
International Journal of Parallel Programming, Vol. 15, No. 2, 1986

Experiments on Alternatives to Minimax

Dana Nau, 1 Paul Purdom, and Chun-Hung Tzeng

Received August 1984; revised August 1986

In the field of Artificial Intelligence, traditional approaches to choosing moves
in games involve the use of the minimax algorithm. However, recent research
results indicate that minimaxing may not always be the best approach. In this
paper we report some measurements on several model games with several dif-
ferent evaluation functions. These measurements show that there are some new
algorithms that can makes significantly better use of evaluation function values
than the minimax algorithm does.

KEY W O R D S : Artificial intelligence; decision analysis; games trees; minimax,
search.

"There's something the matter with minimax in the presence of
error." Tom Truscott, co-author of Duchess, in his spoken
presentation of Ref. 1.

1. INTRODUCTION

This paper is concerned with how to make the best use of evaluation
function values to choose moves in games and game trees. The traditional
approach used in Artificial Intelligence is to combine the values using the
minimax algorithm. Previous work by Nau,/2'14/ Pearl, t41 and Tzeng and
Purdom (5'6) has shown that this approach is not always best. In this paper
we report some measurements on several model games with several dif-
ferent evaluation functions. These measurements show that there are some
new algorithms that can make significantly better use of evaluation
function values than the minimax algorithm does.

t This work was supported in part by a Presidential Young Investigator Award to Dana Nau,
including matching funds from IBM Research, General Motors Research Laboratories, and
Martin Marietta Laboratories.

163

0885-7458/86/0400-0163505.00/0 �9 1986 Plenum Publishing Corporation

164 Nau, Purdom, and Tzeng

We consider a game between two players, Max and Min. The game
begins in some starting position. At each position, the player that must
move has a finite set of possible moves, each of which leads to a different
new position. The players alternate making moves until a terminal position
is reached where the set of possible moves is empty. We have a finite game,
so from every position any sequence of moves leads to a terminal position
after a finite number of moves. Associated with each terminal position g is
a number vg, the value of g. Max's goal is to get to a terminal position with
the highest possible value, while Min's goal is to get to a terminal position
with he lowest possible value. Each player has perfect information concern-
ing the current position, the possible moves, and the value of each terminal
position.

Associated with each position of a game is the minimax value of the
position. This is the value that will result if each player makes the best
possible sequence of moves. The minimax value V(g) for a terminal
position g is simply vg as defined previously. For nonterminal positions,
the minimax principle says that if it is Max's move at g, then the minimax
value V(g) is given by

VMax(g) = max { V(i)} (1)
i~ S(g)

where S(g) is the set of possible positions that can be reached from g by
making a single move, and V(i) is the minimax value of the position i. If it
is Min's move at g, then V(g) is given by

VMin(g) = min { V(i)} (2)
is S(g)

If Max (or Min, respectively) always chooses a move leading to a
position of highest (or lowest) possible minimax value, then each side will
always choose moves leading to the best position obtainable for that side
under the assumption that the other side chooses moves in the same way.
No one can argue with the conclusion that this is the best to choose moves
when one's opponent is playing perfectly and one has the computational
resources required for a complete minimax calculation.

Most games, however, are nontrivial. No one can calculate the best
move in reasonable time. The traditional game playing program, therefore,
does the following. It searches ahead for several moves, uses a static
evaluation function to estimate the values of the resulting positions, and
then combines the estimates using Eqs. (1) and (2) to obtain estimates of
the values of the various moves that it can make. Many successful
programs have been built on this plan. There is, however, no reason to
believe that Eqs. (1) and (2) are the best ways to combine the estimated

Alternat ives to M i n i m a x 165

values of positions. Indeed, N a u (2A4) showed that for some reasonable
games and evaluation functions, when the minimax Eqs. (1) and (2) are
used to combine estimates the quality of the move selected gets worse as
the search is made deeper. This behavior is called minimax pathology.

Pearl ~4) suggested that one should consider product propagation as a
way to combine values from an evaluation function. Product propagation
is intended to be used with values V(i) that are estimates of the probability
of a forced win (minimax va lue= 1), so that 0 4 V(i)<~ 1 for each i. The
values V(i) are treated as if they were independent probabilities, and thus
Eqs. (1) and (2) are replaced with

VM,x(g)= 1-- [I (1-- V(i)) (3)
i ~ S (g)

and

VMin(g) = H V(i) (4)
i ~ S (g)

Nau ~7) did some experiments and found that for at least one class of games
and evaluation functions, the average quality of move using product
propagation was almost always better than with minimax (i.e., the position
moved to was more likely to be a forced w i n) a n d that product
propagation avoided pathology (i.e., deeper search always increased the
average quality of the moves).

More recently, Reibman and Ballard (sl investigated an alternative to
minimax in which VMin(g) was defined to be a weighted average of
{ V(i)]i~ S(g)}. They showed that under certain conditions, this approach
does significantly better than minimax.

Tzeng ~5) has found the best way to use the information from heuristic
search functions when the goal is to select a move that results in a position
where one has a forced win. Under certain conditions (sibling nodes in a
game tree are independent, and evaluation functions given the probabilities
of forced wins), product propagation is the best method for choosing such
a move. Tzeng's theory does not, however, consider whether one will be
able to find the follow-up moves needed to produce the foced win. It does
little good to move to a forced win position if one makes a mistake on
some later move which results in losing the entire game. So, although
trying to move to positions where one has a forced win (but doesn't
necessarily know how to force the win) leads to good game playing, it does
not necessarily lead to the best possible game playing. A complete theory of
game playing should allow for the possibility that both players may make a
number of mistakes during the game.

