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Behavior in an Unfamiliar Society

Suppose you enter an environment
that’s inhabited by agents
who are unfamiliar to you

Y ou know what actions
are possible

But you don’t know

» What behaviors and outcomes
the agents prefer, and why

» How they’re likely to react to your actions

» What collection of behaviors 1s most likely to elicit
the responses you prefer

How can you decide how to behave?
First, a simple example
» The game we asked you to play when you registered today
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Please help us by playing a game:

® Choose a number 1n the range from 0 to 100, and write it in the
space below.

e We’ll take the average of all of the numbers. The winner(s) will be
whoever chose a number that’s closest to 2/3 of the average.

® Dana Nau will announce the results during his talk this afternoon.

Y our number:

Y our name (optional):
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Please help us by playing a game:

® Choose a number 1n the range from 0 to 100, and write it in the
space below.

e We’ll take the average of all of the numbers. The winner(s) will be
whoever chose a number that’s closest to 2/3 of the average.

® This game is famous among economists and game theorists
» It’s called the p-beauty contest (I used p = 2/3)

® What does game theory tell us about 1t?
@ First, a very brief review of some game-theoretic concepts




Classical Game Theory

Consider a game played by a set of agents ‘\* K’

A={a,a,,...,a,} Pk
An agent’s strategy: description of what it X \
will do in every possible situation @

» May be deterministic or probabilistic

Let S={s,,5,, ..., s,} be the strategies used by {a,, a,, ..., a,}, respectively

» Then a,’s expected utility 1s a;’s average payoff given §

S'1s a Nash equilibrium if no agent can get a higher expected utility by
unilaterally switching to a different strategy

» l.e., each agent is doing the best that it can do, given what the other
agents are doing

An agent 1s rational if 1t makes choices that optimize its expected utility

» Hence a set of rational agents should gravitate toward a Nash equilibrium



Nash Equilibrium for the p-Beauty Contest

® We can find a Nash equilibrium for the p-beauty contest by doing
backward induction

» All of the numbers are < 100
e average < 100 => 2/3 of'the average < 67

» If everyone figures this out, they’ll choose 67 or less
e average <67 => 2/3 ofthe average <45

» If everyone figures this out, then they’ll choose 45 or less
e average <45 => 2/3 of the average <30

»  eee

® Nash equilibrium strategy: everybody chooses 0

® For those of you who are familiar with evolutionary game theory, this
strategy 1s evolutionarily stable



We aren’t game-theoretic “rational” agents

® Huge literature on behavioral economics going back to about
1979

» Many cases where humans (or aggregations of humans)
tend to make different decisions than the game-
theoretically optimal ones

» Daniel Kahneman received the 2002 Nobel Prize in
Economics for his work on that topic
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Game Results

® Average = 32.93
® 2/3 of the average = 21.95

® Winner: anonymous xx

31-40 41-50 51-60 61-70 71-80 81-90 91-100

# of Guesses



Choosing “Irrational” Strategies

® Why did you choose a non-equilibrium strategy?

» Limitations in reasoning ability
» Hidden payoffs
» Opponent modeling



Limitations in Reasoning Ability

® Maybe you didn’t calculate the Nash equilibrium correctly, or you didn’t
know how to calculate it, or you didn’t even know the concept

® R. Nagel (1995) “Unravelling in Guessing Games: An Experimental
Study.” American Economic Review 85, 1313-1326

» Empirical results compatible with the assertion that
* 13% of subjects used no backward induction
e 44% used one level of backward induction
e 37% used two levels
e 4% used more than two levels

® Some games are so complicated that even though an optimal strategy
exists, it’s not feasible to figure out what it is

» In chess, the number of possible moves is larger than the number of
atoms in the universe

e The number of possible strategies 1s even larger
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Hidden Payoffs

e “Hidden payoffs” are payoffs not included in the game model
» The game model assumed your objective was to win the game

® Maybe you participated in the game for a different reason:
» Because you thought it would be fun
» Because you were curious what would happen
» Because you thought it might help me or help the conference
» Because the people at the registration desk asked you to
» Because you wanted to create mischief

® In these cases, there wouldn’t necessarily be any reason for you to choose
the Nash equilibrium strategy
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Opponent Modeling

