ARTIFICIAL INTELLIGENCE 221

Pathology on Game Trees Revisited,
and an Alternative to Minimaxing™*

Dana S. Nau

Computer Science Department, University of Maryland,
College Park, MD 20742, U.S.A.

ABSTRACT

Almost all game tree search procedures used in artificial intelligence are variants on minimaxing.
Uniil recently, it was almost universally believed that searching deeper on the game tree with such
procedures would in general yield a better decision. However, recent investigations have revealed the
existence of many game trees and evaluation functions which are ‘pathological® in the sense that
searching deeper consistently degrades the decision.

This paper extends these investigations in 1wo ways. First, it is shown that whenever the evaluation
function satisfies certain properties, pathology will occur on any game tree of high enough constant
branching factor. This result, together with Monte Carlo studies on actual games, gives insight into the
causes of pathology. Second, an investigation is made of a possible cure for pathology: a probabilistic
decision procedure which does not use minimaxing. Under some conditions, this procedure gives
results superior to minimaxing.

1. Introduction

Almost all game tree search procedures used in artificial intelligence are
variants on the following process: the tree is searched to some arbitrary depth,
a static evaluation function is used to compute approximations of the utility
values of the nodes at that depth, and minimaxing is used to compute
approximations of the utility values of shallower nodes. Until recently, there
was almost universal agreement that increasing the depth of the search would
improve the quality of the decision. This property was dramatically illustrated
in games 'such as chess and checkers using game playing computer programs
[4, 20, 22]. However, a recent investigation by Nau [8,9, 12] demonstrated the
existence of a large class of game trees which are pathological in the following
sense: for a wide class of evaluation functions, searching deeper consistently

*This work was supported by NSF Grants ENG-7822159 and MCS-8117391 to the Laboratory
for Pattern Analysis at the University of Maryland.

Artificial Intelligence 21 (1983) 221-244
(004-3702/83/0000—0000/$03.00 © North-Holland

222 D.S. NAU

degrades the quality of the decision. Pathology has been more recently in-
vestigated by Beal [2], Bratko and Gams [5], and Pearl [19].

Given that pathology can occur, why does it not occur in games such as chess
and checkers? This question has been investigated by both Nau [10] and Pearl
[19].

Nau [10] has examined two closely related classes of games, one pathological
and one nonpathological. Examination of the differences between these two
classes of games suggests that if the amount of ‘strength’ or ‘weakness’ in a
board position tends to be roughly the same for sibling nodes, then pathology is
less likely. This may be one reason why games such as chess and checkers are
not pathological.

Pearl [19] has demonstrated that for a certain class of games and a wide class
of evaluation functions, the evaluation function error must be reduced by over
50% at each successive scarch depth in order to avoid pathology. However, if
these game trees are modified to include leaf nodes at random at all levels of
the game tree, pathology disappears. The occurrence of such ‘traps’ or quick
endings to the game may be another reason for the absence of pathology in
chess, checkers, and similar games.

Onc purposc of the current paper is to further investigate the conditions
under which pathology occurs. To this end, a theorem is proved which
generalizes the pathology theorems proved in [8, 12]. This theorem states that
if certain restrictions on the game tree and evaluation function are satisfied,
pathology will occur whenever the branching factor of the game tree is
sufficiently large. This theorem, together with the results of Monte Carlo
studies on pathological and nonpathological games, provides additional support
for the conjecture that pathology is less likely when sibling nodes have similar
strengths.

This paper also investigates a possible cure for pathology. Pearl [19] has
suggested that pathology might be avoided by mapping the usual static evalua-
tion function into one which returns the probability that a node is a forced win,
and replacing the minimax decision procedure by a decision procedure which
treats the evaluation function values as independent probabilities. We examine
a modification of this approach which takes an ordinary evaluation function,
normalizes its values to fall in the interval [0, 1], and uses these values as
approximations of the probability that a node is a forced win.

Using Monte Carlo simulation techniques, the probability of making a
correct choice of move using this probabilistic decision procedure is in-
vestigated for two classes of games—a class of pathological games and a class
of nonpathological games. For the nonpathological games, the procedure yields
a probability of correct decision almost cxactly the same as that obtained by a
minimax search to the same depth. For the pathological gamcs, the prob-
abilistic decision proccdure avoids pathology, and gives significantly higher
probabilitics of correct decision than minimaxing.

PATHOLOGY ON GAME TREES REVISITED 223

Intuitively, if the probabilistic decision procedure has a better probability of
yielding the correct decision than minimaxing on the pathological games, then
a player using this procedure should win more of these games than an
opponent using minimaxing. To find out how many more games, a tournament
of 3200 games is played between the two players. Somewhat disappointingly,
the probabilistic decision procedure wins only marginally more games than are
won by using minimaxing. Possible reasons for this are discussed in the last two
sections of this paper.

Section 2 contains preliminary material. Section 3 presents the pathology
theorem (which is proved in Appendix A), and Section 4 discusses the related
Monte Carlo studies. Section 5 discusses the probabilistic decision procedure
and the Monte Carlo studies comparing it to minimaxing. Section 6 contains
concluding remarks.

2. Preliminaries

This section contains definitions of many of the terms used in this paper, as
well as a few preliminary mathematical results.

By a game we mean a zero-sum, perfect information game between two
players, in which there is strict alternation of play between the two players. At
his move, each player may be allowed only finitely many possible choices of
moves (although we do not require that the game end after a finite number of
moves). '

Let G be the game tree for such a game. Then each node of G corresponds
to a position in the game, with the root, root(G), corresponding to the game’s
beginning. Each arc of G corresponds to a move in the game, and each leaf
node (node with no children) corresponds to one possible way the game might
end. Associated with each leaf node are the payoffs the two players receive for
that particular ending to the game. By depth(g) we mean the length of the path
from root(G) to position g; i.e., the number of moves it takes to get to node g.
By depth(G) we mean

max{depth(g) | g is a node of G}.

We define the wiility value u(g) to be the payoff which the player who moves to
g would receive if both players played perfectly from that point on. Since G is
a zero-sum game, the payoff for that player’s opponent would be —u(g). The
utility valiie of g may be computed using the following ‘negamax’ formula [6]:

if g is a leaf,
—max{u(g’y | g’is a child of g}, otherwise.
Let b>0 and d >0 be integers. G is a b—ary game tree (or game tree of
branching factor b) if every nonleaf node of G has exactly b children. G is complete
to depth d if no node of depth less than d is a leaf.

the payoff for the player who moves to g,
u(g)= (.1)

224 D.S. NAU

An evaluation function for G is any real-valued function e(g) intended to
return an approximation of u(g). Ideally, e(g) would return exactly u(g), but
evaluation functions are usually somewhat (and sometimes drastically) in error.
For example, evaluation functions for chess are notoriously inaccurate in the
endgame [23].

