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ABSTI~ACq 
Abnost all game tree search procedures used in artificial intelligence are rariants on minimaxing. 
Until recentl); it was almost unit'ersally beliered that searching deeper o n  tire game tree with such 
procedures wouht in general yield a better decision. Howet'er, recent inrestigations hare rerealed the 
existence of many game trees and et'alaation functiotts which are "pathological" in the set~se that 
searching deeper cottsistently degrades the decision. 

77ris paper extends these inrestigatiotts in two ways. l-Trst, it is shown that whenet.er tire erahtation 
ftmction satisfies certain properties, pathology will occur on any game tree of high enough constant 
branching factor. 7his result, together with Afonte Carlo studies on actual games, git'es insight into the 
cattses of pathology. Second, an hwestigation is made of  a possible cure for pathology: a probabilistic 
decision procedure which does not ttse minimaxing. Under some conditions, this procedure gires 
restdts superior to minimaxing. 

I. Introduction 

Almost all game tree search procedures used in artificial intelligence are 
variants on the following process: the tree is searched to some arbitrary depth, 
a static evaluation function is used to compute approximations of the utility 
values of the nodes at that depth, and minimaxing is used to compute 
approximations of the utility values of shallower nodes. Until recently, there 
was almost universal agreement that increasing the depth of the search would 
improve the quality of the decision. This property was dramatically illustrated 
in games 'such as chess and checkers using game playing computer programs 
[4, 20, 22]. However, a recent investigation by Nau [8, 9, 12] demonstrated the 
existence of a large class of game trees which are p a t h o l o g i c a l  in the following 
sense: for a wide class of evaluation functions, searching deeper consistently 
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degrades the quality of the decision. Pathology has been more recently in- 
vestigated by Beal [2], Bratko and Gams [5], and Pearl [19]. 

Given that pathology can occur, why does it not occur in games such as chess 
and checkers? This question has been investigated by both Nau [10] and Pearl 
[191. 

Nau [I0] has examined two closely related classes of games, one pathological 
and one nonpathological. Examination of the differences between these two 
classes of games suggests that if the amount of 'strength' or 'weakness'  in a 
board position tends to be roughly the same for sibling nodes, then pathology is 
less likely. This may be one reason why games such as chess and checkers are 
not pathological. 

Pearl [19] has demonstrated that for a certain class of games and a wide class 
of evaluation functions, the evaluation function error  must be reduced by over 
50% at each successive search depth in order  to avoid pathology. However,  if 
these game trees are modified to include leaf nodes at random at all levels of 
the game tree, pathology disappears. The occurrence of such 'traps' or  quick 
endings to the game may be another  reason for the absence of pathology in 
chess, checkers, and similar games. 

One purpose of the current paper is to further investigate the conditions 
under which pathology occurs. To this end, a theorem is proved which 
generalizes the pathology theorems proved in [8, 12]. This theorem states that 
if certain restrictions on the game tree and evaluation function are satisfied, 
pathology will occur whenever the branching factor of the game tree is 
sufficiently large. This theorem, together with the results of Monte Carlo 
studies on pathological and nonpathological games, provides additional support 
for the conjecture that pathology is less likely when sibling nodes have similar 
strengths. 

This paper also investigates a possible cure for pathology. Pearl [19] has 
suggested that pathology might be avoided by mapping the usual static evalua- 
tion function into one which returns the probability that a node is a forced win, 
and replacing the minimax decision procedure by a decision procedure which 
treats the evaluation function values as independent probabilities. We examine 
a modification of this approach which takes an ordinary evaluation function, 
normalizes its values to fall in the interval [0, 1], and uses these values as 
approximations of the probability that a node is a forced win. 

Using Monte Carlo simulation techniques, the probability of making a 
correct choice of move using this probabilistic decision procedure is in- 
vestigated for two classes of games--a  class of pathological games and a class 
of nonpathological games. For the nonpathological games, the procedure yields 
a probability of correct decision almost exactly the same as that obtained by a 
minimax search to the same depth. For the pathological games, the prob- 
abilistic decision procedure avoids pathology, and gives significantly higher 
probabilities of correct decision than minimaxing. 
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Intuitively, if the probabilistic decision procedure has a bet ter  probability of 
yielding the correct decision than minimaxing on the pathological games, then 
a player using this procedure should win more of these games than an 
opponent  using minimaxing. To  find out how many more games, a tournament 
of 3200 games is played between the two players. Somewhat disappointingly, 
the probabilistic decision procedure wins only marginally more games than are 
Won by using minimaxing. Possible reasons for this are discussed in the last two 
sections of this paper. 

Section 2 contains preliminary material. Section 3 presents the pathology 
theorem (which is proved in Appendix A), and Section 4 discusses the related 
Monte Carlo studies. Section 5 discusses the probabilistic decision procedure 
and the Monte  Carlo studies comparing it to minimaxing. Section 6 contains 
concluding remarks. 

2. Preliminaries 

This section contains definitions of many of the terms used in this paper, as 
well as a few preliminary mathematical results. 

By a game we mean a zero-sum, perfect information game between two 
players, in which there is strict alternation of play between the two players. At 
his move, each player may be allowed only finitely many possible choices of 
moves (although we do not require that the game end after a finite number  of 
moves). 

Let G be the game tree for such a game. Then each node of G corresponds 
to a position in the game, with the root, root(G),  corresponding to the game's 
beginning. Each arc of G corresponds to a move in the game, and each leaf 
node (node with no children) corresponds to one possible way the game might 
end. Associated with each leaf node are the payoffs the two players receive for 
that particular ending to the game. By depth(g) we mean the length of the path 
from root (G)  to position g; i.e., the number  of moves it takes to get to node g. 
By depth(G)  we mean 

max{depth(g) I g is a node of G}.  

We define the utility value u(g) to be the payoff which the player who moves to 
g would receive if both players played perfectly from that point on. Since (3 is 
a zero-sum game, the payoff for that player's opponent  would be - u ( g ) .  The 
utility valhe of g may be computed using the following 'negamax' formula [6]: 

the payoff for the player who moves to g, 
u (g)  = if g is a leaf, (2.1) 

-max{u(g ' )  [ g '  is a child of g}, otherwise. 
Let b > 0  and d > 0  be integers. G is a b-ary game tree (or game tree of 

branching factor b) if every nonleaf node of G has exactly b children. G is complete 
to depth d if no node of depth less than d is a leaf. 
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An evaluation function for G is any real-valued function e(g) intended to 
return an approximation of u(g). Ideally, e(g) would return exactly u(g), but 
evaluation functions are usually somewhat (and sometimes drastically) in error. 
For example, evaluation functions for chess are notoriously inaccurate in the 
endgame [23]. 

Other  approximations to It(g) may be computed by computing e(g') for all 
nodes g' of some fixed depth d in the subtree rooted at g and putting these 
approximate utility values into the negamax formula to compute values for the 
shallower nodes of the subtree. The value computed for g is this way, which we 
call the depth d minhnax vahte for g, is 

[e(g), if d = 0 ,  
mm (d, g) = I.-max{mm ( d -  1, g') I g'  is a child of g}, otherwise. 

