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ABSTRACT 
Branch and Bound (B&B) is a problem-solving technique which is widely used for various problems 
encountered in operations research and combinatorial mathematics. Various heuristic search pro- 
cedures used in artificial intelligence (AI) are considered to be related to B&B procedures. However, 
in the absence of any generally accepted terminology for B&B procedures, there have been widely 
differing opinions regarding the relationships between these procedures and B &B. This paper presents 
a formulation of B&B general enough to include previous formulations as special cases, and shows 
how two well-known AI  search procedures (A* and AO*) are special cases o,f this general 
formulation. 

1. Introduction 

A wide class of  problems arising in opera t ions  research, decision making and 
artificial intelligence can be (abstractly) stated in the following form: 

Given a (possibly infinite) discrete set X and a real-valued objective 
func t ion  F whose domain  is X, find an optimal  e lement  x* E X such 
that  F ( x * )  = min{F(x)  I x ~ X } )  

Unless there is enough  problem-specific knowledge  available to obtain the 
op t imum element  of the set in some s t ra ightforward manner ,  the only course 
available may be to enumera t e  some or  all of the e lements  of  X until an 
opt imal  e lement  is found.  However ,  the sets X and {F(x) [ x E X}  are usually 

tThis work was supported by NSF Grant ENG-7822159 to the Laboratory for Pattern Analysis at 
the University of Maryland. 

1In some applications, the maximal element (i.e., x* such that F(x*)= max{F(x)[ x U X}) is 
desired rather than the minimal element. 
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defined in such a way that their elements are not readily available, but instead 
require some computation to be generated. Thus, for problems of practical 
interest, exhaustive enumeration is often prohibitively time-consuming. 

There are many examples of this kind of problem in AI. For example, the set 
X may be the set of solutions to an And/Or  graph, game tree, or state-space 
search problem. While various comments have been made regarding the 
relationships of B&B procedures to heuristic search procedures, the comments 
have often been contradictory. Whereas Hall [2] and Ibaraki [4, 6] consider 
B&B and heuristic search procedures to be very similar, Pohl [22] does not 
agree. Similar differences in assessment may be found in Reingold et al. [23] 
and Knuth [7] concerning alpha-beta and B&B, in Kumar and Kanai [13] and 
Berliner [1] concerning B*, and in Ibaraki [6] and Marteili and Montanari [16] 
concerning AO*. A plausible explanation for some of the confusion concerning 
the relationships between B&B and AI search procedures is that B&B tech- 
niques have continued to evolve since the early 1960s, whereas the early survey 
by Lawler and Wood [14] is often the only reference used in the AI literature. 
Additional confusion results, however, from other factors as described below. 

One reason for the present confusion about B&B is the differing conceptions 
of the basic entities operated on by B&B. For example, the characterization of 
B&B presented by Kohler and Steiglitz [8] is developed in the context of 
permutation problems and uses "partial combination vectors" as the basic 
entities. The one presented by Ibaraki [6] attempts to serve as a model for 
state-space search procedures, and formulates B&B as a procedure operating 
on strings over an alphabet. In Reingold, Nievergelt, and Deo [23], the basic 
entities are partial solution vectors. 

In our opinion, much of the above confusion can be resolved by making a 
distinction between the entities operated on by B&B and the structures used to 
represent these entities. We argue that the fundamental entities operated upon 
by a B&B procedure are not the partial vectors, alphabetic strings, or other 
problem-specific entities. These are merely representations of subsets of the set 
of solutions X mentioned at the beginning of this section, and confusion results 
from the lack of distinction between the entity and its representation. 

In this paper, we unify the various previous formulations of B&B by 
considering B&B as a procedure which operates on members of an arbitrary 
set of representations of subsets of X. These representations can be vectors, 
strings, paths in a graph, solution trees, or any other convenient structures. 

Another  source of confusion about B&B is that different writers define B&B 
to have different and non-equivalent pruning criteria. Until recently, the only 
test used for pruning in B&B was based on upper and lower bounds on subsets 
of X (e.g., Mitten [17]); hence the name Branch and Bound. The introduction 
of more sophisticated pruning techniques seems to have been initiated by 
Kohler and Steiglitz [9] with their concept of dominance, although similar ideas 
have been used heuristically in many other branch and bound algorithms 
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(Ibaraki [5] gives a long list). The formal introduction of dominance in B&B 
procedures was a major step towards formalizing the use of problem-specific 
knowledge in optimization procedures. Kohler and Steiglitz [9] and Ibaraki [6] 
have given a formal description of B&B with dominance. They have proved 
several results using this formulation. 

To unify the varying conceptions of B&B pruning techniques, we allow any 
generated set to be pruned if it can be shown that at least one of the remaining 
sets contains an optimal element. A look at the references cited above will 
show that our approach to pruning is simpler than previous formulations while 
including them as special cases of our approach. 

Using our formulation of B&B, we show that A* and AO* are special cases 
of B&B. A number of other search procedures (e.g., alpha-beta [20], SSS* [25], 
and B* [1]) can also be considered special cases of our general formulation; this 
is shown in another paper [12]. This general formulation can be used to shed 
light on the similarities and differences among these various search procedures. 
This topic is investigated further in [10]. 

Section 2 describes the general formulation, which we call General Branch 
and Bound (GBB). This section discusses the basic concepts of B&B, the 
necessity of distinguishing between a set and its representation, the use of 
auxiliary data in B&B, and a fundamental property of B&B. Section 3 
discusses an important special case of GBB. This special case is used in 
subsequent sections to show that other procedures are special cases of GBB. 
Section 5 discusses how ordinary B&B (in which all pruning is done by means 
of upper and lower bounds) may be considered a special case of GBB, and 
Section 6 does the same thing for B&B with dominance. Sections 7 and 8 show 
that A* and AO*, respectively, are GBB procedures. Section 9 contains 
concluding remarks. Appendices A, B, C, and D contain proofs of results 
discussed in Sections 3, 4, 6, and 7, respectively. 

2. A General Formulation of Branch and Bound 

2.1. The basic concept of branch and bound 

Consider the procedural scheme below (comments are indicated by double 
slashes ('//')): 

p m c ~ u m  ~ :  
1. ACT := {X} //ACT is the current active set// 
2. loop //the main loop// 
3. if ACT = {Z} for some Z and Z is a singleton {z} then 
4. return z 
5. endif 
6. SEL := select (ACT) 

//select some of the sets in ACT// 
7. SPL := split(SEL) //split the sets in SPL// 



32 D.S. NAU ET AL. 

8. ACT := prune((ACT- SEL) u SPL) 
//remove the selected sets from ACT, replace// 
//them by the newly generated sets, and then// 
//prune unneeded sets from ACT// 

9. repeat 
end P0 

- A C T ,  the active set, is a collection of subsets of X. 
- se lec t ,  the selection function, is any function which returns a collection 
SEL C ACT. The domain of select is the set of all possible values which A C T  
might have at line 6 of P0. 
-split,  the splitting function, has as its domain the set of all possible values 
which the collection SEL might have at line 7 of P0. split(SEL) returns a 
collection SPL of subsets of X such that: 

(1) every set in SPL is a subset of some set in SEL; 
(2) U { Y ' [  Y ' E  SPL}= U { Y I  Y ~ S E L } ;  i.e., the sets in SPL contain pre- 

cisely those elements which are members  of SEL. 
- p r u n e ,  the pruning function, has as its domain the set of all possible values 
which the collection of sets R = ( A C T -  SEL) U SPL might have at line 8 of P0. 
prune returns a collection of sets R'C_ R such that 

min{F(y)] y E Y for some Y ~ R'} = 
= min{F(y)l  y E Y for some Y E  R} ; 

i.e., at least one of the minimum elements of R is also present in R ' .  
The procedure P0 describes our basic concept of B&B. We note that the 

selection and splitting functions of P0 are essentially those of Mitten [17]. Most 
of versions of B&B familiar to the reader (such as Ibaraki 's  formulation [6]) 
will select and split only one member  of A C T  at a time (see Sections 4 and 5). 
Our  use of the capability of selecting and splitting several members  of ACT at 
once turns out to be essential for explaining procedures which operate  on 
And /Or  graphs or game trees (which are special cases of And /Or  graphs). Such 
procedures include AO*, which is discussed in Section 7, and SSS* and B*, 
which are discussed in [12]. 

