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SHOP and SHOP?2 are
automated planning
tools that also serve

as an investigative
platform for research
on automated

planning methods.
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e designed the Simple Hierarchical Ordered Planner (SHOP) and its succes-

sor, SHOP2, with two goals in mind: to investigate research issues in auto-

mated planning and to provide some simple, practical planning tools. SHOP and SHOP2

are based on a planning formalism called hierarchical task network planning, which is

described in more detail in the sidebar, “Automated
and HTN Planning,” on pages 36-37.

Most automated planning systems do a trial-and-
error search of a large space of possible solutions,
and the planner might have to try many different pos-
sibilities before finding a plan that works. HTN plan-
ners perform this search by applying HTN methods,
which are essentially forms that describe how to
decompose tasks into subtasks. HTN methods gen-
erally describe the “standard operating procedures”
normally used to perform tasks in some domain;
thus, they often correspond well to how users think
about problems.

In any trial-and-error search, one of the most
important questions is what kind of search-control
strategy to use. Unlike most other HTN planners,
SHOP and SHOP2 use a search-control strategy
called ordered task decomposition, which breaks
tasks into subtasks and generates the plan’s actions
in the same order that the plan executor will execute
them. So, throughout the planning process, the plan-
ner can tell what the state of the world will be at each
step of the plan.

To produce the decomposition tree in Figure 1a,
for example, SHOP2 would decompose the tasks in
the order ¢, 1y, 13, ty, 15, tg, 17, I3, Lo, 119, and to pro-
duce the decomposition tree in Figure 1b, SHOP2
would decompose the tasks in the order #, t,, t4, 17,
13, 1y, 15, I3, To, 1.

SHOP is similar to SHOP2, but it requires a strict
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linear ordering on subtasks; hence subtasks cannot be
interleaved. For example, SHOP could not produce the
decomposition trees in Figure 1 because it wouldn’t
be able to interleave #;’s and #4’s subtasks. So SHOP2
can describe some planning domains much more eas-
ily than SHOP.

By eliminating much uncertainty about the world,
ordered task decomposition reduces reasoning com-
plexity. This let us incorporate a great deal of expres-
sive power into the planning system, because it’s eas-
ier to reason about what is true than what might be
true. Among other things, SHOP and SHOP2 can do
complex inferential reasoning and mixed symbolic/
numeric computations, and can call user-supplied
subroutines.

In April 2002, SHOP2 achieved high visibility
because of its performance in the 2002 International
Planning Competition, where it received one of the
top four awards. (See http://planning.cis.strath.ac.uk/
competition for details.) SHOP2 was one of the three
fastest planners in the competition. Its reasoning
capabilities let it generate much smaller search
spaces than those of most of the other systems.
Hence it could solve planning problems—some quite
complicated—far more quickly than other systems.
SHOP?2 solved 899 out of 904 problems, more than
any of the other systems.

SHOP and SHOP2 are open source software.
Common Lisp and Java implementations are avail-
able at www.cs.umd.edu/projects/shop.
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Applications of SHOP and
SHOP2

SHOP and SHOP2 have been downloaded
several thousand times. (As of 11 Dec. 2004,
our Web site’s log showed 2,163 downloads,
but this doesn’t include direct downloads from
our FTP server rather than through our Web
interface. We imagine the total number of
downloads exceeds 2,500.) Their significant
user base includes government laboratories,
industries, and universities, some of which
have provided us descriptions of their projects.

Projects in government
laboratories

Evacuation planning. The US Naval
Research Laboratory’s Hierarchical Interac-
tive Case-Based Architecture for Planning
(Hicap) is a prototype system for helping
experienced human planners develop evac-
uation plans for people whose lives are in
danger. A human expert must supervise evac-
uation planning: it’s unrealistic to expect a
planning system to produce good plans by
itself, and flawed evacuation plans could
yield dire consequences. Therefore, Hicap’s
top level is a plan editor that lets users edit
tasks manually and refine plans interactively.

