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Introduction

Chapman’s paper, “Planning for Conjunctive Goals,”
(Chapman, 1987) has been widely acknowledged as a
major step towards understanding the nature of non-
linear planning, and it has been one of the bases of later
work by others (Yang and Tenenberg, 1990; Kamb-
hampati, 1991; Ginsberg, 1990; Erol et al., 1992a;
Erol et al., 1992b). But as with much pioneering work,
it is not free of problems—and this has led to much
confusion about the meaning of his results. Erol et al.
(1992a; 1992b) dealt with some of these problems, and
the current paper discusses another one.

Chapman (1987, p. 340) states the modal truth cri-
terion as follows:

Modal Truth Criterion. A proposition p is nec-
essarily true in a situation s iff two conditions
hold: there is a situation t equal or necessarily
previous to s in which p is necessarily asserted;
and for every step C possibly before s and every
proposition q possibly codesignating with p which
C denies, there is a step W necessarily between
C and s which asserts r, a proposition such that
r and p codesignate whenever p and q codesig-
nate. The criterion for possible truth is exactly
analogous, with all the modalities switched (read
“necessary” for “possible” and vice versa).

On the same page, Chapman says that this can be in-
terpreted as a polynomial-time method for determining
the modal truth of a proposition:

The criterion can be interpreted procedurally in
the obvious way. It runs in time polynomial in
the number of steps: the body of the criterion
can be verified for each of the n3 triples 〈t, C, W 〉
with a fixed set of calls on the polynomial-time
constraint-mantenance module.

These statements have led others to incorrect con-
clusions about how difficult it is to compute various
modal properties of a plan. For example, Kambham-
pati (1991, p. 685) initially thought that “Using this
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truth criterion, we can then develop similar polyno-
mial time EBG algorithms for possible correctness [of
a plan].” However, after examining the problem in
more detail, he found that the modal truth criterion
provided necessary but insufficient conditions to guar-
antee that a plan is possibly correct (Kambhampati
and Kedar, 1992, p. 21).

In this paper I show that given a plan P and a propo-
sition p, it is NP-hard to determine whether or not
there exists a completion of P that can be executed to
produce a situation in which p is true. I also discuss
the conflict between this result and Chapman’s state-
ments above, and how this affects the way we should
interpret the term “possible truth.”

Definitions

In this section, I formalize Chapman’s definitions, and
correct some problems with them.

Propositions

A proposition is either of the following:1

1. A list (p1 p2 . . . pn), where each pi is either a vari-
able or a constant. In this case, the proposition is
nonnegated).

2. An expression of the form ∼p, where p is a non-
negated proposition. In this case, the proposition is
negated.

In both cases, the content of the proposition is the
list (p1 p2 . . . pn). The negation of the nonnegated
proposition (p1 p2 . . . pn) is the negated proposition
∼(p1 p2 . . . pn), and vice versa.

Codesignation

If X is a set of variables and constants, then a codesig-
nation relation on X is an equivalence relation ≈ on X
such that each equivalence class contains exactly one
constant. If x ≈ y, then x codesignates with y.

1Note that this is different from the conventional def-
inition of a proposition as a 0-ary predicate. What I am
calling a proposition would more commonly be called a lit-
eral, but the term “proposition” is necessary in order to
maintain consistency with Chapman’s usage.



Whenever we have a set of propositions s and a
codesignation relation ≈ on the variables and constants
in those propositions, we will extend ≈ so that it also
applies to the propositions themselves, in the follow-
ing manner: Let p and q be any two propositions in s,
with contents (p1 p2 . . . pm) and (q1 q2 . . . qn), respec-
tively. Then p ≈ q if m = n, pi ≈ qi for every i, and
either p and q are both nonnegated, or both negated.
A proposition p is true (or false) in s if it codesignates
with a proposition (or the negation of a proposition)
in s. s and ≈ are compatible if no proposition is both
true in s and false in s.

Let X be a set of variables and constants. A codes-
ignation constraint on X is a syntactic expression of
the form ‘x ≈ y’ or ‘x 6≈ y’, where x, y ∈ X . Let D
be a set of codesignation constraints on X , and ≡ be
a codesignation relation on s. Then ≡ satisfies D if
x ≡ y for every syntactic expression ‘x ≈ y’ in D, and
x 6≡ y for every syntactic expression ‘x 6≈ y’ in D.

