drawn in boldface. 

Let  Pb, d be the p robab i l i t y  that  r o o t ( G )  is a win node .  If p is the  p robab i l i t y  
that  a t e rmina l  node  of G has the  va lue  '1 ' ,  then accord ing  to the  Last  P layer  
T h e o r e m  [11], 

(1) if p > Wb, then l i m d ~  Pb, d = l ; 

(2) if p < Wb, then l i m d ~ P b ,  d = 0; 
(3) if p = Wb, then 

1--Wb i f d i s o d d ,  
pb, d = wb if d is even,  

where  Wb is the  un ique  solut ion in the  in terval  (0, 1) of the  equa t ion  (1 - x)  ~ = x. 
Thus  the  p robab i l i t y  that  Max has a forced  win converges  to 1 or  0 when the 
p robab i l i t y  that  a t e rmina l  node  is a win is a b o v e  o r  be low Wb, respect ive ly .  
A c c o r d i n g  to [11] this conve rgence  is gene ra l ly  qu i te  rapid .  

Since we are  in t e res t ed  in games  where  bo th  p layers  have  a r e a sona b l e  chance  
of winning,  we will only  cons ide r  games  for  which p = wb. Fo r  b = 2, wh = 
I 
~ ( 3 -  X/5) ~ 0.382. O t h e r  values  of Wb are  given in T a b l e  1 2 

2The  importance of Wb in game tree searching has also been investigated by Pearl [14] and 
Baudet  [1]. 
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TABLE 1. A p p r o x i m a t e  values of Wb for b = 1, 2 . . . . .  50 
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b Wb b wb b wb b wb b wb 

1 0.50000 11 0.15560 21 0.10271 31 0.07872 41 0.06463 
2 0.38197 12 0.14745 22 0.09955 32 0.07700 42 0.06352 
3 0.31767 13 0.14024 23 0.09662 33 0.07536 43 0.06246 
4 0.27551 14 0.13382 24 0.09387 34 0.07380 44 0.06144 
5 0.24512 15 0.12805 25 0.09130 35 0.07231 45 0.06045 
6 0.22191 16 0.12283 26 0.08889 36 0.07088 46 0.05950 
7 0.20346 17 0.11809 27 0.08662 37 0.06952 47 0.05858 
8 0.18835 18 0.11375 28 0.08448 38 0.06822 48 0.05770 
9 0.17570 19 0.10977 29 0.08245 39 0.06697 49 0.05684 

10 0.16492 20 0.10610 30 0.08054 40 0.06577 50 0.05601 

2.4. An evaluation function for Pearl's game 

As is widely known,  it is unfeasible  to do a min imax  search of a game tree 
unless the tree is very small. Hence ,  min imaxing  requires  searching to some 
arbi t rary depth of the tree and  using a heurist ic eva lua t ion  funct ion to 

es t imate  the min imax  values of the nodes  at this depth.  If the value r e tu rned  by 
the funct ion is high, it should m e a n  that  the node  is p robably  a forced win, and  
if the value is low, it should mean  that the node  is p robably  a forced loss. 

Let g be a node  in a Pearl  game,  and  let gl and g2 be two of g ' s  children.  
Both gl and  g2 are rec tangular  boards  conta in ing  2 k squares for some k, and 

each square has a r a n d o m  value 1 or 0. 
If g, has more  '1'  squares than g2, it would seem more  likely that g, is a 

forced win then that g2 is a forced win. It is easy to prove that this is t rue using 

induct ion.  As  a special case, if the fraction of '1 '  squares in gl exceeds Wb and  
the fraction of '1 '  squares in g2 is less than wb, then (as we discussed earlier)  it is 

qui te  likely that gl is a forced win and  gz is a forced loss. Thus  the n u m b e r  of 
'1 '  squares in a game posi t ion is a reasonable  eva lua t ion  funct ion for a node  in 
a Pearl  game. We  deno te  the n u m b e r  of '1 '  squares in a node  g by e(g) .  

3. A Mathematical Analysis of Minimaxing in Pearl Games 

Let g be a node  in a game tree (3, and suppose the subt ree  rooted  at g has 
depth d or greater ,  for some d. W e  define the depth d min imax  value of g by 

e(g) if d = O, 
ed(g) = min{ea- l (g ' )  [ g '  is a child of g} if g is a min  n o d e ,  

max{ed_,(g ' )  [ g '  is a child of g} if g is a max n o d e .  