166 Nau, Purdom, and Tzeng

In this paper we report the results of some experimental investigations of
several methods of propagating estimates of position values. We consider
the traditional minimax propagation, product propagation, and an inter-
mediate method which we call average propagation:

lImax{V(i)}+l- [I (I-V(/))] (5)
VMax(g) = 2 L i~s(~) i~s(g)

and

l [m i n { V (i) } + [I V(i)] (6) VMin(g) : - -2 L i E S(g) i~ S(g)

(Average propagation does not return a weighted average of the values of
the child nodes as was done in Ref. 8; instead it recursively propagates the
average of a minimax and a product.) The reason for interest in methods
that are intermediate between minimax propagation and product
propagation is as follows.

Minimax propagation is the best way to combine values if one's
opinions of the values of previously analyzed positions will not change on
later moves. However, real game playing programs reanalyze positions
after each move is made, and usually come up with slightly different
opinions on the later analyses (because, as the problem gets closer to a
position, it is able to search more levels past the position). (Minimax
propagation is also known to be the best way to combine values att a node
N if those values are the exact values. But if one can obtain exact values,
then there is no need for searching at all, and thus no need for combining
values.)

Product propagation is the best way to combine values if they are
estimates of probabilities of forced wins, if the probabilities of forced wins
are all independent, and if no one is going to make any mistakes after the
first move. But using estimates (which contain errors) of position values on
the first move and then making perfect moves for the rest of the game is
equivalent to using an estimator with errors for the first move and a perfect
estimator for later moves--which implies a drastic reevaluation of the
positions after the first move is made. It is also important to point out that
although product propagation propagates the values as if they were
independent probabilities, this independence assumption does not hold in
most games.

The situation encountered in real game playing is generally somewhere
between the two extremes previously described. If a game playing program
eventually moves to some node N, then the values computed at each move
in the game are progressively more accurate estimates of the value of N.

Alternatives to Minimax 167

Although the errors in these estimates decrease after each move, they
usually do not drop to zero. Therefore, it should be better to use an
approach which i s intermediate between the two extremes of minimax
propagation and product propagation. There are many possible
propagation methods, satisfying this requirement, and we chose to study
one whose values are.easy to calculate.

2. T H E G A M E S A N D T H E A L G O R I T H M S

We now describe three closely related classes of games. In each of
these games we assume that the player who makes the last move in the
game is Max.

A P-game is played between two players. The playing board for the
game consists of 2 n squares, numbered from 0 to 2 n - 1. (We use n = 10.)
Each square contains a number, either 0 or 1. These numbers are put into
the squares before the beginning of the game by assigning the value 1 to
each square with some fixed probability p and the value 0 otherwise,
independent of the-.values of the other squares. We use p = (3 - xf5)/2
0.382, which results in each side having about the same chance of winning
(the probability that Min will win from a random position is (3 - x/5)/2 if
both sides play perfectly. (3)

To make a move in the game, the first player selects either the lower
half of the board (squares 0 to 2" 1 _ 1) or the upper half (squares 2 n- 1 to
2" - 1). His opponent then selects the lower or upper half of the remaining
part of the board. I (The rules can be generalized for branching factors
greater than 2, but we will be concerned only with the binary case.) Play
continues in like manner with each player selecting the lower or upper half
of the remaining part of the board until a single square remains. If the
remaining square Contains a 1 then Max (the player to make the last
move) wins; otherwise Min wins.

The game tree for a P-game is a complete binary game tree of depth k,
with random, identically distributed leaf node values (for example, see
Fig. 1). For this reason, the minimax value of a node in a P-game is
independent of the values of other nodes at the same depth. Such indepen-
dence does not occur in games such as chess or checkers. In these games,
the board positions usually change incrementally, so that each node is
likely to have children of similar strength. This incremental variation in
node strength is modeled in two different ways in the N-games and G-
games. In N-games, it is done by assigning strength values to the nodes of
the game tree and determining which terminal nodes are wins and losses on
the basis of these strengths. In G-games it is done by causing sibling nodes
to have most of their children in common (as often occurs in games).

168 Nau. Purdom, and Tzeng

[0 1 1 0 0 0 1 0 0 0 0 1 1 0 0 1]

[o 1 1 o o o I o]

[0 1 1 0] [0 0 1 0]

A /5
[o I] [I o] [o o] [i o] [o o] [o 13

A A/I / I / I / I

[o o o 1 1 o o I]

[0 o o I] [i o o i]

A
[i o] [o i]

AA
[o] [11 [I] [o] [o] [o] [I] [o] [o] [o] [o] [I I [I] [o] [o] [I]

Fig. 1. A game tree for a P-game of depth 4. The initial playing board, which
appears at the root of the tree, is set up by assigning each square a value of a 1
or 0 at random. Since the depth is even, Max is the second player. Max has a
forced win in this particular game, as indicated by the solution tree (drawn in
boldface) for Max.

An N-game has the same size playing board, the same moves, and the
same criterion for winning as a P-game, but the initial playing board is set
up differently. To set up the board, each arc of the game tree is indepen-
dently, randomly given the value 1 with probability q or - 1 otherwise, for
some fixed q (we use q = 1/2). The strength of a node t in the game tree is
defined as the sum of the arc values on the path from t back to the root. A
square in the playing board is given the value 1 if the corresponding leaf
node of the game tree has positive strength, and the value 0 otherwise (for
an example, see Fig. 2).

In contrast to N-games and P-games, the playing board for a G-game
is a row of k + 1 squares, where k > 0 is an integer (see Fig. 3). The playing
board is set up by randomly assigning each square the value 1 with
probability r or the value 0 otherwise, for some fixed r (we use r = 1/2). A
more (for either player) consists of removing a single square from either
end of the row. As with the P-games and N-games, the game ends when
only one square is left. If this square contains a 1, then Max wins;
otherwise Min wins.

