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A b s t r a c t 

In the field of Artificial Intelligence, tradi­
tional approaches to choosing moves in games 
involve the use of the minimax algorithm. How­
ever, recent research results indicate that 
minimaxing may not always be the best 
approach. In this paper we summarize the results 
of some measurements on several model games 
with several different evaluation functions. These 
measurements, which are presented in detail in 
[NPT], show that there are some new algorithms 
that can make significantly better use of evalua­
tion function values than the minimax algorithm 
.does. 

1. In t roduc t ion 

This paper is concerned with how to make 
the best use of evaluation function values to 
choose moves in games and game trees. The 
traditional approach used in Artificial Intelligence 
is to combine the values using the minimax algo­
rithm. Previous work by Nau [Na83b, Na82], 
Pearl [Pe82], and Tzeng and Purdom (TP, Tz] 
has shown that this approach may not always be 
best. The current paper summarizes the results 
of a study involving measurements on several 
model games with several different evaluation 
functions and several different ways of combining 
the evaluation function values. These measure­
ments show that there are some new algorithms 
that for some games can make significantly better 
use of evaluation function values than the 

1 This work was supported in part by an 
NSF Presidential Young Investigator award to 
Dana Nau, including matching funds from IBM, 
Martin Marietta, and General Motors. 

minimax algorithm does. These results are dis­
cussed in detail in [NPTJ. 

Three methods of propagating the estimates 
from evaluation function are compared in this 
paper: minimax propagation (which is well-known 
[Ni]),2 product propagation (which treats the 
evaluation function values as if they were 
independent probabilities [Na83a]), and a decision 
rule which is intermediate between these two, 
which for this paper we call average propagation. 

Minimax propagation is the best way to 
combine values if one's opinions of the values of 
previously analyzed positions will not change on 
later moves. However, real game playing pro­
grams reanalyze positions after each move is 
made, and usually come up with slightly different 
opinions on the later analyses (because, as the 
program gets closer to a position, it is able to 
search more levels past the position). (Minimax 
propagation is also known to be the best way to 
combine values at a node N if those values are 
the exact values. But if one can obtain exact 
values, then there is no need for searching at all, 
and thus no need for combining values.) 

Product propagation is the best way to 
combine values if they are estimates of (indepen­
dent) probabilities of forced wins and if no one is 
going to make any mistakes after the first move. 
But using estimates (which contain errors) of 
position values on the first move and then making 
perfect moves for the rest of the game is 
equivalent to using an estimator with errors for 
the first move and a perfect estimator for later 
moves. This implies a drastic reevaluation of the 

2 Decision analysts refer to minimax propa­
gation as the maximin decision criterion. 
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positions after the first move is made. 

The situation encountered in real game 
playing is generally somewhere between the two 
extremes described above. If a game playing pro­
gram eventually moves to some node N, then the 
values computed at each move in the game are 
progressively more accurate estimates of the value 
of N. Although the errors in these estimates 
decrease after each move, they usually do not 
drop to zero. Therefore, it should be better to use 
an approach which is intermediate between the 
two extremes of minimax propagation and pro­
duct propagation. There are many possible pro­
pagation methods satisfying this requirement, and 
we chose to study one (namely average propaga­
tion) whose values are easy to calculate. 

We compared the three propagation rules 
on several related classes of two-person board-
splitting games, using several evaluation func­
tions: 

P-games (as defined in [Na82a]) using an 
evaluation function e t described in 
|Na82a]; 

P-games using an evaluation function e 2 

which computes the exact probability that 
a position in a P-game is a forced win, 
given various relevant features of the posi­
tion; 

N-games (as defined in [Na82aJ) using e t; 

G-games (as defined in [Na83c]) using e ,; 

G-games using an evaluation function €3 
particularly suited for G-games. 

(I 

(2) 

(3) 

(4) 

(5) 

2. Resul ts and D a t a Analysis 

It is difficult to conclude much about any 
propagation methods by considering how it does 
on a single game. One cannot tell from a single 
trial whether a method was good or merely lucky. 
Therefore, each comparison was done on a large 
set of games. 