Choosing  a move  at g using a depth  d min imax  search means  choosing that 
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child of g which has the best depth d -  1 minimax value (so that the nodes at 
depth d relative to g determine the decision). By the 'best '  value we mean the 
highest value if Max is to move, or the lowest value if Min is to move.  If several 
nodes (say, J of them) receive this same value, then the player must choose 
among them at random. If I of them are forced win nodes, then the probability 
of making a 'correct '  move (i.e., a move to a position from which the player can 
force a win) is thus I/J. Hence the probability that a decision is correct depends 
on the accuracy of the depth d -  1 minimax values of g ' s  children. 

In this section we discuss how to compute  the probabili ty of correct decision 
in Pearl games when minimaxing is used. Eqs. (1) through (16) apply to b-ary 
Pearl games for arbitrary b, but because of computat ional  difficulties with the 
general case, (17) through (32) apply only to binary Pearl games. 

3.1. Computation of probability distributions for minimax values 

Let g be a node in a Pearl game G, and let h(g) be the height of g in G, i.e., 
the number  of moves from g to the end of the game. Then the number  of 
squares in the node g is sq (g )=  b h{g). This is the maximum possible value of 
e(g). 

Since each square in g independently receives value 1 with probabili ty p and 
0 with probabili ty 1 - p ,  we have 

Pr[e(g)= i ] h (g )=  k] = (sq}g))w~b(1-- Wb) ~qm-~ . (1) 

We denote the events that g is a win or loss node by win(g) and loss(g), 
respectively. From the definition of conditional probability, 

Pr[e(g) = i l h(g) = k, win(g)] = 

= Pr[win(g), e(g) = i[ h(g) = k] 
Pr[win(g) l h(g) = k] 

_ Pr[win(g) [ e(g) = i, h(g) = k] Pr[e(g) = i l h(g) = k] 
Pr[win(g) l h(g) = k] 

(2) 

Pr[e(g) = i l h(g )=  k] is given by (1). 
According to the Last Player Theorem,  

Pr[win(g) lh (g)  = k l =  { 7  b if k is even ,  
Wb if k is odd .  (3) 

The subtree of G rooted at g is a b-ary Pearl game of depth h(g). Since its 
terminal node values are independent,  each possible configuration of i '1' 
values and s q ( g ) -  i '0' values is equally likely. Thus 
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Pr[win(g) I e(g)  = i, h ( g ) =  k ] =  Wb(i, k)/~sq~g)) , l / t \  

where  Wb(i, k) is number  of b-ary Pearl games G'  of depth 
e ( root (G ' ) )  = i and win(root(G')) .  

In a manner  similar to the above,  we obtain 

(4) 

k for which 

Pr[e(g)  = i l h(g) = k, loss(g)] = 

_ Pr[loss(g), e(g)= i[ h(g)= k] 
Pr[loss(g) [ h(g) = k] 

Pr[loss(g) [ e(g) = i, h(g) = k] Pr[e(g)  = i I h(g) = k] 
= Pr[loss(g) [ h(g) = k] ; (5) 

Pr[loss(g) I h (g ) = k = { 1 -  Wb if k is even ,  
wb if k is odd ; (6) 

and 

Pr[loss(g) [ e ( g ) =  i, h ( g ) =  k ] =  Lb(i, k ) / ( sq lg )  ) ", (7) 

where  Lb(i, k) is the number  of b-ary Pearl games G '  of depth k for which 
e ( roo t (G ' ) ) - -  i and loss(root(G')) .  

No te  that 

Wb(i, k )+ Lb(i, k )= (sqlg) ) . 