(2.2) 

Pruning procedures such as alpha-beta [6, 14], scotyr [16], SSS* [21] and B* [3], 
have been developed to speed the computation of mm(d, g). 

One way to choose a move at node g is to choose whichever child g' of g has 
the highest depth d -  1 minimax value m m ( d -  1, g'). If more than one  node 
has this value, the choice may be made at random from the set of all children 
of g having this value. We call this decision procedure a depth d minimax 
search, since it involves evaluating the nodes at depth d in the subtree of G 
rooted at g. 

Consider the equation 

x = ( 1 - ( 1  - x ) b )  b . 

It is known [11] that for each value of b, this equation has exactly one solution 
in the interval (0, 1). This value we call w(b). As an example, w(2) = �89 
or approximately 0.382. Other  values of w(b) are given in [11]. w(b) is a 
monotonically decreasing function, with 

lim w(b) = 0 .  (2.3) 
b ~ m  

Other  properties of w(b) have been investigated by Nau [8, 11], Baudet [1] 
and Pearl [16]. 

Let 0 ~< x ~< 1, and let b I> 0 and i i> 0 be integers. We define 

Ix ,  i f i = 0 ,  
si(b, x) = 1-(1 --  si-l(b, x ) )  b, if i > 0 is odd, (2.4) 

t (si-z(b, x)) b, if i > 0 is even. 

It is proved [11] that 

l imsi(b,x)={~ i f x>w(b ) ,  
i--~ if x < w(b), 

(2.5) 
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and that if x = w(b), then 

fw(b) ,  if i is even, (2.6) 
si(b, x)  = L1 - w(b), if i is odd. 

s~(b, x)  is important  in analyzing the probabili ty that a decision is correct when 
a minimax search is used. 

3. A New Theorem about Pathology 

By choosing either accurate or  inaccurate evaluations for nodes far down in a 
game tree G, evaluation functions can be constructed whose performance  
either improves or  degrades at increasing search depths. Thus no universal 
s tatements  can be made about the quality of evaluation functions as a function 
of search depth. To  avoid this difficulty, we consider the error  in e(g) to be 
stochastic in nature. Thus the members  of {e(g) I g is a node of G} are taken 
to be discrete random variables (which are not necessarily independent or 
identically distributed). 

Let h be the highest value that e is capable of returning on any node of G. 
Then p > 1 is a dependence bound for e if for every node g in G and for every 
set of constraints C on any subsets of {e(g') I g' ~ g and depth(g ' )  = depth(g)}, 

Pr[e(g) = h [ C] t> Pr[e(g) = h]lp.  

This means that the probabili ty that e returns h depends only to a limited 
extent on the values of other  nodes at the same level. 

The  evaluation functions investigated in [8, 12] are special cases of evaluation 
functions with dependence  bounds. Theorem 3.1 below deals with the set of all 
evaluation functions having dependence bounds, and deals with a much more  
general set of game trees than the game trees investigated in [8, 12]. Thus the 
pathology theorem in [8, 12] is a special case of Theorem 3.1. 

Theorem 3.1. Let G be a b-ary game tree, and let g be a node of G. Let e be an 
evaluation function for G with dependence bound p,t and let 

c = inf P r [ e (g )=  h ] ,  
get2 

where h is the highest value that e can return on any node of G. Let tie(d, g) 
denote the i event that all children of g receive the same minimax value when a 
depth d minimax search is done. I f  the subtree rooted at g is complete to at least 
depth d, then 

Pr[tie(d, g)] > (sa-t(b, c/p)) h . (3.1) 

nTheorcm 3.1 could easily be generalized by assuming that the dependence bound p and the 
resulting equation (3.1) only apply to th~ first k levels of the game tree for some k. To avoid 
complicating the presentation, we do not do this here. 
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ProoL See the Appendix A. 

Corollary 3.2. Suppose that the hypotheses of Theorem 3.1 hold and that G is 
complete to every depth d <oo. If  c/p > w(b), then 

lira Pr[tie(d, g)] = 1. 
d~x  

Proof. Immediate from Theorem 3.1 and (2.5). 

The significance of Theorem 3.1 is as follows. Suppose the hypotheses of 
Theorem 3.1 hold on some game of depth k whose branching factor b is such 
that c/p > w(b) (from (2.3), this is achieved if b is sutficiently large). Then from 
(2.5), 

lim sd(b, c/p) = 1. 
d ~ c  

As shown in [16], this convergence is superexponentially fast. But from 
"lqleorem 3.1, as long as d < k ,  

Pr[tie(d, g)l > (sa_~(b,  c / p ) )  b . 

This means that as long as the search depth is less than k, increasing the search 
depth makes it increasingly likely that all nodes get exactly the same minimax 
value h. Thus with increasing search depth, it becomes increasingly likely that 
the choice of move must be made at random, with all possible choices of move 
being equally likely. 

4. Two Games 

Theorem 3.1 suggests that games with large branching factors are more likely 
to be pathological. In this section, we examine the behavior of two classes of 
games as a function of the branching factor. 

4.1. Descriptions of the games 

The following is a trivial generalization of a class of games invented by Judea 
Pearl [17] for use in analyzing the computational complexity of game tree 
search procedures. A P-game (known in [10] as a Pearl game) is played on a 
chessboard measuring b kr2 by b kn rather then 8 by 8, where b > 1 and k > 0 are 
integers. The initial playing board for a P-game is constructed by randomly 
assigning each square of the board the value 1 with probability p or the value 
- 1 with probability 1 - p, where p is a constant and 0 ~< p ~< 1 (for example, see 
Fig. l). For reasons described in [10], we choose p = w(b). 

Tile two players move in strict alteration. A move for the first player consists 
of dividing the board-vertically into b scctions of equal width, and discarding 
all but one of the sections. A move for his opponent  consists of dividing what 
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FIG. i. A game tree [or a binary P-game of depth 4. The initial playing board appears at the root 
of the tree. Since the depth is even, the second player is the 'last player'. The last player has a 
forced win in this particular game tree, as indicated by the solution tree drawn in boldface. 

remains of the board horizontally into b sections of equal height, and discard- 
ing all but one of them. The play continues in this manner  until only one 
square is left. If the square has value 1, the player who made the last move 
wins. If it has value - 1 ,  his opponent  wins. Note that the same player will 
always have the last move. We call this player the last player. 

The game tree for a P-game is a complete b-ary game tree of depth k, with 
random, identically distributed leaf node values (for example, see Fig. 1). For  
this reason, the value of a node in a P-game is independent of the values of 
other  nodes at the same depth. Such independence does not occur in games 
such as chess or checkers. In these games, the board positions usually change 
incrementhlly, so that each node is likely to have children of similar strength. 