Other approximations to u(g) may be computed by computing e(g’) for all
nodes g’ of some fixed depth d in the subtree rooted at g and putting these
approximate utility values into the negamax formula to compute values for the
shallower nodes of the subtree. The value computed for g is this way, which we
call the depth d minimax value for g, is

_ [e(g), if d=0,
mm(d, g) = {—max{mm (d—1,8) | g’ isachildof g}, otherwise.

2.2)

Pruning procedures such as alpha-beta [6, 14], scour [16], SSS* [21] and B* [3],
have been developed to speed the computation of mm(d, g).

One way to choose a move at node g is to choose whichever child g’ of g has
the highest depth d ~ 1 minimax value mm(d — 1, g’). If more than one node
has this value, the choice may be made at random from the set of all children
of g having this value. We call this decision procedure a depth d minimax
search, since it involves evaluating the nodes at depth d in the subtree of G
rooted at g.

Consider the equation

x = (1-(1-x)°)°.
It is known [11] that for each value of b, this equation has exactly one solution
in the interval (0, 1). This value we call w(b). As an example, w(2) = 3(3—-V5),
or approximately 0.382. Other values of w(b) are given in [11]. w(b) is a
monotonically decreasing function, with

lim w(b)=0. 2.3)

b—>
Other properties of w(b) have been investigated by Nau [8, 11], Baudet [1]

and Pearl {16].
Let 0s=x=1, and let b=0 and i =0 be integers. We dcfine

X, ifi=0,
si(b, x) = [1-(1— si1(b, X)), if i >0 is odd, 2.4)
(si-1(b, x))°, if i >0 is even.

It is proved [11] that

. _ {1 ifx>w(b),
l.1m si(b, x) = {0 if x < w(b). 2.5)

-

PATHOLOGY ON GAME TREES REVISITED 225

and that if x = w(b), then

_ [w(b), if i is even,
si(b, x) = {1 —w(b), ifiisodd.

si(b, x) is important in analyzing the probability that a decision is correct when
a minimax search is used.

(2.6)

3. A New Theorem about Pathology

By choosing either accurate or inaccurate evaluations for nodes far down in a
game tree G, evaluation functions can be constructed whose performance
either improves or degrades at increasing search depths. Thus no universal
statements can bc made about the quality of evaluation functions as a function
of search depth. To avoid this difficulty, we consider the error in e(g) to be
stochastic in nature. Thus the members of {e(g) | g is a node of G} are taken
to be discrete random variables (which are not necessarily independent or
identically distributed).

Let h be the highest value that e is capable of returning on any node of G.
Then p > 1 is a dependence bound for e if for every node g in G and for cvery
set of constraints C on any subsets of {e(g’) | g’ # g and depth(g’) = depth(g)},

Prle(g)=h | C]=Pr[e(g)=h]/p.

This means that the probability that e returns /i depends only to a limited
extent on the values of other nodes at the same level.

The evaluation functions investigated in [8, 12] are special cases of evaluation
functions with dependence bounds. Theorem 3.1 below deals with the set of all
evaluation functions having dependence bounds, and deals with a much more
general set of game trees than the game trees investigated in [8, 12]. Thus the
pathology theorem in [8, 12] is a special case of Theorem 3.1.

Theorem 3.1. Let G be a b-ary game tree, and let g be a node of G. Let e be an
evaluation function for G with dependence bound p,! and let

c = inf Prle(g) = h],
g€C
where h is the highest value that e can return on any node of G. Let tie(d, g)
denote the cvent that all children of g receive the same minimax value when a
depth d minimax search is done. If the subtree rooted at g is complete to at least
depth d, then

Prftie(d, g)] > (s4-1(b, c/p))’ - (3.1)

"Theorem 3.1 could casily be generalized by assuming that the dependence bound p and the
resulting equation (3.1) only apply to the first k levels of the game tree for some k. To avoid
complicating the presentation, we do not do this here.

226 D.S. NAU
Proof. See the Appendix A.

Corollary 3.2. Suppose that the hypotheses of Theorem 3.1 hold and that G is
complete to every depth d <o, If c/p > w(b), then

lim Prftic(d, g)]=1.
dx

Proof. Immediate from Theorem 3.1 and (2.5).

The significance of Theorem 3.1 is as follows. Supposc the hypotheses of
Theorem 3.1 hold on some game of depth k whose branching factor b is such
that ¢/p > w(b) (from (2.3), this is achieved if b is sufficiently large). Then from
(2.5),

lim sy(b, c/p)=1.
d—x
As shown in [16], this convergence is superexponentially fast. But from
Theorem 3.1, as long as d <k,

Prtic(d,)] > (sa-1(b, c/p))*.

This means that as long as the search depth is less than k, increasing the scarch
depth makes it increasingly likely that all nodes get exactly the same minimax
value h. Thus with increasing search depth, it becomes increasingly likely that
the choice of move must be made at random, with all possible choices of move
being equally likely.

4. Two Games

Theorem 3.1 suggests that games with large branching factors are more likely
to be pathological. In this section, we examine the behavior of two classes of
games as a function of the branching factor.

4.1. Descriptions of the games

The following is a trivial generalization of a class of games invented by Judea
Pearl [17] for use in analyzing the computational complexity of game tree
search procedures. A P-game (known in [10] as a Pearl game) is played on a
chessboard measuring b¥? by b*? rather then 8 by 8, where b > 1 and k >0 are
integers. The initial playing board for a P-game is constructed by randomly
assigning each square of the board the value 1 with probability p or the value
—1 with probability 1— p, where p is a constant and 0 =< p =<1 (for example, sce
Fig. 1). For reasons described in [10}, we choose p = w(b).