Substituting into (2) and (5) yields 

(8) 

Pr[e(g)  = i[ h(g) = k, win(g)] = 

_ Wb(i, k ) (sqlg))Wib(1-- Wb)~(g)-i 

( sq lg ) )  (W~ ff k ~ l - ~ e  1 -  Wb) 

Wb(i, k ) w ~ ( 1 -  wb) bk-i 
(Wb if k is even, else 1 - Wb) ; (9) 

Pr[e(g)  = i[ h(g)= k, loss(g)] = 

_ Lb(i, k) 
( sq lg ) )  

( sq lg) )w~(1 - Wb ) ~tg)-i 

(1 - wb if k is even, else wb) 

Lb(i, k ) w ~ ( 1 -  wb) bL' 
( 1  - wb if k is even, else Wb)" (10) 
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3.2. Computation of Wh and Lb 

Wb(i, k) and Lb(i, k) can be  c o m p u t e d  recursively.  For  k = () the game  tree 
roo ted  at g consists of a single node,  whence  

W ( 0 , 0 ) = 0  and L ( 0 , 0 ) =  1" ( l l )  

W ( 1 , 0 ) = l  and L ( 1 , 0 ) = 0 .  (12) 

Eve ry  Pearl  game  G '  of even dep th  has a min node  as its root .  Such a node  
can be a win only if all b of  its children are wins. Thus  if k is even,  

and 

b 

Wb(i, k )=  ~_~ I-[ Wb(uj, k - 1) (13) 
Ul+U2+" ' "+Ub=i j = I  
Vj, O~u).~bk l 

Lb(i, k )= (b ik ) -  wb(i, k ) , (14) 

where  uj is the n u m b e r  of '1 '  squares  in the jth child of roo t (G ' ) .  
Eve ry  Pearl  game  G '  of odd  depth  has a max  node  as its root .  Such a node  

can be a loss only if all b of its children are losses. Thus  if k is odd,  

and 

b 

Lb(i, k ) =  ~ i--[ Lb(Uj, k - l) (15) 
U l + ' '  "+ub=i j= l 

Vj,O~ul~b k I 

?/k) Wb(i, k) = - Lb(i, k ) , (16) 

where  the uj are as before .  
The  compu ta t ion  of Wb(i, k) and Lb(i, k) as specified by (15) and (16) is 

ra ther  compl ica ted .  This  can be simplified in the case b = 2. In this case, 
W2(i, k) can be  c o m p u t e d  independent ly  of  Lz(i, k) in the following manner .  

If k is even (13) reduces  to 

r2 

W2(i, k ) =  ~ W2(u, k - 1)W2(i-  u, k - 1), (17) 
u=r  1 

where  rl = max(0, i - 2 k-l) and r2 = min(i, 2 k ~). 
If k is odd  there  are th ree  ways  that  the  event  {win(g), e(g) = i, h(g) = k} can 
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occur. O n e  is if both  of the chi ldren of g are wins. The  n u m b e r  of ways for this 
to occur is 

r2 

W2(u, k - 1 ) W 2 ( i -  u, k - 1), (18) 
u=r I 

where rl and  r2 are as in (17). 
The  second way is if the first child of g is a win and  the second is a loss. The  

n u m b e r  of ways this can happen  is 

r2 

~, W2(u, k - 1)L2( i -  u, k - 1 )=  
u=r I 

'2 1 ) ( ( 2 k - l ~ _ W 2 ( i _ u , k _ l ) ) .  = ~,  W2(u, k - ' , ' , i -  n /  
u=rl 

(19) 

The  third way is if the first child of g is a loss and  the second is a win. The  
n u m b e r  of ways this can happen  is also given by (19). 

Thus  for k odd, the total  n u m b e r  of ways the event  {win(g), e(g)= i, 
h(g) = k} can occur is 

r2 

W2(i, k )=  ~ W2(u, k - 1 ) W 2 ( i -  u, k - 1) 
l l - r  1 

r2 2k-I 
+2 ~ W2(u,k-1)((i_ u)- W2(i-u,k-1)) 

u = r  l 

r2 

= Z W 2 ( u , k - l )  [ ( ? k - l ) -  W 2 ( i - u , k - 1 ) ] .  
u=q L k l  - -  U /  

(20) 

3.3. The probability of correct decision 

Suppose a player  is choosing a move  at some node  g of height k in a b-ary 

Pearl  game,  using a min imax  search to depth  d. To  avoid computa t iona l  
difficulties we restrict b = 2. If one  of g ' s  chi ldren (say, g~) is a forced win and  
the o ther  (g2) is a forced loss, then we define a correct move  to be a move  to gl 
if the player  is Max, or to g2 if the player  is Min.  Since we are only  in teres ted in 
the probabi l i ty  of making  a correct  decision in the case where  it makes  a 
difference what  move  is made,  we do not  define a correct  move  if both  chi ldren 
are forced wins or both  are forced losses? 