The following games were originally defined in [10], where they were called 
incremental games. The definition was inspired by a similar game tree model 
defined by Newborn [13] and later used by Lindstrom [7]. This class of games 
provides one way to model incremental variation in node strength. An N-game 
has the same size playing board," the same moves, and the same criterion for 
winning as a P-game, but the initial playing board is set up differently. To set 
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up the board, each arc of the game tree is independently,  randomly given the 
value 1 with probabili ty q or - 1  with probabili ty 1 -  q, where q is a constant 
and 0 <~ q ~< 1. (We arbitrarily choose q = �89 The strength of a node g in the 
game tree is defined as the sum of the arc values on the path from g back to 
the root. A square in the playing board is given the value 1 if the corresponding 
leaf node of the game tree has positive strength, and the value - 1  otherwise, 

4.2. An evaluation function 

Let G be a game tree for a b-ary P-game or N-game,  and g be a node in G. We 
denote  the depth of the subtree rooted at g by height(g), and the number  of 
squares in g by size(g). Thus size(g) = b h~i~htt~). If the player to move  to g is the 
'last player '  defined at the beginning of Section 4.1, then the more  '1' squares 
there are in g the more likely it is that g is a win. If it is the other  player that 
has the move  to g, then the more  ' - 1 '  squares there are in g the more  likely it 
is that g is a win. Thus an obvious evaluation function for G is 

el(g) = the number  of squares in g having value v 
size(g) 

where 

1, if the last player has the move to g ,  
v = _1, otherwise. 

Suppose he igh t (g)=  k, and suppose a depth d minimax search is used to 
choose between two children g '  and g" of g, where g '  is a forced win and g" is a 
forced loss. Then the correct decision is to move to g' .  Now, g will always be  
choosen if mm(d  - 1, g ' )  > m m ( d  - 1, g"), and g '  will be chosen half of the time 
if m m ( d -  1, g ' )  = m m ( d -  1, g"). Thus the correct decision will be  made with 
probabili ty 

D = Pr[mm(d - 1, g ')  > mm(d  - 1, g")] 
+ �89  - 1, g ' )  = m m ( d -  1, g " ) ] .  (4.1) 

4.3. Results about the games 

Monte  Carlo simulation techniques can be used to find out whether  P-games 
and N-games are pathological when the branching factor is large. Given 
integers b, k, and n, we can create  as many b-ary P-games (or N-games) of 
depth k as we wish, using a random number  generator  to de termine  which 
squares have value - 1  and which have value + 1. We  discard games for which 
the root does not have at least one forced win child and one forced loss child. 
For each of the games that is left, we select one  forced win child g '  of the root 
and one forced loss child g" of the root, and compute  m m ( d - 1 ,  g') and 
m m ( d -  l, g"). If out of a series of n games we have mm(d.-1 ,  g')> 
m m ( d  - 1, g") on m of them and m m ( d  - 1, g ' )  = mm(d  - 1, g") on p of them, 
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then the fraction D ' =  (m + ~p)/n approximates  the probability of correct 
decision D. 

To  test whether  increasing the branching factor of a game causes it to 
become pathological, it is important that the game be nonpathological for small 
branching factors. Thus we use k ~< 7 since pathology does not occur in binary 
P-games and N-games when k <~7 [10]. To  avoid examining games that are 
trivially short, we use k 1>5. Using k = 5, 6,7 and n = 3200, Monte  Carlo 
simulations have been done on b-ary P-games and N-games for several values 
of b. The results are displayed in Table 1. As can be seen, none of the N-games 
is pathological. However,  P-games of sufficiently large branching factor are 
pathological in the following sense: as long as the search terminates at nodes 
more than one move away from the end of the game (i.e., d < k - 1 ) ,  the 
probabili ty of correct decision decreases as the search depth increases. These 
results are interesting for two reasons, as discussed below. 

TABLE 1. Tile fraction D '  of correct decisions at nodes of height k in b-ary 
P-games and N-games, as a function of search depth d using minimaxing with 
the evaluation function e,. The results come from Monte  Carlo simulations 
involving 3200 games for each combination of k and b. Note that ( l)  on the 
P-games tcsted, pathology occurs if b is made sufficiently large, and (2) on the 
N-games tested, pathology does not occur 

P-games N-games 

k d b = 2  b = 3  b = 4  b = 5  b = 6  b = 2  b = 3  b = 4  b = 5  b = 6  

5 1 0.842 0.760 0.711 0.692 0.675 0.941 0.936 0.959 0.9&q 0.985 

5 2 0.867 0.779 0.701 0.671 0.649 0.969 0.967 0.976 0.987 0.997 
5 3 0.891 0.777 0.708 0.6,64 0.638 0.982 0.976 0.987 0.994 0.998 
5 4 I . (KKI 1.000 1 . (Y)0  1.000 1.000 1.000 1.000 1.000 1 .0(Y)  1.000 
5 5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 I .(KI0 

6 I 0.809 0.702 0.656 0.637 0.619 0.936 0.941 0.966 0.972 0.985 
6 2 0.806 0.699 0.641 0.612 0.602 0.953 0.961 0.978 0.990 0.996 

6 3 0.825 0.713 0.632 0.602 0.592 0.976 0.978 0.992 0.996 0.999 
6 4 0.833 0.692 0.619 0.577 0.565 0.987 0.983 0.992 0.999 0.999 
6 5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

6 6 1.000 1.000 1.000 1.000 1.000 1.003 1.000 1.000 1.000 1.000 

7 1 0.7,62 0.666 0.613 0.594 ,a  0.924 0.936 0.948 0.969 * 
7 2 0.769 0.655 0.602 0.566 * 0.955 0.9(r 0.974 0.992 * 

7 3 0.777 0.653 0.( .4J6 0.559 * 0.964 0.964 0.977 0.992 * 
7 4 0.797 0.640 0.586 0.555 * 0.980 0.982 0.9&q 0.996 * 
7 5 0.811 0.624 0.569 0.538 * 0.985 0.985 0.994 0.998 * 
7 6 1.000 1 .0 (30  1.000 1.000 * 1.000 1.000 1.000 1.000 * 

7 7 1.000 1.000 1.000 1.000 * 1.000 1.000 1.000 1.000 * 

"* indicates that it ,,'.'as not feasible to compute results for b = 6 ,,,,'hen k = 7, because of the 
excessive computing time required when b and k are large. 
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First, recall that Theorem 3.1 predicts the occurrence of pathology for large 
branching factors on games satisfying certain conditions. Neither the class of 
P-games nor the class of N-games satisfies all of these conditions, yet pathology 
occurs for large branching factors anyway on the P-games. Clearly, the con- 
sequences of the theorem hold for a larger class of games than those satisfying 
its preconditions. 

Second, it is interesting to note that when the evaluation function et is used, 
the P-games satisfy more of the preconditions of Theorem 3.1 than the 
N-games do. In particular, the preconditions of Theorem 3.1 are as follows: 

(1) The probability of the evaluation function returning the highest value in 
its range must be positive for all nodes in the game tree. (This is because 
w(b) > 0 for all b, whence c must be positive in order  to obtain c > w(b) for 
sufficiently large b.) Neither the P-games nor the N-games satisfy this condition 
when el is used, for el(g) cannot possibly return I if g is a forced loss node. 

