
Measuring the Performance of Automated Planning Systems

Dana Nau
Department of Computer Science
and Institute for Systems Research

University of Maryland,
College Park, MD 20742, USA

email: nau@cs.umd.edu

Malik Ghallab
LAAS-CNRS

7, Avenue du Colonel Roche
31077, Toulouse, cedex, France
email: Malik.Ghallab@laas.fr

ABSTRACT

To appear inPerformance Metrics for Intelligent Systems Workshop (PerMIS ’04).

In this paper, we describe existing performance measures for au-
tomated planning algorithms, and discuss the limitations and biases
inherent in those performance measures. We point out the importance
of developing a performance measure that explicitly the restrictive as-
sumptions on which a planning algorithm depends, and we propose a
composite performance measure based on three factors:

• the scope of the planning algorithm: which set of restrictive as-
sumption are needed and which can be lifted,

• the control knowledge and tuning required for each planning do-
main,

• the size of the problems that can be solve in a reasonable amount of
time in each area of its scope (i.e., for each combination of relaxed
assumptions it can handle).

K EYWORDS: automated planning, AI planning, performance
measurement

1. INTRODUCTION

Great strides have been made in automated planning dur-
ing the past few years, and the technology is becoming ma-
ture enough to be useful in a variety of demanding applications,
ranging from controlling space vehicles such as Deep Space 1
[6] to playing the game of bridge [31]. Successes such as these
are creating a great potential for synergy between theory and
practice: observing what works well in practice can lead to bet-
ter theories of planning, and better theories can lead to better
performance in practical applications.

Despite this potential, there currently is a substantial gap
between theoretical and application-oriented work. The theo-
retical work tends to be rather narrow in scope, focusing on
highly restricted cases such asclassical planning, with the most
common performance measure being the speed of the planner’s
combinatorial search. The application-oriented work generally
depends onad hocapplication-specific programming efforts,
search techniques, and measures of performance.

For most planning systems, presentations of the planning
algorithm may discuss some of the assumptions and restrictions
explicitly—but usually the algorithm will also depend on ad-
ditional assumptions and restrictions that are tacit in the repre-

Figure 1: A simple conceptual model for planning.Σ is a state-
transition system, as described in the text.

sentation rather than explicit. As a consequence, it is often very
difficult to judge whether a planning algorithm can be useful for
real-world problem solving, and it is often even more difficult
to tell whether an application-specific planning algorithm can
be generalized to work in anything other than the specific ap-
plication for which the algorithm has been written.Better ways
are needed to judge the scope and generalizability of planning
algorithms and techniques.

As a step toward meeting that need, we describe a general
conceptual model for planning, and use it to classify and dis-
cuss the kinds of restrictive assumptions that are often made
in automated planning research. We believe that with suitable
refinement, such a classification will provide a useful perfor-
mance measure for automated planning algorithms, by provid-
ing a way to give a clearer account of what restrictions a plan-
ning algorithm requires.

2. CONCEPTUAL M ODEL FOR PLANNING

Since planning is concerned with choosing and organizing
actions for changing the state of a system, a conceptual model
for planning requires a general model for a dynamic system.
This model, shown in Figure 1, includes three components:

• A state-transition systemΣ that evolves as specified by its
state-transition functionγ, according to the events and ac-

1

tions that it receives.Σ includes a setS of states, a setA
of actions, a setE of events, and a state-transition function
γ : S ×A× E → 2S .

• A controller. Given as input the states of the system (or more
generally, some observations that give partial knowledge of
the current state), the controller provides as output an action
a according to some plan.
η : S → O that mapsS into some discrete setO =
{o1, o2, . . .} of possible observations. The input to the con-
troller is then the observation

• A planner: given as input a description of the systemΣ, an
initial situation and some objective, it synthesizes a plan for
the controller in order to achieve the objective.

The planner’s objective can be specified in several different
ways.

1. The simplest specification consists of agoal statesg or
a set of goal statesSg; the objective is achieved by any
sequence of state transitions that ends at one of the goal
states.

2. More generally, the objective is to satisfy some condition
over the sequence of states followed by the system; for
example, one might want to require states to be avoided,
states that the system should reach at some point, and
states that it should stay in.