3 Actually, the choice of move may still make a ditterence if both nodes are forced wins or both are 
forced losses. This could occur, for example, if one player's evaluation function were more accurate on 
the nodes of the subtree rooted at gl than on the nodes of the subtree rooted at g2. However, we have 
no way to predict such an occurrence. 
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Since M ax  m o v e s  to  the  n o d e  of  h ighes t  min imax  va lue  and  Min m o v e s  to 
the  n o d e  of  lowest  m in imax  value,  a cor rec t  decis ion will be  m a d e  if ea-~(g~)> 
ea-l(g2), and  an incor rec t  decis ion will be  m a d e  if ea-~(gl) < ea-~(g2). If ea l(g~) = 
ea-l(g2), then  the  p l aye r  mus t  c h o o s e  a m o n g  gl and  g2 at r a n d o m ,  w h e n c e  the  
p robab i l i ty  of  cor rec t  decis ion will be  1/2. H e n c e  the  p robab i l i ty  of  cor rec t  
decis ion at g is 

D(d ,  k )  = Pr[ea-,(gi) > ea-l(g2)] + ½Pr[ea-l(gl) = ea-~(g2)] 
2k-I 

= ~]  {Pr[ea ,(g,) ~>j + 1, ed-,(g2) = j] 
j=O 

+ ½Pr[ea l(g,) = ea ~(g2) = j )} ,  (21) 

s ince sq(gl)  = sq (g2)=  2 k-~. If we def ine  

mw(i,  d, k)  = Pr[ea(g) >1 i I h (g )  = k, win(g)]  (22) 

and  

ml(i, d, k)  = Pr[ed(g) >i i ] h (g )  = k, loss (g) ] ,  (23) 

then  

D(d ,  k ) =  
2 k 1 

~]  {mw(j  + 1, d - I, k - 1)[ml(j,  d - 1, k - l) 
/=0  

- m l ( j  + 1,  d - 1, k - 1)]  

+ ½[row(j, d - 1, k - 1) - m w ( j  + 1, d - 1, k - 1)] 

× [ml(j ,  d - l, k - 1) - ml ( j  + 1, d - 1, k - 1)]} 

2k-1 

= ~ ½ [ m w ( j , d - l , k - 1 ) + m w ( j + l , d - l , k - l ) ]  
j=o  

× [ml(j ,  d -  1, k - 1 ) -  ml ( j  + 1, d -  1, k -  1)].  (24) 

W e  n o w  discuss h o w  to c o m p u t e  m w  and  ml. Since e(g)  is neve r  g rea t e r  than  
2 k , 

mw(2  k, O, k)  = P r [ e (g )  = 2klh(g)  = k, win(g)]  (25) 

and  

ml(2 k, 0, k)  = P r [ e (g )  = 2 k [ h(g)  = k, loss (g) ] ,  (26) 

for  k = 0, 1, 2 . . . . .  T h e s e  values  can be  c o m p u t e d  f r o m  (9) an d  (10). F r o m  (9) and  
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(10) we can then recursively c o m p u t e  

mw(i, 0, k)  = mw(i  + 1, 0, k)  + Pr [e(g)  = i[ h ( g )  = k, win(g)] (27) 

and 

ml(i, 0, k)  = ml(i  + 1, 0, k)  + Pr [e(g)  = i[ h(g)  = k, loss(g)] ,  (28) 

for  i = 2 k-1 to 0. 
Suppose  k is even,  g is a node  of height  k with chi ldren gl and g2, and d -< k. 

Then  g is a min node,  so ed(g) >i i only if ed-l(gl) >! i and ed-l(g2) >! i. Fur ther -  
more ,  g is a win only if bo th  g~ and g2 are wins, so 

mw(i, d, k)  = Pr[ed(g)/> i I win(g1), win(g2)] 

= Pr[ed_~(g~) >1 i l win(g~), win(g2)] 

x Pr[ed-l(g2) >! i I win(g1), win(g2)] 

-- Pr[ea_~(gl) >I i l win(gl)]Pr[ea-l(g2) >i i l win(g2)] 
= (mw(i, d -  1, k - 1)) 2 . (29) 

But  g is a loss if e i ther  gl or  g2 is a loss, so 

ml(i, d, k)  = Pr[ed(g) >I i I loss(g)] 