(2) The probability that the evaluation function returns the highest value in 
its range must depend only to a limited extent on the values of other  nodes at 
the same depth. (This is the definition of an evaluation function with depen- 
dence bound.) The class of P-games satisfies this condition when e~ is used, 
since sibling nodes are independent.  However,  the class of N-games does not 
satisfy this condition. A proof of this may be constructed by examining any leaf 
node g for which e~(g')= 1 for every sibling g'  of g. The more such siblings g 
has (each of which has et(g')= I), the more likely it is that the parent of g is a 
node of sufficiently high strength that e~(g) must also be 1. 

This suggests that games satisfying the second condition are more likely to be 
pathological for large branching factors than games that do not. 

5. A Decision Criterion Better than Minimaxing? 

Our entire discussion of pathology has been predicated on the use of minimax- 
ing. One might want to consider what happens when other  kinds of decision 
procedures are used. Pearl [18, 19] has proposed the following approach. 
Suppose we have a special evaluation function e*(g) which returns the prob- 
ability that g is a forced win (for the player to move to g) given some of its 
measurable features. Suppose further that the probabilities of sibling nodes 
being forced wins are always independent,  and that we have evaluated e*(g') 
for every node g' at some depth d in the subtree rooted at g. Then the 
probability that g is a forced win can be computed by applying the formula 

Pr[h is a win node] = 
= {1 - Pr[h'  is a win node] I h'  is a child of h} (5.1) 

to successively shallower nodes in the subtree. Pearl suggests that the same 
product rule should .be used to propagate e(g) even when e(g) only ap- 
proximates the actual probability that g is a forced win given its examined 
features. The procedure works as follows: use an evaluation function e(g) 



PATHOLOGY ON GAME TREF~S REVISITED 231 

which returns valucs between (1 and 1. Search the game tree to some depth d, 
evahmting the nodes at this depth. Instead of using minimaxing to compute 
values for the shallower nodes of the trce, compute values for these nodes as if 
the computed values for their childrcn were independent probabilities of the 
occurrence of forced wins. This amounts to replacing the 'negamax formula' 

m m ( d , g ) =  { e(g), if d = 0,  
- m a x { r a m ( d -  1,g') ] g' is a child of g}, othcrwise. 

by the form'ula (5.2) 

Je(g),  if d = 0 ,  

pe(d, g) = [ I-I { 1 - pc(d - 1, g') I g' is a child of g}, otherwise. 
(5.3) 

We call pc(d, g) the depth d probability estimate for g. 

One difficulty with the above approach is that it is not clear how to estimate 
tile probability e*(g) that g is a forced win given the features of g. Another  
difficulty is that the nlultiplication rule used in (5.1) and (5.3) assumes in- 
dependent probabilities. Since the characteristics of sibling modes may be 
interdependent (as they are, for example, in N-games), this rule is incorrect for 
many games. 

Regardless of these difficulties, this approach still should be investigated. It 
may not yield completely accurate values, but neither docs min imax ing Iand  
perhaps it will avoid the pathology that can arise when minimaxing is done. In 
this section, wc examine the following questions. 

(I) Can pathology be avoidcd by using probability cstimation? 
(2) In games which are not pathological, does probability estimation yield as 

high a probability of correct decision as minimaxing? 
(3) Even if probability estimation yields a higher probability of corrcct 

decision than minimaxing, does it allow significantly more games to bc won? 

5.1. Probability estimation on P-games 

Can pathology be avoided by using probability estimation? As an answer to 
this question, Table 2 contains the rcsuhs of a Monte Carlo simulation on 
P-games. "-l'hc simulation was similar to that of Section 4, but was done using 
probability estimation instead of minimaxing. Because of computational 
difficulties, only binary games were investigated. Since the evalutaiton function 
e, returns'values between (I and i, it was used without modification. 

For purposcs of comparison, Table 3 contains analytic results taken from [ 10] 
concerning minimaxing in binary P-games, and Table 4 gives the percentage 
ditIercnces bctwcen the values contained in Table 2 and the corresponding 
values in Table 3. Note the following patterns. 

(I) When minimaxing is used "(Table 3) and k is largcr than about 7 or 8, 
pathology occurs, in the following sense: as long as the search does not go 
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TAnLE 2. Probability of correct decision D '  as a function of search depth d 
using probability estimation with the evaluation function ez for nodes of height 
k in binary P-games. The results come from a Monte Carlo simulation 
involving 3200 games for each value of k 

d k = 3  k = 4  k = 5  k = 6  k = 7  k = 8  k = 9  k = 1 0  k = l l  k = 1 2  k = i 3 a  

1 0.947 0.906 0.842 0.809 0.762 0.729 0.694 0.670 0.643 0.621 0.620 
2 1.000 0.934 0.876 0.816 0.772 0.732 0.695 0.(~9 0.641 0.620 0.619 
3 1.000 1 .t<)O 0.904 0.840 0.779 0.74(, 0.698 0.673 0.642 11.623 0.619 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

I.(g)O 1.000 I).865 0.815 11.754 0.708 0.676 0.647 0.625 0.622 
1.000 1.000 0.837 0.782 0.718 0.683 0.643 0.629 0.622 

1.0(90 1.000 0.802 0.747 0.684 0.654 0.630 0.623 
1.000 1.000 0.777 0.710 0.664 0.637 0.628 

1.0(Xl 1.000 0.747 0.695 11.646 0.638 
1.000 1 . 0 0 0  0.711 0.658 0.637 

1.000 1 . 0 0 0  0.684 0.6/.~1 
1 .IXg} 1.000 1).677 

1.000 1.0(X) 
1.000 

TABt.E 3. Probability of correct decision D as a function of search depth d using 
minimaxing with the evaluation function el for nodes of height k in binary 
P-games. The results were computed analytically in [ 10] 

d k = 3  k = 4  k = 5  k = 6  k = 7  k = 8  k = 9  k = 1 0  k = l l  k = 1 2  k = 1 3  

1 0.947 11.902 0.849 0.805 0.765 I ) .731  0.701 I).675 0.652 11.633 0.616 
2 1.0(XI 0.914 0.872 I).807 0.769 0.725 0.695 0.666 0.644 11.69.23 0.607 
3 1.000 1.000 11.893 0.830 11.773 0.730 0.692 0.663 0.638 0.617 0.60(I 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