® Maybe you predicted that the other players’ likely moves made it unlikely
that the Nash equilibrium strategy would win

® More generally,

» A Nash equilibrium strategy is best for you if the other agents also use
their Nash equilibrium strategies

» In many cases, the other agents won 't be using Nash equilibrium
strategies

» In such cases, if you can predict the other agents’ likely actions, you
may be able to do much better than the Nash equilibrium strategy

® [’ll give you several examples ...
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Roshambo (Rock-Paper-Scissors)

A, | Rock Paper | Scissors
A,
Rock 0, 0 —1, 1 1,-1
Paper 1, -1 0, 0 —1, 1
Scissors | -1, 1 1, -1 0, 0

® Rock beats scissors

® Scissors beats paper

® Paper beats rock

® Nash equilibrium strategy:
» Choose randomly, probability 1/3 for each move
» Expected utility = 0
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Roshambo (Rock-Paper-Scissors)

® International roshambo programming competitions
» 1999 and 2000, Darse Billings, U. of Alberta
» http://www.cs.unimaas.nl/ICGA/games/roshambo
® The 2000 competition
» First phase: round-robin
e 64 programs competed

e For each program, 1000 iterations against
each of the programs (including itself)

e Hence 64000 points possible per program
» Results averaged over 100 trials

e Highest score: 9268

* Lowest score: —52074
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Poker

Sources of uncertainty
» The card distribution
» The opponents’ betting styles

Lots of recent AI work on the
most popular variant of poker

» Texas Hold ‘Em

The best Al programs are starting to
approach the level of human experts

» Construct a statistical model of the opponent

e What kinds of bets the opponent is likely to make under what kinds of
circumstances

» Combine with game-theoretic reasoning

 Billings, Davidson, Schaeffer, and Szafron (2002). “The challenge of
poker.” Artificial Intelligence (Vol. 134, Issue 1-2)
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Kriegspiel Chess

Kriegspiel: an imperfect-information variant of chess

» Developed by a Prussian military officer in 1824

» Became popular as a military training exercise

» Progenitor of modern military wargaming

Like chess, but

» You don’t know where your
opponent’s pieces are, because you
can’t observe most of their moves

Only ways to observe:

» You take a piece, they take a piece, they put

your king in check, you make an illegal move

Size of belief state (set of all states you might be in):
» Texas hold’em: 103 (one thousand)

» bridge:
» kriegspiel:

107 (ten million)
104 (ten trillion)
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Monte-Carlo Information-Set Search

Recursive formulas for computing expected utilities of belief states
» Explicitly incorporates an opponent model
Infeasible computation, due to belief-space size
Monte Carlo approximations of the belief states
» Reduces the computation to sort-of feasible

Results:
» One of the world’s best kriegspiel programs

» The minimax opponent model
(Nash equilibrium in ordinary chess)
1s not the best opponent model for kriegspiel

» A better model is an “overconfident” one
that assumes the opponent won’t play very well

Parker, Nau, and Subrahmanian (2006). Overconfidence or paranoia? search

in imperfect-information games. Proc. National Conf. on Artificial
Intelligence (AAAI)

» http://www.cs.umd.edu/~nau/papers/parkerO6overconfidence.pdf

17



Behavior in an Unfamiliar Society

Suppose you enter an environment
that’s inhabited by agents
who are unfamiliar to you

Y ou know what actions
are possible

But you don’t know

» What behaviors and outcomes
the agents prefer, and why

» How they’re likely to react to your actions

» What collection of behaviors 1s most likely to elicit
the responses you prefer

How can you decide how to behave?
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Behavior in an Unfamiliar Society

Suppose you enter an environment
that’s inhabited by agents
who are unfamiliar to you

Y ou know what actions
are possible

But you don’t know

» What behaviors and outcomes
the agents prefer, and why their payoffs

» How they’re likely to react to your actions ——— their strategies

» What collection of behaviors 1s most likely to elicit
the responses you prefer your best strategy

How can you decide how to behave?
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Technical Approach

® Work by my recent PhD graduate, Tsz-Chiu Au
e Finished his PhD this August

e Now at University of Texas

® For technical details, see

» T.-C. Au, D. Nau, and S. Kraus. Synthesis of strategies from

interaction traces. International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS), 2008