3. An alternative specification is through a utility function
attached to states, with penalties and rewards, the goal
being to optimize some compound function of these util-
ities, e.g. sum or maximum, over the sequence of states
followed by the system.

4. Another alternative is to specify the objective as tasks that
the system should perform. These tasks can be defined
recursively, as sets of actions and other tasks.

3. RESTRICTIVE ASSUMPTIONS

The conceptual model in the last section was deliberately
quite general, in order to provide a starting point for describing
a number of restrictive assumptions:

• Assumption A0 (Finite Σ). The systemΣ has a finite set of
states.

• Assumption A1 (Fully Observable Σ). The systemΣ is
fully observable, i.e., one has complete knowledge about the
state ofΣ; in this case the observation functionη is the iden-
tity function.

• Assumption A2 (Deterministic Σ). The systemΣ is de-
terministic, i.e., for every states and event or actionu,
|γ(s, u)| ≤ 1. If an action is applicable to a state, its ap-
plication brings a deterministic system to a single other state.
Similarly for the occurrence of a possible event.

• Assumption A3 (StaticΣ). The systemΣ is static, i.e., the
set of eventsE is empty.Σ has no internal dynamics; it stays
in the same state until the controller applies some action.1

• Assumption A4 (Attainment Goals).The only kind of goal
is anattainment goal, which is specified as an explicit goal
statesg or a set of goal statesSg. The objective is to find
any sequence of state transitions that ends at one of the goal
states. This assumption excludes, for example, states to be
avoided, constraints on state trajectories, and utility func-
tions.

• Assumption A5 (Sequential Plans).A solution plan to a
planning problem is a linearly ordered finite sequence of ac-
tions.

• Assumption A6 (Implicit Time). Actions and events have
no duration, they are instantaneous state transitions. This as-
sumption is embedded in state-transition systems, a model
that does not represent time explicitly.

• Assumption A7 (Off-line Planning). The planner is not
concerned with any change that may occur inΣ while it is
planning; it plans for the given initial and goal states regard-
less of the current dynamics, if any.

The simplest case,classical planning, combines all eight
restrictive assumptions: complete knowledge about a determin-
istic, static, finite system with restricted goals and implicit time.
Here planning reduces to the following problem:

Given Σ = (S, A, γ), an initial states0 and a
subset of goal statesSg, find a sequence of ac-
tions〈a1, a2, . . . , ak〉 corresponding to a sequence
of state transitions(s0, s1, . . . , sk) such thats1 ∈
γ(s0, a1), s2 ∈ γ(s1, a2), . . . , sk ∈ γ(sk−1, ak),
andsk ∈ Sg.

Since the system is deterministic, ifγ is applicable tos then
γ(s, a) contains one states′. To simplify the notation, we
will say γ(s, a) = s′ rather thanγ(s, a) = {s′}. For this
kind of system, a plan is a sequence〈a1, a2, . . . , ak〉 such that
γ(γ(. . . γ(γ(s0, a1), a2), . . . , ak−1), ak) is a goal state.

The assumption about complete knowledge is needed only
at the initial states0, because the deterministic model allows all
of the other states to be predicted with certainty. The plan is
unconditional, and the controller executing the plan is anopen-
loop controller, i.e., it does not get any feedback about the state
of the system.

Classical planning may appear trivial: planning is simply
searching for a path in a graph, which is a well understood prob-
lem. Indeed, if we are given the graphΣ explicitly then there
is not much more to say about planning for this restricted case.
However, it can be shown [14] that even in very simple prob-
lems, the number of states inΣ can be many orders of magni-
tude greater than the number of particles in the universe! Thus

1The name of this assumption is inaccurate, because the plan is intended
precisely to change the state of the system. What the name means is that the
system remains staticunless controlled transitions take place.

it is impossible in any practical sense to list all ofΣ’s states
explicitly. This establishes the need for powerfulimplicit rep-
resentations that can describe useful subsets ofS in a way that
both is compact and can easily be searched.