I.I100 1.000 0.825 0.790 0.728 0.694 0.658 0.633 0.611 11.594 
1.000 1.000 0.806 11.741 0.691 0.658 0.629 0.607 0.589 

1.000 1.000 0.698 0.705 I).650 0.627 11.(~)2 0.585 
i.IXXI 1.000 0.699 0.656 0.619 0.599 0.581 

1.000 1.000 0.581 0.640 0.585 0.574 
1.000 1.000 0.592 0.595 0.570 

! .IXX) 1.0130 0.517 0.592 
1.000 I . (K)0 0.521 

1.000 1.000 
1.000 
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TABLE 4. Percentage difference 100% x ( D '  - D ) / D ,  where D '  is taken from Table 
2 and D is taken from Table 3 

d k=3  k=4  k=5 k=6  k=7  k = 8  k=9  k = l O  k = l l  k = 1 2  k = 1 3  

I 0.0% 0.4% -0.8% 0.5% -0.4% -0.3% -1.0% -0.7% -1.4% -1.9% 0.6% 
2 0.0% 2 .2% 0 .5% 1.1% 0 .4% 1.0% 0 .0% 0.5% -0.5% -0.5% 2.0% 
3 0 .0% 0.0% 1.2% 1.2% 0 .8% 2.2% 0 .9% 1.5% 0.6% 1.0% 3.2% 
4 0.0% 0.0% 4.8% 3 .2% 3.6% 2.0% 2 .7% 2.2% 2.3% 4.7% 
5 0.0% 0.0% 3 .8% 5.5% 3 .9% 3 .8% 2.2% 3.6% 5.6% 
6 0.0% 0.0% 14.9% 6.0% 5.2% 4.3% 4.7% 6.5% 
7 0.0% 0.0% 11.2% 8 .2% 7.3% 6.3% 8.1% 
8 0.0% 0.0% ~ . 6 %  8.6% 10.4% 11.1% 
9 0.0% 0.0% 20.1% 10.6% 11.8% 
10 0.0% 0.0% 32.3% 11.5% 
II 0.0% 0.0% 9.9% 
12 0.0% 0.0% 
13 0.0% 

closer than one move away from the end of the game (i.e., d < k - 1 ) ,  the 
probability of correct decision decreases as the search depth increases. 

(2) When probability estimation is used (Table 2), pathology does not occur 
for any tested value of k. Instead, for all values of k examination, the probability 
of correct decision increases as the search depth increases. 

(3) In most cases, the probability of correct decision using probability 
estimation is greater than or equal to the probability of correct decision using a 
minimax search to the same depth (see Table 4). However,  the difference is not 
very large except for large search depths. 

Thus, overall, probability estimation appears to be somewhat better than 
minimaxing on P-games. 

5.2.  P r o b a b i l i t y  e s t i m a t i o n  on N - g a m e s  

In games which are nonpathological, is probability estimation as accurate as 
minimaxing? It would be difficult to answer this question for all games. 
However, one can certainly examine specific classes of games. Table 5 contains 
Monte Ca.rlo results about the probability of correct decision for probability 
estimatiod in binary N-games. For purposes of comparison, Table 6 contains 
Monte Carlo results taken from [10] concerning minimaxing in binary N-games. 
As shown in Table 7, probability estimation appears to perform slightly more 
poorly in N-games than minimaxing does. However, the percent difference 
between the probability of correct decision is in all cases less than 1.3%. This 
figure is small enough that the differences may have been caused by random 
variation in the Monte Carlo simulations. Thus on at least one class of 
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ThBt.E 5. Probability of correct decision D' as a function of search depth d using 
probability estimation with the evaluation function ej, for nodes of height k in 
binary N-games. The results come from a Monte Carlo simulation involving 
3200 games for each value of k 

d k = 3  k = 4  k = 5  k = 6  k = 7  k = 8  k = 9  k = 10 k = il k = 12 k = I_~ 

I 0.982 0.970 0.941 11.936 0.924 0.933 0.914 0.920 0.914 0.913 0.910 
2 1.000 0.981 0.963 0.949 0.944 0.945 0.929 0.928 0.929 0.924 I).922 
3 I .(h30 1.000 0.981 0.973 0.959 0.962 0.943 0.940 0.940 0.937 0.931 
4 1.000 1.000 0.985 0.972 0.968 0.957 0.948 0.950 0.943 0.936 
5 1.000 I .tgYJ 0.983 0.978 0.968 0.964 0.957 0.952 0.948 
6 1.000 1.000 0.988 0.980 0.973 0.962 11.962 11.952 
7 1.000 1 . 0 0 0  0.987 0.984 0.972 0.969 0.960 
8 1.000 1 . 0 0 0  0.992 0.979 0.977 0.967 
9 1.000 1 . 0 0 0  0.987 0.984 0.976 
1O 1.000 1 . 0 0 0  11.991 0.97,q 
11 I.O00 !.000 0.992 
12 I.(g~0 1.000 
13 1.000 

TABLE 6. Probability of correct decision D' as a function of scarch depth d using 
minimaxing with the evaluation function eb for nodes of height k in binary 
N-games. The results come from a Monte  Carlo simulation involving 3200 
games for cach value of k 

d k = 3  k = 4  k = 5  k = 6  k = 7  k = 8  k = 9  k = 10 k = il  k = 12 k = 13 

I 0.982 0.970 11.941 11.936 0.924 11.933 11.914 I).9211 0.914 11.913 0.9111 
2 I .tl~l 0.978 0.969 0.953 0.955 0.947 0.938 0.939 0.934 0.924 0.926 
3 1.000 1.000 0.982 0.976 0.964 0.959 0.952 0.950 0.940 0.94.-1 0.935 
4 i .000 1.000 0.987 0.980 0.966 0.962 0.9(:/3 0.950 0.951 0.943 
5 ! .000 1.0(D 0.985 11.979 tl.968 I).969 (L958 0.958 tl.947 
6 1.000 1.000 0.985 0.983 0.974 0.965 0.963 0.959 
7 1.000 ! .000 0.984 0.983 0.975 0.972 0.965 
8 1.000 1 . 0 0 0  0.988 0.982 0.978 0.976 
9 l.lXX) 1.11~x1 11.986 0.987 11.981 
I 0 1.000 1 . 0 0 0  II.988 0.985 
I I I.lXI0 1.000 0.986 
12 1.000 1.000 
13 1.000 

Note. The above fgures are better approximations of D" than the corresponding figures given in 
II01. 
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TABLE 7. P e r c e n t a g e  d i f fe rence  100% x ( D ; -  D~)/D~, where  D~ and  D~ a re  the  
va lues  of  D '  given in Tab l e s  5 and  6, r e spec t ive ly  

d k=3 k = 4  k=5 k = 6  k = 7  k=8 k = 9  k=lO k = l l  k=12 k=13  

! 0.0% 00% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
2 0.0% 0.3% -0.6% -0.4"/o -1.2% -0.2% -1.0% -1.2% -0.5% 0.0% -0.4% 
3 0.0% 0.0% -0.1% -0.3% -0.5% 0.3% -0.9% -1.1% 0.0% -0.7% -0.4% 
4 00% 0.0% -0.2% -0.8% 0.2% -0.5% --1.3% 0.0% -0.8% -0.7% 
5 0.0% 0.0% -0.20/0 -0.1% 0.0% -0.50/0 -0.1% -0.60/0 0.1% 
6 0.0% 0.0% 0.3% -0.3% -0.1% -0.3% -0.1% -0.7% 
7 0.0% 0.0% 0.3% 0.1% -0.3% -0.3% -0.5% 
8 0.0% 0.0% 0.4% -0.3% -0.1% -0.9% 
9 0.0% 0.0% 0.1% -0.3% -0.5% 
10 0.0% 0.0% 0.3% -0.7% 
11 0.0% 0.0% 0.6%" 
12 0.0% 0.0% 
13 0.0% 

nonpa tho log i ca l  games ,  p robab i l i t y  e s t ima t ion  p e r f o r m s  a lmost  iden t ica l ly  to 

min imaxing .  