Note that every node in a P-game, N-game, or G-game is a forced win
for one of the two players (Max or Min). This can easily by proved by
induction, since P-games and N-games do not have ties. By a win node we

Alternatives to Minimax 169

Game tree:

0 -2

I

0 2 2 4 4 -2 0 -2 -/4 2 0 -2 -?

Playing board:

[0 0 0 I I I I I 0 0 0 0 I 0 0 O]

Fig. 2. Setting up the playing board for an N-game of depth 4. A value of 1 or
-1 is assigned at random to each arc of the game tree, and the value of each
leaf node is taken to be the sum of the arc values on the path back to the root,
A square in the playing board is given the value 1 if the corresponding leaf node
has a positive value; otherwise it is given the value 0. Since the depth is even,
Max is the second player. Min has a forced win in this particular game, as
indicated by the solution tree (drawn in boldface) for Min.

mean a node that is a forced win for Max, and by a loss node we mean a

node that is a forced loss for Max (i.e., a forced win for Min).
Let T be a game tree for a P-game, N-game, or G-game, and t be a

node in T. The more "1" squares there are in t the more likely it is that t is
a forced win. Thus an obvious evaluat ion funct ion for T is

the n u m b e r o f " l " squares in t

e l (t) - the n u m b e r of squares in t (7)

Invest igat ions in previous papers (3'7) reveal that this is a rather good
evaluat ion funct ion for both P-games and N-games. No t only does it give
reasonably good estimates of whether a node is a win or a loss, but it
dramatical ly increases in accuracy as the distance from a node to the end of
a game decreases. On the other hand it is not an ideal est imator for use

with product propagat ion, since it does not given the true probabi l i ty of

170 Nau, Purdom, and Tzeng

[i o I i o]

[I 0 I I] [0 1 1 O]

[I 0 I] [0 1 I] [I I O]

[I O] [0 I] [I I] [I Ol

[i] [o] [I] [i] [o]

Fig. 3. A game graph for a G-game of depth 4. The initial playing
board, which appears at the root of the graph, is set up by assigning
each squares a value of 1 or 0 at random. Since the depth is even,
Max is the second player. Max has a forced win in this particular
game, as indicated by the solution graph (drawn in boldface) for
Max.

winning based on the information at hand (the fraction of "1" squares).
For example, in P-games it does not vary rapidly enough near e(t)=
(3 - x / 5) / 2 (See Fig. 2 in Ref. 9). Instead, this function gives a rough
estimate of the probability of winning. This is perhaps typical of the quality
of data that real evaluation functions provide.

Three methods of propagating the estimates from evaluation function
are compared in this paper: minimax propagation, product propagation, and
a decision rule which is intermediate between these two, which for this
paper we call average propagation.

We let M(k, t), P(k, t), and A(k, t) be the values propagated by these
three rules, where t is a node and k is the depth of node t from the current
position. The search strats on depth 0 and proceeds to depth d. The value
of the heuristic evaluation function applied to node t is e(t). The three
propagation rules are

t e(t) if k = d o r t is a leaf node
M(k, t) = maxi~s(n{M(k + 1, i)} ifk < dand it is Max's move

mini~s(,){M(k + 1, t)} ifk < dand it is Min's move

(8)

Alternatives to Minimax 171

P(k, t)=
e(0
1 -fIi~s~oE1 - P (k + 1, i)3
I~i~s~,) P(k + 1, i)

if k = d or t is a leaf node

if k < d and it is Max's move

if k < d and it is Min's move

(9)
e(t) i fk = d o r t is a leaf node

�89 1, i)} + 1 -]-b~slt)[1 - P (k + 1, i)3]

A(k, t) = i fk < dand it Max's move

�89 + 1, i)} + 1-Ii~sr P(k + 1, i)]

if k < d and it is Min's move
(10)

We assume that when t is a terminal node e(t) gives the value of node t.
It is difficult to conclude much about any of these methods by con-

sidering how it does on a single game. One cannot tell from a single trial
whether a method was good or merely lucky. Therefore we test each
method on large sets of P-games, N-games, and G-games. A good
propagation method should be able to win more games than any other
propagation method.

3. R E S U L T S A N D D A T A A N A L Y S I S

3.1. P - G a m e s Using el

Our first set of results is from a set of 1600 randomly generated pairs
of P-games. Each pair of games was played on a single game board; one
game was played with one player moving first and another was played with
his opponent moving first. Of the 1600 game boards, 970 were boards
where the first player had a forced win and 630 were boards where the
second player had a forced win. The expected results from from our ran-
dom game generation process were 1600p ~ 611 forced wins for the second

player with a standard deviation of ~ / i 6 0 0 p (1 - p) ~ 18.9. Our observed
deviation from the expected value should occur about 33% of the time.
Thus this is a rather typical random sample of games.

For each pair of games we had 10 contests, one for each depth of
searching from 1 to 10. Each contest included all 1600 pairs of games. Most
game boards were such that the position (first player to move or second
player to move) rather than the propagat ion method determined who won
the game, but for some game boards one propagation method was able to
win both games of the pair. We call these latter games eritical games.

For each P-game contest, Table la shows how many pairs were won
by a single method (the number of critical games) and how many of those

172 Nau, Purdom, and Tzeng

pairs were won by the first method in the contest. For example, the contest
played at search depth 2 between product propagation and minimax
propagation contained 472 critical games. Of these, product propagation
won 231 games, not quite half.