The simplest representation for classical planning is aset-
theoreticone: a states is represented as a collection of propo-
sitions, the set of goal statesSg is represented by specifying a
collection of propositions that all states inSg must satisfy, and
an actiona is represented by giving three lists of propositions:
preconditions to be met in a states for an actiona to be applica-
ble in s, propositions to assert and propositions to retract from
s in order to get the resulting stateγ(s, a) . A plan is any se-
quence of actions, and the plan solves the planning problem if,
starting ats0, the sequence of actions are executable, producing
a sequence of states whose final state is inSg.

A more expressive representation is theclassical represen-
tation:2 starting with a function-free first-order languageL, a
states is a collection of ground atoms, and the set of goal states
Sg is represented by an existentially closed collection of atoms
that all states must satisfy. An operator is represented by giving
two lists of ground or unground literals: preconditions and ef-
fects. An action is a ground instance of an operator. A plan is
any sequence of actions, and the plan solves the planning prob-
lem if, starting ats0, the sequence of actions are executable,
producing a sequence of states whose final state satisfies inSg.
Thede factostandard for classical planning is to use some vari-
ant of this representation.

4. CLASSICAL PLANNING VERSUS PLANNING
APPLICATIONS

For nearly the entire time that automated planning has ex-
isted, it has been dominated by research on classical planning.
For a while, the dominance was so complete that the term
“domain-independent planning system” was used to refer to
planning systems whose scope was that of classical planning,
as if classical planning were capable of representing all possi-
ble planning domains.

In reality, it can be proved [14, Chapters 1–3] that classi-
cal planning systems are restricted to a very narrow class of
planning domains. This class excludes most problems of prac-
tical interest, because most practical planning problems do not
satisfy the restrictions of classical planning. Here are a few ex-
amples:

• Process planning for machined parts.Process planning is
an important manufacturing task, and many millions of R&D
dollars have been spent to try to automate it [23]. The state
space consists of the possible states of the workpiece, in-
cluding the workpiece geometry and various other parame-
ters. The action space consists of the possible ways to mod-
ify the workpiece using machining operations. Both spaces

2This has also been calledSTRIPS-stylerepresentation), after an early plan-
ning system [27] that used a similar representation scheme.

are effectively infinite [17]. The actions have nondeterminis-
tic outcomes due to random variations—but in process plan-
ning the outcomes usually are approximated deterministi-
cally by the use of machining tolerances [9]. The planner
must consult with CAD modelers to reason about the work-
piece geometry, and must query databases to obtain infor-
mation about the available machines, tooling, fixturing, and
process parameters. With the exception of a few specialized
process-planning tasks such as sheet-metal bending [16] and
NC toolpath generation [28], generative process planning
tools do not work very well and have not achieved significant
industrial use. By far the most widely used process-planning
tools are those that provide information to help expert hu-
mans do the process planning. Other approaches, e.g., [3, 8],
illustrate the same trend for planning in other manufacturing
applications.

• Planning declarer play in bridge. At the beginning of play
in a bridge hand, the declarer (the player who chose the trump
suit) needs to develop a plan for how to play the hand. The
outcomes of the declarer’s actions are uncertain, due both to
uncertainty about how the opponents will respond and uncer-
tainty about how theymight be ableto respond (since the de-
clarer does not know which opponent holds which cards). A
game tree containing all of the possibilities would have about
2.3 × 1024 leaf nodes on the average and about5.6 × 1044

in the worst case [30, p. 226]. Since most bridge games are
over in just a few minutes, it would not be feasible to explore
any significant fraction of such a game tree. Instead, tech-
niques have been developed that use various combinations
of game-tree search, Monte Carlo simulation, and reasoning
about possible strategies [12, 15, 31]. The resulting programs
can play better than the average human bridge player, but not
as good as the best human players.

• Ship-movement planning.Planning the movements of ships
is important both commercially and militarily [11]. The state
space and action space are effectively infinite: states include
positions and velocities of ships, and actions correspond to
movements of the ships along various routes. Since move-
ments of different ships may occur concurrently, it is im-
portant to make sure they do not interfere with each other.
The outcomes and durations of the actions cannot be known
with certainty, because of factors such as weather, currents,
and the behavior of the ships’ operators. Elaborate sim-
ulation tools are available to aid in planning ship move-
ments but the planning is still done manually [1]. Similarly,
other transportation-planning applications, such as for rail-
ways [2], have focused on interactive approaches for plan-
ning.

