
Thinking Ahead in Real-Time Search

Dana Nau1,3,2 Ugur Kuter2 Emre Sefer1

1Department of Computer Science, 2Institute for Advanced Computer Studies,
and 3Institute for Systems Research

University of Maryland, College Park, Maryland 20742, USA
{nau,ukuter,esefer}@cs.umd.edu

Abstract

We consider real-time planning problems in which some
states are unsolvable, i.e., have no path to a goal. Such prob-
lems are difficult for real-time planning algorithms such as
RTA* in which all states must be solvable.
We identify a property called k-safeness, in which the con-
sequences of a bad choice become apparent within k moves
after the choice is made. When k is not too large, this makes
it possible to identify unsolvable states in real time.
We provide a modified version of RTA* that is provably com-
plete on all k-safe problems. We derive k-safeness conditions
for real-time deterministic versions of the well-known Tire-
world and Racetrack domains, and provide experimental re-
sults showing that our modified version of RTA* works quite
well in these domains.

Introduction
There are many AI planning applications in which agents
need to generate and execute plans in real time. Examples
include UAVs (Weiss, Naderhirn, and del Re 2006), hu-
manoid robots (Gutmann, Fukuchi, and Fujita 2005), real-
time strategy games (Stene 2006), and RoboCup robots
(Sherback, Purwin, and D’Andrea 2006).

In such applications there are situations where a bad
choice of action may lead to failure. If a UAV ventures into
a dangerous location, it may be shot down; or if a humanoid
robot loses balance and falls down a stairway, it may be dam-
aged; or if a player makes a bad move in a real-time strategy
game or a RoboCup game, the opponents may achieve an
unassailable advantage.

Consequently, it is important for a real-time planner to
identify, before executing an action, whether the action may
produce an unsolvable state, i.e., a state from which the goal
is no longer reachable.

There are several methods and algorithms (Koenig 2001a)
for solving real-time planning problems by interleaving
planning and plan execution (Koenig 1999; Bulitko et al.
2007b), but they often require that the planning problem be
everywhere solvable, i.e., the goal must be achievable at ev-
ery state in the state space. Problems like the ones described

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

above, in which some of the states are unsolvable, cause dif-
ficulty for such algorithms.

In offline planning, unsolvable states are avoided by
searching all the way to the goal, thereby verifying that the
goal is achievable at each state along the way. But in real-
time planning, where unsolvable states need to be identified
quickly, such an approach is infeasible because it can require
exorbitant amounts of time (Erol, Nau, and Subrahmanian
1995).

In real-time planning, we believe there often are situa-
tions in which the unfortunate consequences of a bad choice
become evident shortly after performing the action. Our ob-
jective is to provide a domain-independent way to identify
and avoid such situations. Our contributions are as follows:

1. We define a property called k-safeness. If a problem is
k-safe, this means that for every unsolvable state s that
is reachable from the initial state, the longest simple path
from s has length ≤ k. Consequently, s’s unsolvability
can be detected by a depth-k lookahead.

2. We describe d-lookahead RTA*, which is similar to the
well-known RTA* algorithm (Korf 1990) but has been
modified to look ahead d steps before committing to its
next action. We prove that d-lookahead-RTA* is complete
on k-safe problems whenever d ≥ k.

3. We analyze deterministic real-time versions of the well-
known Tireworld (Littman and Younes 2004; Younes and
Littman 2004) and Racetrack (Gardner 1986; Wikipedia
2009) domains. We show that given a map of a Tireworld
or Racetrack domain, it is easy to derive a value k such
that every planning problem on this map is k-safe.

4. We provide experimental evaluations on a total of 1350
Tireworld and Racetrack problems. In our experiments,
k-lookahead-RTA* was always successful at solving k-
safe problems, and could quickly identify unsolvable
states. For example, 5-lookahead-RTA* took less than
2 seconds per action on 5-safe Racetrack and Tireworld
problems.