Table lb summarizes the raw data from Table la. It gives the percen-
tage of the games that the first method won in each P-game contest. A per-
centage greater than 50% indicates that the first method did better than
the second method most of the time. However, if the percentage is neither
0% nor 100%, then for each method we found some games where it did
better than its opponent. The results in this table show that for the set of
games considered, average propagation was always as good as and often
several percent better than either minimax propagation or product
propagation. Product propagation was usually better than minimax
propagation, but not at all search depths.

An important question is how significant the results are. Even if two
methods are equally good on the average, chance fluctuations would
usually result in one of the methods winning over half the games in a
1600 game contest. To test the significance of each result, we considered the

Table la. Number of Pairs of P-Games Won by Product Propagation against
Minimax Propagation, Average Propagation against Minimax Propagation,
and Average Propagation against Product Propagation, with both Players

Searching to the Same Depth d using the Evaluation Function el ~

Product vs. Minimax Average vs. Minimax Average vs. Product

d Pairs Wins Pairs Wins Pairs Wins Notes

1 0 0 0 0 0 0
2 472 231 320 181 240 140
3 569 249 411 218 332 199
4 597 334 520 331 352 221
5 577 290 478 308 341 227
6 567 348 525 385 266 191
7 424 235 352 229 205 140
8 324 223 305 236 95 70
9 0 0 0 0 0 0

10 0 0 0 0 0 0

h,c

h,c

a The results come from Monte Carlo simulations of 1600 game boards each. For each game
board and each value of d, a pair of games was played, so that each player had a chance to
start first. Out of the 1600 pairs, a pair was counted only if the same player won both games
in the pair.

b For search depths 1, 9, and 10, both players play identically.
For search depths 9 and 10, both players play perfectly.

Alternatives to M inimax 173

Table lb. Percentage of Pairs of P-Games Won by Product Propagation
against Minimax Propagation, Average Propagation against Minimax

Propagation, and Average Propagation against Product Propagation, in the
Same Games Used for Table la a

Product vs. Minimax Average vs. Minimax Average vs. Product

d %Wins Significance %Wins Significance %Wins Significance

2 48.9% 0.65 ? 56.6% 0.019 Avg. 58.3% 0.012 Avg.
3 43.8 % 0.0028 Prod. 53.0% 0.23 ? 59.9% 0.0003 Avg.
4 55.9% 0.0038 Prod. 63.7% 1 x l 0 -9 Avg. 62.8% 2 • 6 Avg.
5 50.3% 0.90 9 64.4% 2 • -L~ Avg. 66.6% 9 x 1 0 -1~ Avg.
6 61.4% 6 x 1 0 8 Prod. 73.3% 1 • 26 Avg. 71.8% 1 x 1 0 12 Avg.
7 55.4% 0.026 Prod. 65.1% 2 x 1 0 -8 Avg. 68.3% 2 • -7 Avg.
8 68.8 1 • 11 Prod. 77.4% 1 x l 0 21 Avg. 73.7% 4 x 1 0 6 Avg.

The significance column gives the probability that the data is consistent with the null
hypothesis that each method is equally good. Small numbers (say, 0.05), indicate that the
deviation away from 50% in the percentage of wins is unlikely to be from chance fluc-
t u a t i o n s - a n d these numbers are followed by the name of the propagat!on method that did
better. Large numbers indicate that from this data one cannot reliably conclude which
method is bes t - - and these numbers are followed by '?'s.

Table lc . The Results Come from a Monte Carlo Simulation Involving
1600 Games for each Value of k a

height k
depth

d 3 4 5 6 7 8 9 10 11 12 13

1 0.947 0.906 0.842 0.809 0.762 0.729 0.694 0.670 0.643 0.621 0.620
2 i.000 0.935 0.887 0.819 0.779 0.741 0.693 0.672 0.630 0.624 0.626
3 1.000 1.000 0.927 0.853 0.800 0.758 0.701 0.673 0.643 0.622 0.618
4 1.000 1.000 0.897 0.842 0.769 0.721 0.677 0.649 0.620 0.617
5 1.000 1.000 0.885 0.802 0.734 0.693 0.653 0.632 0.628
6 1.000 1.000 0.844 0.776 0.702 0.669 0.626 0.626
7 1.000 1.000 0.824 0.744 0.677 0.643 0.637
8 1.000 1.000 0.790 0.708 0.667 0.633
9 1.000 1.000 0.757 0.687 0.650

10 1.000 1.000 0.733 0.671
1l 1.000 1.000 0.724
12 1.000 1.000
13 1.000

~' The probability that average propagation chooses a "correct" move (the move leading to a
forced win at a node having one forced win child and one forced loss child) when searching
to depth d using the evaluation function el, at a node of heigh k in a P-game.

174 FJau, Purdom, and Tzeng

null hypothesis that the number of pairs of wins (among the critical games)
was a random event with probability one half. If there were N critical
games, then under the null hypothesis, the expected number of wins by the
first method would be N/2. If the actual number of wins is A, then under
the null hypothesis the probability that the number ofwins is less than A
or more than N - A is

O <~ i <~ A

when A < N/2; and it is this expression with A replaced by N - A when
A >N/2. (For N > 2 4 0 we approximated Eq. (11) with a normal dis-
tribution.) This number is given in the significance column. It gives the
probability that a derivation of the observed amount (in either direction)
from 50 % wins will arise from chance in a contest between equally good
methods. Thus when the number in the significance column is high (say,
above 0.05), it is quite possible that the observed results arose from chance
fluctuations, and the results are not significant. When the number is small,
then it is unlikely that the observed result could have arisen from chance
fluctuations--and thus one can be rather sure that the method that won
over 50% of the games in this sample is actually the better method.