Only part of the knowledge necessary for
evacuation planning can be formalized suf-
ficiently for automated planning. In general,
the domain description will be incomplete.
Standard requirements and operating proce-
dures won’t suffice for deriving detailed
evacuation plans, which require knowledge
based on previous experiences. HicAP’s plan-
ning module thus includes both generative
and case-based planning. SHOP provides the
generative component. The case-based com-
ponent, NaCoDAE, works by retrieving plan
fragments from previous evacuations. Within
Hicap, NaCoDAE and SHOP are tightly inte-
grated, and each can use the other to decom-
pose tasks into subtasks.

For more information, contact David Aha,
Naval Research Laboratory, Washington, DC;
www.aic.nrl.navy.mil:80/hicap.

Evaluating terrorist threats. The Naval
Research Laboratory’s Analogical Hypoth-
esis Elaboration for Activity Detection
(AHEAD) project is intended to help intelli-
gence analysts understand and evaluate
hypotheses about terrorist threats. The AHEAD
system contains models of various kinds of
hostile activities, encoded as HTN domain
descriptions that the domain author has anno-
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Figure 1. Two examples of task decomposition with interleaved subtasks. Arrows on
the arcs indicate ordering constraints. There is no ordering constraint between t; and
te: hence they may be performed in either order and their subtasks may be interleaved
(provided, of course, that each task’s preconditions are satisfied).

tated with additional information about their
function. Given a hypothesis, AHEAD uses
analogical retrieval to obtain a model of the
hostile activity most closely related to the
hypothesis. AHEAD invokes SHOP2 using this
domain description to produce a plan com-
patible with the hypothesis. As each planning
operator (describing what actions the plan
executor can perform) is added to the plan,
SHOP2 queries an external evidence data-
base to determine whether the evidence is
consistent with that operator. When the evi-
dence is consistent, AHEAD generates an argu-
ment in favor of the hypothesis; when the evi-
dence is inconsistent, AHEAD generates a
counterargument. The resulting structured
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argument is presented in a browsable user
interface. HTN planning is particularly well
suited to this process because HTNs orga-
nize behavior into meaningful components
at multiple abstraction levels, thus enabling
coherent, structured argumentation.

For more information, contact David Aha,
Naval Research Laboratory, Washington, DC;
www.nrl.navy.mil/aic/iss/ida/projects/ahead/
AHEAD.php.

Fighting forest fires. The European Union’s
CoMeETs project focuses on developing
unmanned aerial vehicle (UAV) control tech-
niques for detecting and monitoring forest
fires. As part of this project, researchers at
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In general, an automated planning system is designed to gen-
erate a plan or policy that a plan executor can implement to
achieve some set of goals or objectives. Most planning research
has focused on offline planning, in which the entire plan is for-
mulated before the executor begins implementing it. So at plan-
ning time, the planner has no direct information about a plan’s
success or failure and instead must reason about whether the
plan will (or is likely to) succeed or fail.!

We can classify automated planning systems into the follow-
ing categories, based on whether—and how—users can con-
figure them for different planning domains:

e Domain-independent planners. The sole input to the plan-
ner is a description of a planning problem to solve, and the
planning engine must be general enough to work in any
planning domain within some large class of planning domains
D. Historically, D was often assumed to be the set of all
“classical” planning domains,' a class too restricted to
include most practical planning applications. However,
automated-planning researchers use this assumption less
frequently as they become more interested in extending
their work beyond classical planning.

Tunable domain-independent planners. These resemble

domain-independent planners but can be tuned for better

performance in some planning domains. For example, LPG

(http://zeus.ing.unibs.it/Ipg) can be tuned to run quickly

without caring much about the length of the plans it finds,

to find short plans even if it takes a long time to find them,
or somewhere in between. In the 2002 International Planning

Competition, LPG was run with all three settings, producing

three result sets.

e Domain-configurable planners. The planning engine is domain
independent but the input to the planner includes domain-
specific control knowledge, that is, information to help the
planning engine solve problems in the relevant problem
domain. These have sometimes been called “hand-tailored”
planners. However, because the planning engine is domain
independent, the terms “hand tailorable” or “control inten-
sive” are more accurate. Examples of these include hierarchi-
cal task network (HTN) planners such as O-Plan,2 SIPE-2,3
SHOP, and SHOP2,% and planners such as TLPlan® and
TALplanner® whose control knowledge consists of pruning
rules.

e Domain-specific planners. Tailor-made for a given domain,
these planners probably won't work in other domains
without major modifications. This class includes most plan-
ners that have been deployed in practical applications, for
example, the planning algorithm for declarer play used in
Bridge Baron.”