The two players move in strict alteration. A move for the first player consists
of dividing the board vertically into b scctions of equal width, and discarding
all but one of the sections. A move for his opponent consists of dividing what

PATHOLOGY ON GAME TREES REVISITED 227

-1 1 |- 1

=1 |1 1 1

-1 1 -1 1

-1 |=-1 1 1

1 =11 L S R L S B | L | 1 -1 1

FIG. 1. A game tree for a binary P-game of depth 4. The initial playing board appears at the root
of the tree. Since the depth is even, the second player is the ‘last player’. The last player has a
forced win in this particular game tree, as indicated by the solution tree drawn in boldface.

remains of the board horizontally into b sections of equal height, and discard-
ing all but onc of them. The play continues in this manner until only one
square is left. If the square has value 1, the player who made the last move
wins. If it has value —1, his opponent wins. Note that the same player will
always have the last move. We call this player the last player.

The game tree for a P-game is a complete b-ary game tree of depth k, with
random, identically distributed leaf node values (for example, see Fig. 1). For
this reason, the value of a node in a P-game is independent of the values of
other nodes at thc same depth. Such independence does not occur in games
such as chess or checkers. In these games, the board positions usually change
incrementally, so that each node is likely to have children of similar strength.

The following games were originally defined in [10], where they were called
incremental games. The definition was inspired by a similar game tree model
defined by Newborn [13] and later used by Lindstrom [7]. This class of games
provides one way to model incremental variation in node strength. An N-game
has the same size playing board,”the same moves, and the same criterion for
winning as a P-game, but the initial playing board is set up differently. To set

228 D.S. NAU

up the board, cach arc of the game tree is independently, randomly given the
value 1 with probability g or —1 with probability 1— g, where g is a constant
and 0 =<g <1. (We arbitrarily choose g =3.) The strength of a node g in the
game tree is defined as the sum of the arc values on the path from g back to
the root. A square in the playing board is given the value 1 if the corresponding
leaf node of the game tree has positive strength, and the value —1 otherwise,

4.2. An evaluation function

Let G be a game tree for a b-ary P-game or N-game, and g be a node in G. We
denote the depth of the subtree rooted at g by height(g), and the number of
squares in g by size(g). Thus size(g) = b™="®, If the player to move to g is the
‘last player’ defined at the beginning of Section 4.1, then the more ‘1” squares
there are in g the more likely it is that g is a win. If it is the other player that
has the move to g, then the more ‘—1’ squares there arc in g the more likely it
is that g is a win. Thus an obvious evaluation function for G is

the number of squares in g having value v
size(g)

»

ei(g) =

where

Y= {1, if the last player has the move to g,
—1, otherwise.

Suppose height(g) = k, and suppose a depth d minimax scarch is used to
choose between two children g’ and g” of g, where g’ is a forced win and g" is a
forced loss. Then the correct decision is to move to g’. Now, g will always be
choosen if mm(d — 1, g')>mm(d — 1, g”), and g’ will be chosen half of the time
if mm(d— 1, g')=mm(d — 1, g"). Thus the correct decision will be made with
probability

D =Pi[fmm(d -1, g')>mm(d - 1, g")]
+3Pr[mm(d -1, g") = mm(d - 1, g")] . @.1)

4.3. Results about the games

Monte Carlo simulation techniques can be used to find out whether P-games
and N-games are pathological when the branching factor is large. Given
integers b, k, and n, we can create as many b-ary P-games (or N-games) of
depth k as we wish, using a random number generator to determine which
squares have value —1 and which have value +1. We discard games for which
the root does not have at least one forced win child and one forced loss child.
For each of the games that is left, we select one forced win child g’ of the root
and one forced loss child g” of the root, and compute mm(d—1, g’} and
mm(d—1,g"). If out of a series of n games we have mm(d-1,g’)>
mm(d — 1, g") on m of them and mm(d — 1, g")=mm(d — 1, g") on p of them,

PATHOLOGY ON GAME TREES REVISITED 229

then the fraction D’'= (m+3p)/n approximates the probability of correct
decision D.

To test whether increasing the branching factor of a game causes it to
become pathological, it is important that the game be nonpathological for small
branching factors. Thus we use k <7 since pathology does not occur in binary
P-games and N-games when k <7 [10]. To avoid examining games that are
trivially short, we use k=5. Using k=5,6,7 and n =3200, Monte Carlo
simulations have been done on b-ary P-games and N-games for several values
of b. The results are displayed in Table 1. As can be seen, none of the N-games
is pathological. However, P-games of sufficiently large branching factor are
pathological in the following sense: as long as the search terminates at nodes
more than one move away from the end of the game (i.e., d <k —1), the
probability of correct decision decreases as the scarch depth increases. These
results arc interesting for two reasons, as discusscd below.

TasLE 1. The fraction D’ of correct decisions at nodes of height k in b-ary
P-games and N-games, as a function of search depth d using minimaxing with
the evaluation function e,. The results come from Monte Carlo simulations
involving 3200 games for each combination of k and b. Note that (1) on the
P-games tested, pathology occurs if b is made sufficiently large, and (2) on the
N-games tested, pathology does not occur

P-games N-games
k d b=2 b=3 b=4 b=5 b=6 b=2 b=3 b=4 b=5 b=6
5 1 0842 0760 0711 0692 0.675 0941 0936 0959 0968 0.985
5 2 087 0779 0701 0671 0649 0969 0967 0976 0987 0.997
5 3 081 0777 0708 0.664 0638 0982 0976 0987 0994 0.998
S 4 L0 1000 1000 1000 1000 1000 1000 1000 1000 1000
5 5 1000 1000 1000 1000 1000 1000 1000 1000 1000 1.000
6 1 0809 0702 0.656 0.637 0619 0936 0941 0966 0972 0985
6 2 0806 0699 0641 0612 0602 0953 0961 0978 0990 0.996
6 3 0825 0713 0.632 0602 0592 0976 0978 0992 0.996 0.999
6 4 0833 0692 0619 0577 0565 0987 0983 0992 0999 0999
6 5 1000 1000 1000 1.000 1000 1000 1000 1000 1.000 1.000
6 6 1000 1000 1000 1000 1000 1000 1000 1.000 1000 1.000
7 1 0962 0.666 0613 0.594 *2 0921 0936 0948 0.969 *
7 2 0769 0.655 0.602 0.566 * 0955 0960 0974 0992 *
7 3 0777 0.653 0.606 0.559 * 0964 0964 0977 0992 *
7 4 0797 0640 058 0.555 * 0980 0982 0983 0.99 *
7 5 0811 0.624 0569 0.538 * 0985 0985 0994 0.998 *
7 6 1000 1.000 1.000 1.000 * 1.000 1.000 1.000 1.000 *
7 7 1.000 1000 1000 1.000 * 1.000 1.000 1000 1.000 *

*+ indicates that it was not feasible to compute results for b =6 when k =7, because of the
excessive computing time required when b and k are large.