= Pr[ed(g)/> i [ loss(g1), loss(g2)]Pr[loss(g~), loss(g2) [ loss(g)] 

+ Pr[ed(g) >t i I loss(g~), win(g2)]Pr[loss(gl), win(g2) [ loss(g)] 

+ P r [ e a ( g ) ~  i l win(g0, loss(g2)]Pr[win(g~), loss(g2) [ loss(g)] 
= Pr[ed-l(gl) >I i I loss(gl)]Pr[ed_l(g2) I> i I loss(g2)] 

X Pr[loss(gl), loss(g2)]/Pr[loss(g)] 

+ Pr[ed-l(gl) >i i [ loss(gl)]Pr[ed_l(g2) ~> i I win(g2)] 

x Pr[loss(gl), win(g2)/Pr[loss(g)] 

+ Pr[ed_~(g~) >! i l win(gl)]Pr[ea-~(g2) ~ i l loss(g2)] 

× Pr[win(gl),  loss(g2)]/Pr[loss(g)] 

_ ml(i, d -  1, k - 1)2(w2) 2 
1 - -  W 2 

+ 2 ml(i, d - 1, k - 1)mw(i, d - 1, k - 1)w2(1 - -  w 2 )  

1 -  WE (30) 
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Suppose k is odd instead of even. Then g is a max node,  so ed(g) < i only if 
ea-~(gl) < i and ed-~(g2) < i. Now, g is a win if ei ther  of  g~ or  g2 is a win, so as 
with (30), 

mw(i, d, k) = 1 - Pr[ea(g) < i ] win(g)] 

= 1 - {Pr[ed-l(gO < i 1  win(gl)]Pr[ed_~(g2) <i] win(g2)] 

x Pr[win(g0,  win(g2)]/Pr[win(g)] 

+ Pr[e~-~(g0 < i] win(gO]Pr[ea_~(g2) < i l loss(g2)] 

x Pr[win(g0,  Ioss(gz)]/Pr[win(g)] 

+ Pr[ea-~(g0 < i] loss(gO]Pr[ea-~(g2) < i l win(g2)] 

x Pr[loss(g0, win(g2)]/Pr[win(g)]} 

1 - [(1 - mw(i, d - 1, k - 1))2(w2) 2 
L 1 - w2 

+ 2 ( 1 - m w ( i ,  d -  1, k -  1 ) ) (1-ml( i ,  d -  1, k - 1))w2(1- w2)] 
l + w 2  ] 

(31) 

But g is a loss only if both gl and g2 are losses, so as with (29), 

ml(i, d, 1) = 1 - Pr[ea(g) < i I loss(g)] 

= 1 - (Pr[ed-l(gO < i I loss(gO]Pr[ed_l(gz) < i I loss(g2),j 

= 1 - (1 - ml(i, d - 1, k - 1)) 2 . 

Thus  for  b = 2 ,  k = 0 , 1  . . . . .  d = 0  to k, and i = 0  to 2 k, m w ( i , d , k )  can be 
compu ted  f rom (25) through (30). 

4. Numerical Results for Pearl's Game 

4.1. Analytical results 

Let  g be  a node  of height k in a binary Pearl  game,  and suppose one child of  g 
is a forced loss node  and the o ther  is a forced win. Then  the probabil i ty of 
correct  decision D(d,  k) at g for all search depths d = 1, 2 . . . . .  k may be 
c o m p u t e d  f rom the equat ions  in Section 3. 

A compute r  p rogram was written to do these computa t ions .  Its output  is 
given in Table  2 and Fig. 2. As  can be seen f rom Fig. 2, D(d,  k) tends to 
increase with d for  k ~< 7. But  as k increases, it is increasingly c o m m o n  for  
D(d,  k) to  decrease as d increases (as long as d ~< k - 2). 

It was unfeasible to run the p rogram for  k > 15, because the computa t ion  
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12 , , , 

i r :' 
kZ ,: i i 

@ 5 rO 

FIG.  2. P r o b a b i l i t y  o f  c o r r e c t  d e c i s i o n  O(d, k) as  a f u n c t i o n  o f  d, f o r  d = 1, 2 . . . . .  k -  2. I f  

d = k - 1 o r  d = k, t h e n  D(d, k ) =  1, as  i n d i c a t e d  by  t h e  d o t t e d  l ines .  

takes exponentially increasing time and space requirements. 4 However,  the 
author expects that the tendency for D(d, k) to decrease as d increases holds 
for all k > 15. A rigorous proof of this would be quite difficult because of the 
complexity of the expressions used to compute D(d, k). 