HTN planning is a well-known approach for domain-specific
and domain-configurable planning. In HTN, the planning sys-
tem formulates a plan by decomposing tasks (symbolic repre-

method travel-by-foot
precond:  distance(x,y) < 2
task:  travel(a, x, y)
subtasks: walk(a, x, y)

method travel-by-taxi
task: ~ travel(a, x, y)
precond: cash(a) > 1.5 + 0.5 x distance(x, y)
subtasks: call-taxi(a, x) — ride(a, x, y) — pay-driver(g, x, y)

operator walk (g, x, y)
precond: location{a) = x
effects:  location(a) < y

operator call-taxi(a, x)
effects:  location(taxi) < x

operator ride-taxi(a, x)
precond: location(faxi) = x, location{a) = x
effects:  location(taxi) < y, location(a) < y

operator pay-driver(a, x, y)
precond: cash(a) > 1.5 + 0.5 x distance(x, y)
effects:  cash(a) < cash(a) — 1.5 + 0.5 x distance(x, y)

Figure A. Pseudocode representation of a simple travel-planning
domain. Left-arrows denote assignments of values to state
variables; right-arrows are ordering constraints.

sentations of activities to be performed) into smaller and
smaller subtasks until it reaches primitive tasks that the plan
executor can perform directly. The basic idea emerged in the
mid-1970s."

An HTN planning problem consists of the initial state (a sym-

bolic representation of the state of the world at the time the
plan executor will begin executing its plan), the initial task
network (a set of tasks to be performed, along with some con-
straints that must be satisfied), and a domain description that
contains the following:

A set of planning operators describing what actions (that is,
what primitive task types) the plan executor can perform.
Each operator can have a set of preconditions that must be
true before it can be executed and a set of effects that will
occur afterward. An action (or synonymously, a primitive
task) is an operator instance, produced by assigning values to
an operator’s parameters.

A set of methods describing possible ways of decomposing
tasks into subtasks. These are the “standard operating pro-
cedures” normally used to perform tasks in the domain.
Each method can have a set of constraints that the world
state must satisfy before the planner can apply the method.
Optional information such as definitions of auxiliary func-
tions and of axioms for inferring conditions not explicitly

LAAS, a government research laboratory in
Toulouse, France, are developing a distrib-
uted architecture in which each UAV will
contain a generic “decisional node” consist-
ing of a supervisor and a planner.

Within each decisional node, SHOP2 acts

as the symbolic planner. Its forward-chain-
ing capability integrates the planning activ-
ity with specialized software for estimating
basic UAV operations’ costs, time, and so on.
To perform temporal reasoning, the LAAS
researchers use the same time-stamping tech-
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nique we developed for temporal planning
with SHOP2 in the 2002 International Plan-
ning Competition.! The researchers expect
to have simulation results soon and then to
run experiments using Karma, LAAS’s
robotic blimp.
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mentioned in states of
the world.

For each nonprimitive
task, the planner chooses

Initial task: | travel(me,home,park) |

travel-by-foot

an applicable method and

| precond: distance(home,park) ! 2| | precond: cash(me)" 1.50 + 0.50*distance(home,park) |

instantiates it to decompose
the task into subtasks. For
each primitive task, the plan-
ner chooses an applicable
operator and instantiates it
to produce an action. If all
constraints are satisfied, the
planner has found a solution
plan; otherwise, it will need
to backtrack and try other

Preconditionfails

Preconditionsucceeds

>< ordering ordering
E—
constraint constraint

Decomposition into subtasks

Initialstate:@| call-taxi(me,home) |@| ride(me,home,park) |@| pay-driver(me,home,park) |@
T ! ‘ !

precond: ... Y
effects: ... ..

precond: ..
effects: ...

5 precond: ...
effects: ... i
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methods or instantiations.