Many other examples could easily be cited; see for example the
PLANET repository’s “Real-World Planning and Scheduling
page” at〈http://vitalstatistix.nicve.salford.ac.uk/planet2〉.

5. EXISTING PERFORMANCE M EASURES

In this section, we do a quick survey of existing perfor-
mance measures, and draw several conclusions about the lim-
itations of those measures.

5.1. Survey

Performance measures for classical planners.The exis-
tence of a standard representation scheme for classical plan-
ning has made it relatively easy to develop large collections of
planning problems on which different planning algorithms can
be compared. In the three international planning competitions
that have occurred so far [24, 4, 22], many hundreds of classi-
cal planning problems have been generated, from about fifteen
different planning domains.3 The most common performance
measures have beensuccess rate, speed, andsolution size, i.e.,
the fraction of problems solved, the CPU time needed to solve
them, and the size of the solution found (the latter two are nor-
mally measured as a function of the problem size). From these
measures, one can get a rough idea of the size of the problems
that a planner can solve in a reasonable amount of time.

A partial generalization. The 2002 International Planning
Competition [22] included several collections of planning prob-
lems that did not satisfy all of the restrictions of classical plan-
ning. In these problems, Restrictions A0, A4, and A6 were
weakened, by generalizing the planning language to include nu-
meric computations and optimization goals.4

Although these generalizations may seem rather modest,
they demonstrated some interesting things about the nature of
classical planning, as discussed below.

For each of the planners in the competition, the planning
engine was problem-independent, and the input for each plan-
ning problem included the initial state, the goal or objective
to be achieved, and the set of operators for the problem do-
main. However, the planners varied in terms of how much ad-
ditional knowledge was made available to them about how to
solve problems in the planning domain. The planners in the
competition can be classified into three categories:

• Non-tunable planners.In these planning systems, the prob-
lem input consists solely of the information specified above:
initial state, goal or objective, and operators. In the compe-
tition, the planners in this class included most, but not all,
of the ones that Long and Fox [22] have called “fully auto-
mated” planners.

3In classical planning, adomain is basically a set of planning operators.
For each domain it is possible to produce an unlimited number of randomly
generated problems by specifying initial and goal states.

4In the 2004 International Planning Competition, which was in progress at
the time that we wrote this paper, some of the restrictions have been weakened
further. For details, see〈http://www-rcf.usc.edu/∼skoenig/icaps/icaps04/
planningcompetition.html〉.

• Tunable planners. Although these planning systems have
usually been classified as “fully automated,” there are ways
to tune them for better performance in a given planning do-
main. In the 2002 competition, the planners in this class in-
cluded LPG [13] and FF [18].5 For LPG, one of the inputs
was a setting to optimize its performance for speed, quality,
or something in between, and LPG was run with all three set-
tings during the competition. For FF, there were two different
versions, both of which were entered in the competition.

• Domain-configurable planners. These are planning sys-
tems whose input includes detailed information about how
to solve problems in the relevant problem domain. Such
planners have sometimes been called “hand-tailored” plan-
ners [22], but that term is not accurate since the planning en-
gine is domain-independent. They have also been described
as “hand-tailorable” [26] or “control-intensive” [5] planners.
In the competition, the planners of this type included SHOP2
[26], TLPlan [5], and TALplanner [19].

Performance measures for application-specific planners.
For application-specific planning systems, usually the per-
formance measures and the ways of testing them are also
application-specific. For example, manufacturing-planning sys-
tems are tested on collections of manufacturing-planning prob-
lems that are specific to the particular domain in which the
planning is done (e.g., see [29]); and in computer bridge [31],
there are annual competitions in which performance is mea-
sured by playing the programs against each other on a set of
bridge hands, using the normal rules for a bridge tournament.
These kinds of measures are useful for the application domain
at hand, but they are not directly generalizable to other domains.

5.2. Observations

From the survey in the previous section, we can make the
following observations.