230 D.S. NAU

First, recall that Theorem 3.1 predicts the occurrence of pathology for large
branching factors on games satisfying certain conditions. Neither the class of
P-games nor the class of N-games satisfies all of these conditions, yct pathology
occurs for large branching factors anyway on the P-games. Clearly, the con-
sequences of the theorem hold for a larger class of games than those satisfying
its preconditions.

Second, it is interesting to note that when the evaluation function e is used,
the P-games satisfy more of the preconditions of Theorem 3.1 than the
N-games do. In particular, the preconditions of Theorem 3.1 are as follows:

(1) The probability of the evaluation function returning the highest value in
its range must be positive for all nodes in the game tree. (This is because
w(b) >0 for all b, whence ¢ must be positive in order to obtain ¢ > w(b) for
sufficiently large b.) Neither the P-games nor the N-games satisfy this condition
when e; is used, for e;(g) cannot possibly return 1 if g is a forced loss node.

(2) The probability that the evaluation function returns the highest value in
its range must depend only to a limited extent on the values of other nodes at
the same depth. (This is the definition of an cvaluation function with depen-
dence bound.) The class of P-games satisfies this condition when e, is used,
since sibling nodes are independent. However, the class of N-games does not
satisfy this condition. A proof of this may be constructed by examining any leaf
node g for which e;(g’) =1 for cvery sibling g’ of g. The more such siblings g
has (each of which has e,(g’) = 1), the more likely it is that the parent of g is a
node of sufficiently high strength that e,(g) must also be 1.

This suggests that games satisfying the second condition are more likely to be
pathological for large branching factors than games that do not.

5. A Decision Criterion Better than Minimaxing?

Our entire discussion of pathology has been predicated on the use of minimax-
ing. Onc might want to consider what happens when other kinds of decision
procedures are used. Pecarl [18,19] has proposed the following approach.
Suppose we have a special evaluation function e*(g) which returns the prob-
ability that g is a forced win (for the player to move to g) given some of its
measurable features. Suppose further that the probabilities of sibling nodes
being forced wins are always independent, and that we have evaluated ¢*(g")
for every node g’ at some depth d in the subtree rooted at g. Then the
probability that g is a forced win can be computed by applying the formula

Pr[h is a win node] =
={1-Pr[h' is a win node] | K’ is a child of h} , 6.1)

to successively shallower nodes in the subtrec. Pearl suggests that the same
product rule should be used to propagate e(g) even when e(g) only ap-
proximates the actual probability that g is a forced win given its examined
features. The procedure works as follows: use an evaluation function e(g)

PATHOLOGY ON GAME TREES REVISITED 231

which returns valucs between 0 and 1. Search the game tree to some depth d,
evaluating thc nodes at this depth. Instead of using minimaxing to compute
values for the shallower nodes of the trce, compute values for these nodes as if
the computed values for their children were independent probabilities of the
occurrence of forced wins. This amounts to replacing the ‘negamax formula’

=] < |
mT((8) —max{mm(d—1,g") | g’ is achild of g}, otherwisc.
by the formula (5.2)
pe(d, g)={ <& Ta=0. 55
' [T¢1- pe(d—1,g'y | g'is a child of g}, otherwise.

We call pe(d, g) the depth d probability estimatie for g.

Onc difficulty with the above approach is that it is not clecar how to estimate
the probability e*(g) that g is a forced win given the features of g. Another
difficulty is that the multiplication rule used in (5.1) and (5.3) assumes in-
dependent probabilities. Since the characteristics of sibling modes may be
interdependent (as they are, for example, in N-games), this rule is incorrect for
many games.

Regardless of these difficulties, this approach still should be investigated. It
may not yield completely accurate values, but ncither does minimaxing—and
perhaps it will avoid the pathology that can arise when minimaxing is done. In
this scction, we examine the following questions.

(1) Can pathology be avoided by using probability estimation?

(2) In games which are not pathological, does probability estimation yield as
high a probability of correct decision as minimaxing?

(3) Even if probability estimation yields a higher probability of correct
decision than minimaxing, does it allow significantly more games to be won?

5.1. Probability cstimation on P-gamcs

Can pathology be avoided by using probability estimation? As an answer to
this question, Table 2 contains the results of a Monte Carlo simulation on
P-games. The simulation was similar to that of Section 4, but was done using
probability estimation instecad of minimaxing. Because of computational
difficulties, only binary games were investigated. Since the evalutaiton function
¢, returns'values between 0 and 1, it was used without modification.

For purposcs of comparison, Table 3 contains analytic results taken from [10]
concerning minimaxing in binary P-games, and Table 4 gives the percentage
differences between the values contained in Table 2 and the corresponding
values in Table 3. Note the following patterns.

(1) When minimaxing is used (Table 3) and k is larger than about 7 or §,
pathology occurs, in the following sense: as long as the search does not go

232

D.S. NAU

TaBLE 2. Probability of correct decision D’ as a function of scarch depth d
using probability estimation with the cvaluation function ¢; for nodes of height
k in binary P-games. The rcsults come from a Monte Carlo simulation
involving 3200 games for each value of k

d k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11 k=12 k=13,
1 0947 0906 0882 0809 0762 0.729 0.694 0670 0.643 0621 0.620
2 1000 0934 0876 0816 0772 0732 0695 0.669 0.641 0620 0619
3 1000 LOOO 0904 0840 0779 0746 0698 0.673 0642 0.623 0619
4 1.000 1000 0865 0815 0.754 0708 0676 0.647 0.625 0.622
5 1.000 1000 0.837 0782 0.718 0683 0.643 0.629 0.622
6 1.000 1.000 0802 0.747 0.634 0.654 0.630 0.623
7 1.000 1000 0777 0710 0.664 0.637 0.628
8 L0 1.000 0747 0.695 0.646 0.638
9 1.000 1000 0.711 0.658 0.637
10 1.000 1.000 0.684 0.660
11 1.000 1.000 0.677
12 1.000 1.000
13 1.000