Comparisons (1), (2), and (3) were done 
using 1600 randomly generated pairs of games, 
each chosen in such a way that the game would 
be ten moves long. Each pair of games was 
played on a single game board; one game was 
played with one player moving first and another 
was played with his opponent moving first. For 
each pair of games we had 10 contests, one for 
each depth of searching from 1 to 10. Each con­
test included all 1600 pairs of games. Most game 
boards were such that the starting position (first 
player to move or second player to move) rather 
than the propagation method determined who 
won the game, but for some game boards one pro­
pagation method was able to win both games of 
the pair. We call these latter games critical 
games. 

The comparisons showed that for the set of 
games considered, average propagation was 

always as good as and often several percent better 
than either minimax propagation or product pro­
pagation. Product propagation was usually better 
than minimax propagation, but not at all search 
depths. 

An important question is how significant the 
results are. Even if two methods are equally good 
on the average, chance fluctuations would usually 
result in one of the methods winning over half the 
games in a 1600 game contest. To test the 
significance of each result, we consider the null 
hypothesis that the number of pairs of wins 
(among the critical games) was a random event 
with probability 1/2. If the significance level (the 
probability that the observed deviation from 1/2 
could have arisen by chance) is below, say, 5%, 
then we say that the method that won over 50% 
of the games in this sample performed 
significantly better than its opponent. 

The results of comparison (1) are shown in 
Tables 1 and 2.3 In this comparison, product pro­
pagation did significantly better than minimax 
propagation at most search depths. Minimax pro­
pagation was better for search depth 3. For 
depths 2 and 5, the results were too close to be 
sure which method was better. For depths 3, 4, 
6, 7, and 8 product propagation clearly did 
better.4 

Comparison (l) also showed average propa­
gation to be a clear winner over minimax propa­
gation in P-games when e t is used. Only at 
depth 3 were the results close enough for there to 
be any doubt. In addition, average propagation 
was a clear winner over product propagation at 
all search depths. 

There are theoretical reasons to believe that 
product propagation should do even better on P-
games when e2 is used rather than el [TP], and 
the results of comparison (2) corroborated this. 
In comparison (2), average propagation and pro­
duct propagation both did better in comparison 
to minimax propagation than they had done 
before: for search depths 4, 5, 6, 7, and 8, the 
significance levels were all at 10~*% or better.6 In 

3 Space limitations do not permit the inclu­
sion of tables for any comparisons other than 
comparison (l). For tables showing the details of 
the other comparisons, the reader is referred to 
[NPT]. 

4 Search depths 1, 9, and 10 are irrelevant 
in this comparison, because at search depth 1, all 
three propagation rules choose exactly the same 
moves, and at depths 9 and 10 the evaluation 
function yields perfect play. 

6 Search depths 1, 9, and 10 are irrelevant 
in this comparison for the same reasons as in 
comparison (1). 
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Tab le 1.—Number of pairs of P-games won by (1) product propagation against minimax 
propagation, (2) average propagation against minimax propagation, and (3) average pro­
pagation against product propagation, with both players searching to the same depth d 
using the evaluation function e (. The results come from Monte Carlo simulations of 1600 
game boards each. For each game board and each value of d , a pair of games was 
played, so that each player had a chance to start first. All players were using the same 
evaluation function e |. Out of the 1600 pairs, a pair was counted only if the same player 
won both games in the pair. 

Search 
depth 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Product vs. Minimax 
Number 
of pairs 

0 
472 
569 
597 
577 
567 
424 
324 

0 
0 

Number 
of wins 

0 
231 
249 
334 
290 
348 
235 
223 

0 
0 

Average vs. Minimax 
Number 
of pairs 

0 
320 
411 
520 
478 
525 
352 
305 

0 
0 

Number 
of wins 

0 
181 
218 
331 
308 
385 
229 
236 

0 
0 

Average vs. Product 
Number 
of pairs 

0 
240 
332 
352 
341 
266 
205 

95 
0 
0 

Number 
of wins 

0 
140 
199 
221 
227 
191 
140 
70 
0 
0 

Notes 

* 

* ** 
* ** -

* For search depths 1, 
** For search depths { 

9, and 10, both players play identically, 
and 10, both players play perfectly. 

