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Behavior in an Unfamiliar Society

 Suppose you enter an environment
that’s inhabited by agents
who are unfamiliar to you

 You know what actions
are possible

 But you don’t know
» What behaviors and outcomes

the agents prefer, and why
» How they’re likely to react to your actions
» What collection of behaviors is most likely to elicit

the responses you prefer
 How can you decide how to behave?
 First, a simple example

» The game we asked you to play when you registered today
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Please help us by playing a game:
 Choose a number in the range from 0 to 100, and write it in the

space below.
 We’ll take the average of  all of the numbers. The winner(s) will be

whoever chose a number that’s closest to 2/3 of the average.
 Dana Nau will announce the results during his talk this afternoon.

                  Your number:  ______________________

Your name (optional): _______________________

ICCCD 2008
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 This game is famous among economists and game theorists
» It’s called the p-beauty contest (I used p = 2/3)

 What does game theory tell us about it?
First, a very brief review of some game-theoretic concepts
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Classical Game Theory
 Consider a game played by a set of agents

A ={a1, a2, …, an}

 An agent’s strategy: description of what it
will do in every possible situation
» May be deterministic or probabilistic

 Let  S ={s1, s2, …, sn} be the strategies used by {a1, a2, …, an}, respectively
» Then ai’s expected utility is ai’s average payoff given S

 S is a Nash equilibrium if no agent can get a higher expected utility by
unilaterally switching to a different strategy
» I.e., each agent is doing the best that it can do, given what the other

agents are doing

 An agent is rational if it makes choices that optimize its expected utility
» Hence a set of rational agents should gravitate toward a Nash equilibrium

a1

a5 a2

a4 a3

Actions
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Nash Equilibrium for the p-Beauty Contest
 We can find a Nash equilibrium for the p-beauty contest by doing

backward induction

» All of the numbers are ≤ 100
• average ≤ 100    =>    2/3 of the average < 67

» If everyone figures this out, they’ll choose 67 or less
• average ≤ 67     =>    2/3 of the average < 45

» If everyone figures this out, then they’ll choose 45 or less
• average < 45     =>    2/3 of the average < 30

» …
 Nash equilibrium strategy: everybody chooses 0

 For those of you who are familiar with evolutionary game theory, this
strategy is evolutionarily stable
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We aren’t game-theoretic “rational” agents

 Huge literature on behavioral economics going back to about
1979
» Many cases where humans (or aggregations of humans)

tend to make different decisions than the game-
theoretically optimal ones

» Daniel Kahneman received the 2002 Nobel Prize in
Economics for his work on that topic
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Game Results
 Average = 32.93
 2/3 of the average = 21.95
 Winner: anonymous xx
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Choosing “Irrational” Strategies

 Why did you choose a non-equilibrium strategy?

» Limitations in reasoning ability
» Hidden payoffs
» Opponent modeling
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Limitations in Reasoning Ability

 Maybe you didn’t calculate the Nash equilibrium correctly, or you didn’t
know how to calculate it, or you didn’t even know the concept

 R. Nagel (1995) “Unravelling in Guessing Games: An Experimental
Study.” American Economic Review 85, 1313–1326
» Empirical results compatible with the assertion that

• 13% of subjects used no backward induction
• 44% used one level of backward induction
• 37% used two levels
• 4% used more than two levels

 Some games are so complicated that even though an optimal strategy
exists, it’s not feasible to figure out what it is
» In chess, the number of possible moves is larger than the number of

atoms in the universe
• The number of possible strategies is even larger
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Hidden Payoffs
 “Hidden payoffs” are payoffs not included in the game model

» The game model assumed your objective was to win the game

 Maybe you participated in the game for a different reason:
» Because you thought it would be fun
» Because you were curious what would happen
» Because you thought it might help me or help the conference
» Because the people at the registration desk asked you to
» Because you wanted to create mischief