@0={Iocation(me)=home, cash(me)=20, distance(home,park)=8} ) SN /

For example, Figure A

Tt |

- < ]

N \ /

\

gives a pseudocode represen-

@1 = {location(me)=home, location(taxi)=home, cash(me)=20, distance(home,park)=8} }

Final /state

tation of a simple planning

. /

domain that presents two

(sg= {location(me)=park, location(taxi)=park, cash(me)=20, distance(home,park)=8 }

ways to travel from one

location to another: by foot

@3= {location(me)=park, location(taxi)=park, cash(me)=14.50, distance(home,park)=8} }

and by taxi. The fravel-by-foot

method has one constraint:
the distance from the start-
ing point to the destination

must be less than or equal to two miles. If the method is applic-
able, it decomposes the task into a single subtask: walk to the

park. The travel-by-taxi method has one constraint which is also a

precondition: the traveler must have enough cash to pay the
taxi driver. If the method is applicable, it decomposes the task
into three subtasks: call a taxi, ride to the park, and pay the dri-
ver. All of the subtasks are primitive; that is, the traveler is

expected to know how to accomplish them directly.

Now, suppose that in the initial state, you're at home, you 5.
have $20, and you want to travel to a park eight miles away.

To plan how to travel to the park, you first try the travel-by-

foot method, but it doesn’t apply because the park is more 3.
than two miles away. Next, you try the travel-by-taxi method.
Its precondition is satisfied, so the method produces a sequence
of three subtasks, with a constraint saying they are to be per-

formed in the following order:

1. call a taxi to your home,
2. ride in it to the park, and
3. pay the driver $5.50.

The subtasks all are primitive, that is, each corresponds to an
action. The first action has no preconditions, so it is applicable

Figure B. Solving a planning problem in the travel-planning domain.

tion, so you have a solution plan. Figure B shows the final state
after this plan executes.
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For more information, contact Jeremi
Gancet, Simon Lacroix, and Raja Chatila,
LAAS/CNRS, Toulouse, France; www.comets-
uavs.org.

Software systems integration. The US National

MARCH/APRIL 2005

Institute of Standards and Technology (NIST)
is using SHOP2 in a project for automating
software systems integration tasks. So far, the
particular example they’ve used is based on
General Motors’ ebXML-based rental-car-
buying interfaces. These interfaces let buyers

www.computer.org/intelligent

Based Forward Chaining Planner,” Annals of Mathematics and
Artificial Intelligence, vol. 30, 2001, pp. 119-169.

S.J.J. Smith, D.S. Nau, and T. Throop, “Computer Bridge: A Big Win
for Al Planning,” Al Magazine, vol. 19, no. 2, 1998, pp. 93-105.

search for and purchase cars of a particular
make, model, and year. However, the inter-
faces make it difficult for a buyer to get a sum-
mary of various cars at various locations (for
example, to minimize costs). NIST’s code
reads the seller’s ebXML BPSS (business
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process specification schema) and produces a
planning problem in which SHOP determines
the transaction sequence against the seller’s
interfaces to achieve the buyer’s objective.

For more information contact, Peter Denno,
NIST, Gaithersburg, Md; www.mel.nist.gov/
proj/mee.htm.

Industry projects

Controlling multiple UAVs. Smart Informa-
tion Flow Technologies (SIFT) is using a mod-
ified version of the SHOP2 planner in a UAV
control system in their Playbook-Enhanced
Variable Autonomy Control System (Pvacs)
project, with funding from Darpa through a
small-business innovation research contract.
SIFT’s Playbook control system allows time-
pressured users, who are not UAV operators, to
request reconnaissance missions using high-
level tasking commands, modeled on how peo-
ple delegate tasks to human subordinates. The
SIFT Playbook supports interactions through
both PDA and desktop or laptop interfaces. It
translates brief, general user commands into
specific control actions suitable for execution.
The Playbook’s Executive provides high-level
closed-loop monitoring and implementation
of the Playbook’s plans, controlling multiple
UAVs through the Variable Autonomy Control
System (VACS) Ground Control Station
(GCS), developed by Geneva Aerospace.The
Playbook currently operates these UAVs in a
high-fidelity simulation environment, but it
uses the same interface to control the simulated
UAVs through the VACS GCS as that used to
direct VACS UAVs in real flight operations.
The modified SHOP2 planner plays a key
role in SIFT’s Playbook, translating the user’s
high-level task specifications into a sequence
of commands that UAVs can execute. SIFT’s
plan library contains tasks for multiple recon-
naissance missions, for both rotorcraft and
fixed-wing UAVs. Robert Goldman at SIFT
has developed an augmented version of
SHOP2 that generates temporal plans, includ-
ing durative actions, and provides more knowl-
edge-engineering and debugging support.
For more information, contact Robert Gold-
man, SIFT, Minneapolis, Minn; www.sift.info/
English/projects/PVACS.htm.