Steps and Ordering

A step is a pair a = (pre(a), post(a)), where pre(a) and
post(a) are collections of propositions called the pre-
conditions and postconditions of a. Let s be a set of
propositions and ≈ be a codesignation relation com-
patible with both s and post(a), and suppose that ev-
ery proposition p ∈ pre(a) is true in s. Then a is
executable in the input state s, resulting in the output
state a(s) = (s− s′)∪post(a), where s′ is the set of all
propositions in s that are false in post(a).

Let A be a set of steps. An ordering constraint on
A is a syntactic expression of the form ‘a ≺ b’ (read
as “a precedes b”), where a, b ∈ A. Let O be a set of
ordering constraints on A, and ≪ be a total ordering on
A. Then ≪ satisfies O if for every syntactic expression
‘a ≺ b’ in O, a ≪ b.

Plans

A plan is a 4-tuple P = (s0, A, D, O) satisfying the
following properties:

1. s0 is a set of ground propositions called P ’s initial
state;2

2. A is a set of steps, such that no two steps have any
variables in common, and no step has any variables
in common with s0;

3. D is a set of codesignation constrants on the vari-
ables and constants in s0 and A;

2Here, I depart in two ways from Chapman’s definition.
First, Chapman calls s0 the initial situation of P , and

he also associates a number of other situations with P .
However, as discussed in next section, there are a number
of problems with Chapman’s definition of a situation, so I
am avoiding that term completely.

Second, Chapman does not require the initial situation
to be ground. However, unless it is ground, it can be shown
that tweak actually modifies the meaning of its initial
state as the planning proceeds.

4. O is a set of ordering constraints on the steps of A.

P is complete if the following properties hold:

1. There is a unique total ordering ≺ over A that sat-
isfies O.

2. There is a unique codesignation relation ≈ over P ’s
variables and constants that satisfies D.

If P is complete then its final state is sn, and each
proposition p in post(ai) is asserted in si by ai.

A plan P ′ = (s′
0
, A′, D′, O′) is a constrainment of a

plan P = (s0, A, D, O) if s′
0

= s0, A′ = A, O ⊆ O′,
and D ⊆ D′. P ′ is a proper constrainment of P if P ′

is a constrainment of P and there is a codesignation
relation that satisfies D but not D′, or a total ordering
that satisfies O but not O′. P ′ is a completion of P if
P ′ is a constrainment of P and P ′ is complete.3 P is
consistent if it has at least one completion; otherwise
P is inconsistent.

A planning problem is a pair R = (I, F ), where I and
F are sets of propositions that are called the initial and
final states of R, respectively. A plan for R is a plan
P = (s0, A, D, O) such that every proposition in s0 is
true in I. A plan P solves R (or alternatively, P is a
solution for R) if for every completion Q of P , every
proposition in F is true in Q’s final state.

Situations and Modal Truth

In the definitions above, a plan’s initial state is identi-
cal to what Chapman calls its initial situation. Chap-
man also defines several other kinds of situations for
plans (Chapman, 1987, p. 338):

A plan has an initial situation, which is a set of
propositions describing the world at the time that
the plan is to be executed, and a final situation,
which describes the state of the world after the
whole plan has been executed. Associated with
each step in a plan its input situation, which is
the set of propositions that are true in the world
just before it is executed, and its output situation,
which is the set of propositions that are true in
the world just after it is executed. In a complete
pan, the input situation of each step is the same
as the output situation of the previous step. The
final situation of a complete plan has the same set
of propositions in it as the output situation of the
last step.

At first glance, this approach seems quite attrac-
tive, because it gives him a convenient way to make
modal statements about the situations in a plan, using
the following general-purpose definition of modal truth
(Chapman, 1987, p. 336):

3In Chapman’s definition of a completion, it is unclear
whether a completion of P should include only the steps
in P , or allow other steps to be added. However, various
other statements in his paper make it clear that he means
for a completion to include only the steps in P , so this is
how I (and others (Kambhampati, 1991)) have defined it.