 In these cases, there wouldn’t necessarily be any reason for you to choose
the Nash equilibrium strategy
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Opponent Modeling
 Maybe you predicted that the other players’ likely moves made it unlikely

that the Nash equilibrium strategy would win

 More generally,
» A Nash equilibrium strategy is best for you if the other agents also use

their Nash equilibrium strategies
» In many cases, the other agents won’t be using Nash equilibrium

strategies
» In such cases, if you can predict the other agents’ likely actions, you

may be able to do much better than the Nash equilibrium strategy

 I’ll give you several examples …
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 Rock beats scissors
 Scissors beats paper
 Paper beats rock

 Nash equilibrium strategy:
» Choose randomly, probability 1/3 for each move
» Expected utility = 0

 0,  0 1, –1–1,  1Scissors

–1,  1 0,  0 1, –1Paper

 1, –1–1,  1 0,  0Rock

ScissorsPaperRock         A1

A2

Roshambo (Rock-Paper-Scissors)
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Roshambo (Rock-Paper-Scissors)

 International roshambo programming competitions
» 1999 and 2000, Darse Billings, U. of Alberta
» http://www.cs.unimaas.nl/ICGA/games/roshambo

 The 2000 competition
» First phase: round-robin

• 64 programs competed
• For each program, 1000 iterations against

each of the programs (including itself)
• Hence 64000 points possible per program

» Results averaged over 100 trials
• Highest score:      9268
• Lowest score:  –52074
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Poker

 Sources of uncertainty
» The card distribution
» The opponents’ betting styles

 Lots of recent AI work on the
most popular variant of poker
» Texas Hold ‘Em

 The best AI programs are starting to
approach the level of human experts
» Construct a statistical model of the opponent

• What kinds of bets the opponent is likely to make under what kinds of
circumstances

» Combine with game-theoretic reasoning
• Billings, Davidson, Schaeffer, and Szafron (2002). “The challenge of

poker.”  Artificial Intelligence (Vol. 134, Issue 1-2)
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Kriegspiel Chess
 Kriegspiel: an imperfect-information variant of chess

» Developed by a Prussian military officer in 1824
» Became popular as a military training exercise
» Progenitor of modern military wargaming

 Like chess, but
» You don’t know where your

opponent’s pieces are, because you
can’t observe most of their moves

 Only ways to observe:
» You take a piece, they take a piece, they put

your king in check, you make an illegal move
 Size of belief state (set of all states you might be in):

» Texas hold’em:  103  (one thousand)
» bridge:                107  (ten million)
» kriegspiel:          1014 (ten trillion)
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Monte-Carlo Information-Set Search
 Recursive formulas for computing expected utilities of belief states

» Explicitly incorporates an opponent model
 Infeasible computation, due to belief-space size
 Monte Carlo approximations of the belief states

» Reduces the computation to sort-of feasible
 Results:

» One of the world’s best kriegspiel programs
» The minimax opponent model

(Nash equilibrium in ordinary chess)
is not the best opponent model for kriegspiel

» A better model is an “overconfident” one
that assumes the opponent won’t play very well

 Parker, Nau, and Subrahmanian (2006). Overconfidence or paranoia? search
in imperfect-information games. Proc. National Conf. on Artificial
Intelligence (AAAI)
» http://www.cs.umd.edu/~nau/papers/parker06overconfidence.pdf
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Behavior in an Unfamiliar Society

 Suppose you enter an environment
that’s inhabited by agents
who are unfamiliar to you

 You know what actions
are possible

 But you don’t know
» What behaviors and outcomes

the agents prefer, and why
» How they’re likely to react to your actions
» What collection of behaviors is most likely to elicit

the responses you prefer
 How can you decide how to behave?
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Behavior in an Unfamiliar Society

 Suppose you enter an environment
that’s inhabited by agents
who are unfamiliar to you

 You know what actions
are possible

 But you don’t know
» What behaviors and outcomes

the agents prefer, and why ––––––––––––––––––– their payoffs
» How they’re likely to react to your actions  ––––––– their strategies
» What collection of behaviors is most likely to elicit

the responses you prefer  ––––––––––––––––––––– your best strategy
 How can you decide how to behave?
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Technical Approach