» http://www.cs.umd.edu/~nau/papers/au08synthesis.pdf
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Learning from Interaction Traces

Composite
Strategy

® Suppose the other agents are competent members of their society

e Even without knowing their payoffs, we can guess that many of their
interactions produce payoffs that at least are acceptable to them

® So let’s see if we can use those interactions ourselves
» Observe agents’ interactions, collect interaction traces
» Look at what interaction traces produce outcomes that we prefer
1.e., high payoff for us if we interact with those agents

» Synthesize a composite strategy that combines those traces
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» for combining interaction traces into a composite strategy
The CIT algorithm
» selects the best set (i.e., highest expected utility) of combinable

interaction traces, and combines them

Modified composite agent

» augments an agent to use the composite strategy to enhance its

performance

Cross-validated experimental results
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Repeated Games

® Used by game theorists, economists,
social and behavioral scientists
as simplified models of
various real-world situations

® Some well-known examples
» Roshambo
» Iterated Prisoner’s Dilemma
» Iterated Battle of the Sexes
» Iterated Chicken Game
» Repeated Stag Hunt
» Repeated Ultimatum Game
» Repeated Matching Pennies

® [’ll describe three of them



Iterated Prisoner’s Dilemma

Prisoner’s Dilemma

Prisoner’s Dilemma:

» Each prisoner can cooperate with the @
other or defect (incriminate them) 4 Cooperate Defect
Iterated Prisoner’s Dilemma (IPD) Cooperate 3,3 0,5
» Iterations => incentive to cooperate Defect 5, 0 1, 1

Widely used to study emergence of
cooperative behavior among agents

IPD tournaments [Axelrod,
The Evolution of Cooperation, 1984]

» Tit-for-Tat (TFT)
* On Ist move, cooperate. On nth move,
repeat the other player’s (n—1)-th move

» Could establish and maintain advantageous
cooperations with many other players

» Could prevent malicious players from
taking advantage of it

If I defect now, he might




Iterated Chicken Game

® Chicken Game;
» Made famous in Rebel Without a Cause

» Two people drive toward a cliff

» The first one to turn away loses face
» If neither turns away, both will be killed

Chicken game:
e Example
» Two groups need to divide a “ Cooperate | Defect
piece of land between them 4 _—
» If they can’t agree how to Cooperate | 4,4 (ﬁ)
divide it, they’11 fight Defect 5.3 / 0. 0

® Nash equilibria (with no iteration):
» Do the opposite of what the other agent does

® Iterated Chicken Game (ICG) Nash equilibria

» Mutual cooperation does not emerge

e Each player wants to establish him/herself as the defector

25



Iterated Battle of the Sexes

® Battle of the Sexes:

» Two players need to coordinate
their actions to achieve some goal

» They each prefer different actions

® Original scenario: husband prefers
football, wife prefers opera

® Another scenario:

» Two nations must act together to
deal with an international crisis

» They prefer different solutions

® Iterated Battle of the Sexes (IBS)

» Two players repeatedly play
the Battle of the Sexes

» Not very much is known about what
strategies work well in this game

Battle of the Sexes:

A

usband Opera Football
Wife (G) (T)
Opera (T) ( 2, 1) \/OZ_O\
Football (G) 0,0 1,2

T (take): choose your preferred activity
G (give): choose the other’s preferred activity

26




Example: Two Interaction Traces

® Suppose an observer sees the following two interaction traces

® The game is the IBS, but the observer doesn’t necessarily know that

Someone interacting with an agent Someone interacting with an agent
who 1s using a “fair” strategy: who 1s using a “selfish” strategy:
» Behavior: alternately Take & Give » Behavior: always Take
Trace 1 Trace 2
a, a, (fair) a, a, (selfish)
Round 1: G T G T
Round 2: T G T T
Round 3: G T T T
Round 4: T G G T
Round 5: G T G T
Round 6: T G G T
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How Should We Behave?

® In the games that I described, prejudice i1s impossible
® The agents don’t have tags
» a, doesn’t know a,’s name, reputation, ethnicity, gender, social status, ...