I will say “necessarily p” if p is true of all comple-
tions of an incomplete plan, and “possibly p” if p
is true of some completion.

However, this approach leads to several difficulties:

1. In the above passage, apparently p can be any of a
number of statements about a plan (e.g., the state-
ment (Chapman, 1987, p. 341) that a plan “neces-
sarily solves the problem”). Unless we place some
restrictions on the nature of p, this leads to some
dubious results. For example, if P is an incomplete
plan, then all completions of P are complete, and
therefore P itself is necessarily complete.

2. As pointed out by Yang and Tenenberg (1990), if a
plan is incomplete, then its situations are ill-defined.
For example, in defining an output situation, Chap-
man refers to what is actually (not modally) true
after executing a step—but if a plan has more than
one completion, this will vary depending on which
completion we choose.

In order to avoid these problems in the technical mate-
rial that follows, I will not refer to situations and modal
truth at all. Instead of making statements about sit-
uations in an incomplete plan, I will instead make the
corresponding statements about the states that occur
in the completions of that plan; and instead of making
statements about modal truth in an incomplete plan, I
will instead make the corresponding non-modal state-
ments about the completions of that plan.

Results

Theorem 1 It is NP-hard to determine, given a
proposition p and a plan P , whether there is a comple-
tion of P that can be executed to produce a situation
in which p is true.

Proof. The proof is by reduction from 3SAT. In par-
ticular, let X = c1c2 . . . cm be a CNF formula over the
Boolean variables x1, x2, . . . , xn, with three literals in
each disjunctive clause ci. We construct a plan Q∗ =
(s0, A, D, O) and a proposition (sat yes yes . . . yes),
such that there exists a completion of Q∗ that can be
executed to produce (sat yes yes . . . yes) iff X is sat-
isfiable. As illustrated in Fig. 1, Q∗ is the following
plan:

Initial state. Q∗’s initial state s0 is the empty set.

Steps. For each Boolean variable xi, P ∗ contains two
steps, Si and Ui. Si has no preconditions, and four
postconditions:

∼(xvali false yes), (xvali false no),
∼(xvali true no), (xvali true yes).

Ui has no preconditions, and four postconditions:

(xvali false yes), ∼(xvali false no),
(xvali true no), ∼(xvali true yes).

Here, true, false, yes, and no are constants. The
interpretations of (xvali true yes), (xvali false no),
(xvali false yes), and (xvali true no) are that the
Boolean variable xi is true, not false, false, and not
true, respectively. Thus, the interpretations of Si

and Ui are that they make the Boolean variable xi

true and false, respectively.

Q∗ contains a step V , which has no preconditions
and no postconditions. The only purpose of V is
to provide a separator between the steps Si and Ui

defined above, and the steps Lij defined below.4

For each ci, there let li1, li2, li3 be the literals in ci;
i.e., ci = li1 + li2 + li3. Corresponding to these lit-
erals, there are three steps Li1, Li2, Li3, as follows.
Each literal lij is either xk or x̄k for some xk. If
lij = xk, then Lij ’s precondition is (xvalk true vij),
where vij is a variable; if lij = x̄k, then Lij ’s pre-
condition is (xvalk false vij). Lij has exactly one
postcondition, (csati vij).

If vij ≈ yes, then the interpretation of (csati vij)
is that ci is satisfied. Otherwise, (csati vij) has no
particular interpretation. Thus, the interpretation
of Lij is that if lij satisfies ci, then Lij asserts that
ci is satisfied.

Q∗ contains a step W whose preconditions are
(csat1 v1), (csat2 v2), . . . , (csatm vm), where
v1, v2, . . . , vm are variables. W has one postcondi-
tion: (sat v1 v2 . . . vm). If v1 ≈ v2 ≈ . . . ≈ vm ≈
yes, then the interpretation of (sat v1 v2 . . . vm) is
that X is satisfied. Otherwise, (sat v1 v2 . . . vm)
has no particular interpretation. Thus, the interpre-
tation of W is that if every clause ci of X is satisfied,
then W asserts that X is satisfied.