Some readers have speculated that the reason pathology does not occur on 
games such as chess or checkers is that the evaluation functions in such games 
become more accurate toward the end of the game, thus making deeper  
searches more accurate. Experts on game-playing computer  programs con- 
suited by this author disagree with such statements [17, 20], but it is interesting 
to consider the same issues with respect to Pearl's game. 

One easy way to measure the accuracy of e(g) as a function of the distance k 
from g to the end of the game is to look at the probability of correct decision at 
g when evaluating g's children directly. This probability is D(1, k), which is 
graphed as a function of k in Fig. 3. Note that e increases exponentially in 
accuracy as the end of the game approaches. Thus deeper  searches make 
use of board information which is dramatically more accurate, and the 
pathological behavior illustrated in Fig. 2 occurs despite this fact. 

4 T h e  p r o g r a m  w a s  s t a r t e d  w i t h  k = 16 on  a V a x  11/780,  a n d  h a d  t a k e n  a b o u t  48  h o u r s  o f  C P U  

t i m e  w i t h o u t  f i n i s h i n g ,  w h e n  t h e  s y s t e m  c r a s h e d .  
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D(I k) 
1.0 

.9 

8 

.7- 

.5 I L : ~ k  
0 5 I0 15 

FIG. 3. D ( I ,  k )  as a func t i on  o f  k. Th is  p rov ides  a measure o f  the accuracy o f  e(g)  when  g is at 

distance k f rom the end of the game. 

4.2. Monte Carlo simulation results 

Rathe r  than using the mathemat ica l  results f rom Section 3, it is also possible to 
est imate the probabil i ty of correct  decision on binary Pearl  games using Monte  
Carlo simulation techniques.  This can be done  as follows. 

Given  k and some positive integer n, create  n binary Pearl  games of  depth 
k - 1 ,  using a r a n d o m  number  genera tor  to de te rmine  which squares have 
value 0 and which have value 1. Let  m be the number  of games that  are forced 
wins. For  d = 1, 2 . . . . .  k and i = 0, 1 . . . . .  2 k- l ,  let 

number  of win trees whose  depth / 
mw'(i, d -  1, k - 1 )=  d -  1 mlmmax value is t or  greater//  (33) 

number  of  loss trees whose depth / 
. . . .  n - (34) ml'(i, d -  1, k - 1 )=  d -  1 minimax value is l or  g r e a t e r /  m .  

For  all i and d, m w ' ( i , d - l , k - 1 )  approximates  m w ( i , d - l , k - 1 )  and 
ml'(i, d -  1, k - 1) approximates  ml(i, d - 1, k - 1). Thus  an approximat ion  
D'(d, k) of D(d, k) can be compu ted  using (24). 

Such a simulation has been done  for  n = 3200 and k = 3 ,4  . . . . .  14. The  
results, which are shown in Table  3, match the results given in Section 4.1 fairly 
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closely. In particular, the relative error (as shown in Table 4) is in all cases no 
greater than 4%. This provides additional confirmation of the existence of 
pathology in Pearl's game. 

5. A Nonpathological Game 

5.1. Motivation and definitions 

The preceding sections have demonstrated the existence of pathology in Pearl's 
game. It is well known that pathology does not occur in games such as chess or 
checkers. For example, the most successful chess-playing computer programs 
have achieved their success by searching the game tree as deeply as possible, 
even at the expense of using a faster but less accurate evaluation function 
[3, 16, 18, 19]. It is natural to wonder what kinds of differences between these 
games and Pearl's game might be responsible for this difference in behavior. 

As pointed out in the last section, the occurrence of pathology in Pearl's 
game does not seem to be due to the evaluation function: pathology in Pearl's 
game occurs despite the fact that the evaluation function increases exponen- 
tially in accuracy toward the end of the game, whereas evaluation functions for 
chess are notoriously inaccurate in the endgame [17, 18]. 