Preliminaries
Let G = (S,E, c, s0, Sg) be a finite state space in which S
is the set of states, E is the set of directed edges, c is the
nonnegative cost function (see below), s0 is the initial state,

and Sg is the set of goal states. If there is a path from si to
sj then si is an ancestor of sj and sj is a descendant of si.
If the path has length 1 then si is a parent of sj and sj is a
child of si.

A state s is solvable if there is a path from s to a goal state;
otherwise s is unsolvable. G is solvable if s0 is solvable.

Above, c assigns a cost c(s, s′) to each edge (s, s′) ∈
E. By extension, the cost of a path π = 〈s0, s1, . . . , sn〉
is c(π) =

∑n
i=1 c(si−1, si). As usual, we let h∗(s) =

min{c(π) | π solves s}; hence if s is unsolvable then
h∗(s) =∞.

We take the length of a path to be the number of edges
in the path. A simple path is one in which all states are
different. A state s’s simple height, H(s), is the length of
the longest (i.e., largest number of edges) simple path that
begins at s. It follows immediately that H(s) ≥ 0 for every
state s.

The following lemma follows immediately:
Lemma 1. A state s is solvable iff there is a path of length
≤ H(s) from s to a goal.

Definition 2. Let G be solvable and k ≥ 0 be an integer.
ThenG is k-safe iff for every unsolvable state s that is reach-
able from s0, H(s) ≤ k.

In other words, let s be any unsolvable state that is reach-
able from s0, and π be any path from s. If G is k-safe, then
π has simple height ≤ k, so if we look ahead k steps along
π, we will either reach a dead end or detect a cycle.

As a special case, if G is 0-safe, then every unsolvable
state has simple height 0, i.e., for every unsolvable state s,
either s is childless or else s has a single child, namely s
itself.

d-Aware Search
If h is a heuristic function, we will say that h is d-aware
iff h(s) = ∞ for every unsolvable state s of simple height
H(s) ≤ d. Intuitively, h is d-aware if it can detect unsolv-
able states that are ≤ d steps ahead.

If h is any admissible heuristic function for G and d ≥ 0,
it is easy to create from h a d-aware admissible heuristic
function hd, which we will call the d-aware version of h.
The definition is as follows:

hd(s) =

∞, if H(s) ≤ d and there is no path of

length ≤ d from s to a goal state,

h(s), if the above condition fails and d = 0,

min{c(s, t) + hd−1(t) : t is a child of s},
otherwise.

(1)
Lemma 3. If h is admissible, then hd is both admissible and
d-aware.

Proof. Admissibility: Let s be any state of G. If H(s) ≤ d
and there is no path of length ≤ d from s to a goal state
(i.e., the first case of Eq. (1)), then it follows from Lemma 1
that s is unsolvable, whence h∗(s) = ∞; so hd(s) = ∞ is
admissible in this case. Otherwise if d = 0 (the second case

function hd(s): return h̄d(s, ∅)

function h̄d(s, V):
1. if s is not a goal state and all of its children are in V

then return∞
2. if d = 0 then return h(s)
3. return min{c(s, t) + h̄d−1(t, V ∪ {s}) : t is a child of s}

Figure 1: A simple implementation of hd.

of Eq. (1)), then hd(s) = h(s); and since h(s) is admissible,
so is hd(s). Otherwise the third case of Eq. (1) applies, and
hd(s) ≤ min{c(s, t)+hd−1(t) : t is a child of s}. It follows
that if hd−1(t) ≤ h∗(t) for every child t of s, then

hd(s) ≤ min{c(s, t) + h∗(t) : t is a child of s} = h∗(s).

Consequently it is easy to show by induction that hd(s) ≤
h∗(s), so hd is admissible in this case too.
d-awareness: Let s be any unsolvable state for which

H(s) ≤ d. Then it follows from Lemma 1 that there is no
path of length≤ d from s to a goal, whence hd(s) =∞.