The P-game contest with estimator e~ show product propagation
doing better than minimax propagation at most search depths. Minimax
propagation was better for search depth 3. For depths 2 and 5, the results
were too close to be sure which method was better. For depths 3, 4, 6, 7,
and 8 product propagation clearly did better. It is interesting to notice that
on the games tested, minimax propagation did relatively better when the
search depth was odd (i.e., the performance for each odd search depth was
better than for either of the search depths one more and one less).

These contests also show average propagation to be a clear winner
over minimax propagation in P-games when e~ is used. Only at depth 3
were the results close enough for there to be a n y doubt. In addition,
average propagation was a clear winner over product propagation at all
search depths.

Table lc shows the fraction of the time (at those nodes where it mat-
ters which move is chosen) that the average propagation method with
estimator ea selects a move that leads to a forced win on P-games. A com-
parison of these figures with the corresponding figures for minimax
propagation (Table3 in Ref. 7) and product propagation (Table2 in
Ref. 7) shows that for most heights and search depths average propagation
does the best of these three methods for using estimator el to select nodes
that are forced wins.

Alternatives to Minimax 175

3.2. P-Games Using e2

Tzeng (6) gives a formula for the probability p(h, l) that a node in a P-
game is a forced win, given that there are h moves left at node t and that t
contains l ones. We have used Tzeng's formula to compute p(h,l) for all
h ~< 8. Since the number of ones in a node t is 2%1(0 and the number of
zeroes in t is 2h(1--el(t)) , the probability that t is a forced win given the
number of ones and zeroes in t is

e2(t) = 2*p(h, e~(t)) (12)

It is shown in Ref. 5 that for P-games product propagat ion does the
best of any equally informed algorithm for selecting nodes that are forced
wins when the evaluation function returns estimates that are the probabilities
of forced wins (estimator e2). Tables 2a and 2b duplicate the studies done in
Tables la and lb, but using the evaluation function e 2 rather than el. In
these tables, average propagat ion and product propagat ion both do better
than they did before in comparison to minimax propagation. Average

Table2a. Number of Pairs of P-Games Won by Product Propagation against
Minimax Propagation, Average Propagation against Minimax Propagation,
and Average Propagation against Product Propagation, with both Players

Searching to the Same Depth d using the Evaluation Function ez a

Product vs. Minimax Average vs. Minimax Average vs. Product

d Pairs Wins Pairs Wins Pairs Wins Notes

1 0 0 0 0 0 0 b
2 376 202 269 154 150 81
3 424 229 333 199 184 100
4 525 336 454 315 183 106
5 474 310 388 257 167 77
6 530 399 493 381 133 70
7 338 223 327 214 74 37
8 307 243 297 239 34 18
9 0 0 0 0 0 0 b,,.

10 0 0 0 0 0 0 b,c

The results come from Monte Carlo simulations of 1600 game boards each. For each game
board and each value of d, a pair of games was played, so that each player had a chance to
start first. Out of the 1600 pairs, a pair was counted only if the same player won both games
in the pair.

For search depths 1, 9, and 10, both players play identically.
" For search depths 9 and 10, both players play perfectly.

828/15/2-6

176 Nau, Purdom, and Tzeng

Table 2b. Percentage of Pairs of P-Games Won by Product Propagation
against Minimax Propagation, Average Propagation against Minimax

Propagation, and Average Propagation against Product Propagation, in the
Same Games Used for Table 2a a

Product vs. Minimax Average vs. Minimax Average vs. Product

d %Wins Significance %Wins Significance %Wins Significance

2 53.7% 0.15 ? 57.2% 0.018 Avg. 54.0% 0.372
3 54.0 % 0.099 ? 60.0 0.014 Avg. 54.3 % 0.27
4 64 .0% 1x10 -1~ Prod. 69 .4% 2• -16 Avg. 57.9% 0.038 Avg.
5 65 .4% 1• -11 Prod. 66 .2% 1• -1~ Avg . 46.1% 0.35
6 75.3% 9• -30 Prod . 77 .3% 2• 38 Avg. 52.6% 0.60
7 66 .0% 2• -9 P rod . 65 .4% 2• -8 Avg. 50.0% 1.00
8 79.2% 4• -24 Prod . 80.5% 7• -26 Avg. 52.9% 0.84

aThe significance column gives the probability that the data is consistent with the null
hypothesis that each method is equally good. Small numbers (say, 0.05), indicate that the
deviation away from 50% in the percentage of wins is unlikely to be from chance fluc-
tuations-and these numbers are followed by the name of the propagation method that did
better. Large numbers indicate that from this data one cannot reliably conclude which
method is best--and these numbers are followed by '?'s.

p ropaga t ion appears to do better than product p ropaga t ion at most search

depths, but the results are not s tat is t ical ly signif icant except at search depth
4, where they are marginal ly significant. These results show that product

p ropaga t ion becomes relatively better compared to both min imax
propaga t ion and average propagat ion when better estimates are used for
the probabi l i ty that a node is a forced win.