5.3. P robab i l i t y  es t imat ion  versus  min imax ing :  two contests  

Since  p robab i l i t y  e s t ima t ion  has a h igher  p robab i l i t y  of  cor rec t  dec is ion  than  
min imax ing  on P-games ,  a p l aye r  using it will gene ra l ly  m a k e  b e t t e r  moves  
than  an o p p o n e n t  using min imaxing .  Thus  the  p l aye r  using p robab i l i t y  es t ima-  
t ion should  win m o r e  g a m e s  than his o p p o n e n t ,  but  it is not  c lear  how m a n y  
more .  T o  find out  how many  more ,  the  two decis ion  p r o c e d u r e s  were  p i t t ed  
aga ins t  each  o t h e r  in a n o t h e r  M o n t e  Ca r lo  s imula t ion .  "l]le s imula t ion  w o r k e d  
as fol lows:  1600 b ina ry  P -games  of  d e p t h  k = I0 were  ge ne ra t e d .  F o r  each 
g a m e ,  and  for  each  poss ib le  search  d e p t h  d, two g a m e s  were  p l ayed :  o n e  in 
which the p l aye r  using p robab i l i t y  e s t ima t ion  p layed  first and  one  in which the  
p l a y e r  using min imax ing  p layed  first. Thus  bo th  p laye r s  and  the s a m e  n u m b e r  
of  g a m e s  on which they  had  fo rced  wins, as well  as the  s ame  n u m b e r  of  chances  
to be  the  first p layer .  

T h e  a b o v e  con tes t  was done  with bo th  p layers  using the  eva lua t ion  funct ion 
el. Let  us def ine  

e2(g) = f(h, e,(g)) 

w h e r e  h is the  he ight  of  g in the  g a m e  t ree ,  b is the  b ranch ing  fac tor  (in this 
case  2), and  

I x, i f h  = 0 ,  
f ( h , x ) =  f ( h - l ,  xb), �9 i f h > 0 i s o d d ,  

( l - ( l - f ( h - 2 ,  x))b) h, i f h > 0 i s e v e n .  
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Pear l  [15] has  sugges ted  that  ez(g) is a b e t t e r  a p p r o x i m a t i o n  of  e*(g) than  el(g) 
is, and  that  t he re fo re  p robab i l i t y  e s t ima t ion  might  do  b e t t e r  in re la t ion  to  
min imax ing  if ez is used ins tead  of  el. T o  test tiffs con jec tu re ,  a s econd  contes t  
be t ween  p robab i l i t y  e s t ima t ion  and  min imax ing  was run using ez. The resul ts  

of  bo th  con tes t s  a re  given in T a b l e  8. 
T h e  resul ts  of  the  two con tes t s  were  s o m e w h a t  d i sappo in t ing :  probabil i ty ,  

e s t ima t ion  p e r f o r m e d  only marg ina l ly  b e t t e r  than min imaxing .  In fact, much of  
the  d i f fe rence  in p e r f o r m a n c e  cou ld  be  due  to  r a n d o m  var ia t ion  in t i le  M o n t e  
Car lo  s imula t ion .  

Since  p robab i l i t y  e s t ima t ion  was shown in Tab l e s  2 -4  to have  a h igher  
p robab i l i t y  of cor rec t  decis ion than  nf in imaxing on b ina ry  P-games ,  T a b l e  8 at 
first a p p e a r s  incons is ten t  with these  tables .  H o w e v e r ,  fu r the r  thought  reveals  
that  no  incons is tency  exists.  T a b l e s  2 -4  dea l  on ly  with the  p robab i l i t y  of  cor rec t  
dec is ion  at  ind iv idua l  pos i t ions  in a game .  H o w e v e r ,  winning  a g a m e  d e p e n d s  
not  jus t  on o n e  correc t  decis ion,  but  on the  en t i re  ser ies  of  dec is ions  m a d e  by 

bo th  p layers .  
If two p layers  E and  M are  p lay ing  a g a m e  and M m a k e s  a wrong  move  at 

one  poin t ,  E will not  necessar i ly  win the  g a m e  unless  he t akes  a d v a n t a g e  of  M ' s  
mi s t ake  and  con t inues  to m a k e  g o o d  moves  f rom that  po in t  on.  If E m a k e s  a 
mi s t ake  la ter ,  then  M may  poss ib ly  r ecove r  and  win the  game .  T h u s  unless  E is 

TABLE 8. N u m b e r  of  P-games  won  by  a p l a y e r  using p r o b a b i l i t y  e s t ima t ion  
p lay ing  agains t  a p l aye r  using min imaxing ,  with bo th  p layers  sea rch ing  to the  
same  d e p t h  d. T h e  resul ts  come  f rom M o n t e  Ca r lo  s imula t ions  of  1600 games  
each .  F o r  each search  dep th  d, each  p l aye r  had  a chance  to  s tar t  first, giving a 
to ta l  of  3200 games  for  each va lue  of  d 

Both players using el(g) Both players using e2(g) 

Search Number Percentage Number Percentage 
depth d ofwins of wins of wins of wins 

I a 1600 50.0% 1 r 50.0% 
2 1590 49.7% 1630 50.9% 
3 1529 47.8% 1604 50.1% 
4 1671 52.2% 1732 54.1% 
5 1603 50.1% 1677 52.4% 
6 1729 54.0% 1757 54.9% 
7 1646 51.4% 1624 50.8% 
8 1722 53.8% 1718 53.7% 

9 ''b 1600 50.0% 16(X) 50.0% 
10 ~'b ! (ff)O 5(1.1)% 1600 50.0% 

"For search depths 1, 9, an~ 10, both players play identically. 
bFor search depths 9 and I0, both players play perfectly. 
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Choose first player 

First player is E First player is M 
Set up board Set up board 

10 moves left 10 moves left 10 moves left 10 moves left 
IE has forced win M has forced win .M has forced win E has forced win 

9 moves left 9 moves left 9 moves left 9 moves left 
IE has forced win M has forced win M has forced win E has forced win 

M istomove ~ I1"0 J 1-M9 M istomovel M9 E istolmovel.0 ~ - I = ' s t i m ~  E9 

8 moves left 8 moves left 8 moves left ~ 8 moves left 
E has forced win M has forced win M has forced win E has forced win 

7 moves left 7 moves left 7 moves left 7 moves left 
E has forced win M has forced win M has forced win E has forced win 

M is to move M is to move E is to move l= is to move 

,.or  .ol ,.ol ,.ol 
6 moves left 6 moves left 6 moves left 6 moves left 

E has forced win M has forced win M has forced win E has forced win 
E is to move E is to move M is to move M is to move 