Evaluation of enemy threats. Lockheed
Martin Advanced Technology Laboratories,
in collaboration with the Army Research
Laboratory, is using SHOP in a project that
attempts to evaluate possible enemy threats.
The project uses SHOP to decompose

Templates

higher-level tasks such as “attack blue con-
voy” into sequences of operations such as
move red-tank1 to location, ..., fire red-tank]1 at blue-
convoy. Project details are confidential.

For more information, contact Benjamin
Grooters and Sergio Gigli, Lockheed Martin
ATL, Cherry Hill, N.J.

Location-based services. Sony Electronics
has used SHOP in a project aimed at devel-
oping mobile geographical information sys-
tem (GIS) devices to help people plan
errands that take them to different locations.
Project details are confidential.

For more information, contact Mark Plu-
towski, Sony Electronics Inc., San Jose,
Calif.

The SHOP/CCBR system was
developed o investigate sing
HTN planning techniques. The

suystem is a straightforward
SHOP extension thaf uses cases
fo decompose [asks.

Material selection for manufacturing.
Infocraft is developing a system that uses
SHOP2 for materials selection in a continu-
ous manufacturing process to produce acti-
vated carbon from charcoal. The carbon’s
desired properties (specifically, its grade size
and adsorption level) will vary from one run
to another, as will characteristics of different
charcoal supplies. The project uses SHOP2
to select which charcoal supplies will most
reliably produce activated carbon with a
desired set of properties. SHOP2’s numerical
and axiomatic reasoning abilities are essen-
tial for this project: adsorption levels are rep-
resented as real numbers, and grade sizes are
represented as normal distributions.

For more information, contact Nuwan
Waidyanatha, Infocraft, Sri Lanka; www.
infocraft.1k.

University projects

Automated composition of Web services. A
Web service is a Web-accessible chunk of
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functionality with an interface described in a
machine-readable standard format. Web ser-
vices are designed to be composed in loosely
coupled workflows of varying complexity to
provide functionality that none of the com-
ponent services could provide alone.

The OWL-S (Web Ontology Language for
Services, formerly called DAML-S) lan-
guage for semantic markup of Web services
describes services as complex or atomic
processes with preconditions and effects. This
permits translating the OWL-S process-
model constructs directly to SHOP2 methods
and operators, and University of Maryland
researchers have developed an algorithm to
do so. Users apply SHOP2 to solve service
composition problems by telling it to find a
plan for an HTN task that corresponds to the
composite process.

For more information, contact Evren Sirin
and James Hendler, Dept. of Computer Sci-
ence, University of Maryland; www.mindswap.
org/~evren/composer.

Project planning. The SHOP/CCBR system
was developed at Lehigh University to inves-
tigate using HTN planning techniques to
support project management. The system is
a straightforward SHOP extension that uses
cases to decompose tasks. Cases are similar
in structure to methods, the main difference
being that cases include preference infor-
mation for ranking applicable cases. SHOP/
CCBR uses a communication module to
interact with Microsoft Project, a commer-
cial project management tool that can dis-
play the HTN decompositions generated
with SHOP’s hierarchical planning algo-
rithm. The ongoing work involves develop-
ing algorithms to capture cases automati-
cally from user interactions with Microsoft
Project.

For more information, contact Héctor
Mufioz-Avila, Computer Science and Engi-
neering, Lehigh University; www.cse.lehigh.
edu/~munoz/projects/KBPP.