 Work by my recent PhD graduate, Tsz-Chiu Au
• Finished his PhD this August
• Now at University of Texas

 For technical details, see
» T.-C. Au, D. Nau, and S. Kraus. Synthesis of strategies from

interaction traces. International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS), 2008

» http://www.cs.umd.edu/~nau/papers/au08synthesis.pdf



21

Learning from Interaction Traces

 Suppose the other agents are competent members of their society
 Even without knowing their payoffs, we can guess that many of their

interactions produce payoffs that at least are acceptable to them
 So let’s see if we can use those interactions ourselves

» Observe agents’ interactions, collect interaction traces
» Look at what interaction traces produce outcomes that we prefer

» i.e., high payoff for us if we interact with those agents
» Synthesize a composite strategy that combines those traces

Composite
Strategy

SynthesisInteraction
Traces

a1

a5 a2

a4 a3
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Our Results

Composite
Strategy

Modified
Composite

Agent

Interaction
Trace

Database

Tournament-
Based

Evaluation

a1

an

. . .

 Necessary and sufficient conditions
» for combining interaction traces into a composite strategy

 The CIT algorithm
» selects the best set (i.e., highest expected utility) of combinable

interaction traces, and combines them
 Modified composite agent

» augments an agent to use the composite strategy to enhance its
performance

 Cross-validated experimental results
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Repeated Games
 Used by game theorists, economists,

social and behavioral scientists
as simplified models of
various real-world situations

 Some well-known examples
» Roshambo
» Iterated Prisoner’s Dilemma
» Iterated Battle of the Sexes
» Iterated Chicken Game
» Repeated Stag Hunt
» Repeated Ultimatum Game
» Repeated Matching Pennies

 I’ll describe three of them
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Iterated Prisoner’s Dilemma
 Prisoner’s Dilemma

» Each prisoner can cooperate with the
other or defect (incriminate them)

 Iterated Prisoner’s Dilemma (IPD)
» Iterations => incentive to cooperate

 Widely used to study emergence of
cooperative behavior among agents

 IPD tournaments [Axelrod,
The Evolution of Cooperation, 1984]
» Tit-for-Tat (TFT)

• On 1st move, cooperate. On nth move,
repeat the other player’s (n–1)-th move

» Could establish and maintain advantageous
cooperations with many other players

» Could prevent malicious players from
taking advantage of it

If I defect now, he might
punish me by defecting next

time

1, 15, 0 Defect

0, 53, 3Cooperate

DefectCooperate
a2

  a1

Prisoner’s Dilemma:

Nash equilibrium
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Iterated Chicken Game
 Chicken Game:

» Made famous in Rebel Without a Cause
» Two people drive toward a cliff
» The first one to turn away loses face
» If neither turns away, both will be killed

 Example
» Two groups need to divide a

piece of land between them
» If they can’t agree how to

divide it, they’ll fight
 Nash equilibria (with no iteration):

» Do the opposite of what the other agent does

 Iterated Chicken Game (ICG)
» Mutual cooperation does not emerge

• Each player wants to establish him/herself as the defector

0, 05, 3Defect

3, 54, 4Cooperate

DefectCooperatea2
   a1

Chicken game:

Nash equilibria



26

 Battle of the Sexes:
» Two players need to coordinate

their actions to achieve some goal
» They each prefer different actions

 Original scenario: husband prefers
football, wife prefers opera

 Another scenario:
» Two nations must act together to

deal with an international crisis
» They prefer different solutions

 Iterated Battle of  the Sexes (IBS)
» Two players repeatedly play

the Battle of the Sexes
» Not very much is known about what

strategies work well in this game

Husband
Wife

Opera
(G)

Football
(T)

Opera (T) 2, 1 0, 0
Football (G) 0, 0 1, 2

Battle of the Sexes:

T (take): choose your preferred activity
G (give): choose the other’s preferred activity

Nash
equilibria

Iterated Battle of the Sexes
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Example: Two Interaction Traces
 Suppose an observer sees the following two interaction traces
 The game is the IBS, but the observer doesn’t necessarily know that