TasLE 3. Probability of correct decision D as a function of search depth d using
minimaxing with the evaluation function e; for nodes of height k in binary
P-games. The results were computed analytically in [10]

d k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11 k=12 k=13
I 0947 0902 0819 0805 0.765 0731 0701 0.675 0.652 0.633 0.616
2 1000 0914 0872 0807 0.7¢9 0725 0.695 0.666 0.6+ 0.623 0607
3 1000 1000 0893 0830 0773 0730 0.692 0.663 0.638 0.617 0.600
4 1.000 1.000 0825 0.790 0.728 0.694 0.658 0.633 0611 0.594
5 1.000 1000 0806 0741 0.691 0658 0629 0.6007 0.589
6 1.000 1000 0.698 0705 0.650 0.627 0.602 0.585
7 1000 1000 0.699 0656 0.619 059 0.581
8 1.000 1.000 0581 0630 0585 0.574
9 1.000 1000 0592 0595 0.570
10 1000 1.000 0517 0592
11 1.000 1000 0.521
12 1.000 1.000
13 1.000
14

—
w

PATHOLOGY ON GAME TREES REVISITED 233

TaBLE 4. Percentage difference 100% X (D' — D)/D, where D’ is taken from Table
2 and D is taken from Table 3

d k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11 k=12 k=13
1 00% 04% -08% 05% -04% -03% -10% -0.7% -1.4% -19% 0.6%
2 00% 22% 05% 1.1% 04% 10% 00% 05% -0.5% -0.5% 20%
3 00% 0.0% 1.2% 1.2% 08% 22% 09% 15% 06% 1.0% 32%
4 0.0% 00% 4.8% 32% 36% 20% 27% 22% 23% 4.79%
5 0.0% 0.0% 38% 55% 39% 38% 22% 3.6% 56%
6 0.0% 00% 149% 60% 52% 43% 47% 6.5%
7 00% 00% 112% 82% 73% 63% 8.1%
8 00% 0.0% 28.6% 86% 104% 11.1%
9 00% 0.0% 20.1% 10.6% 11.8%
10 0.0% 0.0% 323% 11.5%
11 0.0% 0.0% 99%
12 0.0% 0.0%
13 0.0%

closer than one move away from the end of the game (i.e., d <k —1), the
probability of correct decision decreases as the search depth increases.

(2) When probability estimation is used (Table 2), pathology does not occur
for any tested value of k. Instead, for all values of k examination, the probability
of correct decision increases as the search depth increases.

(3) In most cases, the probability of correct decision using probability
estimation is greater than or equal to the probability of correct decision using a
minimax search to the same depth (see Table 4). However, the difference is not
. very large except for large search depths.

Thus, overall, probability estimation appears to be somewhat better than
minimaxing on P-games.

5.2. Probability estimation on N-games

In games which are nonpathological, is probability estimation as accurate as
minimaxing? It would be difficult to answer this question for all games.
However, one can certainly examine specific classes of games. Table 5 contains
Monte Carlo results about the probability of correct decision for probability
estimation in binary N-games. For purposes of comparison, Table 6 contains
Monte Carlo results taken from [10] concerning minimaxing in binary N-games.
As shown in Table 7, probability estimation appears to perform slightly more .
poorly in N-games than minimaxing does. However, the percent difference
between the probability of correct decision is in all cases less than 1.3%. This
figure is small enough that the differences may have been caused by random
variation in the Monte Carlo simulations. Thus on at least one class of

231 D.S. NAU

TaBLE 5. Probability of correct decision D’ as a function of scarch depth d using
probability estimation with the cvaluation function e,, for nodes of height k in
binary N-games. The results come from a Monte Carlo simulation involving
3200 games for each valuc of k

d k=3 k=4 k=5 k

1]
=}
>~

i
~
>

i}
x
»=

1§

9 k=10 k=11 k=12 k=13

10982 0970 0941 0936 0923 0933 0914 0920 0914 0913 0910
2 1000 0981 0963 0949 094 0945 0929 0928 0929 0921 0922
3 1.000 1000 0981 0973 0959 0962 0.943 0940 0930 0937 0931
4 1.000 1.000 0985 0.972 0968 0957 0948 0950 0943 0.936
5 LOO 1000 0983 0978 0968 0964 0957 0952 0948

6 1000 1000 0988 0980 0973 0962 0962 0952
7 1.000 LO0O 0987 0984 0972 0969 0.960
8 LOUG 1.000 0992 0979 0977 0967
9 1.000 1.000 0987 0981 0976
10 1.000 1.000 0991 0978
11 1000 LOOO 0992
12 1000 1.000
13 1.0600

TABLE 6. Probability of correct decision D’ as a function of scarch depth d using
minimaxing with the evaluation function e, for nodes of height k in binary
N-games. The results come from a Monte Carlo simulation involving 3200
games for cach valuc of k

d k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11 k=12 k=13

10982 0970 0941 0936 0921 0933 0914 0920 0914 0913 0910
2 L000 0978 0969 0953 0955 0947 0938 0939 0934 0924 0926
3 1000 1000 0982 0976 0964 0959 0952 0950 0940 09H 0935
4 1.000 1000 0987 0980 0966 0962 0960 0950 0.951 0.943
5 LOOO 1.000 0985 0979 0.968 0969 0938 0958 0.947

O 1000 1000 0985 0983 0974 0965 0963 0959
7 1000 1000 0934 09383 0975 0972 0965
8 1000 1000 0988 0932 0978 0976
9 LOOO 100D 098 0987 0981
10 1.000 1000 0988 0985
11 LOOO 1000 0,986
12 1.000 1.000
13 1.000

Note. The above figures are better approximations of D’ than the corresponding figures given in
[10].

PATHOLOGY ON GAME TREES REVISITED 235

TaBLE 7. Percentage difference 100% X (Ds— Dg¢)/Dg, where D§ and Dg are the
values of D’ given in Tables 5 and 6, respectively

~
-~

k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11 k=12 k=13

1 00% 00% 00% 0.0% 00% 0.0% 00% 00% 00% 00% 00%
2 00% 03% -06% -04% -12% -02% -10% -12% -05% 00% -04%
3 00% 00% -01% -03% -0.5% 03% -09% -1.1% 0.0% -07% -0.4%
4 0.0% 0.0% -02% -08% 02% -05% -13% 0.0% -08% -0.7%
5 0.0% 00% -02% -0.1% 00% -0.5% -0.1% -0.6% 0.1%
6 0.0% 00% 03% -03% -0.1% -03% -0.1% -0.7%
7 0.0% 0.0% 03% 0.1% -03% -03% -0.5%
8 00% 00% 04% -03% -0.1% -0.9%
9 0.0% 00% 0.1% -03% -0.5%
10 00% 00% 0.3% -0.7%
11 00% 0.0% 0.6%
12 0.0% 0.0%
13 0.0%

nonpathological games, probability estimation performs almost identically to
minimaxing.