The pruning function in P0 is more general than that of Mitten [17], which 
allows pruning only by bounding. Our  pruning function is conceptually simpler 
than the formulation of pruning used by Ibaraki  [6], and includes Ibaraki ' s  
formulation as a special case (see Section 5). 

2.2. Inadequacies of PO 

Despite  the generality of P0, it is not adequate to describe the behavior  of all 
B&B procedures. (This is also true of all other B&B formulations which use 
abstract sets, e.g., [17, 24].) In practical implementat ions of B&B procedures,  a 
subset Y of X is usually not given a direct or explicit representation (such as a 
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list of its elements), but instead is usually represented by a data structure from 
which the elements of Y can be obtained by computation. This representation 
often incorporates problem-specific knowledge which is used in selection, 
splitting, and pruning. Different choices of representation for a problem can 
lead to different B&B procedures. 

Even within a single B&B procedure, there may be several different ways to 
represent the same set. Depending on which representations are used for some 
collection of sets {Y1, I"2 . . . . .  Yk}, the values returned by 
select({Y, I"2 . . . . .  Yk}), split({Yb Y2 . . . . .  Yk}), and prune({Yb Y2 . . . . .  Yk}) 
may vary. This means that if select, split, and prune are considered as functions 
only of Y~, Y2 . . . . .  Yk, then they are not well-defined. Furthermore,  it may not 
be readily apparent whether a data structure representing a subset of X 
represents a singleton set Z = {z} or not, and thus the result of the termination 
test in line 3 of P0 may not be well-defined. 

As an example, we consider the least-cost path problem. Let G be a directed 
graph, and (m, n) be an arc in G. Then m is called a parent of n, and n is called 
a child of m. If P is a path in G, then the last node in P is denoted by tip(P). 
Suppose that P = (nl, n 2  . . . . .  n~) and Q = (nj, n/+l . . . . .  nk) are pqths in G, and 
(nj, n) is an arc in G. Then Pn is the path (nl, n2 . . . . .  nj, n), and PQ is the path 
(nb n2 . . . . .  nj, nj+l . . . . .  nk). 

Suppose that each arc (m, n) in G has a cost c(m, n)>1 O, and that for every 
path P in G, cost(P) is defined as the sum of the arc costs of P. Consider the 
problem of finding a path from a source node s in G to any member of a set T 
of terminal nodes. The set X of solutions to this problem is the set containing 
each path from s to any member of T. The least-cost path problem is the 
problem of finding a path P in X which minimizes the value of the objective 
function cost(P). 

In B&B procedures to solve the least-cost path problem, a path P from s to 
some node n in G is typically used to represent the set of all extensions of P to 
members of T (i.e., the set of all paths PQ such that Q is a path from tip(P) to 
a member of T and the only member of T in Q is tip(Q)). The splitting 
function split is typically defined in the following way as a function of 
collections of representations of sets (rather than collections of sets): 

split({P~, P2 . . . . .  Pk}) = {Pin [ 1 <- i <- k and n is a child of tip(Pi)}. 
(2.1) 

Let G be the directed graph having node set {a, b, c, d, e, f, g} and arc set 
{(a, b), (b, c), (c, d), (d, e), (c,f), (f, g), (g, h)}, and let s = a and T = {e, g} (see 
Fig. 1). If split is defined as in (2.1), then 

split({(a, b)}) = {(a, b, c)} (2.2) 

and 
split({(a, b, c)}) = {(a, b, c, d), (a, b, c, f)}.  (2.3) 
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Suppose split were defined (as it is in P0) as a function of the sets represented 
rather than a function of the representations. The paths (a) and (a, b) both 
represent {(a, b, c, d, e), (a, b, c, f, g)}; (a, b, c, d) represents {(a, b, c, d, e)}; and 
(a, b, c, f )  represents {(a, b, c, f, g)}. Thus (2.2) would be replaced by 

split({{(a, b, c, d, e), (a, b, c, f, g, h)}}) = 
= {{(a, b, c, d, e), (a, b, c,f, g, h)}}, (2.2)' 

and (2.3) would be replaced by 

split({{(a, b, c, d, e), (a, b, c, f, g, h)}}) = 
= {{(a, b, c, d, e)}, {(a, b, c, f, g, h)}}. (2.3)' 

Since (2.2)' and (2.3)' assign two different values to split({{(a, b, c, d, e), 
(a, b, c,f, g, h)}}), split is ill-defined when considered as a function of the sets 
represented rather than their representations. This demonstrates that P0 is 
inadequate to describe the behavior of the splitting functions used in some 
B&B procedures. Similar examples can be found for the selection and pruning 
functions. 

This example also illustrates that the termination test used in P0 does not 
adequately model the termination tests used in practical B&B procedures. 
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Suppose  A C T  were  a collection conta ining the single pa th  (a, b, c, d, f, g). This  
pa th  represen t s  the singleton set {(a, b,c, d,f,g, h)}. Howeve r ,  a B & B  pro-  
cedure  for  the least-cost  pa th  p rob l em could not  t e rmina te  be fo re  splitting 
{(a, b, c, d, f, g)} to obta in  {(a, b, c, d, f, g, h)}. This  is because  the tip node  of the 
pa th  (a,b,c,d,e,f,g) is not in T, and so it is not known whe the r  
(a, b, c, d, e, f, g)  represen t s  a single pa th  (or m o r e  than one  path,  or  any pa th  
at all) be tween  s and some  node  in T. In o rder  for  the te rmina t ion  test  in P0 to 
be  well-defined,  a goal funct ion is needed  to tell whe the r  or  not  a represen-  
tat ion is known to represen t  a s ingleton set {y} such that  F ( y )  may  be  ob ta ined  
directly. 

2.3 .  A n  i m p r o v e d  m o d e l  o f  b r a n c h  a n d  b o u n d  

The  previous  section descr ibed the inadequacies  of P0 as a general  mode l  of 
B&B.  T o  e l iminate  these inadequacies ,  P0 is modif ied in this section to contain  
bo th  a goal funct ion and an explicit distinction be tween  represen ta t ions  of sets 
and the sets represen ted .  

A represen ta t ion  scheme is def ined as a pair  (S, rf), where  S is a set of 
representations and rf : S -~ 2 x is a representation function. If  r E S and if(r)  = Y, 
we say that  r is an i f - represen ta t ion  of Y (or, if the identi ty of rf is obvious,  
that  r is a represen ta t ion  of Y). 

T h r o u g h o u t  this paper ,  r deno tes  a represen ta t ion  and R deno tes  a collec- 
tion of representa t ions .  For  convenience ,  we define 

and 

Fmi.(r) = min{F(x)  I x E if(r)} 

F. , i , (R) = min{F(x)  I x E if(r)  for  some  r G R } .  

A goal function, goal,  is any predica te  such that  wheneve r  goal(r)  holds, i f(r)  
is a singleton set {x} such that  F(x) can be  c o m p u t e d  directly f rom r. 2 Thus  
when goal(r)  holds, Fmin(r)= F(x). W h e n  goal(r)  does  not  hold,  it does  not 
necessari ly mean  that  if(r)  is not a s ingleton set. 