G
T
G
T
G
T
…

T
G
T
G
T
G
…

a1 a2 (fair)

G
T
T
G
G
G
…

T
T
T
T
T
T
…

a3 a4 (selfish)

Round 1:
Round 2:
Round 3:
Round 4:
Round 5:
Round 6:

…

Trace 1 Trace 2

Someone interacting with an agent
who is using a “selfish” strategy:
» Behavior: always Take

Someone interacting with an agent
who is using a “fair” strategy:
» Behavior: alternately Take & Give
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G
T
G
T
G
T
…

T
G
T
G
T
G
…

us a2

How Should We Behave?
 In the games that I described, prejudice is impossible
 The agents don’t have tags

» a2 doesn’t know a1’s name, reputation, ethnicity, gender, social status, …
» a2’s only information about a1

is how a1 behaves toward a2

» if we interact with a2 and we
behave like a1, then a2 should
behave like it did with a1

 This also could happen
in a game where prejudice
is possible, if a2 had
the same prejudice
toward both a1 and us

G
T
G
T
G
T
…

T
G
T
G
T
G
…

a1 a2

All I know of you
is your actions
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How Should We Behave?
 If a1 and a3 are both competent members of their society, we might want to

» Emulate a1’s behavior if we’re playing with a2

» Emulate a3’s behavior if we’re playing with a4

 Problem:  how do we know
whether the other agent is a2 or a4?
» Recall that the agents don’t have tags
» The only way we can find out is

by observing how the agent acts
 Solution:

» Combine the behaviors of
a1 and a3 to get a strategy that
tells how to act with both of them

» We can do this because the
interaction traces have a
property called compatibility

G
T
G
T
G
T
…

T
G
T
G
T
G
…

a1 a2 (fair)

G
T
T
G
G
G
…

T
T
T
T
T
T
…

a3 a4 (selfish)
Trace 1 Trace 2
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Compatible Interaction Traces
Example

 These two traces are compatible

because

← The point where the other agents’ actions differ

← is before the point where our actions must differ

 We can identify the other agent’s behavior soon
enough to decide what to do

G

T

G

T

G

T

…

T

G

T

G

T

G

…

G

T

T

G

G

G

…

T

T

T

T

T

T

…

Trace 1 Trace 2
a1 a2 a3 a4
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Compatible Interaction Traces
Example

G

T

G

T

…

T

G

T

G

…

T

G

G

G

…

T

T

T

T

…

Us An unknown agent

G

T

T

???
If their

action is G
If their

action is T
G

T

G

T

G

T

…

T

G

T

G

T

G

…

G

T

T

G

G

G

…

T

T

T

T

T

T

…

Trace 1 Trace 2
a1 a2 a3 a4

 Combine the behaviors of a1
and a3 into a composite strategy
» The decision tree shown here
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Compatible Interaction Traces
General Case

Composite strategy
C constructed from T

T = compatible set of interaction traces

Theorem: If a set of interaction traces T is compatible, then we can
combine T into a composite strategy C

  If T includes an interaction trace for every pure strategy,
then C will be a total strategy
» I.e., it will specify an action for every situation we might encounter

 Otherwise C will be a partial strategy
» In some cases it won’t tell us what action to perform
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Incompatible Interaction Traces
Example

T
T

G
G

T
… …

G

T

T

G
T

G

G
T

G
G

T
G

… …

G

T

T

T
G

G

G

Can’t make
both of these
moves

T
??
G

T

G

G

Trace 3 Trace 4

 Must choose between two incompatible moves
before we have enough information to see how
the opponent is going to behave

» Which move to choose?

a5 a6 a7 a8
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Incompatible Interaction Traces
General Case

Composite strategy
constructed from T'

Compatible subset T'

 If T isn’t compatible, we can find a compatible subset T' of T
and construct a composite strategy C' from T'
» Want to choose T' so as to maximize our expected utility
» Don’t need to know other agents’ payoffs and utilities, just ours