5.3. Probability estimation versus minimaxing: two contests

Since probability estimation has a higher probability of correct decision than
minimaxing on P-games, a player using it will gencrally make better moves
than an opponent using minimaxing. Thus the player using probability estima-
tion should win more games than his opponent, but it is not clear how many
more. To find out how many more, the two decision procedures were pitted
against each other in another Monte Carlo simulation. The simulation worked
as follows: 1600 binary P-games of depth k = 10 were generated. For each
game, and for each possible search depth d, two games were played: one in
which the player using probability estimation played first and one in which the
player using minimaxing played first. Thus both players and the same number
of games on which they had forced wins, as well as the same number of chances
to be the first player.

The above contest was done with both players using the evaluation function
e;. Let us define

exg) = f(h, el(g))

where h is the height of g in the game tree, b is the branching factor (in this
case 2), and
X, if h=0,
f(h,x)=13 f(h—1,x"b), if h >0 is odd,
(1=t =f(h—2,x))*), if h>0is even.

236 D.S. NAU

Pearl [15] has suggested that ¢;(g) is a better approximation of e*(g) than e(g)
is, and that therefore probability estimation might do better in relation to
minimaxing if e, is used instead of e,. To test this conjecture, a second contest
between probability estimation and minimaxing was run using e,. The results
of both contests arc given in Table 8.

The results of the two contests were somewhat disappointing: probability
estimation performed only marginally better than minimaxing. In fact, much of
the difference in performance could be due to random variation in the Monte
Carlo simulation.

Since probability estimation was shown in Tables 2-4 to have a higher
probability of correct decision than minimaxing on binary P-games, Table 8 at
first appears inconsistent with these tables. However, further thought reveals
that no inconsistency exists. Tables 2—4 deal only with the probability of correct
decision at individual positions in a game. However, winning a game depends
not just on one correct decision, but on the entire series of decisions made by
both players.

If two players E and M are playing a game and M makes a wrong move at
one point, E will not necessarily win the game unless he takes advantage of M’s
mistake and continues to make good moves from that point on. If E makes a
mistake later, then M may possibly recover and win the game. Thus unless E is

TasLe 8. Number of P-games won by a player using probability estimation
playing against a player using minimaxing, with both players searching to the
same depth d. The results come from Monte Carlo simulations of 1600 games
each. For each scarch depth d, each player had a chance to start first, giving a
total of 3200 games for ecach value of d

Both players using ¢(g) Both players using ex(g)

Search Number Percentage Number Percentage
depth d of wins of wins of wins of wins
1* 1600 50.0% 1600 50.0%
2 1590 49.7% 1630 50.9%
3 1529 47.8% 1604 50.1%
4 1671 52.2% 1732 54.1%
5 1603 50.1% 1677 52.4%
6 1729 54.0% 1757 54.9%"
7 1646 51.4% 1624 50.8%
8 1722 53.8% 1718 53.7%
b 1600 50.0% 1600 50.0%
10** 1600 50.0% 1600 50.0%

*For search depths 1,9, and 10, both players play identically.
*For search depths 9 and 10, both players play perfectly.

PATHOLOGY ON GAME TREES REVISITED

Choose first player

V

First player is E
Set up board

0.387

10 moves left
E has forced win
E is to move

Ey

9 moves left

1-Ejy

E has forced win

M is to move

\618

10 moves left
M has forced win
E is to move

1.0

9 moves left
M has forced win
M is to move

237

First player is M
Set up board

0.38%

10 moves left
M has forced win
M is to move

Mo

9 mowvi

es leit

1—M|o

M has forced win

Eisto

move

\618

10 moves left
E has forced win
M is to move

1.0

9 moves left
E has forced win
E is to move

1.0 1~-M; M,
8 moves left 8 moves left
E has forced win M has forced win
E is to move E is to move
Eg 1-Eg 1.0
7 moves left 7 moves left

E has forced win
M is to move

1.0

6 moves left
E has forced win
E is to move

1.0

A
E wing'

M has forced win
M is to move

1.0

6 moves left
M has forced win
E is to move

1.0

B
M wins

1.0

8 moves left
M has forced win
M is to move

Mg 1-M;

7 moves left
M has forced win
E is to move

1.0

6 moves left
M has forced win
M is to move

1.0

C
M wins

1-E

&

8 moves left
E has forced win
M is to move

1.0

7 moves left
E has forced win
E is to move

1.0

6 moves left
E has forced win
M is to move

1.0

D
E wins

F1G. 2. A Markov chain representing all possible outcomes of binary P-games of depth 10 between a
player E who uses probability estimation and a player M who uses minimaxing, with both players
using the cvaluation function e,. States corresponding to game tree nodes of height less than 6 are
omitted since both players are playing perfectly from height 7 on.

238 D.S. NAU

playing significantly better than M throughout the game, E will not win
significantly more games than M. Suppose E is using probability estimation and
M is using minimaxing, with both players using the cvaluation function e;. As
can be seen from Table 4, player E will play significantly better at certain
points in a P-game than player M, but for most of thc game E’s probability of
correct decision is not significantly better than M’s.

As an example, consider P-gumes of depth 10 played by the players E and
M, where both players are searching to depth 6. The possible courses of events
in these games are modeled by the Markov chain of Fig. 2. The first two levels
of the chain represent choosing who goes first and setting up the playing board
(it can be shown [11] that the first player has a forced win at the beginning of
the game with probability 0.382). Each subsequent statc represents which
player is to move and which player has a forced win, and the arcs leaving the
state represent choices of correct or incorrect moves. The probability that
player E wins is the sum of the probabilitics of reaching either state A or state
D.

The transition probabilities E; and M, in Fig. 2 are the probabilities of
correct decision for E and M, respectively, when j moves are left. If we
approximate E; and M; by the figures given for ¢ = 6 and k = j in Tablcs 2 and
3, respectively,? then we get Eyp= 0.684, Ey=0.747, and Ez= 0.802, whereas
M= 0.650, M, =0.705, and Mg = 0.698. From simplc algebra, it follows that
the probability that the game will end at a node where E wins is 0.539, which is
quite closc to the figure 0.540 given in Table 8.