Table 2.—Percentage of pairs of P-games won by (l) product propagation against 
minimax propagation, (2) average propagation against minimax propagation, and 
(3) average propagation against product propagation, with both players searching 
to the same depth d using the evaluation function e,. The data is from the same 
games used for Table 1. The significance column gives the probability that the 
data is consistent with the null hypothesis that each method is equally good. Small 
numbers (below 5%, for example), indicate that the deviation in the number of 
wins from 50% is unlikely to be from a chance fluctuations, while large numbers 
indicate that from this data one cannot reliably conclude which method is best. 

Search 
depth 

2 

3 

4 

5 

6 

7 

8 

Product 
Wins 
48.9% 
43.8% 
55.9% 
50.3% 
61.4% 
55.4% 
68.8% 

vs. Minimax 
Significance 
65.% 

0.28% 
0.38% 

90.% 
6X10~8% 
2.6% 

ixio-9% 

Average 
Wins 
56.6% 
53.0% 
63.7% 
64.4% 
73.3% 
65.1% 
77.4% 

vs. Minimax 
Significance 

1.9% 
23.% 

1 X 1 0 7 % 
2X10"8% 
1X10"24% 
2X10"6% 

ixio-19% 

Average 
Wins 
58.3% 
59.9% 
62.8% 
66.6% 
71.8% 
68.3% 
73.7% 

vs. Product 
Significance 
1.2% 
3X10"2% 
2X10-4% 
9X10~8% 

ixio-10% 
2X10"6% 
4X10-4% 
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comparison (2), average propagation appeared to 
do better than product propagation at most 
search depths, but the results were not statisti­
cally significant except at search depth 4, where 
they were marginally significant. These results 
show that product propagation becomes relatively 
better compared to both minimax propagation 
and average propagation when better estimates 
are used for the probability that a node is a 
forced win. 

The results of comparison (3) suggest that 
for this set of games average propagation may 
again be the best, but the differences among the 
methods are much smaller. This time minimax 
propagation is better than product propagation 
for search depths 3 and 4 (and probably 2). Aver­
age propagation may be better than minimax pro­
pagation at larger search depths (all the results 
were above 50%), but one cannot be sure based 
on this data, because the significance levels were 
all above 20%. Average propagation is 
significantly better than product propagation for 
all search depths except 8, where the results are 
inconclusive. It is more difficult to draw definite 
conclusions for N-games partly because there is a 
low percentage of critical games. 

There are only 2048 initial playing boards 
for G-games of ten moves, so for comparisons (4) 
and (5) it was possible to enumerate all these 
boards and obtain exact values rather than Monte 
Carlo estimates. In comparison (4), product pro­
pagation and average propagation both did some­
what better than minimax propagation, and did 
about the same as each other. In comparison (5), 
average propagation and product propagation still 
did about equally well, but this time both did 
somewhat worse than minimax propagation. One 
possible reason for this is discussed in [NPT]. 

3 . Conclusion 

The main conclusions of this study are that 
the method used to back up estimates has a 
definite effect on the quality of play, and that the 
traditional minimax propagation method not 
always the best method to use. Which method of 
propagation works best depends on both the esti­
mator and the game. 

Some of our students are extending these 
investigations to games that are more commonly 
known. Teague [Te] has shown that minimax 
propagation does markedly better than product 
propagation and average propagation in the game 
of Othello, but Chi [ChJ has preliminary results 
which appear to indicate that both product pro­
pagation and average propagation outperform 
minimax propagation in a modified version of 
Kalah. 

One problem with methods other than 
minimax propagation is that the value of every 
node has some effect on the final result. Thus 
methods such as the alpha-beta pruning 

procedure cannot be used to speed up the search 
without affecting the final value computed. Pro­
grams for most games use deep searches, and 
these programs will not be able to make much use 
of these new methods unless suitable pruning pro­
cedures are found. A method is needed which 
will always expand the node that is expected to 
have the largest effect on the value. 

The games where the new results may have 
the most immediate application are probabilistic 
games such as backgammon, where it is not feasi­
ble to do deep searches of the game tree. Since 
alpha-beta pruning does not save significant 
amounts of work on shallow searches, it is con­
ceivable that such games can profit immediately 
from improved methods of backing up values. 
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