» a,’s only information about a, |:

, All I know of you
is how a, behaves toward a, is your actior};s

» 1f we interact with a, and we
behave like a,, then a, should
behave like it did with a, a a, us a,

® This also could happen
in a game where prejudice
is possible, if a, had
the same prejudice
toward both a, and us

—=H Q 4 Q 4 Q
Q = Q 4 Q@ -
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How Should We Behave?

® If g, and a, are both competent members of their society, we might want to
» Emulate a,’s behavior if we’re playing with a,
» Emulate a;’s behavior if we’re playing with a,

® Problem: how do we know
whether the other agent 1s a, or a,? Trace 1 Trace 2

» Recall that the agents don’t have tags a, a, (fair) a, a, (selfish)
» The only way we can find out is

by observing how the agent acts G T G T
® Solution: T G T T
» Combine the behaviors of G T T T
a, and a, to get a strategy that T G G T
tells how to act with both of them G . G T
» We can do this because the
T G G T

interaction traces have a
property called compatibility

29



Compatible Interaction Traces

Example
Trace 1 Trace 2
® These two traces are compatible
G 1 because
@ ! @ <— The point where the other agents’ actions differ
T
@ <— 1s before the point where our actions must differ
G T
G T G T
® We can identify the other agent’s behavior soon
T G G T

enough to decide what to do
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Compatible Interaction Traces

Example
Trace 1 Trace 2 An unknown agent
a, a, a, a,
E G T 15 G T If their ItftheirT
: T@ T@ actlonV action 1S
: T i @T :(_}___T_E T T
i TG G T > T Gi G T
G T E G T EG T ! G T
i TG G T T Gi G T
i | | i

e Combine the behaviors of a,
and a4 1nto a composite strategy

» The decision tree shown here
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Compatible Interaction Traces

General Case

T = compatible set of interaction traces

—

Composite strategy
C constructed from T

Theorem: If a set of interaction traces 7' is compatible, then we can
combine 7 into a composite strategy C

e If T includes an interaction trace for every pure strategy,

then C will be a total strategy

» lLe., 1t will specify an action for every situation we might encounter

® Otherwise C will be a partial strategy

» In some cases it won’t tell us what action to perform
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Incompatible Interaction Traces
Example

® Must choose between two incompatible moves
before we have enough information to see how

Can’t make _ .
both of these the opponent is going to behave
Mmoves
» Which move to choose?
Trace 3 /i Trace 4
ds G, a, ag
G /T, G T G T
G T, | G T T
O OK oY
|
T G | T G
G T, T G
G T, T G
I
|
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Incompatible Interaction Traces

General Case

Compatible subset T Composite strategy

B constructed from T

—>

)
N
) |
[
[
[
[
[
) |
/

— e ———— — —,
\————————/

{
7
{
{

If T isn’t compatible, we can find a compatible subset 7" of T
and construct a composite strategy C' from 7’

» Want to choose 7" so as to maximize our expected utility

» Don’t need to know other agents’ payoffs and utilities, just ours
Problem 1: exponentially many possibilities for 7"

» Reduce to polynomial using divide-and-conquer
Problem 2: to compute expected utility, need probability of each trace

» Get this from how many times the trace occurs in T’
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The CIT Algorithm

® Lect 7 be asetof
interaction traces

® Let C = {all composite
strategies that can be formed
from compatible subsets of 7}

® The CIT algorithm

» Finds an optimal
composite strategy

(highest expected utility
of any strategy in C)

» Divide-and-conquer
algorithm

» Running time
= O(|T] x length of game)