6. Summary and Discussion

This paper has dealt with two main topics: an investigation of some of the
conditions under which pathology occurs, and an examination of a decision
procedure which is in some respects better than minimaxing.

6.1. Conditions which cause pathology

Since the discovery of game tree pathology in 1979 [8], a major open question
has been why pathology does not occur in games such as chess and checkers.

In games such as chess and checkers, some game positions are ‘strong’ and
other arc ‘wecak’, and since the board positions usually change incrementally,
the children of any given node are all likely to have similar strengths. In [10], it
was conjectured that this is one reason why such games are not pathological.

*This approximation is by no mecans exact, since the values in Tables 2 and 3 deal only with the
case where one of the two children of the current node is a forced win and the other is a forced
loss, and where the a priori probability of a leaf nodc being a forced win for the last playcr is 0.382.
In actuality, both, one, or ncither of the children may be forced wins; and the probability of a lcaf
node being a forced win will be biased from the initial value of 0.382 as the moves taken by the
players lcad toward subtrees containing greater or smaller numbers of forced win nodes.

PATHOLOGY ON GAME TREES REVISITED 239

The first part of the current paper contains an investigation into the causes of
pathology which supports this conjecture.

The first part of this investigation has consisted of formulating and proving a
thcorem (Theorem 3.1) stating that for game trees satisfying certain pre-
conditions, pathology will occur if the branching factor is sufficiently large. One
of the conditions necessary for this thcorem to be applicable is the following
independence condition: the value returned by the evaluation function on a
node of the game trec must be dependent only to a limited extent on the values
returned on the node’s siblings. This condition clearly will not be satisfied if
- similar nodes have similar strengths and if the evaluation function value of a
node correlates with the node’s strength.

This result is further supported by Monte Carlo simulations on two classes of
games, which are called P-games and N-games. For the evaluation function
used for these games, neither class of games satisfies all of the preconditions of
Theorem 3.1, but the class of P-games does satisfy the independence condition
described above. It is therefore quite interesting to note that pathology occurs
on the P-games when the branching factor is made sufficiently large, but does
not occur on the N-games (which do not satisfy this precondition) for any of the
branching factors which have been tried.

It should be noted that none of the studies in this paper deal with what
happens when a game tree search reaches a leaf node. Thus the results of these
studies do not conflict with Pearl’s conjecture [19] that another reason for the
absence of pathology in chess, checkers, and similar games is the occurrence of
leaf nodes at all levels of the game tree. There may very well be a number of
factors contributing to the lack of pathology in thesc games.

6.2. An alternative to minimaxing

The other topic discussed in this paper is a game tree search procedure which
does not use minimaxing, but instead uses a ‘probability estimation’ procedure.

Using Monte Carlo simulations, this procedure is compared against mini-
maxing, with both procedures searching to the same depth, on the P-games and
N-games mentioned above. On the N-games, the probabilities of correct
decision for probability estimation and minimaxing are almost identical; and on
the P-games, probability estimation yields a higher probability of correct
decision than minimaxing. However, further Monte Carlo studies indicate that
probability estimation performs only marginally better than minimaxing in
terms of the number of games that it wins against a minimax search to the same
depth.

The major reason for the disappointing performance of probability estima-
tion appears to be that in order for one player to win a game over an opponent,
the player usually must play significantly better than his opponent throughout
the game. As illustrated in Table 4, the probability of correct decision obtained
by probability estimation is considerably better than that obtained by mini-

210 D.S. NAU

maxing during specific points in a P-game, but it is not significantly better
during most of the game. Pearl [19, 18] also suggests that perhaps minimaxing
can takc advantage of a player’s mistakes better than probability estimation,
but there seems to be no good way to measure whether this is in fact true.
Possibly another reason for the disappointing performance of probability
estimation is that the ecvaluation functions e, (g) and ex(g) are only ap-
proximations of the probability that g is a forced win. Better results could
possibly be obtained by using an evaluation function e*(g) which returned the
actual probability that g were a forced win given the features of g examined by
e*. However, such a function would be very difficult to compute for most
games. Thus probability estimation is probably of limited use, especially since
pruning schemes such as alpha-beta [6, 14] and SSS* [21] cannot be used with it.

Appendix A

Lemma A.l. Let G be a b-ary game tree. Let e be an evaluation function for G
with dependence bound p, and let

¢ = inf Prle(g) = h]
8€G
where h is the highest value ¢ can return on any node of G. For every node g of
G, if the subtree rooted at g is complete to at least depth d, then for every set of
constraints C on any subset of

{e(g") | depth(g’)= depth(g)+ d and g' is not a descendent of g},
we have '
Primm(d, g) = (=1)*h | C]= s4(b, c/p).

Proof (by induction on d). Let g be a node of G. From (2.4) and the definition
of an evaluation function with a dependence bound it follows that for cvery set
of constraints C on any subset of {e(g’) | depth(g’) = depth(g)+0 and g’ # g},

Primm(0, g)= (—1h | C]=Prle(g)=h | Cl=c/p = su(b, c/p).

Thus the lemma holds for d = 0. Let j >0, and suppose the lemma holds for
d =j— 1. Let g be a node of G, and let the children of g be g, g2, ..., g. From
(2.1) it follows that mm(j, g) = (—1Ye(g’) for some descendant g’ of g. Thus if j
is even, then mm(j, g)=<h, and if j is odd, then mm(j, g) = ~h. There are two
cases to consider.

Case 1. j is even. Then mm(j, g) < h, and mm(j — 1, g) = —h. Thus from (2.1),
mm(f, g)=h if and only if mm(j—1, g)=—h for k=1,...,b. Therefore, for
every set of constraints C on any subset of

{e(g’) | depth(g’)=depth(g)+j and g’ is not a descendent of g},

PATHOLOGY ON GAME TREES REVISITED

Primm(j, g)=h | C]=
=Pr[mm(j— 1, g,)=—h forall m | C]
=Prmm@i—1,g)=-h | C]
*Prlmm(— 1, g2)=—h | mm(—1,8)=—h and C]

*Primm(~-1,g.)=—h | mm(— 1, g)=—h
fork=1,...,m—1and C]

#Primm(G—1,g)=—h | mm(G-1,g)=—h
fork=1,...,b—1and C}.
But form=1,...,b,
{e(g") | depth(g’) = depth(g)+j

and g’ is not a descendent of g} C S,
where

m ={e(g') | depth(g’) = depth(g,.)+j — 1

and g’ is not a descent of g,,}.