When  P0 is modif ied to include a goal funct ion and to m a k e  explicit use of 
r epresen ta t ions  of sets, the result  is the p rocedure  P1 below. 

procedure P I :  //General Branch and Bound (GBB)// 
1. ACT1 := {r0} //ACT1 is the current active set// 

//~0 is the initial representation of X;  i.e., rfl(r0) = X// 
2. loop //the main loop// 

2It is sometimes useful to have goal(r) hold even if r does not represent a singleton. However, it 
is usually possible to define rf in such a way that all goals are singletons (as we have done for the 
search problems discussed in this paper). The modification of our model to include non-singleton 
goals is fairly straightforward but would require additional notation. 
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3. if ACT1 = { r l }  for some r l  and g o a l l ( r l )  holds then 
4. return r l  
5. endif 
6. SELl  := select l (ACT1) 
7. SPL1 := spl i t l (SEL1) 
8. ACT1 := prunel((ACT1 - SELl ) ,  SPL1) 
9. repeai 
end P1 

In P1 above, rfl  is a representation function and ACT1 is a set of represen- 
tations. The other functions, which are defined below, are analogous to the 
corresponding functions for P0 except that they refer to representations instead 
of sets. 
- s e l ec t l ,  the selection function, is any function which returns a subset of ACT1. 
The domain of selectl is the set of all possible values which ACT1 might have 
at line 6 of P1. 
- sp l i t l ,  the splitting function, has as its domain the set of all possible values 
which SELl  might have at line 7 of P1. splitl(SEL1) returns a collection SPL1 
of representations such that 

if r' E SPL1, then there is an r E SELl  

such that rll(r ')  C_ rfl(r)  (2.4) 
and 

U{r f l ( r )  l r E SPL1} = U{r f l ( r )  l r E SELl} .  (2.5) 

- p r u n e l ,  the pruning function, has as its domain the set of all possible values 
which the pair of collections of representations ( A C T 1 - S E L l ,  SPL1) might 
have at line 8 of P1. prunel  returns a collection ACTI '  of representations such 
that 

{rfl(r') I r' E ACTI'} C {rfl(r) ] r E (ACT1 - SELl )  tO SPL1} (2.6) 
and 

Fm,.(ACTI') = Fmi.((ACT1 - SELl)  tO SPL).  (2.7) 

Most B&B procedures make use of auxiliary information not explicitly 
represented in P1. The auxiliary information, for example, might be in- 
formation about various relationships among the members of ACT2 for use in 
pruning, or might take the form of maintaining ACT2 as an ordered list rather 
than an unordered set. If such information is made an explicit part of P1, the 
result is the procedure P2 given below. 

procedure P2: //GBB with an auxiliary database (DB2)// 
1. initialize DB2 

//DB2 consists of all auxiliary information used by P2// 
2. ACT2:=  {r0} 

//rO is the initial representation of X// 
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3. loop //the main loop// 
4. if ACT2 = {r2} for some r2 and goal2(r2,DB2) holds then 
5. return r2 
6. endif 
7. SEL.2 := select2(ACT2,DB2) 
8. (SPL2,DB2) := split2(SEL2,DB2) 
9. (ACT2,DB2) := prune2(ACT2- SEL2,SPL2,DB2) 

10. repeat 
end P2 

In P2, rf2 is a representation function. Except for the use of the auxiliary 
database DB2, the properties of select2, split2, and prune2 are identical to 
those of selectl,  splitl, and splitl. 

In practice, nearly every B&B procedure makes use of auxiliary information, 
and hence has more in common with P2 than P1. However,  it would be quite 
cumbersome to refer to this information explicitly every time such procedures 
are discussed. Thus we write: 

(1) goal2(r2) for goal2(r2,DB2); 
(2) select2(ACT2) for select2(ACT2,DB2); 
(3) SPL2 = split2(SEL2) for (SPL2,DB2')= split2(SEL2,DB2); 
(4) ACT2' = p rune2 (ACT2-SEL2 ,SPL2)  for (ACT2' ,DB2' )= 

p r u n e 2 ( A C T 2 -  SEL2,SPL2,DB2). 
From now on, when we speak of representation, goal, selection, splitting, 

and pruning functions, we mean functions having the properties of rf2, goal2, 
select2, and prune2, respectively. 

2.4. A fundamental property 

Each of the procedures discussed in this paper has a loop labeled 'the main 
loop' (e.g., lines 2-9 of P2). If V is a variable used by one of these procedures, 
then the value of V at the end of the ith iteration of the main loop is denoted 
by V i. For example, let P2 be called with some initial representation r0 and 
instantiations of rf2, goal2, select2, split2, and prune2, and let t be the number 
of times the main loop is fully executed before a return occurs. (Thus, if the 
test at line 3 succeeds and P2 returns during the ith iteration of the loop, then 
t = i - 1; and if P2 never returns, then t = oo.) We have ACT2 ° = {r0}, and for 
O <~i<t ,  

ACT2i÷I = prune2((ACT21 - SEL21÷I), SPL2i÷I). (2.8) 

We now present a correctness proof for P2. This theorem and its corollary are 
similar to results proved for previous formulations of B&B. 

Theorem 2.1. For every integer i such that 0 <~ i < t, at least one o f  the optimal 
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elements of X represented in A C T 2  i is also represented in ACT2~+I; i.e., 

Fmin(ACT2 i+l) = Fmi . (ACTT) .  

Proof .  

Fmi,(ACT2 i+l) = min(prune2( (ACT2 i 
- SEL21+I), SPL2i+I)) 

= Fmi.((ACT2 ~ - SEL2 ~+1) U SPL2 ~+1) 

= Frnin((ACT2 i - SEL2 '÷') U S E L T  +') 

= Fmi,(ACT2 i) 

since SEL2 ~÷~ C A C T 2  ~ . 

(from (2 .8) )  

(by (2.7)) 

(by (2.5)) 

Corol la ry  2.1.1. For every integer i such that 0 <<- i < t + 1, 

Fmi.(ACT2 i) = min{F(x) lx ~ X } ,  

whence if P2 terminates, it returns an optimal solution? 

Pr oof .  By induction on i using T he o re m  2.1. 

There  are several d;fferent condit ions under  which P2 can be guaran teed  to 
terminate.  In ~he case of B& B procedures  in which all pruning is done  using 
bounding  functions,  some condit ions under  which terminat ion can be guaran-  
teed are discussed by Mitten [17]. 

Procedure  P2 is our  prototypical  Genera l  Branch and Bound  procedure .  In 
this paper,  for each p rocedure  P claimed to be a special case of G B B ,  the claim 
is justified ei ther  by 

(1) showing that P is an instantiation of P2 (or some other  p rocedure  known 
to be a special case of GBB) ;  or  

(2) exhibiting an instantiation of P2 (or some o ther  procedure  known to be a 
special case of G B B )  such that  on the ith i teration of the main loop of P, it 
computes  representa t ions  of the same sets {rf2(r) I r ~ SEL2~}, 
{rf2(r) l r E SPL2i}, {rf2(r)l r ~ A C T 2 }  compu ted  on the ith iteration of the 
main loop of P2. 

3procedure P2 was formulated for the case in which a single optimal solution is desired. P2 may 
be generalized slightly by replacing lines 3 and 4 by 

3. if goal(r) holds for every r E ACT2 and 
F(rf2(r)) = F(rf2(r')) for every r, r' E ACT2 then 

4. return ACT2 
In this case, depending on the properties of prune2, P2 will return an optimal solution, some of the 
optimal solutions, or all of the optimal solutions. 
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3. A Special Case 

For ease in pruning, many B&B procedures maintain a record of the 'best 
solution seen so far' separately from the active list. Such procedures usually are 
instances of the procedure P3 below. As discussed above, we assume the 
existence of an auxiliary database which is used implicitly by the functions in 
P3. 

procedure P3: //a special case of GBB// 
1. BEST3 := 'unknown' 

//we define rf3('unknown') to be 1~,// 
//whence Frn~('unknown') = oo// 

2. ACT3 := { r0>}  
//rO is the initial representation of X// 

3. loop //the main loop// 
4. if ACT3 = 0 then return BEST3 endif 
5. SEL3 := select3(ACT3) 
6. if SEL3 is a singleton {r3} and goal3(r3) then 
7. if Fmin(r3) < Fmin(BEST3) then 
8. BEST3 := r3 
9. endif 
10. else 
11. SPL3 := split3(SEL3) 
12. ACT3 := prune3(ACT3- SEL3,SPL3) 
13. endif 
14. repeat 
end P3 

In P3 above, the functions rf3, goal3, select3, and split3 are representation, 
goal, selection, and splitting functions, respectively. Often, instantiations of 
split3 are used which always select a single representation (i.e., they always 
return sets SEL3 containing exactly one element), prune3 is similar to a 
pruning function: prune3(ACT3-  SEL3,SPL3) returns a collection of 
representations ACT3' such that 

and 
{rf3(r') I r' E ACT3'} C {rf3(r) I r E (ACT3 - SEL3) U SPL3} 

Fmi,(ACT3' U {BEST3}) = Fmi,((ACT3 - SEL3) U SPL3 U {BEST3}). 

Any functions having the properties of rf3, goal3, select3, split3, and prune3 
are called P3-representation, -goal, -selection, -splitting, and -pruning func- 
tions, respectively. 