Observation 1: There is a tradeoff between the amount of
work needed to configure a planner for a domain, and plan-
ner’s speed and coverage of that domain once it has been so
configured.Here are several examples:

• In the planning competitions, the non-tunable planners were
the ones that had the highest running time and solved the
fewest planning problems—but configuring a non-tunable
planner requires no workwhatsoever, provided that the plan-
ner is capable of representing the planning domain.

• In the planning competitions, the tunable planners were
faster than the fully automated ones. However, some exper-
imentation may be required to find the settings that give the
best overall performance.

5Some of the other planners in the competition may also be capable of being
tuned, but LPG and FF were the only ones for which results were submitted
using more than one setting or version.

• In the planning competitions, the domain-configurable plan-
ners solved planning problems several orders of magnitude
faster than the others, and solved many problems that were
too large for the other planners to solve. However, the
domain-configurable planners require a significant amount of
up-front work to formulate the domain-specific knowledge
that enables them to run so quickly, and this work must be
redone each time one switches to a new domain.

• In order to get top-level performance in a specific application
domain, it may be necessary to develop a domain-specific
planner.6 However, developing and tuning such planners may
require years of work. The resulting planning system may be
quite good for its particular application domain, but cannot
be used to solve problems in any other domain.

Observation 2: Performance in classical planning domains
does not predict performance in other planning-competition do-
mains.For example:

• Some of the planning systems were designed, sometimes
consciously and sometimes tacitly, with classical planning
in mind. These planners did well on classical domains, but
on non-classical domains they did not perform very well (if
they could be used at all).

• On the other hand, some of the planning systems were de-
signed, from the ground up, to work on non-classical plan-
ning domains. These systems generally performed well on
both the classical and non-classical domains.

Observation 3: Performance in planning-competition do-
mains does not predict performance in real-world application.
For example:

• Most of the planning systems in the competition, including
both good and bad performers, would not be directly us-
able in real-world applications, because of restrictions on the
kinds of planning problems that they can solve.

• A planner that performed poorly in the 2002 planning com-
petition, IxTetT [20], is used quite successfully for the appli-
cation of robot motion planning [21], a domain which most
of the systems in the competition would be unable to address.

• One of the best performers in the 2002 planning competition,
SHOP2 [26], is also proving useful in several application ar-
eas. It is developing a user base that includes universities,
companies such as Sony, Lockheed Martin, and SIFT, and
government laboratories such as NIST and NRL.

From the above observations, we conclude that it is not ad-
equate merely to measure running time and percentage of prob-
lems solved. Such figures are not meaningful unless one also

6Some examples of such systems include Bridge Baron for computer bridge
[31], the Intelligent Bending Workstation for sheet-metal bending [16], and
RAX for autonomous spacecraft control [25].

knows the class of planning problems over which such perfor-
mance can be achieved, and how much the performance will be
degraded on broader classes of planning problems.

6. A PROPOSED PERFORMANCE M EASURE

In this section, we discuss three different aspects of a plan-
ning system’s performance that we believe are important to
measure: the scope of the problems that the planner can solve,
the amount and kind of control knowledge that must be given
to the planning system, and the size of the problems that the
planning system can reasonably solve.

6.1. Problem Scope

We believe that any useful measure of performance for a
planning system needs to include thescopeof the problems that
the corresponding planning algorithm is capable of solving. The
set of restrictive assumptions in Section 2 can be used as a basis
for defining what this scope is. More specifically:

• Relaxing Assumption A0 (FiniteΣ). An enumerable, pos-
sibly infinite set of states may be needed, for example, to
describe actions that construct or bring new objects in the
world, or to handle numerical state variables. This brings in
some theoretical issues about decidability and termination.

• Relaxing Assumption A1 (Fully ObservableΣ). If we al-
low a static, deterministic system to be partially observable,
then the observations ofΣ will not fully disambiguate which
stateΣ is in. For each observationo, there may be more than
one states such thatη(s) = o. Without knowing which state
in η−1(o) is the current state, it is no longer possible to pre-
dict with certainty whether an action is applicable and what
stateΣ will be in after each action.