(A.1)

Thus C is a set of constraints on a subset of S,. Furthermore, for k=
I,...,m—1, mm(—1,g) is a function only of {e(g') | g’ has depth j—1 in
the subtree rooted at g}, which is a subset of S,. Thus the statement
‘mm(j— 1, g«) = I’ is also a constraint on a subset of S,. Therefore, from the

induction assumption,
Primm(j—1,g,)=—h | mm(-1,g)=—-h
fork=1,...,m-1and C]
= 5;.4(b, ¢/p) .
Thercfore,
'Pr[mm(j, g)=Wh| Cl=
=Pr[mm(j, g)=h | C]
= (s;1(b, ¢/p))® (from (A.1) and (A.2))
= 5;(b, c/p) (from (2.4)).

Thus the theorem holds for d = j when j is even.

212 D.S. NAU

Case 2. j is odd. Then mm(j, g)=— h and mm(j — 1, g} < h. Thus from (2.1),
mm(j, g) = —h if there is at lcast one child g’ of g such that mm(-~ 1, g')= /.
Therefore, for every set of constraints C on any subsct of

{e(g") | depth(g") = depth(g)+j and g’ is not a descendent of g},

Primm(j, g)=-h | C]=
= Prlmm(j - 1, g.)=" for some m | C]
=1-=Prmm@ -1, g,)#h forall m | C],
I-(1=Primm@G - 1,g)=h | C])
s (1=Pr[mm(—1,g)=h | mm(G—-1,g #h and C))

#S(1=Prlmm(j—-1,g.)=h | mm(-1,g)#h
fork=1,...,m~-1and C])

#(1—Prlmm@G —1,g)=h | mm(—-1,g)#h
fork=1,...,b—1and CJ]).
In a manner similar to Case 1, it follows that
Primm(j, g) = (—1)h | C] = 1-(1 — 5;-4(b, c/p))°
=s;(b, c/p).
Thus the thecorem holds for d = j when j is odd.
Proof of Theorem 3.1. Let gy, g2,..., g be the children of g, and let the
subtree rooted at g be complete to at least depth d. Then
Pritic(d, g)] =
= Primm(d - I, g)=mm(d — 1, g;)=- - -=mm(d — 1, g,)]
=z Primm(d — 1, g)=(—1)""'h for all i]
= Prlmm(d -~ 1, g;) = (- 1)4"'h]
= Prlmm(d — 1, g)=(-1)?"% | mm(d — 1), g, = (=1)*""h]

PATHOLOGY ON GAME TREES REVISITED 243

Prmm(d — 1, g)=(-1)"'h | mm(d~1), g =(-1)*"h
fori=1,...,b—1]
(from the definition of conditional probability)

= (s4-1(b, c/p))® (from Lemma A.1).

ACKNOWLEDGMENT

The author appreciates the comments and suggestions made by Vipin Kumar, Mike Mutchler,
Judea Pearl, and Donald Loveland.

11.
12.

13.
14.
15.
16.

17.
18.

19.

REFERENCES

. Baudet, G.M., On the branching factor of the alpha-beta pruning algorithm, Artificial In-

telligence 10 (1978) 173-199.

. Beal, D., An analysis of minimax, in: M.R.B. Clarke (Ed.), Advances in Computer Chess 2

(University Press, Edinburgh, 1980).

. Berliner, H., The B* trce scarch algorithm: a best-first proof procedure, Artificial Intelligence

12 (1979) 23-40.

. Biermann, A.W., Theoretical issucs related to computer game playing programs, Personal

Computing (Sept. 1978) 86-88.

. Bratko, L. and Gams, M., Error analysis of the minimax principle, in: M.R.B. Clarke (Ed.),

Advances in Computer Chess 3 (Pergamon Press, London, 1982).

. Knuth, D.E. and Moore, R.W., An analysis of alpha-bcta pruning, Artificial Intelligence 6

(1975) 293-326.

. Lindstrom, G., Alpha-beta pruning on ecvolving game trees, Tech. Rept. UUCS 79-101,

Department of Computer Science, University of Utah, Salt Lake City, UT, 1979.

. Nau, D.S., Quality of decision versus depth of search on game trees, Ph.DD. Dissertation, Duke

University, Durham, NC, 1979.

. Nau, D.S,, Pathology on game trees: a summary of results, Proc. First Annual National Conf.

Artificial Intelligence (1980) 102-104.

. Nau, D.S., An investigation of the causes of pathology in games, Artificial Intelligence 19
+(1982) 257-278.

Nau, D.S., The last player theorem, Ariificial Intelligence 18 (1982) 53-65.

Nau, D.S., Deccision quality as a function of search depth on game trees, J. ACM (1983) to
appcar.

Newborn, M.M., The efficicncy of the alpha-beta search on trees with branch-dependent
terminal node scores, Artificial Intelligence 8 (1977) 137-153.

Nilsson, N.J., Principles of Anificial Intelligence (Tioga, Palo Alto, CA, 1980).

Pearl, J., personal communication, 1982.

Pecarl, J.; Asymptotic propertics of minimax trees and game-searching procedures, Ariificial
Intelligence 14 (1980) 113-138.

Pearl, J., Colloquium talk, University Maryland, College Park, MD, 1980.

Pearl, J., Heuristic scarch theory: survey of recent results, Proc. Seventh Intemat. Joint Conf.
Artificial Intelligence, 1981.

Pearl, J., On the nature of pathology in game searching, Tech. Rept. UCLA-ENG-CSL-82-17,
Schoo! of Engineering and Applied Science, University of California, Los Angeles, CA, 1982.

244 D.S. NAU
20. Robinson, A.L., Tournament competition fuels computer chess, Science 204 (1979) 1396-1398.
21. Stockman G.C., A minimax algorithm better than alpha-beta?, Arificial Intelligence 12 (1979)

179-196.
22. Truscott, T.R., Minimum variance tree searching, Proc. First Internat. Symp. Policy Analysis

and Information Systems (1979) 203-209.
23. Truscott, T.R., personal communication, 1980.

Received July 1982; revised version received October 1982