 Problem 1: exponentially many possibilities for T'
» Reduce to polynomial using divide-and-conquer

 Problem 2: to compute expected utility, need probability of each trace
» Get this from how many times the trace occurs in T
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The CIT Algorithm

 Let T be a set of
interaction traces

 Let C = {all composite
strategies that can be formed
from compatible subsets of T}

 The CIT algorithm
» Finds an optimal

composite strategy
(highest expected utility
of any strategy in C)

» Divide-and-conquer
algorithm

» Running time
       = O(|T| × length of game)
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Using a Composite Strategy to
Enhance an Agent’s Performance

 Given an agent ϕ and a composite strategy C,
 Modified Composite Agent MCA(ϕ,C)

» If C specifies a move for the current situation,
then make that move

» Otherwise make whatever move ϕ would
normally make

Make C’s
move

Modified Agent

Make ϕ’s
move

OutputInput
Does C

specify a
move?

Yes

No 

?

? ?

?
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Experimental Evaluation

 Evaluated in three games:
» Iterated Prisoner’s Dilemma (IPD)
» Iterated Chicken Game (ICG)
» Iterated Battle of the Sexes (IBS)

 Sources of agents:
» Asked students in advanced AI classes to contribute agents to play in

tournaments
» Also added the usual “standard” agents:

• ALLC, ALLD, GRIM, NEG, PAVLOV, RAND, STFT, TFT, TFTT

IPD ICG IBS
No. of deterministic agents 34 22 17
No. of probabilistic agents 18 24 29
Total no. of agents 52 46 46
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Training set
U{Aj : j≠i}

Experimental Setup

Test set
Ai

Composite
strategy C

Composite
Agent

MCA(ϕ,C)

Interaction
Traces

The CIT
Algorithm

Tournament

For each game, a five-fold cross-validation experiment:
 A = {all the agents we have for the game}
 Divide A into 5 subsets A1, A2, A3, A4, A5

 For i = 1, 2, 3, 4, 5
» Create optimal composite

 strategy C from the interaction
 traces of the agents not in Ai

» For each agent ϕ in Ai,
 play ϕ and MCA(ϕ,C)
 against the agents in Ai

• Which does better:
MCA(ϕ,C) or ϕ?

• How often does
MCA(ϕ,C)
use C?

Compare
performance

of ϕ and
MCA(ϕ,C)

Agent ϕ
in Ai
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Experimental Results

 In nearly every case MCA(ϕ,C)’s score and rank were much higher than ϕ’s
» Especially in cases where the strategy ϕ was weak

 Smallest improvement in the IPD
» Reason: most IPD agents already are very good to begin with

 Using composite strategies can greatly enhance an agent’s performance

Change in
rank if we
replace ϕ
with
MCA(ϕ,C)

Rank of the original agent ϕ
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Is This Work Generalizable?

 Limitations of this work
» Repeated games
» All interactions were among pairs of agents
» In each interaction, an agent had only two

available actions
• cooperate or defect, give or take

 What about
» Sequential games
» Interactions among n agents at once
» More than two available actions

 The number of possible strategies could increase exponentially
» Would the same approach have any realistic chance of working?

 I think that in many cases, the answer may be yes
» We only needed to use a very small fraction of the possible strategies

a1

a5 a2

a4 a3

Interactions
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How Often the Composite Strategies Were Used

 Each game lasted 200 iterations,
» Hence, 2200 possible behaviors (sequences of actions) the other

agent might use
 On average, C contains only about 200 traces

» C only tells us how to behave against 200 of the 2200 possible
behaviors

 If we play MCA(ϕ,C) against a random agent a
» Pr[C gives us a behavior to use with a] ≈ 200/2200 ≈ 10–58

 In our experiments, MCA(ϕ,C) used C much more frequently than that
» in the IPD, 84% of the time
» in the IBS, 48% of the time
» in the ICG, 45% of the time

 In other words …
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A Small Set of “Conventional” Behaviors