,.o I ,.o I ,.o I ,.o I 

A B C D 
E wins' M wins M wins E wins 

FIG. 2. A Markov chain representing all possible ou tcomes  of binary P-games of depth 10 between a 
player E who uses probability est imation and a player M v,'ho uses mlnimaxing,  with both players 
using the evaluation function en. States corresponding to game tree nodes of height less than 6 are 
omit ted since both players are playing perfectly from height 7 on. 
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play ing  s ignif icant ly be t t e r  than  M th roughou t  the  game ,  E will no t  win 
signif icant ly more  games  than M. Suppose  E is using p robab i l i t y  e s t ima t ion  and  
M is using min imaxing ,  with bo th  p layers  using the eva lua t ion  funct ion  e~. A s  
can be  seen from Tab le  4, p l aye r  E will p lay  signif icant ly b e t t e r  at cer ta in  
po in ts  in a P -game than p laye r  M, but  for  most  of the  g a m e  E ' s  p robab i l i t y  of  
cor rec t  dec is ion  is not s ignif icant ly be t t e r  than M's .  

As  an e x a m p l e ,  cons ide r  P-games  of  ctepth 10 p layed  by  the p l aye r s  E and  
M, w h e r e  bo th  p layers  a re  sea rch ing  to d e p t h  6. T h e  poss ib le  courses  of  even t s  
in these  games  are  m o d e l e d  by the M a r k o v  chain of  Fig. 2. The  first two  levels 
of  the  chain r ep re sen t  choos ing  who  goes  first and set t ing up the p lay ing  boa rd  
(it can be  shown [I1] that  the  first p l aye r  has  a forced  win at the  beg inn ing  of  
the  g a m e  with p robab i l i t y  0.382). Each  subsequen t  s ta te  r e p r e se n t s  which 
p l aye r  is to move  and  which p l aye r  has a fo rced  win,  and  the arcs  leaving the  
s ta te  r ep re sen t  choices  of cor rec t  or  incorrec t  moves .  T h e  p robab i l i t y  that  
p l aye r  E wins is the  sum of  the p robab i l i t i e s  of  reaching  e i the r  s ta le  A or  s ta te  

D. 
T h e  t rans i t ion  p robab i l i t i e s  ~ and ~ in Fig. 2 are  the  p robab i l i t i e s  of  

cor rec t  dec is ion  for  E and  M, respec t ive ly ,  when j moves  a r e  left. If we 
a p p r o x i n m t e  E, and  M i by the figures given for  d = 6 and k = ] in T a b l e s  2 and  
3, respec t ive ly ,  2 then we get  En0 = 0.684, E~, = 0.747, and  E8 = 0.802, w he re a s  
Mx0 : 0 .650,  M9 = 0 .705 ,  and  M8 = 0.698. F r o m  s imple  a lgebra ,  it fol lows that  
the p robab i l i t y  that  the  game  will end  at a node  where  E wins is 0.539, which is 
qui te  c lose to the  figure 0.540 given in T a b l e  8. 

6. S u m m a r y  and Discussion 

This  p a p e r  has  dea l t  with two main  topics :  an inves t iga t ion  of  some  of  the  
cond i t ions  unde r  which p a t h o l o g y  occurs ,  and  an examina t i on  of  a dec is ion  
p r o c e d u r e  which is in some  respec t s  b e t t e r  than  min imaxing .  

6.1. Condi t ions  which cause  pa tho logy  

Since the  d i scovery  of game  t ree  p a t h o l o g y  in 1979 [8], a m a j o r  open  ques t ion  
has been  why p a t h o l o g y  does  not  occur  in games  such as chess and  checkers .  

In games  such as chess and  checkers ,  some  g a m e  pos i t ions  a re  ' s t r ong '  and  
o t h e r  a re  'weak ' ,  and  since the b o a r d  pos i t ions  usual ly  change  inc rementa l ly ,  
the  ch i ld ren  of  any  given node  a re  all l ikely to  have  s imi lar  s t rengths .  In [10], it 
was c o n j e c t u r e d  that  this is one  reason  why such games  are  not pa tho log ica l .  

~Fhis approximation is by no means exact, since the values in Tables 2 and 3 deal only with the 
case where one of the two children of the current node is a forced win and the other is a forced 
loss, and where the a priori probability of a leaf node being a [orccd win for the last player is 0.382. 
In actuality, both, one, or neither of the children may be forced wins; and the probability of a leaf 
node being a forced win ,,viii be biased from the initial value of 0.382 as the moves taken by the 
players lead toward subtrees containing greater or smaller numbers of forced win nodes. 
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The first part of the current paper contains an investigation into tile causes of 
pathology which supports this conjecture. 

"Hie first part of this investigation has consisted of formulating and proving a 
theorem (Theorem 3.1) stating that for game trees satisfying certain pre- 
conditions, pathology will occur if the branching factor is sufficiently large. One 
of the conditions necessary for this theorem to be applicable is the following 
independence condition: the value returned by the evaluation function on a 
node of the game tree must be dependent only to a limited extent on tile values 
returned on the node's siblings. This condition clearly will not be satisfied if 
similar nodes have similar strengths and if the evaluation function value of a 
node correlates with the node's strength. 

This result is further supported by Monte Carlo simulations on two classes of 
games, which are called P-games and N-games. For the evaluation function 
used for these games, neither class of games satisfies all of the preconditions of 
Theorem 3.1, but the class of P-games does satisfy the independence condition 
described above. It is therefore quite interesting to note that pathology occurs 
on the P-games when the branching factor is made sufficiently large, but does 
not occur on the N-games (which do not satisfy this precondition) for any of the 
branching factors which have been tried. 

It should be noted that none of the studies in this paper deal with what 
happens when a game tree search reaches a leaf node. Thus the results of these 
studies do not conflict with Pearl's conjecture [19] that another reason for the 
absence of pathology in chess, checkers, and similar games is the occurrence of 
leaf nodes at all levels of the game tree. There  may very well be a number of 
factors contributing to the lack of pathology in these games. 

6.2. An alternative to minimaxing 

The other topic discussed in this paper is a game tree search procedure which 
does not use minimaxing, but instead uses a 'probability estimation' procedure. 

Using Monte Carlo simulations, this procedure is compared against mini- 
maxing, with both procedures searching to tile same depth, on the P-games and 
N-games mentioned above. On the N-games, the probabilities of correct 
decision for probability estimation and minimaxing are ahnost identical; and on 
the P-games, probability estimation yields a higher probability of correct 
decision than minimaxing. However,  further Monte Carlo studies indicate that 
probability, estimation performs only marginally better than minimaxing in 
terms of the number of games that it wins against a minimax search to the same 
depth. 