• Relaxing Assumption A2 (DeterministicΣ). In a static but
nondeterministic system, each action can lead to different
possible states, so the planner may have to consider alterna-
tives. Usually nondeterminism requires relaxing Assumption
A5 as well. A plan must encode ways for dealing with alter-
natives, e.g.,conditionalconstructs of the form “doa and,
depending on its result, do eitherb or c”, and iterative con-
structs, like “doa until a given result is obtained.” Notice that
the controller has to observe the states: here we are planning
for aclosed-loop control.
If the complete knowledge assumption (Assumption A1) is
also relaxed, this leads to another difficulty: the controller
does not know exactly the current states of the system at
run-time. A limiting case isnull observability, where no ob-
servations at all can be done at run-time. This leads to a
particular case of planning for open-loop control calledcon-
formant planning.
Some ways of dealing with nondeterminism are extensions of
techniques used in classical planning (such as Graph-based
or SAT-based planning), while others are designed specifi-
cally to deal with nondeterminism, such as planning based

on Markov Decision Processes (MDPs) [7, 14] or model-
checking techniques [10, 14].

• Relaxing Assumption A3 (StaticΣ). We can easily deal
with a dynamic systemΣ if it is deterministic and fully ob-
servable, and if we further assume that for every states there
is at most one contingent evente for which γ(s, e) is not
empty, and thate will necessarily occur ins. Such a sys-
tem can be mapped into the restricted model: one redefines
the transition for an actiona asγ(γ(s, a), e), wheree is the
event that occurs in the stateγ(s, a).
In the general model of possible events that may or may not
occur in a state and “compete” with actions, a dynamic sys-
tem is nondeterministic from the view point of the planner
even if |γ(s, u)| ≤ 1, u being either an action or an event.
Deciding to apply actiona in s does not focus the planner’s
prediction to a single state-transition. Here again, a condi-
tional plan will be needed.

• Relaxing Assumption A4 (Restricted Goals).Controlling
a system may require more complex objectives than reaching
a given state. One would like to be able to specify to the plan-
ner anextended goalwith requirements not only on the final
state but also on the states traversed, e.g., critical states to be
avoided, states that the system should go through, states it
should stay in and other constraints on its trajectories. It may
also be desirable to have utility functions to be optimized,
e.g., to model a system that must function continuously over
an indefinite period of time.

• Relaxing Assumption A5 (Sequential Plans).Here, a plan
may be a mathematical structure that can be richer than a
simple sequence of actions. As examples, one may consider
a plan to be a partially ordered set, a sequence of sets, a con-
ditional plan that forces alternate routes depending on the
outcome and current context of execution, a “universal plan”
or a “policy” that maps states to appropriate actions, or a
deterministic or nondeterministic automaton that determines
what action to execute depending on the previous history of
execution. Relaxing Assumption A5 is often required when
other assumptions are relaxed, as we have seen in the case of
nondeterministic systems (Assumption A3) or when relaxing
Assumptions A1, A3, A4 and A6. Plans as partially ordered
sets, or as sequences of sets of actions, are more easily han-
dled than conditional plans and policies.

• Relaxing Assumption A6 (Implicit Time). In many plan-
ning domains, action duration and concurrency have to be
taken into account. Time can also be needed for express-
ing temporally constrained goals and occurrence of events
with respect to an absolute time reference. However, time is
abstracted away in the state-transition model.7 This concep-
tual model considers actions or events as instantaneous tran-
sitions: at each clock tick, the controller synchronously reads
the observation for the current state (if needed) and applies

7Other formalisms, such astimed automata, extend state-transition systems
by incorporating an explicit representation of time.

the planned action.

• Relaxing Assumption A7 (Offline Planning). The control
problem of driving a system towards some objectives has to
be handled online with the dynamics of that system. While
a planner may not have to worry about all the details of the
actual dynamics, it cannot ignore completely how the system
will evolve. At the least, it needs to check, online, whether
a solution plan remains valid, and, if needed, to revise it or
replan. Other approaches consider planning as a process that
modifies the controller online.

For a detailed presentation of techniques for solving planning
problems with various combinations of these restrictions, see
[14].