We now discuss another major difference between Pearl's game and games 
such as chess or checkers which might be relevant to the occurrance or absence 
of pathology. In games such as chess or checkers, the evaluation function value 
of a node is usually positively correlated with the evaluation function value of 
its parent. This also occurs in Pearl's game. However, there is another kind of 
dependency among node values which Pearl's game does not have. 

In games such as chess or checkers, positions are often characterized as 
'strong' and 'weak'.  Strong nodes are likely to be win nodes, and are likely to 
have high minimax values. Weak nodes are likely to be loss nodes, and are 
likely to have low minimax values. Since board positions change incrementally, 
a strong node is likely to have strong children, and a weak node is likely to 
have weak children. Thus the minimax values of sibling nodes (or other closely 
related nodes) are likely to be similar. Therefore, the game tree is likely to be 
differentiated into sections containing many strong nodes and few weak nodes, 
and sections containing many weak nodes and few strong nodes. 

The above property does not occur in Pearl's game. In particular, let P be a 
Pearl game, and let g and g '  be any two nodes at the same depth in P. Then the 
minimax values of g and g', being functions of independent random variables, 
are independent of each other. 

In order to investigate games in which node strength changes incrementally, 
we define a class of games which we call i nc remen ta l  games .  5 Let d be a 

5 The approach used here was inspired by a game tree model proposed by Newborn [1:2, 13. 157] 
and later used by Lindstrom [7, p. 41]. 



CAUSES OF P A T H O L O G Y  IN GAMES 275 

positive integer. W e  define a b-ary incremental  game G of  depth d as a game  
having the same size playing board,  the same moves,  and the same criterion for 
winning as a b-ary Pearl  game of  depth d. However ,  the initial playing board  is 
set up differently. 

To  set up the playing board  for  an incremental  game G, each arc of the game 
tree for  G is independent ly ,  r andomly  given the value 1 with some probabil i ty 
q or  the value - 1  with probabil i ty l - q ,  where q is a constant  such that 
0 <~ q <~ 1. T h e  strength of a node  g in the game tree is defined as the sum of the 
arc values on the path f rom g back to the root.  A square in the playing board  
for G is given the value 1 if the cor responding  terminal  node  of the game tree 
has positive strength,  and the value 0 otherwise.  We  arbitrarily choose  q = 1/2. 

W e  use the same evaluation function e for  incremental  games as we do for 
Pearl  games,  for the same reasons. The  depth d minimax value ~a(g) for a node  
g in an incremental  game is defined in the same way as ed(g) was defined for 
Pearl 's  game.  

Suppose  a player  is choosing a move  at some node  g of height k in a binary 
incremental  game,  using a minimax search to depth d. If one  of  g ' s  children 
(say, g~) is a forced win and the o ther  (g2) is a forced loss, then (as with Pearl 's  
game) we define a correct move  to be a move  to gl if the player  is Max, or  to g2 
if the player  is Min. 

As  with Pearl 's  game,  the probabil i ty of correct  decision at g is thus 

E3(d, k) = Pr[~d-l(gl) > ~d-l(g2)] + 1pr[~d-l(gl) = ed-l(g2)] 

2k-I 

= ~_~ (Pr [~d - l (g l )~ j  + 1, ea-l(g2) = j] 
j=0 

+ 1pr[ed-l(gl) = ~d-,(g2) = j)} (35) 

since sq(gl) = sq(g2) = 2 k-1. If we define 

mw(i, d, k)  = Pr[~d(g) >I i l h (g )  = k, win(g)] 

and 

ml(i, d, k) = pr[~d(g) ~ > i] h(g)  = k, loss(g)] ,  

then (analogously to (24)), 

2k-I 

/9(d, k) = Y~ {mw(j + 1, d - 1, k - 1) 
j=O 

x [rrd(j, d - 1, k - 1) - ml(j  + 1, d - 1, k - 1)] 

+ ½[rnw(j, d - 1, k - 1) - m w ( j  + 1, d - 1, k - 1)] 

x [ml(j, d - 1, k - 1 ) -  ml( j  + 1, d - 1, k - 1)]} 

(36) 

(37) 
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2 k - I  

= ~., ½[row(j, d - 1, k - 1) + m w ( j  + 1, d - 1, k - 1)] 
]=0 

x [ml(j ,  d -  1, k - 1 ) -  m l ( j  + 1, d -  1, k - 1)]. (38) 

5.2. Monte Carlo simulation results 

Ana lyz ing  inc remen ta l  games  m a t h e m a t i c a l l y  is cons ide rab ly  m o r e  compl i ca t ed  
than  analyz ing  Pear l  games ,  and  is not  a t t e m p t e d  here .  H o w e v e r ,  s ince the  
M o n t e  Car lo  s imula t ion  s tudies  desc r ibed  in Sect ion 4.2 gave g o o d  results ,  it 
s eems  r ea sonab l e  to s imula te  inc remen ta l  games  in a s imi lar  fashion.  