It is easy to implement hd as shown in Figure 1. If G is a
tree with branching factor b, then hd runs in time O(bd). If
G is a graph, then the computation can sometimes be done
more quickly by caching each state’s value as it is computed,
and using the cached value on subsequent visits to that state.
For example, if there is a constant c such that there are at
most c states at each search depth, then caching allows hd to
be computed in time O(bd) rather than O(bd). Regardless
of whether G is a tree or a graph, if there are fixed upper
bounds on b and d, then hd runs in time O(1).
Definition 4. d-lookahead-RTA* is the following modifica-
tion of the RTA* algorithm: all calls to h are replaced with
calls to hd instead.

Equivalently, d-lookahead-RTA* runs RTA* with hd as
the heuristic function.

Korf (Korf 1990) discusses an optional lookahead algo-
rithm for RTA*. The primary difference between his looka-
head algorithm and ours is that we include a dead-end check
(see the first line of Eq. (1), and line 1 of Figure 1). Another
difference is that the values returned by Korf’s lookahead al-
gorithm are larger than ours by the amount g(s), where s is
the current state; but that difference is unimportant since it
does not affect the relative ranking of s’s children.
Theorem 5. Let G be a k-safe state space. If d ≥ k and we
run d-lookahead-RTA* on G with an admissible heuristic
function h, it will never choose to move from a solvable state
to an unsolvable state.

Proof. Let s be the current state. Suppose s has an unsolv-
able child t. SinceG is k-safe, it follows thatH(t) ≤ k ≤ d.
Since hd is d-aware, it follows that hd(t) = ∞, whence
f(t) = ∞. If d-lookahead-RTA* moves from s to t, then
it must be that f(u) ≥ f(t) = ∞ for every child u of s,
whence hd(u) = ∞ for every child u of s. But since hd

is admissible, it follows that every child of s is unsolvable,
whence s itself is unsolvable.

Corollary 6. SupposeG is k-safe and its initial state is solv-
able. If d ≥ k and we run d-lookahead-RTA* on G with an
admissible heuristic function h, it is guaranteed to solve G.

Proof. Let G′ be the subgraph consisting of all solvable
states of G. Since hd is admissible, it follows from (Korf
1990) that RTA* using hd (i.e., d-lookahead-RTA* using h)
is guaranteed to solveG′. But from the above theorem it fol-
lows that d-lookahead-RTA*’s behavior in G will be identi-
cal to its behavior in G′, hence d-lookahead-RTA* is also
guaranteed to solve G.

We say that a state s′ is a k-safe descendant (or child)
of s, if s′ is a descendant (or a child) of s and the above
corrollary holds for s′.

Analysis of Two Planning Domains
In this section, we analyze the deterministic versions of two
well-known planning domains, Tireworld and Racetrack.
We show that for any Tireworld or Racetrack map, it is easy
to derive a value k such that all planning problems on that
map are k-safe.

Tireworld
Tireworld was first introduced as a benchmark planning do-
main in the 2004 International Probabilistic Planning Com-
petition (Littman and Younes 2004; Younes and Littman
2004). Our work does not yet deal with probabilistic plan-
ning (though we intend to do so in the future), so we now
define a deterministic version of the domain.

In our deterministic version of Tireworld, there are n lo-
cations connected via bi-directional roads, forming an undi-
rected graph1 whose nodes are the locations and whose
edges are the roads (e.g., see Figure 2). Each road between
two adjacent locations has the same fixed cost. Some of the
locations on this graph are “tire-store locations” in which
there are an unlimited number of spare tires. Other locations
are “puncture” locations, at which the car will get a flat tire.
There is a car in this domain that needs to go from an initial
location to a final one. The car can carry at most one spare
tire.

A state in a Tireworld problem is a triple s =
(loc(s),flat(s), spare(s)), where l(s) is the car’s location,
and flat(s) and spare(s) are booleans telling whether the car
has a flat tire and whether it is carrying a spare. The car can
move to an adjacent location iff flat(s) = F. If s = (l, F, F)
and the car moves to a puncture location l′, then the new
state is s′ = (l′, T, F), i.e., the car now has a flat tire. If
s = (l, F, T) and the car moves to a puncture location l′, then
the new state is s′ = (l′, F, F), i.e., the spare tire replaces the
flat. If s = (l, F, F) or s = (l, F, T) and the car moves to a
tire-store location l′, then the new state is s′ = (l′, F, T), i.e.,
the car now has a spare tire if it didn’t have one before.