{7_17 T2, 7_3}0.7 {7_{7 Téa 7_?/,}0.3

/ \ EU = max(9.5) = 9.5
a=C a=D

& pd s N\,
[{71}0.7 {71/}0.3J {72773}0.7 {75775}0.3
b’&C bic EU=9.5
s2 g U A T A
[{71}0.7 {T{}O.?)J {72’73}0.7 {Té,Té}O'?’
| / \ EU = max(9.5,8.2) = 9.5
a=C a=C a=D
S3 l 87 / s14\
[{71}0‘7 {71}0.3] [{72}0.7 {72/}0.3 [{73}0.7 {T?/)}o.gj
| / \ EU=3.9+5.6=9.5 / \ EU=3.3+4.9=8.2
b=C b=C b=D b=C  b=D
F TR S TR AT S TR A SN
[{7.1}0.7 {7.{}0.3J [{7_5}0.3] {7.2}0‘7 [7_?2 0.3 [{7.3}0.7J
Incompatible ! aE];J=3-9 QJ'E(;J_SG aE];J=33 aiE];Mg
({75}0.3] {72}0.7] [{T?/)}O.?)J [{T }0 7J
bli;:s.g blIECLJ:S.G bf;):s.s b_||;J:4 9
""""""""""""""""""""""""" PO S V7 S S
({72}0.7 ({Té}o’?’] [{73}0.7}

EU=0.3x13=3.9 EU=0.7x8=5.6 EU=0.3x11=3.3 EU=0.7x7=4.9
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Using a Composite Strategy to
Enhance an Agent’s Performance

e® Given an agent @ and a composite strategy C,
® Modified Composite Agent MCA(g,C)

» If C specifies a move for the current situation,
then make that move

» Otherwise make whatever move ¢ would
normally make

Modified Agent
Make C’s
move
Does C
Input specify a
move?
Make @’s

No
move

— Output
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Experimental Evaluation

® Evaluated in three games:

» Iterated Prisoner’s Dilemma (IPD)

» Iterated Chicken Game (ICG)
» Iterated Battle of the Sexes (IBS)

® Sources of agents:

» Asked students in advanced Al classes to contribute agents to play in

tournaments

» Also added the usual “standard” agents:

* ALLC, ALLD, GRIM, NEG, PAVLOV, RAND, STFT, TFT, TFTT

IPD ICG IBS
No. of deterministic agents 34 22 17
No. of probabilistic agents 18 24 29
Total no. of agents 52 46 46
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Experimental Setup

For each game, a five-fold cross-validation experiment:

® A = {all the agents we have for the game}

® Divide 4 into 5 subsets 4, 4,, A5, A4, A5 Training set | Test set
|
e Fori=1,2,3,4,5 Ui, j#y v 4

» Create optimal composite
strategy C from the interaction Agent ' \
traces of the agents not in 4, in 4,

» For each agent ¢ 1n 4, _ d Compare A
play ¢ and MCA(,C) [Toumament] Comjposite performance
against the agents in 4, of ¢ and
e Which does better: / \MCA("D’C) y

MCA(,C) or ¢?
e How often does D
MCA ~——
(@:C) Interaction | —> The CIT
use C? T Algorithm
races

N~
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Experimental Results

40

35
Change in ig
rank if we  5q
replace ¢ 15
with 1o

5
MCA( @, C) 0

1 6 11 16 21 26 31 36 41 46 51
Rank of the original agent ¢

® In nearly every case MCA(@,C)’s score and rank were much higher than ¢’s
» Especially in cases where the strategy @ was weak

® Smallest improvement in the IPD
» Reason: most IPD agents already are very good to begin with

e Using composite strategies can greatly enhance an agent’s performance
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Is This Work Generalizable?

® [.imitations of this work R x

» Repeated games o /, \\\ Sa
1 1 ” <+----- == Sl P
» All interactions were among pairs of agents i \
. . W v
» In each interaction, an agent had only two R / \\* oA
. . \l\ e /
available actions LA SN

e cooperate or defect, give or take o - 3

e What about @ «T @

» Sequential games

» Interactions among »n agents at once

» More than two available actions
® The number of possible strategies could increase exponentially

» Would the same approach have any realistic chance of working?
e [ think that in many cases, the answer may be yes

» We only needed to use a very small fraction of the possible strategies
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How Often the Composite Strategies Were Used

® Each game lasted 200 iterations,

» Hence, 22 possible behaviors (sequences of actions) the other
agent might use

® On average, C contains only about 200 traces

» C only tells us how to behave against 200 of the 2°%° possible
behaviors

e If we play MCA(g,C) against a random agent a
» Pr[C gives us a behavior to use with a] = 200/22% =~ 10-%
® In our experiments, MCA(p,C) used C much more frequently than that

» 1n the IPD, 84% of the time
» 1n the IBS, 48% of the time
» 1n the ICG, 45% of the time