To justify the claim that P3 is a special case of GBB, functions rf2, goal2, 
select2, split2, and prune2 must be found such that P2 and P3 compute the 
same sets {rf2(r) I r E SEL2i}, {rf2(r) I r E SPL2i}, {rf2(r) I r E ACT2 ~} on the ith 
iterations of their main loops. This is done in Appendix A. The representation, 
goal, selection, and splitting functions used in the appendix to instantiate P2 
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are almost the same as those for P3. The pruning function is somewhat  more 
complicated: depending on whether a goal has been selected or not, it 
simulates either lines 7-9 or line 12 of P3. 

In some versions of P3, the selection function always selects the 'best '  
member  of ACT3 for splitting. Which member  is best is always defined relative 
to a P3-1ower bound function. This is any real-valued function L3 such that for 
any rf3-representation r, 

(1) L3(r) ~< Fmin(r); 
(2) if goal3(r) holds (whence rf3(r) = {x} for some x E X),  then L3(r) = F(x). 
Suppose there is always at least one r* E SEL3 such that L3(r*) ~< L3(r) for 

every r E ACT3. Then select3 is called an L3-best-first selection function, and 
P3 is called an L3-best-first procedure.  

If select3 is L3-best-first for some L3, then the first singleton set SEL3 = {r3} 
selected at line 5 of P3 such that goal3(r3) holds represents an optimal member  
of X. This is proven as Theorem A.2 in Appendix A. As a consequence of this 
result, if select3 is L3-best-first for some L3 then P3 can be rewritten as 
follows: 

procedure P3B: //best-first P3// 
1. ACT3 := {rO} 

fir0 is the initial representat ion of X// 
2. loop //the main loop// 
3. if ACT3 = ~ then return 'unknown' endif 
4. SEL3 := select3(ACT3) 
5. if SEL3 is a singleton {r3} and goal(r3) then 
6. return r3  
7. else 
8. SPL3 := spli t3(SEL3) 
9. ACT3 := prune3(ACT3 - SEL3,SPL3) 

10. endif 
11. repeat 
end P3B 

4. Ordinary Branch and Bound 

Most conventional B&B procedures look similar to P3, except for the following 
properties. 

(1) The selection function always selects a single representation. 
(2) All pruning is done using a lower bound function similar to the one used 

for selection in P3B. Lower bounds are computed on all generated subsets of 
X, and a subset is pruned only if its lower bound is greater than the value of 
the best solution seen so far. 

Every B&B procedure which operates in this manner  we call an Ordinary 
Branch and Bound (OBB) procedure.  As discussed later, there are many in- 
stantiations of GBB which are not OBB procedures, because their pruning 
functions are stronger than simple bounding functions. However ,  as shown in 
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Appendix B, every OBB procedure is an instantiation of P3 and hence is a 
special case of GBB.  

We take an OBB procedure to be any procedure which can be rewritten as 
an instance of procedure P4 below. 

procedure P4: //OBB// 
1. BFST4 := 'unknown' 

//we define rf4('unknown') to be g,// 
//whence Fmin('unknown')= ~.// 

2. ACT4 := list containing rO 
//rO is the initial representmion of X// 

3. while ACT4 # ~ do //the main loop// 
//select the first member of ACT4// 

4. {r4} := select4(ACT4) 
5. if goal4(r4) then 
6. if Fmin(r4) < Fmin(BEST4) then BEST4 := r4 endif 

//BEST4 is the best node seen so far// 
7. else 
8. SPL4 := split4({r4}) 

//lines 9-14 compute ACT4i// 
9. ACT4 := ACT4-  {r4} 

//go through the members of SPL4 in order// 
10. for each r' ~_ SPL4 do 
11. if L4(r') < Frown(BEST4) then 

//insert r' into the list ACT4// 
12. ACT4 := insert4(r',ACT4) 
13. endif 
14. endfor 
15. endif 
16. endwhile 
17. return BEST4 
end P4 

Although ACT4 is an ordered list in procedure P4 above, it may be 
considered as a set, with the ordering information stored in the auxiliary 
database, rf4 is a P3-representation function, and goal4 is a P3-goal function. 
select4 removes the first element of a list, and hence is a P3-selection function. 
L4 is a P3-1ower bound function, insert4 inserts a representation into a list of 
representations (thus, considering ACT4 as a set, inser t4(r ' ,ACT4)= 
ACT4 U {r'}). 

The function split4 has the characteristics of a P3-splitting function, except 
that it returns a list of rf4-representations rather than an unordered set. By 
considering the ordering information to be auxiliary information, split4 can be 
considered a P3-splitting function. As shown in Appendix B, lines 9-14 of P4 
constitute a P3-pruning function. 

Theorem 4.1. P4 is an instantiation of P3. 
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Proof. The preceding discussion shows that the functions used in P4 have the 
properties of P3-goal, -selection, -splitting, and -pruning functions. It only 
remains to show that each of the functions is defined for all arguments which 
might be given to them during the operation of P4, and this is easily proved by 
induction. 

From Theorem 4.1, it is clear that P4 is a special case of GBB. 
Suppose that for every rf4-representation r', insert4(r', AC~4) inserts r' into 

ACT4 just after the last r E ACT4 for which L 4 ( r ) <  L4(r'). Then the first 
member of ACT4 will always be the member with the lowest value of L4, 
whence select4 is an L4-best-first selection function. In this case (as with P3), 
the first r4 selected such that goal(r4) holds will be an optimal solution, whence 
P4 may be modified analogously to the way P3 was modified to P3B. 

5. Dominance Relations 

Some researchers [6, 9] have augmented OBB to use dominance relations for 
pruning. The lower and upper bounding functions used for pruning in Horowitz 
and Sahni's description of the 0-1 Knapsack Problem [3] are a special case of 
dominance. As shown in Kohler and Steiglitz [9], the use of dominance 
relations allows pruning to be done which may not be possible in OBB 
procedures. Thus not every B&B procedure is an OBB procedure. 

Several different ways [6, 9] have been proposed for the use of dominance in 
B&B procedures. However,  all branch-and-bound procedures with dominance 
are similar to the procedure P5 given below. 

procedure P5: //OBB augmented by dominance// 
1. BEST5 := 'unknown' 

//we define rfS('unknown') to be ~,// 
//whence Fmin('unknown') = oc.// 

2. ACT5 := list containing r0 
//rO is the initial representation of X// 

3. GEN5 := ACT5 or 
/ /GEN5 will contain some or all representations generated// 
//during the operation of P5, and will be updated by// 
//adding or deleting representations at various points.// 
//These points are not given explicitly below.// 

4. while ACT5 # £t do //the main loop// 
//select the first member of ACT5// 

5. {r5} := select5(ACT5) 
6. if goal5(r5) then 
7. if Frnin(r5) < Frnin(BEST5) then BEST5 := r5 endif 
8. else 
9. SPL5 := split({r5}) 

//lines 10-16 compute ACT5i// 
10. ACT5 := ACT5 - {r5} 

//go through the members of SPL5 in order// 
11. for each r' E~ SPL5 do 
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12. if L5(r') < Fm~(BEST5) then 
//choose a dominated set R5, subject to// 
//restrictions (see the text)// 

13. R5 := choose(ACT5 U {r'},GEN5) 
14. A C T 5  :=  (ACT5  U {r ' })  - R 5  

15. endif 
16. endfor 
17. endif 
18. endwhile 
19. return BEST5 
end P5 

The functions rf5, goal5, select5, split5, L5, and insert5 have the same 
properties as the corresponding functions in P4. Thus rf5, goal5, removetop5, 
split5, and L5 are P3-representation, -goal, -selection, -splitting, and -lower 
bound functions, respectively. 

The function choose in line 13 makes use of a dominance relation. This is any 
relation D such that if q and r are rf5-representations and qDr, then Fmi,(q)<<- 
Fmi,(r). choose(ACT5U{r '},  GEN5) returns a dominated set; i.e., a set 
R5 C ACT5 U {r'} such that for every q E R5 there is an p E GEN5 such that 
pDq. There are additional restrictions on D and on the way R5 is selected. 
These restrictions, which vary depending on the particular version of P5 [9], are 
formulated to guarantee that 

Fm~.({BEST5} O ((ACT5 U {r '})- R5)) = F~.({BEST5) U ACT5 U {r'}). 