1Here, it is the road map that is undirected. In contrast, the
state space is directed. For example, in Figure 2, let s be the state
in which we are at cf with no flat tire and no spare; and let s′ be
the state in which we are at cg with a flat tire and no spare. Then
the state space contains an edge from s to s′, but no edge from s′

to s. In fact, s′ is a dead end; there are no edges from s′ at all.

Two tire-store locations are neighbors if the shortest (i.e.,
smallest number of edges) path between them contains no
other tire-store locations. The following results establish
conditions under which Tireworld is k-safe.

Lemma 7. Let G be any solvable Tireworld state space in
which the initial location is a tire-store location. Then every
neighboring tire-store location that is reachable from s0 is
also solvable.

Proof. Suppose G satisfies the conditions of the theorem,
and let s0 = (l, F, T) be the initial state. If l′ is a neighboring
tire-store location that is reachable from s0, then there is a
path π from s0 to s′ = (l′, F, T). Between l(s0) and l(si)
there is at most one puncture location, for otherwise π would
end at the second puncture location. Thus there is a path π′
from s′ back to l(s0). Thus since s0 is solvable, so is s′.

Lemma 8. Let G be any solvable Tireworld state space in
which the initial location is a tire-store location, and let k
be the maximum distance between any two neighboring tire
stores. Then G is k-safe.

Proof. Let s be any state reachable from s0, and let π be the
path through which it is reached. Then the distance between
s and the last-tire store l in π is ≤ k, and it follows from
Lemma 7 that (l, F, T) is solvable. SupposeH(s) > k. Then
there is a simple path from s of length k. This path must
contain a tire-store location l′, and it follows from Lemma 7
that (l′, F, T) is solvable. Since there is a path from s to
(l′, F, T), it follows that s is also solvable.

Theorem 9. Let G be any solvable Tireworld state space in
which there is a puncture-free path from the initial location
to a tire-store location, and let k be the maximum distance
between any two neighboring tire stores. Then G is k-safe.

Proof. Immediate from the lemma.

Racetrack
Racetrack is a game that was popular during the late 1960s
and early 1970s (Gardner 1986), and one of the authors
of this paper remembers playing it around that time. The
original Racetrack game was deterministic, but (Bonet and
Geffner 2003) introduced a modified version of Racetrack
using actions with nondeterministic outcomes. Below is a
summary of the original deterministic version of the game,
based on the description in (Wikipedia 2009).

To play Racetrack, the players need to draw a racetrack
on graph paper. See Figure 3 for an example. Each player
selects a symbol and marks a point on the start line. Players
take turns moving. Each move has two parts: inertia and
acceleration. Inertia just continues the speed and direction
of the last turn. Acceleration then adds one square in any
direction. If a player hits the wall, he/she loses.

If there are two or more players, the objective is to reach
to the finish line from the start line before the other players
do. If there is just one player, then the objective is to reach

Figure 2: A Tireworld problem based on one in (Younes and Littman
2004). Unshaded boxes indicate tire-store locations, and shaded ellipses
indicate puncture locations. Figure 3: An illustration of the first few moves

of one of the cars in a Racetrack game.

the finish line in the least number of turns (i.e., we can treat
each edge as having the same fixed cost).

The following theorem establishes the k-safeness of the
Racetrack planning domain:

Theorem 10. Let G be a Racetrack problem on a grid of
size n× n. Let k = 1/2 +

√
1/4 + 2n. Then G is k-safe.