6.2. Control Knowledge

Another important aspect of a planning system’s perfor-
mance is what kind of additional control knowledge (other than
just the problem definition) will need to be given to the plan-
ning system in order for it to address practical problems. This
includes, for example, whether the planner needs such knowl-
edge, how precise and specific to a problem the knowledge
needs to be, whether the planner needs to be fine-tuned for dif-
ferent planning domains, and how easily this knowledge can be
acquired and formalized. It would be quite difficult to express
this feature in precise quantified measurements, but a qualitative
assessment of this feature can be made, on the basis of a small
set of predefined classes ranging from planners that require no
control knowledge to those that require the domain author to do
some highly demanding algorithm development.

6.3. Problem Size

A third important aspect of performance is what size of
problem a planning system can reasonably solve. For this per-
formance aspect, the traditional measures have been numeric
ones, along the lines of “this planner can solve problems of size
n in time t” for various values ofn and t. This has typically
been measured by running the planner on a randomly generated
set of planning problems.

Such a performance measure has an obvious appeal, but as
we concluded in the preceding section, it also has an important
limitation: it is highly biased by theset of benchmark problems
on which the planner is tested. If a planning system can solve
“toy problems” in which the solution plans contain hundreds
or even thousands of actions, this does not necessarily say any-
thing about how well—or even whether—the system can solve
more useful classes of planning problems.

A more useful way of measuring performance would be to
use several classes of problems, ranging in scope from toy prob-
lems to very demanding applications, and measure performance
in each class.

6. CONCLUSION

In this paper, we have described existing performance mea-
sures for automated planning algorithms, and have discussed
the limitations and biases inherent in those performance mea-
sures. We have pointed out the importance of developing a per-
formance measure that explicitly the restrictive assumptions on
which a planning algorithm depends—and as initial step toward
such a performance measure, we have defined and discussed a
list of restrictive assumptions that are common to most auto-
mated planning systems. We believe that this list provides an
initial step toward developing ataxonomy of restrictionsthat
can be used to measure the scope of planning algorithms.

Based on the above considerations, we have proposed a
composite performance measure based on three factors:

• the scope of the planning algorithm: which set of restrictive
assumption are needed and which can be lifted,

• the control knowledge and tuning required for each planning
domain,

• the size of the problems that can be solve in a reasonable
amount of time in each area of its scope (i.e., for each com-
bination of relaxed assumptions it can handle).

Several aspects of this performance measure are not yet (or not
yet fully) developed, and we hope that this paper will encourage
researchers to make the effort needed to develop them.

ACKNOWLEDGEMENT

This work was supported in part by the CNRS, France, and
in the US by AFRL contract F30602-00-2-0505 and NSF grant
IIS0412812. The opinions expressed in this paper are those of
authors and do not necessarily reflect the opinions of the fun-
ders.

REFERENCES

[1] D. W. Aha. Plan deconfliction, repair, and authoring
in EDSS. Technical report, Naval Research Laboratory,
2002. Progress report.

[2] J. Allen and G. Ferguson. Human-machine collaborative
planning. InProceedings of the Third International NASA
Workshop on Planning and Scheduling for Space, 2002.

[3] R. Aylett, J. Soutter, G. Petley, P. W. H. Chung, and
A. Rushton. Ai planning in a chemical plant domain. In
Proceedings of the European Conference on Artificial In-
telligence (ECAI), 1998.

[4] F. Bacchus. The AIPS ’00 planning competition.AI Mag-
azine, 22(1):47–56, 2001.

[5] F. Bacchus. The power of modeling—a response to
PDDL2.1. Journal of Artificial Intelligence Research,
20:125–132, 2003.

[6] D. Bernard, E. Gamble, N. Rouquette, B. Smith, Y. Tung,
N. Muscettola, G. Dorias, B. Kanefsky, J. Kurien, W. Mil-
lar, P. Nayak, and K. Rajan. Remote agent experiment.
ds1 technology validation report. Technical report, NASA
Ames and JPL report, 1998.

[7] C. Boutilier, T. L. Dean, and S. Hanks. Planning under
uncertainty: Structural assumptions and computational
leverage. In Ghallab and Milani, editors,New Directions
in AI planning, pages 157–171. IOS Press, 1996.

[8] L. Castillo, J. Fdez-Olivares, and A. Gonzlez. Automatic
generation of control sequences for manufacturing sys-
tems based on partial order planning techniques.Artificial
Intelligence in Engineering, 4(1):15–20, 2000.