3.3. N - G a m e s U s i n g e l

Table 3a shows the raw data for N-games. The results suggest that for
this set of games the averages propaga t ion method of propagat ion may
again be the best, but the differences among the methods are much smaller.
Table 3b gives the percentage of wins for each method and the significance.
This time minimax propaga t ion is better than product propagat ion for
search depths 3 and 4 (and probably 2). Average propaga t ion may be bet-
ter than min imax propaga t ion at larger search depths (all the results were
above 50%(but one can not be sure based on this data. Average
propagat ion is better than product p ropaga t ion for all search depths except
8, where the results are inconclusive. It is more difficult to draw definite

Table 3a. Number of Pairs of P-Games Won by Product Propagation against
Minimax Propagation, Average Propagation against Minimax Propagation,
and Average Propagation against Product Propagation, with both Players

Searching to the Same Depth d using the Evaluation Function el a

Product vs. Minimax Average vs. Minimax Average vs. Product

d Pairs Wins Pairs Wins Pairs Wins Notes

1 0 0 0 0 0 0
2 128 53 80 41 59 40
3 109 41 70 33 51 35
4 107 42 72 39 45 37
5 57 27 42 25 19 15
6 66 28 45 27 11 10
7 20 10 16 11 7 7
8 12 6 7 5 5 4
9 0 0 0 0 0 0

10 0 0 0 0 0 0

b,e

b,c

The results come from Monte Carlo simulations of 1600 game boards each. For each game
board and each value of d, a pair of games was played, so that each player had a chance to
start first. Out of the 1600 pairs, a pair was counted only if the same player won both games
in the pair.

b For search depths 1, 9, and 10, both players play identically.
c For search depths 9 and 10, both players play perfectly.

Table 3b. Percentage of Pairs of P-Games Won by Product Propagation
against Minimax Propagation, Average Propagation against Minimax

Propagation, and Average Propagation against Product Propagation, on the
Same Games Used for Table 3a ~

Product vs. Minimax Average vs. Minimax Average vs. Product

d %Wins Significance %Wins Significance %Wins Significance

2 41.4 % 0.063 ? 51.2 % 0.91 ? 67.8 % 0.0086 Avg.
3 37.6% 0.012 Mmax. 47.1% 0.72 ? 68.6% 0.011 Avg.
4 39.3% 0.033 Mmax. 54.2% 0.56 ? 82.2% 2 x 10 5 Avg.
5 47.4% 0.79 ? 59.5% 0.28 ? 78.9% 0.019 Avg.
6 50.9% 1.00 ? 60.0% 0.23 ? 90.9% 0.012 Avg.
7 50.0 % 1.00 ? 68.8 % 0.21 ? 100. % 0.016 Avg.
8 50.0 % 1.00 ? 71.4 % 0.45 ? 80.0 % 0.38 ?

The significance column gives the probability that the data is consistent with the null
hypothesis that each method is equally good. Small numbers (say, 0.05), indicate that the
deviation away from 50% in the percentage of wins is unlikely to be from chance fluc-
t u a t i o n s - a n d these numbers are followed by the name of the propagation method that did
better. Large numbers indicate that from this data one cannot reliably conclude which
method is bes t - - and these numbers are followed by '?'s.

b Since these numbers are below 0.05, they are considered significant.
~ Since these numbers are above 0.05, they are not considered significant.

178 Nau, Purdom, and Tzeng

conclusions for N-games part ly because there is such a low percentage of
critical games.

No one has yet found the best way to propagate estimates for N-
games. As was the case with P-games, the probabi l i ty that a node is a for-

ced win given a search to some depth d depends on the values of all of the
tip nodes of the search tree. (6l But in N-games, the values of the various
nodes are not independent , so the calculation is much more difficult than

for P-games. Since the product p ropaga t ion rule treats the values of the

nodes as if they were independent probabilit ies, product propagat ion is not
the best way to use the estimates.

3.4. G - G a m e s U s i n g e l

In the case of G-games, it was possible to come up with exact values
rather than Monte Carlo estimates. This is because there are only
211= 2048 distinct initial boards for G-games of depth 10 (as opposed to

22~~ distinct initial boards for P-games or N-games of depth 10), and thus it
was possible to enumerate all possible G-games and try out the three

decision methods on all of them. The results of this experiment are given in
Tables 4a and 4b. Table 4a gives the exact percentages of games won in

Table4a. Number of G-Games Won by Product Propagation against Minimax
Propagation, Average Propagation against Minimax Propagation, and Average
Propagation against Product Propagation, with Both Players Searching to the

Same Depth d Using the Evaluation Function el ~

Product vs. Minimax Average vs. Minimax Average vs. Product

d Wins Prcnt Better Wins Prcnt Better Wins Prcnt Better

1 2048 50.0 % * 2048 50.0 % * 2048 50.0 % *
2 2405 58.7% Prod. 2405 58.7% Avg. 2048 50.0%
3 2368 57.8% Prod. 2368 57.8% Avg. 2048 50.0% - -
4 2471 60.3% Prod. 2471 60.3% Avg. 2048 50.0%
5 2363 57.7 % Prod. 2368 57.8 % Avg. 2054 50.1% Avg.
6 2307 56.3% Prod. 2306 56.3% Avg. 2044 49.9% Prod.
7 2220 54.2 % Prod. 2222 54.2 % Avg. 2046 50.0 %
8 2094 51.1% Prod. 2094 51.1% Avg. 2048 50.0 % - -
9 2048 50.0 % b,~ 2048 50.0 % h,c 2048 50.0 % h,~

10 2048 50.0% b,c 2048 50.0% h,c 2048 50.0% ~'~

a For each value of d, all 2048 G-game boards of depth 10 were tried, and each player was
given a chance to start first, for a total of 4096 games.
For search depths 1, 9, and 10, both players play identically.

~ For search depths 9 and 10, both players play perfectly.