Proof. A car’s state in a Racetrack game can be described as
a 4-tuple s = (x, y, u, v), where (x, y) is the car’s location
and (u, v) is the car’s velocity. The unsolvable states in a
racetrack game are the ones where the car will inevitably hit
the wall before it reaches a goal. The only way that the car
can inevitably hit the wall is if it is going too fast to stop
in time. The number of moves needed to stop the car will
be max(|u|, |v|), where (u, v) is the car’s velocity. On an
n × n grid, the car’s velocity is no more than (z, z), where
|z(z + 1)/2| ≤ n. From the quadratic formula, it follows
that z ≤ 1/2 +

√
1/4 + 2n. Hence it is possible to tell

whether s is solvable by looking ahead k steps, where k =
1/2 +

√
1/4 + 2n.

Experiments
We implemented RTA* as described in (Korf 1990) in Com-
mon Lisp, and did a large number of experiments in the
Tireworld and Racetrack domains, using d-lookahead-RTA*
with a Manhattan Distance heuristic. In all of our experi-
ments, we used Allegro Common Lisp Professional Edition
running on a MacBook laptop computer with a 2.4 GHz In-
tel Core 2 Duo processor having a 1066 MHz frontside bus
and 2 GB of memory.

Setup
In our experiments in the Tireworld domain, we randomly
generated 50 k-safe planning problems for k = 1, . . . , 14,
for a total of 700 planning problems:

• Each planning problem in our experiments had 100 loca-
tions that are randomly placed on a 200 × 200 grid. The
lower left corner is located at (0, 0).

• For each location, the car’s tire can go flat with a proba-
bility of 0.3. Each location is designated to be a tire-store
location with the same probability value of 0.3, provided
that the maximum distance between any two neigboring
spare-tire locations is at most k.

• For each location l on the grid, we randomly select two
locations as the adjacent to l. Then we create undirected
edges between each of these locations and l.

• In each problem, we randomly selected an initial location
l0 such that (1) l0 is a tire-store location, or else there is
a puncture-free path from l0 to a tire-store location; and
(2) l0 is in a solvable sub-space of the planning problem.
Otherwise, the initial location is unsolvable.

• For each problem, we randomly selected a goal location
from among the set of all locations.
In Racetrack, we generated 50 random k-safe planning

problems for each value of k = 2, 3, . . . , 14, for a total of
650 planning problems. In each of these planning problems,
the race track was generated randomly as follows:
• For each value of k = 2, 3, . . . , 14, we use Theorem 10

to choose the grid size (n, n). Let (0, 0) be the lower left
corner of grid. We randomly perturbed each of the top,
bottom, left and right boundaries of this grid as follows.
For each location on the top boundary, we flip a coin to
decide whether to decrease the y coordinate of the loca-
tion (i.e., whether to move it inside by one point). We
do the same for each location on each boundary. After we
created the new boundaries, we finalize the new geometri-
cal shape by ignoring the points on a boundary that is left
outside of another boundary. The final geometrical object
is the outer track.

• For the inner track, we first randomly select a point p0

inside the outer track generated as above. Then, we ran-

Figure 4: Percentages of problems solved by RTA* and k-
lookahead-RTA* on k-safe Tireworld problems.

Figure 5: Percentages of problems solved by RTA* and k-
lookahead-RTA* on k-safe Racetrack problems.

domly generate another point p1 inside the outer track and
connect it with the first one. Next, we randomly select an-
other point p2 and connect it p1 and so on until we gener-
ate N edges, where N is a number given as a parameter.
In our experiments we used k for N .Every time we gen-
erate a new edge, we check whether it intersects with the
previous ones; if so, then we reject the edge and attempt
to generate a new one until the new edge do not inter-
sect with the previous ones. The last edge is between the
last point we generated on the track and the first point p0.
This gives us a closed geometrical object whose bound-
aries represent the inner track.

Experimental Results
Percentage of problems solved by RTA* and k-
lookahead-RTA*. Figures 4 and 5 show the percentages
of the problems solved by RTA* and k-lookahead-RTA*
in the Tireworld and Racetrack domains. As expected,
k-lookahead-RTA* solved 100% of the problems in both

Figure 6: Average CPU time per action for k-lookahead-
RTA* on k-safe Tireworld problems.