® In other words ...
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A Small Set of “Conventional” Behaviors

® One reason why our approach worked well

» There was a set of “conventional behaviors” that was extremely
small compared to the set of all possible behaviors

» By observing and analyzing the interactions, we synthesized a
strategy that utilized these behaviors

» The strategy worked successfully in many or most circumstances

® We believe that in more complex environments, there again will be
a small set of conventional behaviors

» This provides a reason to believe that learning from observed
interactions can be useful there too
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Summary

@ How to construct a strategy for a new, unfamiliar environment?
® Approach:
» Observe the interactions among agents who are familiar with the environment
» Combine interaction traces into a composite strategy
® Results:
» Necessary and sufficient conditions for combining a set of traces
» The CIT algorithm: finds an optimal composite strategy

» Modified composite agent: uses the composite strategy to enhance the
performance of an existing agent

» Experimental results in three different non-zero-sum games
e Our approach greatly enhanced the performance of most agents
» Small set of conventional behaviors

e Observing and learning them gives you a large fraction of what you need
in order to do well
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Future Work on This Topic

® How to synthesize strategies from interaction traces for noisy
environments?

» Environments in which accidents and miscommunications
can happen

» Can cause big problems for some strategies
® Game can go on longer than the interaction traces do

» Machine-learning techniques such as Q-learning and TD(A)
can handle infinite horizons

» Can we do the same?

® Other kinds of environments
» Zero-sum games
» POMDPs

» Other multi-agent environments
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Ongoing Work on Related Topics

® V. S. Subrahmanian and I co- e LCCD’S active partners include
direct the Lab for Computational @ Univ. of Pennsylvania (sub)

Cultural Dynamics

® Nat. Consortium for the Study of

® Highly cross-disciplinary Terrorism and Responses to Terrorism
partnership (START)
» Computer Science ® Specific regional experts
» Political science » Minister of S&T, Rwanda
» Psychology » Former Afghan Deputy Minister of the
» Criminology Interior
» Linguistics » Former State Dept. officials who
» Public Policy served in Pakistan-Afghanistan
» Business » Former general involved in busting the

»

Tupac Amaro and Shining Path in Peru

Laboratory for
Computational
Cultural Dynamics 45
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SOMA Rules

® SOMA Rules: predict an agent’s behavior under a set of arbitrary conditions

» group g will take action a with probability x% to y% when condition ¢
holds

» Techniques for extracting such rules automatically from databases (e.g.,
Minorities at Risk) and from electronic text

» Algorithms for using SOMA rules to create forecasts

e E.g., Aaron Mannes’s talk this morning

® V. Subrahmanian, M. Albanese, M. V. Martinez, D. Nau, D. Reforgiato, G. 1.
Simari, A. Sliva, O. Udrea, and J. Wilkenfeld. CARA: A cultural-reasoning
architecture. IEEE Intelligent Systems, Mar./Apr. 2007
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Social Learning Strategies Tournament

International competition among computer programs in a evolutionary
cultural adaptation environment

» Consortium of researchers funded by the European Union
» €10,000 prize

» http://www.intercult.su.se/cultaptation/tournament.php

Several of our students have entered programs

In addition, they have successfully analyzed several simplified versions of
the game, to find provably optimal strategies

» Carr, Raboin, Parker, and Nau: “When Innovation Matters: An
Analysis of Innovation in a Social Learning Game.” ICCCD-2008

e Presentation tomorrow

» Carr, Raboin, Parker, and Nau: “Balancing innovation and exploitation
in a social learning game.” AAAI Fall Symposium on Adaptive Agents
in Cultural Contexts. To appear.
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International Planning Competition

® RFF - algorithm for generating plans under uncertainty
» Guillaume Infantes (ONERA, visitor to our lab)
» Florent Teichteil-Konigsbuch (ONERA, visitor to our lab)
» Ugur Kuter (research scientist in our lab)

® [ just received word today that RFF has won the probabilistic
planning track of the 2008 International Planning Competition
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Postdoctoral Research Opportunity

® | want to hire a postdoctoral researcher to do research
involving game theory

@ If you know of anyone who might be suitable, please let me
know

» Dana S. Nau

» nau@cs.umd.edu
» 301-405-2684
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