Alternatives to Minimax 179

Table 4b. Number of Pairs of G-Games Won by Product Propagation against
Minimax Propagation, Average Propagation against Minimax Propagation,
and Average Propagation against Product Propagation, in the Same Games

Used for Table 4a a

Product vs. Minimax Average vs. Minimax Average vs. Product

d Pairs Wins Prcnt Pairs Wins Prcnt Pairs Wins Prcnt Notes

1 0 0 0 0 0 0 b
2 421 389 92.4% 421 389 92.4% 0 0
3 480 400 83.3 % 480 400 83.3 % 0 0
4 545 484 88.8 % 545 484 88.8 % 0 0
5 475 395 83.2 % 480 400 83.3 % 6 6 t 00 %
6 391 325 83.1% 386 322 83.4% 4 0 0%
7 288 230 79.9 % 290 232 80.0 % 2 0 0 %
8 126 86 68.3 % 126 86 68.3 % 0 0
9 0 0 0 0 0 0 ~"

10 0 0 0 0 0 0 h,,

"Out of the 2048 pairs of games, a pair was counted in this table only if the same player won
both games in the pair.
For search depths 1, 9, and 10, both players play identically.

~ For search depths 9 and 10, both players play perfectly.

competi t ions by min imax propagat ion, product propagat ion, and average

propagat ion. For compar i son with Tables la, 2a, and 3a, Table 4b gives
the n u m b e r of pairs of games won. As can be seen, product p ropaga t ion

and average propaga t ion both did somewhat better than min imax
propaga t ion on G-games, and did abou t the same as each other.

3.5. G - G a m e s U s i n g e3

For G-games it has been shown [-see Ref. 10] that whether or not a

node g is a forced win depends solely on the values of the two or three
squares in the center of g. Thus the evaluat ion funct ion e 1 is no t a very
good one for G-games, since it does not give much weight to the values of
these squares. For this reason, we constructed an evaluat ion funct ion e 3
which gives considerably more weight to the squares at the center of the
board than the ones at the edge of the board. The funct ion e3, which is
considerably more accurate than el on G-games, is defined as

O ~ i ~ n

where t i is the value of the i th square in t.

Table 5a. Number of G-Games Won by Product Propagation against Minimax
Propagation, Average Propagation against Minimax Propagation, and Average
Propagation against Product Propagation, with Both Players Searching to the

Same Depth d Using the Evaluation Function e4 a

Product vs. Minimax Average vs. Minimax Average vs. Product

d Wins Prcnt Better Wins Prcnt Better Wins Prcnt Better

1 2048 50.0% b 2048 50.0% ~ 2048 50.0% h
2 2030 49.6% Mmax. 2030 49.6% Mmax. 2048 50.0% - -
3 2043 49.9% Mmax. 2051 50.1% Avg. 2048 50.0%
4 1952 47.7% Mmax. 1980 48.3% Mmax. 2072 50.6% Avg.
5 1920 46.9% Mmax. 1979 48.3% Mmax. 21~6 51.7% Avg.
6 1924 470% Mmax. 1968 48.0% Mmax. 2100 51.3% Avg.
7 1944 47.5% Mmax. 1992 48.6% Mmax. 2116 51.7% Avg.
8 1968 48.0% Mmax. 2008 49.0% Mmax. 2088 51.0% Avg.
9 2048 50.0% bx. 2048 50.0% h,~. 2048 50.0% ~"

10 2048 50.0% b,c 2048 50.0% h,c 2048 50.0% h.,'

a For each value of d, all 2048 G-game boards of depth 10 were tried, and
given a chance to start first, for a total of 4096 games.

b For search depths 1, 9, and 10, both players play identically.
" For search depths 9 and 10, both players play perfectly.

each player was

Table 5b. Number of Pairs of G-Games Won by Product Propagation against
Minimax Propagation, Average Propagation against Minimax Propagation,
and Average Propagation against Product Propagation, in the Same Games

Used for Table 5a"

Product vs. Minimax Average vs. Minimax Average vs. Product

d Pairs Wins Prcnt Pairs Wins Prcnt Pairs Wins Prcnt Notes

1 0 0 0 0 0 0
2 72 27 37.5% 72 27 37.5% 0 0
3 37 16 43.2 % 45 24 53.3 % 0 0
4 096 0 0.0 % 68 0 0.0 % 24 24
5 128 0 0.0% 69 0 0.0% 68 68
6 124 0 0.0% 80 0 0.0% 52 52
7 104 0 0.0% 56 0 0.0% 68 68
8 80 0 0.0 % 40 0 0.0 % 40 40
9 0 0 0 0 0 0

10 0 0 0 0 0 0

100 %
100%
100%
100 %
100 %

a Out of the 2048 pairs of games, a pair was counted in this table only if the same player won
both games in the pair.

b For search depths 1, 9, and 10, both players play identically.
c For search depths 9 and 10, both players play perfectly.

Alternatives to Minimax 181

Tables 5a and 5b duplicate the data given in Tables 4a and 4b, but
using e 3 rather than e 1. Although average propagation and product
propagation still do about equally well, this time both do somewhat worse
than minimax propagation. One explanation for this is the following. Since
e3 gives more weight to the squares in the center of the board, and since
these squares are the last likely ones to be removed as the game progresses,
the evaluations given by e3 will change less dramatically as the game
progresses than the evaluations given by el. But as pointed out in the
introduction to this paper, minimax propagation is the best way to com-
bine values if one's opinion of each position will not change as the game
progresses. Thus we would expect the observed result that minimax
propagation does better in relation to product propagation and average
propagation when using e 3 than when using el.

4. C O N C L U S I O N

We tested three methods of propagating the estimates generated by
heuristic search functions: minimax propagation, product propagation, and
average propagation. We tested the methods on three types of games: P-
games, N-games, and G-games. For P-games and G-games we considered
two different heuristic search functions. The main conclusions are that the
method used to back up estimates has a definite effect on the quality of
play, and that the traditional minimax propagation method is often not the
best method to use.

On the games we tested, the differences in performance are often small
because in many cases each method selects the same move. Often the result
of a contest depends on which propagation method is used only for a small
fraction of the games. For those critical games where the propagation
method matters, one method will often be much better than the other.