Figure 7: Average CPU time per action for k-lookahead-
RTA* on k-safe Racetrack problems.

domains. In contrast, the number of problems solved by
the original RTA* algorithm dropped dramatically as k in-
creased. As k increased, it became more and more likely
that RTA* would venture into an unsolvable part of the state
space.

Per-action running time of k-lookahead-RTA*. Fig-
ures 6 and 7 show the average CPU times per action gen-
erated, for k-lookahead-RTA* on the same Tireworld and
Racetrack problems as before. From each graph, it is clear
that the CPU time per action increases much slower than ex-
ponentially. Indeed, it appears that the increase is no worse
than linear in both cases. We believe the reason for this is
that in a k-safe problem, many of the unsolvable states will
have simple height less than k; and at unsolvable states of
simple height k, most of the simple paths starting at this
state will have simple height less than k.

Notice that in Figure 7, the CPU time per action decreases
as k goes from 2 to 4. We believe the reason for this is that

Figure 8: Average lengths of solutions generated by k-
lookahead-RTA* on k-safe Tireworld problems.

Figure 9: Average lengths of solutions generated by k-
lookahead-RTA* on k-safe Racetrack problems.

when k is this small, the solution length is so short (see Fig-
ure 9) that the amount of time needed to generate the solu-
tion is dominated by the constant-time overhead of simply
launching the algorithm. Consequently, when this constant-
time overhead is divided by the solution length, the CPU
time per action goes down.

Quality of solutions found by k-lookahead-RTA*. In or-
der to investigate the quality of the solutions returned by k-
lookahead RTA*, we measured the average lengths of the
solutions generated by k-lookahead-RTA*, and compared
them with the average lengths of the optimal paths (which
we found using Dijkstra’s algorithm).

Figures 8 and 9 show the results. In most cases, k-
lookahead-RTA* found near-optimal solutions. The worst
performance was in the Tireworld domain when k is small,
and we believe this was because the Manhattan Distance
heuristic did not give very good results for small k.

Figure 10: Percentage of the problems solved by k-
lookahead-RTA*, as a function of the depth of its lookahead
function, in 8-safe Tireworld planning problems.

Figure 11: Percentage of the problems solved by d-
lookahead-RTA* for d = 1, . . . , 8, in 8-safe Racetrack plan-
ning problems.

Looking ahead to depths less than k. In order to in-
vestigate how the lookahead depth d affects d-lookahead-
RTA*’s performance, we performed experiments on 8-safe
Tireworld and Racetrack planning problems from our suite
above. With these problems, we ran d-lookahead-RTA* by
varying the depth of its lookahead from d = 1 . . . 8.

Figures 10 and 11 show the percentage of the problems
that d-lookahead-RTA* could solve, as a function of d.
The number of the problems solved increased monotonically
with d.

Related Work
In addition to the work cited in previous sections of this
paper, several other approaches have been investigated to

improve real-time heuristic search, and in particular, to
reduce the heuristic computation time need to decide on
the action to execute. One common approach has been
the use of full-width limited-depth lookahead (Korf 1990;
Shimbo and Ishida 2003; Furcy and Koenig 2000; Rayner
et al. 2007), the use of search spaces generated by A*-
like search algorithms (Koenig 2004; Koenig and Likhachev
2006).

RTA* has been extended to “learn” the heuristic values
of states and actions as the search algorithm explores the
underlying environment by planning and execution. The ex-
tended algorithm is called the Learning RTA* (LRTA*) as
described in (Korf 1990). There have been several enhance-
ments for LRTA* recently in order to generalize the learn-
ing component more robust to the uncertainty in highly dy-
namic environments, such as real-time strategy games. Ex-
amples of these generalizations include the use of priority
queues (Rayner et al. 2007), dynamic lookahead detection
and waypoint selection during search (Bulitko et al. 2008;
2007b), and use of minimax game-tree search techniques
(Koenig 2001b).

