Last update: July 11, 2019

Hierarchical Refinement as a Generalization
of HTN Planning

Dana Nau
University of Maryland

work performed with
» Sunandita Patra University of Maryland
» Malik Ghallab LAAS/CNRS, University of Toulouse
» Paolo Traverso FBK ICT IRST, Trento, Italy
» James Mason University of Maryland

http://www.cs.umd.edu/~nau/papers/nau2019hierarchical.pdf

Nau: ICAPS hierarchical planning workshop, 2019

—
O
O
—
1Y)
L
c
()
£
(<)
—
(aa)

Nau: ICAPS hierarchical planning workshop, 2019

Harbor Management Tasks

e Multiple levels of abstraction

» Physical/managerial
organization of harbor

e Upper levels:

> Abstract tasks, can be
planned in advance

e Lower levels:
> Multiple agents
> Partial observability

» Dynamic change

e Continual online planning

> Abstract and partial until
more detail needed

Nau: ICAPS hierarchical planning workshop, 2019

manage incoming shipment

————————————————— ————————————— —— — —

registration

manager

storage

assignment (<=
manager

«—»| storage area A manager

storage area B
manager

manager

storage area
C manager

booking %release

navigation

/2

/2\

manager

£\

/2

£\

GUIDY " Tttt e

w

Acting and Planning

Acting Planning

® Performing tasks and actions ® Prediction + search

e Search over predicted states, possible

e Use operational models that tell how e :
organizations of tasks and actions

» Dynamic, unpredictable .
® Use descriptive models to predict

what

environment

> Adapt to context, react to events

Planning stage e Planning in service of acting
Acting stage » Actor asks planner for advice

® Planner runs online
""" <I > e.g., receding horizon

Nau: ICAPS hierarchical planning workshop, 2019

e Details depends on what kind of door

Opening a Door

identify

type
of

door

move
close

to
knob

grasp
knob

» Might not be known until acting time

Nau: ICAPS hierarchical planning workshop, 2019

ungrasp

open door
move
maintain| | back
turn
knob| |pull pull
monitor| |monitor

What kind of door?

» Sliding or hinged

Nau: ICAPS hierarchical planning workshop, 2019

identify

type
of

door

move

close
to

knob

grasp
knob

open door

turn
knob

move | |UNgrasp
maintain| | back
pull pull
monitor| |monitor

What kind of door?

» Sliding or hinged
» Hinge on left or right

ﬁ _

Nau: ICAPS hierarchical planning workshop, 2019

identify

type
of

door

move

close
to

knob

grasp
knob

open door

turn
knob

move | |UNgrasp
maintain| | back
pull pull
monitor| |monitor

What kind of door?

» Sliding or hinged
» Hinge on left or right

» Open toward or away

identify

type
of

door

Hil

Nau: ICAPS hierarchical planning workshop, 2019

move

close
to

knob

grasp
knob

open door

turn
knob

maintain

move
back

pull

pull

ungrasp

monitor

monitor

What kind of door?

» Sliding or hinged
» Hinge on left or right

identify

type
of

door

» Open toward or away
> Knob, lever,

Hil

Nau: ICAPS hierarchical planning workshop, 2019

move

close
to

knob

grasp
knob

open door

maintain
turn

move

ungrasp

back

knob| pull

pull

monitor

monitor

What kind of door?

» Sliding or hinged
» Hinge on left or right
» Open toward or away

> Knob, lever,
push bar, push plate,

Nau: ICAPS hierarchical planning workshop, 2019

identify

type
of

door

move

close
to

knob

grasp
knob

open door

maintain
turn

move

ungrasp

back

knob| pull

pull

monitor

monitor

10

What kind of door?

» Sliding or hinged
» Hinge on left or right

identify

type
of

move
close
to

door

knob

» Open toward or away

> Knob, lever,
push bar, push plate,
pull handle, thumb latch,

Hil

Nau: ICAPS hierarchical planning workshop, 2019

grasp
knob

open door

maintain
turn

move

ungrasp

back

knob| pull

pull

monitor

monitor

What kind of door?

grasp

open door

knob

> Sliding or hinged identify| [(move
» Hinge on left or right tﬁe Cltcz)se
> Open toward or away door || knob
> Knob, lever,

push bar, push plate,

pull handle, thumb latch,
something else

Nau: ICAPS hierarchical planning workshop, 2019

© &

maintain
turn

move

ungrasp

back

knob| pull

pull

monitor

monitor

Refinement Acting

e Task: Actor
> activity for the actor to perform Deliberation components
Objectives
e For each task, one or more Planning| [~ Other
Queries
refinement methods es 7 e «——> actors
Acting Messages