There is no one method that is best for propagating estimates. Which
method of propagation works best depends on both the estimator and the
game. For example, when playing G-games with a naive estimator, product
propagation and average propagation each play significantly better than
minimax propagation (winning 60 % of the games and 89 % of the critical
games at lookahead 4, for example). On the other hand, when a better
estimator is used, minimax propagation does better than either product
propagation or average propagation (winning 52% of the games and
100% of the critical games at lookahead4). One cannot conclude,
however, that use of a better estimator automatically favors minimax
propagation. For P-games, it has been proven in Ref. 5 that product
propagation is the best method of propagating estimates in order to select
a move that leads to a winning posi t ion--and when using an estimator that

182 Nau, Purdom, and Tzeng

returned the probability of winning, product propagation did quite well.
For example, at lookahead 4, it won 55 % of the games and 64 % of the
critical games against minimax propagation. On the other hand, when
product propagation used a less good estimator, the results were mixed.

Average propagation was able to do better than product propagation
under many conditions. The most interesting test was the series of P-games
where the better estimator was used. For this series of contest, product
propagation is known to be the opt imum algorithm if the goal is to always
try to move toward a position where a forced win exists./5) One might
think that this is a prefeetly good goal, but there is one catch-- just because
a node is a forced win does not mean that a program will be able to choose
the correct sequence of moves to foce the win.

So, how good was the goal in practice? At the sensitivity of our
experiments it was pretty good. Although average propagation won more
games than product propagation (the perfect algorithm for the goal of
making a single good move) at most lookaheads, the amount was not
statistically significant except at lookahead 4, where the amount was
marginally significant. We can be more than 96% sure that average
propagation is better than product propagation at winning 10-level P-
games when both sides use lookahead 4.

One difference between "real" games and the games that we used for
our tests is that real games usually have more moves. Thus it is possible
that various alternatives to minimax propagation might do even better in
"real" games than they did on the games used in this paper, because there
may be more opportunity for small improvements in approach to lead to
differences in who wins the game. Thus when designing game programs, it
might be a good idea to consider what method of propagating estimates to
use 2 rather than just automatically choosing minimax propagation. (Some
qualifications of this statement are described later.) Propagation methods
that favor positions with more than one good continuation deserve par-
ticular consideration. Careful theoretical and experimental studies of
propagation methods are justified, for this study shows that improved
methods do exist. 3 Tzeng (6) gives the outline of a new theory that addresses
these questions, but his results have not yet been applied to the analysis of
any game.

One problem with methods other than minimax propagation is that
the value of every node has some effect on the final result. Thus methods

2 Decision analysis books such as Ref. 11 describe a number of possible decision criteria to
consider.

3 In fact, work currently in progress in Ref. 12 indicates that a modified version of product
propagation outperforms minimax propagation in the game of Kalah.

Alternat ives to Minirnax 183

such as the alpha-beta pruning procedure cannot be used to speed up the
search without affecting the final value computed. Programs for most
games use. deep searches, and these programs will not be able to make
much use of these new methods unless suitable pruning procedures are
found. A method is needed that will always expand the node that is expec-
ted to have the largest effect on the value.

The games where the new results may have the most immediate
application are probabilistic games such as backgammon, where it is not
feasible to do deep Searches of the game tree. Since alpha-beta pruning
does not save significant amounts of work on shallow searches, it is con-
ceivable that such games can profit immediately from improved methods of
backing up values.

REFERENCES

1. T. R. Truscott, Minimum Variance Tree Searching, Proc. First Intl. Symp. on Policy
Analysis and lnfor. Systems, �9 Durham, NC, pp. 203-209 (1979).

2. D. S. Nau, Decision Quality as a Function of Search Depth on Game Trees, J. of the
A C M 30:687-708 (October 1983).

3. D. S. Nau, The Last Player Theorem, Artificial Intelligence 18:53 65 (1982).
4. J. Pearl, On the Nature of Pathology in Game Searching, Artificial Intelligence

20:427~453 (1983).
5. H. C. Tzeng and P. W. Purdom, A Theory of Game Trees, Proc. of the National Conf. on

Artificial Intelligence, Washington, D.C., pp. 416M19 (1983).
6. H. C. Tzeng, Ph.D. thesis, Computer Science Department, Indiana University (1983).
7. D. S. Nau, Pathology on Game Trees Revisited, and an Alternative to Minimaxing,

Artificial Intelligence 21:221-244 (1983).
8. A. L. Reibman and B. W. Ballard, Non-Minimax Search Strategies for Use against

Fallible Opponents, National Conference on Artificial Intelligence, Washington, D.C.,
pp. 338 342 (1983).

9. J. Pearl, Asymptotic�9 Properties of Minimax Trees and Game-Searching Procedures,
A rt~'cial Intelligence 14:13-138 (1980).

10. D. S. Nau, On Game Graph Structure and its Influence on Pathology, Intl. J. Computer
and lnfo. Sciences 12:367 383 (1983).

11. I. H. LaValle, Fundamentals of Decision Analysis, Holt, Rinehart, and Winston, New York
(1978).

12. P. C. Chi and D. S. Nau, Predicting the Performance of Minimax and Product in Game
Tree Searching, Second Workshop on Uncertainty in Artificial Intelligence, Philadelphia
(to appear).

13. B. Abramson, A Cure for Pathological Behavior in Games that Use Minimax, Proc.
Workshop on Uncertainty and Probability in Artificial Intelligence, Los Angeles,
pp. 225 231 (1985).

14. D. S. Nau, An Investigation of the Causes of Pathology in Games, Artificial Intelligence
19:257 278 (1982).