[9] T.-C. Chang.Expert Process Planning for Manufacturing.
Addison-Wesley, Reading, MA, 1990.

[10] A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Weak,
strong, and strong cyclic planning via symbolic model
checking.Artificial Intelligence, 147(1-2):35–84, 2003.

[11] DOT. An assessment of the u.s. marine transportation sys-
tem, a report to congress. Technical report, U.S. Depart-
ment of Transportation, 1999. 103 pages.

[12] I. Frank and D. A. Basin. Search in games with incom-
plete information: A case study using bridge card play.
Artificial Intelligence, 100(1-2):87–123, 1998.

[13] A. Gerevini, A. Saetti, and I. Serina. Planning through
stochastic local search and temporal action graphs in lpg.
Journal of Artificial Intelligence Research, 20:239–290,
2003.

[14] M. Ghallab, D. Nau, and P. Traverso.Automated Plan-
ning: Theory and Practice. Morgan Kaufmann, 2004.

[15] M. L. Ginsberg. Partition search. In H. Shrobe and
T. Senator, editors,Proceedings of the National Confer-
ence on Artificial Intelligence (AAAI), pages 228–233,
Menlo Park, California, 1996. AAAI Press.

[16] S. K. Gupta, D. A. Bourne, K. Kim, , and S. S. Krishanan.
Automated process planning for sheet metal bending op-
erations. Journal of Manufacturing Systems, 17(5):338–
360, 1998.

[17] S. K. Gupta, W. C. Regli, and D. S. Nau. Manufactur-
ing feature instances: Which ones to recognize? InACM
Solid Modeling Conference, 1995.

[18] J. Hoffmann. The Metric-FF planning system: Trans-
lating “ignoring delete lists” to numeric state variables.
Journal of Artificial Intelligence Research, 20:291–341,
2003.

[19] J. Kvarnstrm and M. Magnusson. TALplanner in IPC-
2002: Extensions and control rules.Journal of Artificial
Intelligence Research, 20:343–377, 2003.

[20] P. Laborie and M. Ghallab. Planning with sharable re-
source constraints. InProceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), pages
1643–1649, 1995.

[21] S. Lemai and F. Ingrand. Interleaving temporal planning
and execution in robotics domains. InProceedings of
the National Conference on Artificial Intelligence (AAAI),
2004. To appear.

[22] D. Long and M. Fox. The 3rd international planning com-
petition: Results and analysis.Journal of Artificial Intel-
ligence Research, 20:1–59, 2003.

[23] M. Mantyla, D. S. Nau, and J. Shah. Challenges in
feature-based manufacturing research.CACM, 39(2):77–
85, 1996.

[24] D. McDermott. AIPS-98 planning competition results,
1998.

[25] N. Muscettola, P. P. Nayak, B. Pell, and B. C. Williams.
Remote agent: To boldly go where no AI system has gone
before.Artificial Intelligence, 103(1-2):5–47, 1998.

[26] D. Nau, T.-C. Au, O. Ilghami, U. Kuter, W. Murdock,
D. Wu, and F. Yaman. SHOP2: An HTN planning sys-
tem. Journal of Artificial Intelligence Research, 20:379–
404, December 2003.

[27] N. Nilsson. Principles of Artificial Intelligence. Morgan
Kaufmann, 1980.

[28] Parametric Technology Corporation. Pro/ENGINEER
NC Sheetmetal. 〈http://www.ptc.com/appserver/it/
icm/cda/icm01 list.jsp?group=2%01&num=1&show=
y&keyword=342〉, 2004.

[29] J. Shah, M. Mantyla, and D. S. Nau, editors.Advances in
Feature Based Manufacturing. Elsevier/North Holland,
1994.

[30] S. J. J. Smith.Task-Network Planning Using Total-Order
Forward Search, and Applications to Bridge and to Mi-
crowave Module Manufacture. PhD thesis, University of
Maryland, 1997.

[31] S. J. J. Smith, D. S. Nau, and T. Throop. Computer bridge:
A big win for AI planning. AI Magazine, 19(2):93–105,
1998.