» Operational models telling how
to perform the task

Commandsl TPercepts

method-name(arg,, ..., argy) Execution platform
task: task-identifier .
pre: test
body: computer program Acmaﬁonsl TSig”alS

that may include
tasks and commands]

External World

~

“primitive” functions that the actor can send to its execution platform

Nau: ICAPS hierarchical planning workshop, 2019 13

Refinement Acting

® Task:
> activity for the actor to perform

e For each task, one or more

refinement methods

» Operational models telling how

to perform the task

method-name(arg,, ..., argy)

task: task-identifier

pre: test

body: computer program
that may include
tasks and commands

e Differences from HTN methods

» Actor uses them reactively

>

>

>

Body is a computer program
that invokes tasks, commands

Commands interact with
external world

Outcomes not known in
advance

Current state obtained using
sensors, represented using state
variables

~

“primitive” functions that the actor can send to its execution platform

Nau: ICAPS hierarchical planning workshop, 2019

14

identify

type
of
door

move
close
to

Nau: ICAPS hierarchical planning workshop, 2019

knob

grasp
knob

open door Openlng d DOOf
e What kind:
» Hinged on left, opens
move | [UNZrasp
maintain] | back toward us, knob
turn
knob| [pull| |pull m1-unlatch(r,d,0)
monitor| |monitor task: unlatch(r,d)

m-opendoor(r,d,[h)

task: opendoor(r,d)

pre: loc(r)=1[A road(/,d)
A handle(d, h)

body:

while -reachable(r, /) do
move-close(r, /)
monitor-status(r,d

if door-status(
unlatch(r,d)

throw-wide(r,d)
end-monitor-status(r,d)

% closed then | | - task: throw-wide(r,d)

/ pre: loc(r,]) A toward-side(,d) A
side(d,left) A type(d,rotate) A handle(d,0)
body: grasp(r,0)
turn(r,0,alphal)
pull(r,vall)
if door-status(d) = cracked then ungrasp(r,0)
else fail

m1-throw-wide(rd,/,0)

pre: loc(#/) A toward-side(/,d) A
side(d,left) A type(d,rotate) A
handle(d,0) A door-status(d) = cracked

body: grasp(70)
pull(r,vall)
move-by(r,val2)

15

RAE (Reactive Acting Engine)

e Uses refinement methods to accomplish tasks

> Based on OpenPRS robot control architecture

e I'll give a summary
e For details:

> Ghallab, Nau, and Traverso,
Automated Planning and Acting,
Cambridge University Press, 2016

> Final manuscript and lecture slides
freely downloadable here

Nau: ICAPS hierarchical planning workshop, 2019

Automated Planning
and Acting

Malik Ghallab, Dana Nau
and Paolo Traverso

16

http://www.laas.fr/planning

RAE (Reactive Acting Engine)

Agenda: {stack oy, ..., stack o,}
Like program execution stacks

(sub-subtask, method, ...)
(subtask, method, ...)
(task, method, ...)

stack =

loop:

for every new external task or event t
Candidates = {applicable method instances}
choose m € Candidates
create refinement stack o, initially just (z,m)
add o to Agenda

for each stack o in Agenda
Progress(o)
if o 1s finished, remove it from Agenda

Progress(o)

executing

(T,m,...) <= top(0)

1s m’s current step
a command?

status?

return hod retry T using an
success| Jinishe untried candidate
more steps
in m?
res pop(o)
a <— next step of m
assignment command

update

send a to the

execution platform

candidates
for a?

Nau: ICAPS hierarchical planning workshop, 2019

choose a candidate m'
push (a, m',...) onto o

retry 7 using an
untried candidate

17

RAE (Reactive Acting Engine)

Agenda: {stack oy, ..., stack o,}

Like program execution stacks

(sub-subtask, method, ..

)

stack = | (subtask, method, ..

)

(task, method, ...)

Progress(o):

(T,m,..

) < top(0)

executing

return
success

loop:
for every new external task or event 7

hoose m € Candzdates

add o to Agenda
for each stack o in Agenda
Progress(o)

icable method instances}

create refinement stack o, initially just (z,m)

if o 1s finished, remove it from Agenda

finished

1s m’s current step
a command?

status?

more steps
in m?
yes

retry 7 using an
untried candidate

pop(o)

a <— next step of m

assignment

e Get advice from a planner

Nau: ICAPS hierarchical planning workshop, 2019

yes

—
: 4
choose a candldate/m

push (a, m’,...) onto o

candidates
for a?

command

v

send a to the
execution platform

retry 7 using an
untried candidate

18

How to Do the Planning?

open door

. move | lungrasp
identify| | move orasp| [eorm maintain| | back

t

YPe | close | [knob knob| [oall

of to pu pull

d

00T || knob monitor| |monitor

m-opendoor(r,d, [, h)

task: opendoor(r,d)

pre: loc(r)=1[Aroad(/d)