Because of this, it can be shown that lines 10-16 of P5 have the properties of a 
P3-pruning function. The proof of this is similar to the corresponding proof for 
P4. 

Theorem 5.1. P5 is an instantiation of P3. 

Proof. The proof is similar to the proof of Theorem 4.1. 

Theorem 5.1 justifies calling P5 a special case of GBB. 
Suppose that for every rf5-representation r', insert5(r' ,ACT5) inserts r' into 

ACT5 just after the last r E ACT5 such that L5(r) < L5(r'). Then select5 is an 
L5-best-first selection function. Thus, as with P3 and P4, the first r5 selected 
such that goal5(r5) holds is the optimal solution, whence P5 may be modified 
accordingly. 

6. A* 

The least-cost path problem was described in Section 2.1. One procedure for 
solving this problem is the well-known A* procedure [20], which appears below 
as procedure P6. 
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In P6, c(n, n') is the  cost  of the  arc (n, n ' ) ;  g(m) is the  cost  of the  leas t -cost  
pa th  P seen so far  f rom the  source  node  s to m;  and P = p a t h ( m )  is the path  

(s . . . . .  p a r en t (pa r en t (n ) ) ,  pa ren t (n ) ,  n). h(m)>i 0 is a lower  b o u n d  on the  cost 
of any pa th  f rom m to a m e m b e r  of T, and  f(n)= g(n)+ h(n) is a lower  b o u n d  
on the  cost  of ex t end ing  P to a m e m b e r  of T. 

procedure P6: //A*// 
2. OPEN := list containing the source node s 
3. CLOSED := NIL 
4. while OPEN ~ NIL do //the main loop// 
5. n := removetop(OPEN) //remove first element// 
6. insert n into CLOSED 
7. if n E T then 
8. return path(n) 

l/path(n) is the path// 
//(s . . . . .  parent(parent(n)), parent(n), n)// 

9. else 
10. for every child n' of n in G do 

//compute g (n') and f(n')// 
11. gg := g(n)  + c(n,n') 
12. i f := gg + h(n') 
13. for all nodes m in OPEN or CLOSED do 
14. if m = n' and f (m) ~<ff then 
15. gore PRUNE //prune n'// 
16. else if m = n' and i f <  f(m) then 
17. call remove6(m) 
18. endif 
19. endfor 
20. parent(n') := n 
21. g(n') := gg 
22. f(n') := ff 
23. OPEN := insert6(n',OPEN) 

//insert n' into OPEN just after the last// 
//node n such that f(n) < f(n')// 

24. PRUNE: endfor 
25. endif 
26. endwhile 
27. return 'unknown' 
end P6 

In P6, 

procedure remove6(m) 
1. if m E OPEN then remove m from OPEN endif 
2. if m ~ CLOSED then remove m from CLOSED endif 
3. for every n such that parent(n) = m do 
4. call romove6(n) 
5. endfor 
end remove6 

each node  n in O P E N  or  C L O S E D  rep re se n t s  the  pa th  

p a t h ( n )  = (s . . . . .  p a r en t (pa r en t (n ) ) ,  pa ren t (n ) ,  n ) .  
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In order to make this representation explicit, P6 is rewritten as procedure P7 
below. The active list for P7 is A C T 7 =  {path(n)l n ~ OPEN}, and the set 
GEN7 (similar to GEN5 in P5) is such that GEN7 = {path(n) I n ~ CLOSED}. 

Let m be any node generated by P6, and let P =  path(m). Note that 
tip(P) = m. To write P7, the following definitions are used. 

(1) rf7(P) is the set of all extensions of P to members of the set of terminal 
nodes T (i.e., the set of all paths PQ such that Q is a path from tip(P) to a 
member of T and the only member of T in Q is tip(Q)). Thus rf7 is a 
representation function. 

(2) goal7(P) holds if and only if t ip(P)E T. 
(3) select7(L) returns a set whose only element is the first element of the list 

L. Since the list ACT7 is always kept ordered according to the lower bounds of 
its members, select7 corresponds to removetop in P6. 

(4) split7(P)= {Pnln is a child of tip(P)}. Expanding a node m in P6 
corresponds to computing split({path(m)}) in P7. 

(5) L 7 ( P )=  cost(P)+ h(tip(P)). Thus from the definitions of /, g, and h, 
L7(P) = f(tip(P)), whence L7(P) is a lower bound on Fmin(P). 

(6) insert7(P, L) inserts P into the list L just after the last path Q in L such 
that L 7 ( Q ) <  L7(P). Thus select7 is an L7-best-first selection function. 

Using these definitions, it is clear that P6 can be rewritten as procedure P7 
below .4 

procedure P7: //A*, rewritten// 
2. ACT7 := list containing the null path from s to s 
3. GEN7 := NIL 
4. while ACT7 ~ NIL do //the main loop// 
5. {P} := select7(ACT7) //select first member P of ACT7// 
6. insert P into GEN7 
7. if goal7(P) then 
8. return P 
9. else 
10. SPL7 := split7({P}) 
11. ACT7 := ACT7 - {P} 
12. for every path P'  in SPL7 do 
13. for every Q in ACT7 or GEN7 do 
14. if tip(Q) = tip(P') and L7(Q) ~< L7(P') then 
15. goto PRUNE //prune P'// 
16. else if tip(Q) = tip(P') and L7(P') < L7(Q) then 
17. call remove7(Q) 
18. endif 
19. endfor 
20. predecessor(P') := P 

41n some versions of A*, remove6(m)  simply removes  m from CLOSED.  Thus  any descendants  
of m which have already been generated suddenly represent  a new path from s, but  their f and g 
values represent  the  cost of the old path. Such versions of A* can also be described as GBB 
procedures simply by defining such nodes not to represent  any sets of solutions. However,  it is 
cleaner to use the version of A* presented above. 
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21. ACT7 := insert7(P',ACT7) 
//insert P' into ACT7 after all paths Q// 
//such that f '(Q) < f'(P')// 

22. PRUNE: endfor 
23. endif 
24. endwhile 
25. return 'unknown' 
end P7 

procedure remove7(P) 
1. if P E ACT7 then remove P from ACT7 endif 
2. if P ~ GEN7 then remove P from GEN7 endif 
3. for every Q such that predecessor(Q) = P do 
4. call remove7(Q) 
5. endfor 
end remove7 

W e  show in A p p e n d i x  C that  P7 is an ins tan t ia t ion  of P3B. 5 

7. AO* 

A O *  is an a lgor i thm [21] for  search ing  hype rg raphs ,  which are  concep tua l ly  the  
same  as A n d / O r  graphs .  A hypergraph is a pa i r  G = (N, H ) ,  where  N is a set of 
nodes, and H C N × 2 N is a set of hyperarcs or  connectors. M e m b e r s  of N and 
H are  ca l led  G - n o d e s  and G - h y p e r a r c s ,  respect ive ly .  Let  m and n be  G -  
nodes .  Then  m is a G-parent of n (or n is a G-child of m)  if the re  is a 
G - h y p e r a r c  (re, K )  such that  n E K .  m is a G-ancestor of n (or n is a 
G-descendant of m)  if 

(1) m is a G - p a r e n t  of n ;  or  
(2) there  is a G - d e s c e n d a n t  m '  of m which is a G - p a r e n t  of n. 
m is a G-leaf node  if m has no G-ch i ld ren .  G is acyclic if no node  in G is a 

G - a n c e s t o r  of itself. If G = (N, H )  and G' = (N', H') are  hype rg raphs ,  then the 
union of G and G '  is the  h y p e r g r a p h  

G U G ' = ( N U N ' , H U H ' ) ,  

and the  intersection of G and G '  is the  h y p e r g r a p h  

G A G ' = ( N A N ' , H N H ' ) .  

W h e n  the iden t i ty  of G is obvious ,  the  prefix ' G - '  will be d r o p p e d  f rom 
' G - n o d e ' ,  ' G - h y p e r a r c ' ,  ' G - p a r e n t ' ,  ' G - c h i l d ' ,  ' G - a n c e s t o r ' ,  ' G - d e s c e n d a n t ' ,  
and  ' G - l e a f ' .  