Statistical goal recognition in agent systems.
For an agent to perform effectively in a mul-
tiagent environment, it must be able to infer
other agents’ goals. University of Rochester
researchers are developing a statistical
approach to goal recognition using machine-
learning techniques. The learning requires a
labeled “plan corpus” of plans and their asso-
ciated goals. To generate such plan corpora
stochastically, the researchers are using a
modified version of SHOP2 that makes ran-
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dom choices at every point where more than
one possible decision is available.

For more information, contact Nate Blay-
lock and James Allen, Computer Science
Dept., University of Rochester; www.cs.
rochester.edu/research/cisd/projects/goalrec.

Distributed planning. Researchers at the
University of Sherbrooke are developing a
general approach for turning backtracking-
search-based planners into distributed plan-
ning systems that run on cluster networks.
The basic idea is to distribute backtrack
search points to different network processes.
To implement their approach, the researchers
have developed DSHOP, a distributed ver-
sion of SHOP.

For more information, contact Froduald
Kabanza, Département d’informatique
Université de Sherbrooke, Canada; www.
planiart.usherbrooke.ca/kabanza.

Additional university projects. Worldwide,
SHOP and SHOP2 have been used in many
more college and university projects than we
can mention. Here are some notes about a
few of them.

* Drexel University regularly uses SHOP
and SHOP?2 in their introductory Al class
to teach planning, and in their Knowledge-
Based Agents course to do agent reason-
ing, service composition, and the like. Con-
tact William Regli, regli @drexel.edu.

* The National University of Colombia in
Medellin, Colombia, is developing a system
that uses SHOP2 to automatically create vir-
tual courses from existing educational mate-
rial. Contact Néstor Daro Duque Mendez,
nduque @nevado.manizales.unal.edu.co.

e The Technical University of Cluj-Napoca
in Romania has used SHOP for an e-
commerce application that builds bidding
plans in a modified version of the Trading
Agent Competition. Contact Adrian Groza,
adrian.groza@email.ro.

* Trinity College Dublin is using SHOP2 in
a Web-service composition project some-
what similar to ours. Contact Dénal Murtag,
domurtag @cs.ted.ie.

e The University of Maryland’s Aerospace
Engineering Department incorporates
SHOP?2 as the planning component in an
architecture that combines task planning,
real-time scheduling, and motion/trajectory
planning. Contact Ella Atkins, atkins@
glue.umd.edu.

e Villanova University has implemented
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SHOP?2 in a mock spacecraft-mission sce-
nario to study how the planning system
can use the density, distribution, and over-
all layout of environmental obstacles to
compute and predict the best optimization
technique. Contact Filip Jagodzinski,
filip.jagodzinski @villanova.edu.

e University of Arizona is using SHOP to
generate process alternatives within a case-
based reasoning framework for business
workflow management. Contact Madhu
Therani, madhu@email.arizona.edu.

Future work
We’ve been pleasantly surprised at the

extent to which people have begun using
SHOP and SHOP2 in their research and

We've been pleasantly surprised af
the extent o which people have
begun using SHOP and SHOPE.

Their availability as open source
software makes it easy for users
fo adapt he fools.

development projects. Their availability as
open source software makes it easy for users
to find and fix bugs and adapt the tools for
their own purposes, but we believe their pop-
ularity also reflects their use of planning
methods that complement how people think
about generating plans. We have many ideas
for extensions and improvements. (We pre-
sent relevant citations elsewhere.?)

Automated learning of planning
domains

A great challenge in using any planning
system to solve real-world problems is
acquiring the domain knowledge the system
will need to plan effectively. We can divide
this domain knowledge into two types:

e Domain definition, that is, domain states
and operators. Researchers usually assume
such knowledge will be provided a priori,
but some real-world domains likely have
only a partial or approximate description
of the planning domain. For example, it’s
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easy to say that a drilling operation will
drill a hole but much harder to say how far
the hole will deviate from perfect straight-
ness and roundness or to model the con-
ditions under which the drill bit is likely
to break.

e Control knowledge, or information to guide
the planning process. In HTN planners such
as SHOP and SHOP?2, this knowledge con-
sists of methods. In planning systems such
as TLPlan and TALplanner (see the side-
bar), it consists of rules for pruning the
search space.