A handle(d, h)

body:

while -reachable(r, /) do
move-close(7, /)
monitor-status(r,d)

if door-status(d) =closed then

unlatch(r,d)
throw-wide(r,d)
end-monitor-status(r,d)

Nau: ICAPS hierarchical planning workshop, 2019

e In the book: SeRPE planner

> Extends the SHOP algorithm to reason
about refinement methods

> Executes code in the method’s body,
but

e Descriptive models of commands
e (lassical actions, abstract state
> To backtrack from a method m:

e Revert to state when m was chosen

19

How to Do the Planning?

open door
e In I\ book: SeRPE planner
> Extduds the SHOP algoryim to reason
p— move | (ungrasp 4
1aenti 1 1 . .
o | |mOve| [grasp| [y | [maintain] | back > Executes ¢ #ie method’s body,
YPe | close | [knob
of to knob| |pull pull
door || knob monitor| |monitor udels of commands
e C(ClaAsical actions,\Wbstract state
m-opendoor(r,d, [, h)
task: opendoor(r,d) > Toghacktrack from a met
pre: loc(r)=1[Aroad(/d) s chosen
A handle(d, h)
body: Classical actions don’t represent
while ~reachable(r W » Nondeterministic outcomes,
mgve-close(r) / partial observability, exogenous events,
.monltor-status(r d) durations, predicted future events,
if docl)r-s:]atus(d) = closed then overlapping actions and events, ...
unlatch(z, .
. (r.d) > Sometimes OK, but often not
throw-wide(r,d)
end-monitor-status(7,d)

Nau: ICAPS hierarchical planning workshop, 2019 20

Acting and Planning

Acting Planning

® Performing tasks and actions ® Prediction + search

e Secarch over predicted states, possible

e Use operational models that tell how M :
organizations of tasks and actions

» Dynamic, unpredictable

environment e Use descriptive models to predict what

> Adapt to context, react to events

Consistency? Planning stage

Acting stage

Nau: ICAPS hierarchical planning workshop, 2019

21

Acting and Planning

Acting Planning

® Performing tasks and actions ® Prediction + search

e Secarch over predicted states, possible
:] organizations of tasks and actions
» Dynamic, unpredictable 8

environment Ww predict what

Simulated execution of
actor’s operational models

e Use operational models that tell how

> Adapt to context, react to events

Planning stage
Acting stage

Nau: ICAPS hierarchical planning workshop, 2019

22

Why should we think this will work?

e Why does Al planning use descriptive models?
(1) AI planners search a huge search space, need fast predictions
(2) Effort required to create detailed operational models

e Especially if you aren’t a domain expert

® Problems aren’t as bad as they used to be
(1) Like HTN methods, the operational models focus the search
Computers have gotten more powerful
e Compute detailed simulations more quickly
- e.g., fast physics-based simulations
(2) Real-world actors will already include control software

e May be able to use it as refinement methods

Nau: ICAPS hierarchical planning workshop, 2019

23

RAEplan

e Simulate RAE on a single task

RAEplan(task 7):
Candidates = {applicable method instances}
nondeterministically choose m € Candidates
create refinement stack o for 7 and m
loop while Progress(o) # failure
if o 1s completed then return m
return failure

Progress(o):

return

‘(t,m,...) < top(0) ‘

executing

assignment

update
state

a command?

status?

finished

more steps
in m?
yes

1s m’s current step

return failure

pop(o)

a <— next step of m

command

Y

either simulate or
use descriptive model

candidates
for a?

Nau: ICAPS hierarchical planning workshop, 2019

choose a candidate m'
push (a, m',...) onto o

return failure

24

RAEplan

e Simulate RAE on a single task

Progress(o):

RAEplan(task 7):

Candidates = {applicable method instances}
nondeterministically choose m € Candidates
create refingment stack o for 7 and m
loop while Pkogress(o) # failure

if o 1s completed then return m

return

executing

return failure
What How to handle
control nondeterministic
strategy? outcomes?

Nau: ICAPS hierarchical planning workshop, 2019

update
state

‘(t,m,...) < top(0) ‘

a command?

status?

finished

more steps
in m? n

yes

1s m’s current step

return failure

pop(o)

a <— next step of m

command

Y

either simulate or
use descriptive model

candidates
for a?

choose a candidate m'
push (a, m',...) onto o

return failure

25

RAEplan

e Simulate RAE on a single task

Progress(o): ‘(T m,...) <= tOP(U)‘

RAEplan(task 7):

create refinetnent stack o for 7 and m
loop while Progress(o) # failure

if 0 1s completed then return m
return failure

Candidates = {applicable method instances}
nondeterministically choose m € Candidates executing

return

N\

Idea 1:
backtracking

e Backtrack over method’s body

e Was ecasy in SHOP
> backtrack over the task list

e In RAEplan, need to backtrack over
code

e A group of students worked on this for
several months, didn’t get it to work

Nau: ICAPS hierarchical planning workshop, 2019

finished

more steps
in m? n

1s m’s current step

a command?