5Alternatively, it would be possible to show that P7 is an L7-best-first instantiation of P5 by 
noting that 'PDQ if tip(P) = tip(Q) and L7(P) ~< L7(Q)' is a dominance relation. 
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Let G = (N, H )  be a hypergraph, and let m E N and T C N. Suppose that 
each hyperarc (m, K) E H has a cost c(m, K) >I O. A hyperpath in G from m to 
T, and the cost of that hyperpath, are defined recursively as follows. 

(1) Suppose m is in T. Then the hyperpath is the hypergraph ({m}, 0), The 
cost of this hyperpath is 

cost(({m }, 0)) = O. 

(2) Suppose m is not in T, and m is a leaf. Then there is no hyperpath from 
m t o T .  

(3) Suppose m is not in T, and m is not a leaf. Then there is at least one set 
K - - { m l  . . . . .  mk} such that (m, K ) E  H. Let Go be the hypergraph ({m}U K, 
{(m, K)}). Suppose that for every mi E K there is a hyperpath Gi from mi to T 
of cost Ci. Then the hypergraph 

G' = Go U GI U " " U G., 

is a hyperpath from m to T of cost 

cost(G') = c(m, K)+ Cl + C 2 + " "  + Ck. 

Note that there may be 0, 1, or many hypergraphs G'  satisfying the above 
properties. 

Let G = (N, H )  be a hypergraph, s E N be a source node, and T C N be a set 
of terminal nodes. The least-cost hyperpath problem is the problem of finding a 
hyperpath (N', H ' )  from s to T which minimizes the value of the objective 
function cost((N', H')) .  

One procedure for solving the least-cost hyperpath problem is the procedure 
AO* discussed by Nilsson [19]. Other similar procedures are discussed by 
Nilsson [21] and Martelli and Montanari [15]. AO* is given below as procedure 
P8. 

AO* makes use of a lower bound h(m) on the least cost of any hyperpath 
from m to T. As discussed by Nilsson [21], h must be such that: 

(1) h ( m ) ~ O  for every G-node m (whence h ( m ) =  0 if m E T); 
(2) for every G-hyperarc (m, K), 

h(m)<~c(m,K)+ ~ h(n). 
n E K  

procedure PS: //AO*// 
1. (N,H) := ({s}, 0) //the portion of G searched so far// 
2. q(s) := h(s) 

//q(n) is the best known lower bound for each node nil 
3. if s E T then solved(s) := 1 
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4. else solved(s) := 0 endif 
5. loop //the main loop// 
6. let BEST be the hyperpath in (N,H) formed by tracing 

the 'best' pointers from s through (N,H) to the 
leaves of (N,H) 
//these pointers are set in line 20// 

7. if solved(s) = 1 then return BEST endif 
8. let m be a BEST-leaf not in T 

//Nilsson discusses several possible ways// 
//of choosing m, but the procedure will work// 
//regardless of how m is chosen.// 

//expand m// 
9. for every K such that (m,K) is a G-hyperarc do 
10. for every n ~ K - N do 
11. if n ~E T then solved(n) := 1 else solved(n) := 0 endif 
12. q(n) := h(n) 
13. endfor 
14. (N,H):=(NUK, HU{(m,K)}) 
15. endfor 

//update the 'best' pointers and the q-values by// 
//searching bottom-up// 

16. V :=  {m} 
17. while V # g d o  
18. remove from V a node u such that no (N,H)-descendants 

of u are in V 

19. q(u) := min{c(u,K) + S',vEKq(v) I(u,K) e H} 

20. K' := any K such that (u,K) ~E H and (u,K) produces the 
minimum value q(u) found in line 19 

//(u,K') is currently the best hyperarc from u// 
21. best(u) := K' 
22. if solved(v) = 1 for every v e. K' then solved(u) := 1 endif 
23. if solved(u) = 1 or q(u) was changed in line 19 then 
24. V :=  V U {v E N l u ~- best(v)} 
25. endif 
26. endwhile 
27. repeat 
end P8 

W e  now discuss how to rewr i t e  P8 as an ins tan t ia t ion  P9 of P3B. 
Le t  P be  a h y p e r p a t h  in G f rom some  node  m of G. A n  extension of P in G 

is any h y p e r p a t h  P '  f rom m conta in ing  P. W e  def ine  the  r e p r e s e n t a t i o n  
funct ion rf9 by 

r f9 (P)  = {P'IP' is an ex tens ion  of P to T} .  

N o t e  that  if P '  is an ex tens ion  of P then  r f9(P ' )  C rf9(P),  and  that  

Fmin(P) = min{cos t (P*)  ] P*  is an ex tens ion  of P to T} .  
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We define 

L9(P) = cost(P)+ ~ {h(n) I n is a P-leaf}. 

To see that L9 is a P3-1ower bound function, we note that 
(1) if P '  is any extension of P in G to T, then 

cost(P') = cost(P) + cost(P1) + . . .  + cost(Pk) 

/> cost(P) + h ( h i )  + ' ' "  + h (nk) 

= L 9 ( P ) ,  

whence L9(P) ~< Fmin(P); 
(2) if P is a hyperpath to T, then L9(P)=  cost(P)= Fmi,(P). 
Let goal9(P) hold if and only if P is a hyperpath from s to T. Clearly, goal9 

is a goal function. 
Let ACT9 be the set of all hyperpaths in (N,H) from s to the leaves of 

(N,H). Let SEL9 = select9(ACT9) be {BEST} if goaI9(BEST) holds, and 
otherwise let it be the set of all hyperpaths in ACT9 containing the node m 
chosen in line 8 of P8. Clearly, select9 is a selection function. 

It may be proved by induction that for every u E N, lines 16-26 of P8 
maintain q(u) such that 

_ lh(u),  
q(u) - [min{c(u, K) + ~ q(v) l (u, K) E H} 

vEK 

if u is an (N, H)-leaf 

otherwise. 

Thus, by induction on the distance from u to the leaves of (N, H) ,  it may be 
proved that 

q(u) = min{L9(P) I P is a hyperpath in (N, H )  
from u to the leaves of (N, H)}. 

The hyperpath found by tracing the 'best' pointers from u to the leaves of 
( N , H )  is the one which achieves this minimum. In particular, q (s )=  
L9(BEST). Since it is always the case that BEST E SEL9, select9 is L9-best- 
first. 

Let SPL9 = split9(SEL9) be the set of all hyperpaths from s to the leaves of 
(PC', H') which contain m, where (N', H ' )  is the expanded version of (N, H )  
computed in lines 9-15 of P8. Let prune9(ACT9-  SEL9, SPL9) be the set of all 
hyperpaths in ( N ' , H ' )  from s to the leaves of (PC',H'). It is proved in 
Appendix D that split9 and prune9 have the properties of splitting and pruning 
functions, respectively. 
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Using the above definitions, P8 may be rewritten as procedure P9 below. 

procedure Pg: ffAO*, rewritten// 
1. ACT9 := {({s},~)} 
2. loop 

//the test below will never succeed, and is included// 
//merely to illustrate that P9 is an instantiation// 
//of P3B// 

3. if ACT9 = ~ then return 'unknown' endif 
4. SEL9 := select9(ACT9) 
5. if SEL9 is a singleton {r9} and goal(r9) then 
6. return r9 
7. else 
8. SPL9 := split9(SEL9) 
9. ACT9 := prune9(ACT9 - SELg,SPL9) 
10. endif 
11. repeat 
end P9 

Theorem 7.1. P9 is an instantiation of P3B. 

Proof. From the preceding discussion, we see that the functions used in P9 
have the properties of P3-goal, -selection, -splitting, and -pruning functions, 
respectively, and that select9 is L9-best-first. It only remains to show that each 
of the functions is defined for all arguments which might be given to them 
during the operation of P9, and this is easily proved by induction. 

8. Summary and Conclusions 

This paper contains a general formulation of B&B called General  Branch and 
Bound (GBB). The main features of GBB include 

(1) a formal treatment of the way subsets of the domain of solutions are 

represented; 
(2) the formulation of a procedural scheme for GBB using abstract goal, 

selection, splitting, and pruning functions; 
(3) the discussion of how these functions may be generalized to make use of 

problem-specific auxiliary data; 
(4) a discussion of the conditions under which an arbitrary optimization 

procedure may be considered a special case of GBB. 
GBB is powerful enough to include as special cases the formulations of B&B 

used by Mitten [17], Kohler and Steiglitz [9], and Ibaraki [6]. In addition, the 
AI search procedures A* and AO* have been proven to be instances of GBB. 