Constraints. O contains an ordering constraint ‘Si ≺
V ’ for every Si, an ordering constraint ‘Ui ≺ V ’ for
every Ui, and ordering constraints ‘Lij ≺ V ’ and
‘Lij ≺ W ’ for every Lij . There are no other ordering
constraints. There are no codesignation constraints;
i.e., D = 6©.

Then in every completion of Q∗, V ’s input and out-
put states will both be the set of propositions

s = s1 ∪ s2 ∪ . . . ∪ sn,

where each sk corresponds to an assignment of a truth
value to xk. It follows that each step Lij will assert
(csati yes) iff the truth value assigned to the corre-
sponding Boolean variable xk satisfies lij . Otherwise,
Lij will assert (csati no).

Since any ordering of the Si and Ui is possible, every
assignment of truth values to the xk is represented in
at least one completion of Q∗. Thus if X is satisfiable,

4It is easy to add preconditions and postconditions to V ,
and preconditions to the Lij , in such a way that a partial-
order planner such as tweak would construct Q∗. How-
ever, just as Chapman did at various points in his paper,
I have omitted these preconditions and postconditions to
keep the presentation simple.
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Figure 1: The plan Q∗.

then there is a completion of Q∗ such that for every
ci, at least one of li1, li2, li3 is satisfied, whence Lij will
assert (csati yes).

Thus, there is a completion of Q∗ such that in W ’s
input state, (csati vij) is true for every i, so that W
will assert (sat yes yes . . . yes).

If X is not satisfiable, then for every completion
of Q∗, there will be at least one i such that none of
li1, li2, li3 is satisfied. Thus (csati no) will be true
in W ’s input state, but (csati yes) will not. Thus
in every executable completion of Q∗, the proposition
(sat v1 v2 . . . vm) asserted by W will contain at least
one vi ≈ no.

Discussion and Conclusions

Because of the wide impact of Chapman’s paper, it is
important to correct any misimpressions that may re-
sult from it—and there appears to be a problem with
the notion of modal truth. In particular, Theorem 1
seems to be in direct contradiction to Chapman’s state-
ment that modal truth can be computed in polynomial
time.

In discussing Theorem 1 with me, Subbarao Kamb-
hampati has expressed a different point of view: that
the modal truth criterion is a “local truth criterion,” in
which we say that a proposition p is possibly true in a
plan P if there is a completion P ′ of P in which some
action asserts p, regardless of whether or not it will
actually be possible to execute P ′ to produce p. Ac-
cording to this interpretation, the possible truth of a
proposition is computable in polynomial time as Chap-
man states.

However, I see several difficulties with this interpre-
tation. First, it appears to be a nonstandard interpre-
tation of what “possible truth” means (for example, see
Ginsberg (1990)). Second, it will not solve the problem
that Kambhampati had wanted to solve, of finding the
“weakest conditions under which at least some topo-
logical sort of the plan can possibly execute” (Kamb-
hampati, 1991, p. 685). Finally—and most seriously—
it leads to nonsensical conclusions. For example, it

sometimes would lead us to say that a proposition p
is possibly true in a plan P , even if it is impossible to
execute P in such a way as to produce p.

To see this, consider the plan Q∗ developed in the
proof of Theorem 1, and suppose that the formula X
is unsatisfiable. Then as proved in Theorem 1, there is
no completion of Q∗ that can ever be executed in such
a way as to make (sat yes yes . . . yes) true. However,
we can produce a completion of Q∗ in which W ’s post-
condition (sat v1 v2 . . . vm) is constrained to codes-
ignate with (sat yes yes . . . yes). This completion is
not executable, because W ’s preconditions cannot be
satisfied—but if we interpret possible truth as a “local
truth criterion” as described above, then we would ig-
nore the fact that this completion cannot be executed,
and say that (sat yes yes . . . yes) is possibly true in
W ’s output situation.

Thus, I would argue that the only reasonable alter-
native is to say that the question “is p possibly true in
P ’s final situation?” is equivalent to the question “is
there a completion of P that can be executed to pro-
duce p?” From this, it follows from Theorem 1 that
unless P=NP, possible truth cannot be computed in
polynomial time.
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