 One reason why our approach worked well
» There was a set of “conventional behaviors” that was extremely

small compared to the set of all possible behaviors
» By observing and analyzing the interactions, we synthesized a

strategy that utilized these behaviors
» The strategy worked successfully in many or most circumstances

 We believe that in more complex environments, there again will be
a small set of conventional behaviors
» This provides a reason to believe that learning from observed

interactions can be useful there too
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Summary
 How to construct a strategy for a new, unfamiliar environment?
 Approach:

» Observe the interactions among agents who are familiar with the environment
» Combine interaction traces into a composite strategy

 Results:
» Necessary and sufficient conditions for combining a set of traces
» The CIT algorithm: finds an optimal composite strategy
» Modified composite agent: uses the composite strategy to enhance the

performance of an existing agent
» Experimental results in three different non-zero-sum games

• Our approach greatly enhanced the performance of most agents
» Small set of conventional behaviors

• Observing and learning them gives you a large fraction of what you need
in order to do well
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Future Work on This Topic
 How to synthesize strategies from interaction traces for noisy

environments?
» Environments in which accidents and miscommunications

can happen
» Can cause big problems for some strategies

 Game can go on longer than the interaction traces do
» Machine-learning techniques such as Q-learning and TD(λ)

can handle infinite horizons
» Can we do the same?

 Other kinds of environments
» Zero-sum games
» POMDPs
» Other multi-agent environments
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Ongoing Work on Related Topics
 V. S. Subrahmanian and I co-

direct the Lab for Computational
Cultural Dynamics

 Highly cross-disciplinary
partnership
» Computer Science
» Political science
» Psychology
» Criminology
» Linguistics
» Public Policy
» Business
» Systems Engineering

 LCCD’S active partners include
 Univ. of Pennsylvania (sub)
 Nat. Consortium for the Study of

Terrorism and Responses to Terrorism
(START)

 Specific regional experts
» Minister of S&T, Rwanda
» Former Afghan Deputy Minister of the

Interior
» Former State Dept. officials who

served in Pakistan-Afghanistan
» Former general involved in busting the

Tupac Amaro and Shining Path in Peru
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SOMA Rules
 SOMA Rules: predict an agent’s behavior under a set of arbitrary conditions

» group g will take action a with probability x% to y% when condition c
holds

» Techniques for extracting such rules automatically from databases (e.g.,
Minorities at Risk) and from electronic text

» Algorithms for using SOMA rules to create forecasts
• E.g., Aaron Mannes’s talk this morning

 V. Subrahmanian, M. Albanese, M. V. Martinez, D. Nau, D. Reforgiato, G. I.
Simari, A. Sliva, O. Udrea, and J. Wilkenfeld. CARA: A cultural-reasoning
architecture. IEEE Intelligent Systems, Mar./Apr. 2007
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Social Learning Strategies Tournament
 International competition among computer programs in a evolutionary

cultural adaptation environment
» Consortium of researchers funded by the European Union
» €10,000 prize
» http://www.intercult.su.se/cultaptation/tournament.php

 Several of our students have entered programs
 In addition, they have successfully analyzed several simplified versions of

the game, to find provably optimal strategies
» Carr, Raboin, Parker, and Nau: “When Innovation Matters: An

Analysis of Innovation in a Social Learning Game.” ICCCD-2008
• Presentation tomorrow

» Carr, Raboin, Parker, and Nau: “Balancing innovation and exploitation
in a social learning game.” AAAI Fall Symposium on Adaptive Agents
in Cultural Contexts. To appear.
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International Planning Competition

 RFF - algorithm for generating plans under uncertainty
» Guillaume Infantès (ONERA, visitor to our lab)
» Florent Teichteil-Königsbuch (ONERA, visitor to our lab)
» Ugur Kuter (research scientist in our lab)

 I just received word today that RFF has won the probabilistic
planning track of the 2008 International Planning Competition
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Postdoctoral Research Opportunity

 I want to hire a postdoctoral researcher to do research
involving game theory

 If you know of anyone who might be suitable, please let me
know

» Dana S. Nau
» nau@cs.umd.edu
» 301-405-2684