It can be shown that a number of other AI search procedures are also special 
cases of GBB [13]. It is possible to visualize many variations of existing search 
procedures being generated from this general branch-and-bound paradigm, 
which provides a theoretical basis for a better  understanding of the per- 



GENERAL B&B, AND ITS RELATION TO A* AND AO* 51 

formance of such algorithms and the relationships among them (for example, 
see [11, 13, 18]). In particular, we conjecture that all procedures for top-down 
search of problem-reduction representations can be examined and understood 
as instantiations of this general branch-and-bound procedure. 

Appendix A. Theorems about P3 

To justify the claim that P3 is a special case of GBB, functions rf2, goal2, 
select2, split2, and prune2 must be found such that P2 and P3 compute 
representations of the same sets {rf2(r)lrESEL2i}, {rf2(r)lrESPL2i}, 
{rf2(r) I r E ACT2 i} on the ith iterations of their main loops. P3 is a version of 
P2 in which the active list ACT2 is separated into two parts: ACT3 and 
{BEST3}. Furthermore, the pruning operation which would be done by prune2 
in P2 is split into the two different operations performed in lines 7-9 and 12 of 
P3. To reproduce this behavior in P2, we define prune2 to flag every 
representation in ACT2 to indicate whether it is in ACT3 or (BEST3}. Let 

and 

rf2(r) = rf3(r), goal2(r) = goal3(r), 

select2(ACT2) = {select3(ACT2- {BEST3})}. 

Let split2 and prune2 be the procedures given below. 

procedure spl i t2(SEL2):  //simulate l ines 6 and 10-11 of P3// 
1. if SEL2 is a singleton {r} and goal2(r)  then 
2. goal found := 1 
3. return SEL2 
4. else 
5. goal found := 0 
6. return spli t3(SEL2) 
7. endif 
end split2 

procedure prune2(ACT2,SPL2): //simulate lines 7-9, 12 of P3// 
//for every representation r, f lag(r) is taken to be Off 
//unless it is set to 1 in line 5 below// 

1. if goal found = 1 then 
//select2 has selected a goal r2  and SPL2 = {r2}// 
//simulate lines 7-9 of P3// 

2. if f lag(r*)  = 1 for some r *  (E ACT2 
//at most one such r*  exists; this r*  is BEST3// 
and Fmin(r*) ~< Fmin(r 2) then 

3. return ACT2 
4. else 

//make r2 the new BEST3// 
5. f lag(r2) := 1 
6. return {r ~E ACT2 1 flag(r) = 0} U {r2} 
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7. else 
8. return {r ~E ACT21 flag(r) = 1} U prune3({r E ACT21 flag(r) = 0}) 
9. endif 
end prune2 

Theorem A.1. Suppose P2 is instantiated using the definitions of rf2, goal2, 
select2, split2, and prune2  given above. Then rf2 and goal2 are representation 
and goal functions, and for every initial representation rO, the computations of P2 
and P3 are such that for every i, 

(1) 

(2) 

(3) 

{r E ACT2  ~ I flag(r) = 0} = ACT3  ~ ; 

{r E ACT2 '  ] flag(r ) = 1} = {BEST3 ~} ; 

SEL2 ~ = SEL3 i ; 

SEL3i, 
(4) SPL2i = t SPL3 ~, 

if SEL3 i is a singleton {r} and goal(r) holds, 
otherwise; 

Proof. By induction on i. 

Corol lary  A. I . I .  Let t be the number of times the main loop of P3 is fully 
executed for some initial representation rO and instantiations of rf3, goal3, 
select3, split3, and prune3.  For every integer i such that 0 <- i < t + 1, 

Fmi.(ACT3 ~ U {BEST3~}) = min{F(x)  I x E X } .  

Proof.  Immedia te  f rom T h e o r e m  A.1 and Corol lary 2.1.1. 

T h e o r e m  A.1 justifies the claim that P3 is a special case of GBB.  T h e o r e m  
A.2 below justifies rewriting P3 as P3B when the selection funct ion is best-first. 

Theorem A.2. I f  select3 is L3-best-first for some L3, then the first singleton set 
SEL3 = {r} selected at line 5 of P3 such that goal3(r3) holds represents an 
optimal member of X. 

Proet .  Consider  the first singleton set SEL3 = {r3} selected at line 5 of P3 such 
that  goal3(r3) holds, and suppose r3 is selected during the ith i terat ion of the 
main loop of P3. Then  for  every  r ~ ACT3  ~-1, 

(5) select2(ACT2i) ,  split2(SEL2i), and prune2 (ACT2  i - l -  SEL2 i, SPL2 ~) are 
defined for the arguments given to them, and hence are selection, splitting, and 
pruning functions, respectively. 
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Fmi.(r3) = L3(r3)  ~< L3(r)  

Fmin(r) = min{F(x)  [ x E rf3(r)}. 
Thus  since 

Fmi,(BEST3 i-1) = Fmi . ( ' unknown ' )=  ~ ,  

it follows f rom Corol la ry  A. I .1  that  

Fmi.(r3) = F m i n ( A f T 3  ' - l )  = min{F(x) lx E X} .  

Appendix B. Properties of P4 

Theorem B.1. Lines 9-14 of P4 constitute a P3-pruning function.  

Proof. When  lines 9-14 of P4 are executed  during the ith i terat ion of the main 
loop,  they c o m p u t e  

A C T 4 '  = ( A C T 4  '-1 - {r4i}) U {r @ SPL4'  I L4(r)  < L4(BEST4i)} 

C ( A C T 4  '-1 - {r4'}) U SPL4 ~ . 
Thus  

{rf4(r') [ r ' E  ACT4 '}  _C {rf4(r) I r ~ (ACT4  i-1 - {r4i}) U SPLni}.  

The  above  is the first p rope r ty  of a P3-pruning function. 
T o  p rove  that  lines 9-14  of P4 have  the second p rope r ty  of a P3-pruning 

function,  there  are two cases to be  considered.  
Case 1. 

F,, i , (r4 ') /> Fm~.((ACT4 ~-~ - {r4'}) U {BEST4'}) 

In this case, 

Frnin((mfT4 i - 1 -  {r4'}) U {BEST4'})= 

= Fmi,((ACT4 ~-1 - {r4~}) tO {r4'} U {BEST4'}) 

= Fmi.((ACT4 ' - 1 -  {r4'}) U SPL4'  U {BEST4'}) .  

Thus  since 

( A C T 4  '-a - {r4'}) U {BEST4'} C_ A C T 4 '  U {BEST4'} 

C ( A C T 4  '-~ - {r4i}) tO SPL4'  U {BEST4~}, 

F,n~.(ACT4 i U {BEST4;}) = F , . i . ( (ACr4  '-~ - {r4'}) U SPL4 i U {BEST4'}) .  



54 D.S. NAU ET AL. 

Case 2. 

Freq.(r4 i) < Fmi,((ACT4 i -1-  {r4'}) U {BEST4~}). 

According to the definition of split4, there is an r ~ SPL4 ~ such that Freq,(r)= 
Fmi,(r4i). This means that 

L4(r) ~< Fmi,(r) = Fmi.(r4 i) 

< Fmi,(BEST4') = Fm~,(BEST4~), 

whence r E ACT4 ~. Thus 

F~,i,(ACT4') = Freq.(r) 

= Fmi,((ACT4 ~-' - {r4'}) U SPL4 ~ U {BEST4;}). 

In both cases, the second property of a P3-pruning function is satisfied. 

Appendix C. Properties of A* 

In this appendix, it is shown that P7 (and hence A*) is a special case of GBB. 
Let G be a graph for a shortest path problem with start node s and goal set 

T, and let P and Q be paths in G from s. Then P covers Q if Fmi.(P) ~< F.,i,(Q) 
and there are paths P '  and P" such that P = P'P" and t ip(P')  = tip(Q). If P covers 
Q, this means that for every extension Q* of Q to a member  of T, there is an 
extension P* of P to a member  of T such that 

Freq,(P*) <~ Fmi,(O*), 

whence Q can be pruned if Q ~ P and P E ACT7. Note that the covering 
relation is transitive: if P covers Q and Q covers R, then P covers R. 