We’re working on ways to acquire HTN
methods automatically by having the planning
system learn them from plan traces. We have
developed a general formal framework for
learning HTN methods and a supervised
learning algorithm, CaMEL, based on this for-
malism. Theoretical and experimental studies
of its soundness, completeness, and conver-
gence properties suggest that CAMEL could
prove useful in real-world applications.?

Compiling planning domains

‘We can view a domain-configurable plan-
ner as an interpreter of its domain descrip-
tion language: given a domain description D
and a planning problem P, the planner
invokes the methods and operators of D inter-
pretively on P.

An alternative approach is to write a com-
piler for the domain description language: the
input is a domain description D, and the out-
put is a domain-specific planning program for
D that can be run directly on any planning
problem P in D. The advantages of this
approach are analogous to compilation’s
advantages over interpretation in conven-
tional programming languages. Compiling
domain descriptions directly into low-level
executable code lets us do implementation-
level optimizations that are otherwise impos-
sible, and unexplored in previous Al planning
research. We can couple these optimizations
with other speed-up techniques (such as
domain analysis and other automated domain
information synthesis methods) to obtain
additional speedups.

JSHOP2, a Java implementation of SHOP2
that we’re now developing, uses this domain-
compilation technique. Our preliminary
experimental results suggest that the compi-
lation technique increases the planner’s effi-
ciency by an order of magnitude. A techni-
cal report on this topic is available at
www.cs.umd.edu/~okhtay/jshop2doc.pdf,
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and JSHOP?2 itself is available at www.cs.
umd.edu/projects/shop.

Planning under uncertainty

Automated-planning research has tradi-
tionally assumed that each action is deter-
ministic—that only one possible outcome
exists. But it is often more realistic to let
actions be nondeterministic, having multiple
possible outcomes. For example, an action’s
outcome might vary because of other agents’
responses or random environmental changes.

We’ve developed a general technique for
adapting planners such as SHOP, SHOP2,
TLPlan, and TALplanner to deal with non-
deterministic actions. We have shown both
theoretically and experimentally* that our
approach can produce exponential speedups
over previous algorithms for planning in non-
deterministic environments.

We’re also extending our approach to
work in Markov decision processes, in which
the actions have probabilistic outcomes. Our

Templates

experiments show we can obtain exponen-
tial speedups here, too.

Planning with distributed
information sources

Planning researchers typically assume the
planning system is isolated: it begins with a
complete description of the planning prob-
lem and requires no interaction with the
external world during the planning process.
In many practical situations, such an assump-
tion is clearly unrealistic: the planner may
need information from external sources dur-
ing planning.

We have developed a formalism for wrap-
pers to place around conventional (isolated)
planners to replace some of the planner’s
memory accesses with queries to external
information sources. When appropriate, the
wrapper can automatically backtrack the
planner to a previous point in its operation.
‘We mathematically and experimentally ana-
lyzed several different query-management
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strategies for these wrappers, such as when
to issue queries, and when and how to back-
track the planner.’ Results suggest that
domain-configurable planners such as SHOP2
are likely better suited than other planners for
planning with volatile information.

Performance improves even more if a
planner can make nonblocking queries to
external information sources—that is, con-
tinue exploring other parts of its search space
while waiting for the query’s response. We
have described a modified version of SHOP2
that works in this way and shown experi-
mentally that this dramatically improves the
planner’s performance.®

One weakness of SHOP2 is that its
methods and operators do not explic-
itly represent time and concurrency—two

things that would be essential, for example,
to permit concurrent actions of different
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agents (such as multiple subordinates or team
members). It might be possible in some cases
to overcome this limitation by writing plan-
ning operators that explicitly assert time-
stamp information into the current state of
the world. On the other hand, it clearly would
be advantageous to have a more comprehen-
sive way to represent and reason about time
and concurrency. We hope to address this
problem in our future work.

Meanwhile, both SHOP and SHOP2 are
helping users apply computers to solve com-
plex planning problems, by providing
domain-independent planning engines that
can make use of user-provided knowledge
about specific planning domains. 8
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