A s  with Pea r l ' s  game,  we may  c rea te  n inc remen ta l  games  of dep th  k - 1, 
using a r a n d o m  n u m b e r  g e n e r a t o r  to d e t e r m i n e  the arc va lues  in the  game  
t rees .  Le t  m be  the  n u m b e r  of games  that  are  forced  wins. F o r  d = 1,2 . . . . .  k 
and  i = O, 1 . . . . .  2 k- l ,  let 

- n u m b e r  of win t rees  whose  dep th  / 
. . . .  m mw'(i ,  d - 1, k - 1) = d - 1 min imax  va lue  is t o r  g r e a t e r /  " (39) 

- -  n u m b e r  of loss t rees  whose  dep th  / 
. . . .  n - (40) ml'( i ,  d -  1, k - 1) = d -  1 min imax  va lue  is t o r  g r e a t e r /  m .  

A s  with Pea r l ' s  game,  mw'(i ,  d -  1, k - 1) a p p r o x i m a t e s  mw(i,  d - 1, k - 1) and  
ml'(i ,  d -  l ,  k - l )  a p p r o x i m a t e s  ml(i,  d -  l ,  k - 1). Thus  an a p p r o x i m a t i o n  
/ ) ' ( d ,  k)  o f / ) ( d ,  k)  can be  c o m p u t e d  using (38). 

Such a s imula t ion  has  been  done  for  n = 3200 and  k = 3 , 4  . . . . .  14. The  
resul ts  are  shown in Tab le  5. A s  can be  seen f rom this table ,  pa tho logy  does  
not  occur  for  any size of i nc remen ta l  game  examined .  

6. Conclusions and Speculations 

Sect ions  2 th rough  4 of this p a p e r  p rov ide  a prac t ica l  e xa mp le  of a non in tu i t ive  
p h e n o m e n o n  which had  p rev ious ly  been  p r e d i c t e d  theore t i ca l ly :  that  in some 
games  or  g a m e  trees,  searching  d e e p e r  can cons is ten t ly  de g ra de  the  qual i ty  of a 
decis ion r a the r  than improve  it. 

A n  obv ious  ques t ion  is why p a t h o l o g y  occurs  in Pea r l ' s  game  but  not  in 
games  such as chess o r  checkers .  Because  of  the  m a r k e d l y  increas ing accuracy 
of the  eva lua t ion  funct ion as the  end  of  the  g a m e  app roaches ,  the  pa tho logy  in 
Pea r l ' s  game  does  not  seem to be  due  to any def ic iency in the  eva lua t ion  
funct ion.  I ndeed ,  the  au thor  suspects  that  pa tho log ica l  b e h a v i o r  would  occur  in 
Pea r l ' s  game  for  many  (if not  most)  o the r  r e a sona b l e  eva lua t ion  funct ions.  

A m o r e  l ikely cause  of pa tho logy  was inves t iga ted  in Sect ion 5. This  sect ion 
desc r ibed  a class of games  cal led  inc remen ta l  games  which is ident ica l  to 
Pear l ' s  game  except  for  the  fo l lowing p r o p e r t y :  the  s t rength  of a b o a r d  pos i t ion  
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changes in an incremental manner so that closely related nodes (e.g., sibling 
nodes)  have closely related minimax values. In contrast, the relative strengths 
(and the minimax values) of sibling nodes in Pearl's game are completely 
independent.  

It is likely that in games such as chess and checkers the strength of a board 
position changes in a fashion closer to incremental games than to Pearl's game. 
Since the class of incremental games was shown to be nonpathological  for the 
same evaluation function used for Pearl's game, this suggests that the in- 
cremental change in node strength in games such as chess and checkers is one  
of the reasons why such games are not pathological. 
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