Lemma C.1. If P prunes Q in lines 15 or 17 of P7, then P covers Q. 

Proof. If P prunes Q, then t ip(P) = t ip(Q) and LT(P) ~< LT(Q). But 

L7(P)  = cost(P) + h(P)  
and 

L7(Q)  = cos t (Q)+  h ( Q ) =  cos t (Q)+  h (P) ,  
SO 

cost(P) ~< cos t (Q) .  

Since t ip(P) = tip(Q), this means that F.,i.(P) ~< Fmi.(Q), whence P covers Q. 
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Let  t be  the number  of t imes the main loop of P7 is fully executed  for some 
input graph G (thus t may be infinite). Le t  k(i) be the number  of t imes lines 
12-22 of P7 are executed  during the ith i terat ion of the main loop. Note  that 

k (i) = Isplit7(pi)l.  

We  define (i, j )  to be a loop index of P7 if it corresponds  to the j th  i teration of 
the inner loop of P7 during the ith i terat ion of the main loop; i.e., if 
0 ~ < i < t + l  and O<~j<~k(i). We say that (i',j ') is older than (i,j) if (i',j ') 
corresponds  to an i teration of the inner and main loops of P7 previous to the 
i terat ion corresponding to ( i , j ) ;  i.e., if i ' < i  or if i ' =  i and j '  < j .  

Let  ACT7  u and G E N 7  u, respectively,  be the values of ACT7  and G E N 7  
computed  on the j th  i teration of lines 12-22 of P7 during the ith i terat ion of 
the main loop. Let  Pu,  P~,2 . . . . .  P~.k(~) be the members  of SPL7 ~ computed  at line 
10 of P7, and let 

frontier(i ,  j )  = ACT7  ~J U {Pij+l . . . . .  Pi.k(i)}. 

Note  that for  each i, 

(1) ACT7i.0 = ACT7  H _ {pi} ; 

(2) G E N 7  ~,°= G E N 7  ~-1 ; 

(3) frontier(i ,  0) = (ACT7 H - {Pi}) U SPLT ; 

(4) G E N 7  i,k°) = G E N 7  i , 

(5) frontier(i ,  k(i))= ACT7  i,kti) = A C T T .  

Theorem C.2. For every loop index (i, j) ,  every loop index (i', j') older than (i, j) ,  
and every path V E frontier( i ' ,  j ') ,  there is a path W E frontier(i ,  j)  such that W 
covers V. 

Proof (by induction on (i , j)) .  The re  is no ( i ' , j ' )  o lder  than (1,0), so the 
theorem holds vacuously for ( i , j )= (1,0). For  the induction hypothesis ,  let 
0 ~< i < t + 1 and 0 <~ i <~ k(i), and suppose that the theorem holds for  every  
(i", j") older  than (i, j).  To  prove  that the theorem holds for  (i, j) ,  there  are two 
possible cases to consider:  j = 0 and j > 0. 

Case 1. j = O. Let  ( i ' , j ' )  be o lder  than (i, 0). If i' < i -  1 or if i' = i -  1 and 
j ' <  k ( i - 1 ) ,  then by the induction hypothesis  every  V E f r o n t i e r ( / ' , f )  is 
covered  by a W E front ier( i  - 1, k(i - 1)). Thus  since covering is transitive, it 
suffices to show that every  V E  f r o n t i e r ( i - 1 ,  k ( i - 1 ) )  is covered  by a W E  
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frontier(i, 0). If V E frontier(i - 1, k (i - 1)), then either V E ACT7 i'° or V = Pi. 
In the first case, V covers itself. In the second case, it follows from the 
definition of split7 that 

Fmi,({Pi., . . . . .  P,.k(i)}) = Fmi,(Pi), 

whence one of Pi,, . . . . .  Pi,~(0 covers P~. In either case, the theorem holds for 
(i, j). 

Case 2. j >0 .  Let (i',j ') be older than (i,j). If i ' <  i or if i' = i and j '  < j  - 1, 
then by the induction hypothesis every V E frontier( i ' , j ' )  is covered by a 
W E frontier(i, j - 1). Thus since covering is transitive, it suffices to show that 
every V E frontier(i, j - 1 )  is covered by a W E frontier(i, j). There are three 
possible cases to consider. 

Case 2(a). V E {Pi,i+, . . . . .  Pi,k(i)}" Then V E frontier(i, j)  and V covers V. 
Case 2(b). V = Pu. If V E ACT7 u, then V E frontier(i, j )  and V covers V. 

Otherwise, V was pruned at line 15 of P7 by some a Q E  
{ACT7U-IUGEN7 u-l. By Lemma C.1, Q covers V, and by the induction 
hypothesis, there is a W ~ frontier(i, j - 1 )  covering Q, whence W covers V. 
Since V could not have pruned W, 

W E ACT u C_ frontier(i, j ) .  

Case 2(c). V E A C T 7  u-~. If V C A C T 7  u, then V covers V. Otherwise, V 
was pruned at line 17 of P7 by Pu, whence from Lemma C.1, Pu covers V. 
Thus, since covering is transitive, this case reduces to Case 2(b). 

Corollary C.2.1. P7 is an instance of P3B. 

Proof. It is clear that goal7 is a goal function, and that select7 and split7 have 
the properties of P3-selection and -splitting functions, and that select7 is 
L7-best-first. If we define prune7 to be lines 11-22 of P7, it follows from 
Theorem C.2 it follows that prune7 has the properties of a P3-pruning function. 
It only remains to show that select7 split7, and prune7 are defined for all 
arguments which might be given to them during the operation of P7, and this is 
easily proved by induction. 

From Corollary C.2.1, it is clear that P7 (and hence A*) is a special case of 
GBB. 

Appendix D. Properties of AO* 

Theorem D.1. split9 satisfies properties (2.4) and (2.5). 

Proof. Let ( N , H )  and ( N ' , H ' )  be as in Section 8. We first show that if 
P '  @ SPL9, then there is a P ~ SEL9 such that rf9(P') C rf9(P). Let P '  E SPL9, 
and let Q = P '  N (N, H) .  Clearly, Q contains at least one hyperpath P from s 
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to the leaves of (N, H )  containing m. Since P is a subgraph of P' ,  P '  is an 
extention of P, whence r f (P ' )C  if(P). 

It follows directly from the above that U{rf9(P)  IPESPL9}C_ 
U {rf9(P) ] P E SEL9}. To prove that U {rf9(P) I P ~ SEL9} _ 
U{rf9(P)  I P E SPL9}, let P E SEL9 and let P*  be an extension of P in G to T. 
Let Q = (N', H ' )  n P*.  Clearly, Q contains at least one hyperpath P '  from s to 
the leaves of (N', H') ,  and by definition of SPL9, P '  E SPL9. Since P '  is a subgraph 
of P*,  P* is an extension of P '  to T, whence P* E rf(P'). 

Theorem D.2. prune9 satisfies properties (2.6) and (2.7). 

Proof. Let (N, H) ,  m, and (N', H ' )  be as in Section 8. Since p rune9( (ACT9-  
SEL9) U SPL9) is the set ACT9' of all hyperpaths in (N', H ' )  from s to the 
leaves of (N', H'), the theorem will follow trivially if we show that 

ACT9' = (ACT9 - SEL9) tO SPL9.  

Let P be a path in SPL9. Then P is a hyperpath in (N', H ' )  from s to the 
leaves of (N', H') containing m, so P is clearly in ACT9'. Let P be a path in 
A C T 9 -  SEL9. Then P is a hyperpath in (N, H )  from s to the leaves of (N, H )  
which does not contain m. Since the only difference between (N, H )  and 
(N',H') is the addition of some hyperarcs at m, P is also a hyperpath in 
(N', H') from s to the leaves of (N', H') .  Thus P G ACT9'. Finally, let P be a 
hyperpath in ACT9'. If P does not contain m, then P N (N, H ) =  P, whence 
P E A C T 9 - S E L 9 .  If P does contain m, then P is an extension of some 
P '  E SEL9, whence P E SPL9. 
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