There have been other approaches developed for improv-
ing the performance of real-time heuristic search. Most no-
tably perhaps is the use of state abstraction as described in
(Bulitko et al. 2007a). In a nutshell, state abstraction in-
volves generating an abstract representation of the search
space, which is much more condensed and has smaller num-
ber of abstract states to perform the search over in com-
parison to the original search space. A real-time search
algorithm exploiting state abstraction computes the heuris-
tic functions in the abstract space, and uses the heuris-
tic information to select and execute actions in the actual
state space. The abstract space is usually generated via
clustering together the states that share a common prop-
erty (e.g., graph-abstractions as in (Holte et al. 1996a;
1996b), or by generating a relaxation of the actual state
space (eg., by ignoring the obstacles in a path-finding envi-
ronment (Koenig, Tovey, and Smirnov 2003; Koenig 2004),
or by perfoming a limited A*-like search in order to discover
a sub-space of the actual search space in which the heuristic
action selection can be done as mentioned above.

In summary, there are several techniques that can enable a
search algorithm to compute the heuristic function faster by
doing either a limited-depth lookahead or by searching all
the way to the goal in a smaller space, in order to make de-
cisions on which actions to execute faster. But to the best of
our knowledge, these techniques do not make use of condi-
tions such as our k-safeness property, which enables a real-
time search algorithm to detect and avoid the unsolvable por-
tions of the search space.

Conclusions and Future Work
As we discussed earlier, there are many real-time planning
problems in which a bad choice of action can lead to an
unsolvable part of the state space. We have described a a
class of problems called k-safe problems, in which the con-
sequence of such a choice become apparent within k moves
after the choice is made. When k is not too large, this means

that it is possible to detect and avoid unsolvable states in real
time.

We have described k-lookahead-RTA*, a modified ver-
sion of RTA* that works correctly in k-safe problems, by
looking ahead far enough to see the consequences of bad
choices. We have proved that k-lookahead-RTA* can solve
any k-safe real-time planning problem.

We have examined, both analytically and experimentally,
deterministic real-time versions of two well-known planning
domains (Tireworld and Racetrack) in which the state space
contain a large number of unsolvable states. Our analy-
sis shows it is not hard to identify values of k for which
the domains are k-safe, and our experiments show that k-
lookahead-RTA* can solve problems in these domains with
a small per-move overhead.

We think it likely that there are many real-time planning
problems in which k-safeness conditions exist, and we in-
tend to investigate this in our future work. For example,
we intend to generalize k-safeness for use in environments
where actions have nondeterministic outcomes, and where
the planner’s information is incomplete or imperfect. To
avoid excessive computational overhead in such environ-
ments, one possibility is to look at situations where depth-d
lookahead can avoid dead-ends with some probability P , for
0 < P < 1.

Another topic for future work is to generalize the notion
of k-safeness so that k can vary from one part of a problem
to another. For example, to get k in racetrack problems, we
derived an upper bound on the maximum speed that the car
could reach anywhere in the problem. At most states within
the problem, this value of k is unnecessarily large because
the car is moving slower than its maximum speed. Com-
puting a smaller local value of k at each state would have
taken only a small amount of work, and would have made
the search space much smaller.

Acknowledgments. This work was supported in part
by AFOSR grant FA95500610405, NAVAIR contract
N6133906C0149, DARPA’s Transfer Learning and Inte-
grated Learning Program, and NSF grant IIS0412812. The
opinions in this paper are those of the authors and do not
necessarily reflect the opinions of the funders.

We appreciate the comments of the anonymous reviewers,
which were quite useful.

References
Bonet, B., and Geffner, H. 2003. Labeled RTDP: Improv-
ing the Convergence of Real-Time Dynamic Programming.
In International Conference on Automated Planning and
Scheduling (ICAPS-03), 12–21. AAAI Press.
Bulitko, V.; Sturtevant, N.; Lu, J.; and Yau, T. 2007a.
Graph abstraction in real-time heuristic search. Journal of
Artificial Intelligence Research 30:51–100.
Bulitko, V.; Bjornsson, Y.; Lustrek, M.; Schaeffer, J.;
and Sigmundarson, S. 2007b. Dynamic control in path-
planning with real-time heuristic search. In Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS-07).