status?

yes

return failure

pop(o)

a <— next step of m

update
state

choose a candidate m'
push (a, m',...) onto o

command

Y

either simulate or
use descriptive model

candidates
for a?

return failure

26

RAEplan

e Simulate RAE on a single task

RAEplan(task 7):
Candidates = {applicable method instances}
nondeterministically choose m € Candidates
create refinetment stack o for 7 and m
loop while Progress(o) # failure

if o 1s completed then return m
return failure

Progress(o):

return

executing

N\

Idea 2:
multithreading

e Too many parallel processes

update
state

‘(t,m,...) < top(0) ‘

a command?

status?

finished

more steps
in m? n

yes

1s m’s current step

return failure

pop(o)

a <— next step of m

command

Y

either simulate or
use descriptive model

candidates
for a?

Nau: ICAPS hierarchical planning workshop, 2019

choose a candidate m'
push (a, m',...) onto o

return failure

27

RAEplan

e Simulate RAE on a single task

RAEplan(task 7):
Candidates = {applicable method instances}
nondeterministically choose m € Candidates
create refinetment stack o for 7 and m
loop while Progress(o) # failure

if o 1s completed then return m
return failure

Progress(o):

return

executing

N\

Idea 3:
Monte Carlo rollouts

e Multiple runs
> Random outcomes in each run
e Return the method m that gives the
highest expected utility

Patra, Traverso, Ghallab, and

update
state

‘(t,m,...) < top(0) ‘

a command?

status?

finished

more steps
in m? n

yes

1s m’s current step

return failure

pop(o)

a <— next step of m

command

Y

either simulate or
use descriptive model

candidates
for a?

Nau. Acting and planning using

operational models. A4AI, 2019 choose a candidate m'
push (a, m',...) onto o

Nau: ICAPS hierarchical planning workshop, 2019

return failure

28

http://www.cs.umd.edu/~nau/papers/patra2019acting.pdf

Summary of Experimental Results

Domain | Dynamic Dead Sensing Robot Concurrent
events ends collaboration tasks
CR v v v — v
EE v v — v v
SD v — — v v
IP v — — v v

e Four different domains, different combinations of characteristics
e Evaluation criteria:
> Efficiency, successes vs failures, how many retries
e Result: planning helps
» RAE operated better with RAEplan than without
> RAE operated better with more planning than with less planning

Patra, Traverso, Ghallab, and

Nau. Acting and planning using
operational models. 4441, 2019

Nau: ICAPS hierarchical planning workshop, 2019 29

http://www.cs.umd.edu/~nau/papers/patra2019acting.pdf

Summary

e Continual online planning, in service of acting
e Descriptive vs. operational models
e Refinement methods
» Generalization of HTN methods
e State variables
e Body is a computer program that includes tasks, commands
e Commands interact with environment
e QOutcomes not known in advance
> Used in two ways
e Reactively in RAE
e Predictively in RAEplan
e Experimental results with RAE, RAEplan

» More planning — better acting

Nau: ICAPS hierarchical planning workshop, 2019

30

Limitations and Future Work

e How to get the operational models?
> Earlier, I said, “Real-world actors may already include operational models™
e OK if the actor is RAE, OpenPRS, ...
e Otherwise, might not be in a form we can use
> Currently, only alternative is to write them ourselves

e Develop learning algorithms to do this?

e Experiments were done in “toy domains”™

» Want to test the approach in real planning problems

e Ongoing project with US Naval Research Laboratory
> Use RAE, RAEplan for recovery from attacks on software-defined networks
» They’re writing the refinement methods
> We plan to modify RAE, RAEplan to meet their needs

Nau: ICAPS hierarchical planning workshop, 2019

31

Links

e Ghallab, Nau, and Traverso, e Patra, Traverso, Ghallab, and Nau.
Automated Planning and Acting, Acting and planning using
Cambridge University Press, 2016 operational models. 4441, 2019

» Final manuscript, lecture slides

e RAF and RAEplan source code

| F . . » 3-clause BSD license

¥
Yt
J
ﬁ

/4
S ‘=Y

» Caveat: software still under
development

Automated Planning
and Acting

Malik Ghallab, Dana Nau
and Paolo Traverso

Nau: ICAPS hierarchical planning workshop, 2019

http://www.laas.fr/planning
http://www.cs.umd.edu/~nau/papers/patra2019acting.pdf
https://bitbucket.org/sunandita/raeplan/src/master/