The major reason for the disappointing performance of probability estima- 
tion appears to be that in order  for one player to win a game over an opponent ,  
the player usually must play significantly better  than his opponent throughout 
the game. As illustrated in Table 4, the probability of correct decision obtained 
by probability estimation is considerably better than that obtained by mini- 
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maxing during specific points in a P-game, but it is not significantly better  
during most of the game. Pearl [19, 18] also suggests that perhaps minimaxing 
can take advantage of a player's mistakes better than probability estimation, 
but there seems to be no good way to measure whether this is in fact true. 

Possibly another  reason for the disappointing performance of probability 
estimation is that the evaluation functions el(g) and e2(g) are only ap- 
proximations of the probability that g is a forced win. Better  results could 
possibly be obtained by using an evaluation function e*(g) which returned the 
actual probability that g were a forced win given the features of g examined by 
e*. However,  such a function would be very difficult to compute for most 
games. Thus probability estimation is probably of limitcd use, especially since 
pruning schemes such as alpha-beta [6, 14] and SSS* [21] cannot be used with it. 

Appendix A 

Lcmma A.I. Let G be a b-ary game tree. Let e be an evaluation function for G 
with dependence bound p, aml let 

c = inf Pr [e (g)=  h] 
g~G 

where h is the highest value e can return on any node of G. For every node g of  
G, if the subtree rooted at g is complete to at least depth d, then for every set of 
constraints C on any subset of 

{e(g') [ depth(g ' )=  depth(g)+  d and g' is not a descendent of g},  

we ]rave 

PrImm(d, g) = ( -  1)ah I CI i> sa(b, c/p) .  

Proof (by induction on d). Let g be a node of G. From (2.4) and the definition 
of an evaluation function with a dependence bound it follows that for every set 
of constraints C on any subset of {e(g') I depth(g')  = depth(g)+0 and g' • g}, 

Pr[mm(0, g) = ( - l )~  ] C] = Pr[e(g) = h ] C] t> c/p = so(b, c/p) .  

Thus the lcmma holds for d = 0. Lct j > 0, and suppose the lemma holds for 
d = j -  i. Let g be a node of G, and let the children of g be g ,  g2 . . . . .  gt,. From 
(2.1) it follows that mm(j, g ) =  ( -  1)~e(g ') for some descendant g'  of g. Thus if j 
is even, then ram(j, g)<~ h, and if j is odd, then ram(j, g ) i > - h .  There  are two 
cases to consider. 

Case 1. j is even. Then mm(j, g) ~< h, and mm(j - I, g)/> - h .  Thus from (2.1), 
mm(j, g) = h if and only if mm( / ' -  1, gk) = - h  for k = I . . . . .  b. Therefore,  for 
every set of constraints C on any subset of 

{e(g') I depth(g ' )=  d e p t h ( g ) + j  and g' is not a descendent of g}, 
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Pr[mm(L g ) =  h I C] = 

= P r [ m m ~ j -  1, g,,,) = - h  for  all m I C] 

= P r [ m m f f - l , g t ) = - h  [ CI 

* P r [ m m ( / -  1, g2) = - h  I r a m ( / -  I, gt) = - h  and C] 

* P r [ m m q -  1, g,,) = - h  I m m ( j -  1, gk) = - h  

f o r k =  1 . . . . .  m - 1  and C] 

* P r [ m m q -  1, gb) = - h  I r am( / ' -  1, gk) = - h  

for  k = I . . . . .  b -  1 and C] .  

But f o r m =  1 . . . . .  b, 

{e(g') I d e p t h ( g ' ) =  depth(g)+/" 

and g '  is not a descendent  of g} C S,,,, 
where  

(A. l )  

S,,, = {e(g') I depth(g ' )  = d e p t h ( g m ) + j -  1 

and g'  is not a descent  of g,,,}. 

a set of constraints  on a subset of  S,,,. Thus  C is Fur the rmore ,  for  k = 
1 . . . . .  m - 1, m m ( j -  1, gk) is a function only of  {e(g') I g '  has depth  j -  1 in 
the subtree  roo tcd  at gk}, which is a subset of S,,,. Thus  the s ta tement  
' r a m ( j -  I, gk) = h '  is also a constraint  on a subset of S,,,. The re fo re ,  f rom the 
induction assumption,  

P r [ m m q -  I, gm) = - h  I m m q -  1, gk) = - h  

f o r k =  1 . . . . .  m - I  and C] 

>~ sj_,(b, c /p) .  

There fo re ,  
J 

Pr[mm(/ ,  g )=  ( - l y h  I C ] =  

= Pr[mm(j,  g) = h I C] 

>t (si-x(b, c/p)) b (from (A.I)  and (A.2)) 

= sj(b, c/p) (from (2.4)). 

Thus  the theorem holds for  d = j when j is even.  
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Case  2. ] is odd.  Then  ram(i, g )  I> - h and mm(]  - 1, g)  ~< h. Thus  f rom (2.1), 
ram(], g )  = - h  if there is at least one  child g '  of  g such that r a m ( j -  1, g') = h. 
Therefore ,  for every set of constraints  C on any subset of  

{e(g') [ dep th(g ' )  = d e p t h ( g ) + j  and g '  is not a descendent  of g} ,  

Prlmm(],  g ) = - h l C l  = 

= P r [ m m ( j -  l , g , . ) = h  for some m J C] 

= 1 - P r [ m m ( j -  l , g , . )  ~ h for all m J C I ,  

= l - ( l -  P r [ m m ( ] -  l , g~ )=h  J C]) 

* ( 1 -  P r [ m m ( ] -  l , g 2 ) = h  J r a m ( i -  l , g l  ~ h and C])  

*(1 - Pr[mm(]  - 1, g,.) = h [ mm( j  - 1, gk) ~ h 

for k = I . . . . .  m - I  anti C]) 

* ( l - P r l m m ( j - l , g b ) = h  I m m ( j - l , g ~ ) g h  

for k = 1 . . . . .  b -  1 and C] ) .  

In a manne r  similar to Case 1, it follows that 

Pr[mm(j,  g)  = ( - l )qz  ] C] > / 1 - ( I  - sj_,(b, c /p ) )  b 

= s,(b, c/p). 

Thus  the theorem holds for d = ] when ] is odd.  

Proof of Theorem 3.1. Let gl, g,_ . . . . .  gb be tile children of g, and let the 
subtree rooted at g be complete  to at least depth d. Then  

Prltie(d, g)] = 

= P r [mm(d  - i, g , ) = m m ( d  - I, g2) . . . . .  m m ( d  - I, go)] 

~> P r [ m m ( d -  1, g , ) = ( -  l )a- 'h  for all i] 

~> P r [ m m ( d -  1, g,) = ( -  l )d - 'h ]  

* P r [mm(d  - 1, g 2 ) = ( -  I )a - 'h  I m m ( d  - I), g, = ( - 1 ) a - ' h i  
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* P r [ m m ( d -  1, gb )=( -1 )e - th  I m m ( d -  1), g, = ( -1 )a - th  

for  i = 1 . . . . .  b - 1] 

(from the definit ion of condit ional  probabi l i ty)  

>~ (Sd-t(b, c /p) )  b (from L e m m a  A.I) .  
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