Bulitko, V.; Lustrek, M.; Schaeffer, J.; Bjornsson, Y.; and
Sigmundarson, S. 2008. Dynamic control in real-time
heuristic search. Journal of Artificial Intelligence Research
32:419 – 452.
Erol, K.; Nau, D. S.; and Subrahmanian, V. S. 1995. Com-
plexity, decidability and undecidability results for domain-
independent planning. Artificial Intelligence 76(1–2):75–
88.
Furcy, D., and Koenig, S. 2000. Speeding up the conver-
gence of real-time search. In AAAI-00.
Gardner, M. 1986. Sim, chomp, and racetrack. In Knotted
Doughnuts and Other Mathematical Entertainments. W.H.
Freeman.
Gutmann, J.-S.; Fukuchi, M.; and Fujita, M. 2005. Real-
time path planning for humanoid robot navigation. In IJ-
CAI, 1232–1237.
Holte, R. C.; Mkadmi, T.; Zimmer, R. M.; and MacDonald,
A. J. 1996a. Speeding up problem-solving by abstraction:
A graph-oriented approach. Artificial Intelligence 85:321–
361.
Holte, R. C.; Perez, M. B.; Zimmer, R. M.; and MacDon-
ald, A. J. 1996b. Hierarchical hierarchical a*: Searching
abstraction hierarchies efficiently. In AAAI-96, 530–535.
Koenig, S., and Likhachev, M. 2006. Real-time adaptive
a*. In AAMAS.
Koenig, S.; Tovey, C.; and Smirnov, Y. 2003. Performance
bounds for planning in unknown terrain. Artificial Intelli-
gence 147(1-2):253–279.
Koenig, S. 1999. Exploring unknown environments with
real-time search or reinforcement learning. In Advances in
Neural Information Processing Systems (NIPS).
Koenig, S. 2001a. Agent-centered search. AI Magazine.
Koenig, S. 2001b. Minimax real-time heuristic search.
Technical Report GIT-COGSCI-2001/02, College of Com-
puting, Georgia Institute of Technology, Atlanta, Georgia.
Koenig, S. 2004. A comparison of fast search methods for
real-time situated agents. In International Joint Confer-
ences on Autonomous Agents and Multiagent Systems In-
ternational Joint Conferences on Autonomous Agents and
Multiagent Systems (AAMAS).
Korf, R. 1990. Real-time heuristic search. Artificial Intel-
ligence 42(2-3):189–211.
Littman, M., and Younes, H. 2004. The First International
Probabilistic Planning Competition (IPPC-04).
Rayner, D. C.; Davison, K.; Bulitko, V.; Anderson, K.; and
Lu, J. 2007. Real-time heuristic search with a priority
queue. In IJCAI-07.
Sherback, M.; Purwin, O.; and D’Andrea, R. 2006.
Real-time motion planning and control in the 2005 cornell
robocup system. In Lecture Notes in Control and Informa-
tion Sciences, volume 335. Springer. 245–263.
Shimbo, M., and Ishida, T. 2003. Controlling the learning
process of real-time heuristic search. Artificial Intelligence
146(1):1–41.

Stene, S. B. 2006. Artificial Intelligence Techniques in
Real-Time Strategy Games - Architecture and Combat Be-
havior. Institutt for datateknikk og informasjonsvitenskap.
Weiss, B.; Naderhirn, M.; and del Re, L. 2006. Global
real-time path planning for uavs in uncertain environment.
In Proc. IEEE Internat. Symp. on Intelligent Control.
Wikipedia. 2009. Racetrack (game). http://en.
wikipedia.org/wiki/Racetrack_(game).
Younes, H., and Littman, M. 2004. Tire world domain.
http://www.cs.cmu.edu/afs/cs/project/
jair/pub/volume24/younes05a-html/
node18.html.

