
Chapter 3.1

The Role of Imperfect Information

An obvious source of approaches to strategy formulation is the field of classical
strategic games. Classical game-tree search techniques have been highly success-
ful in classical games of strategy such as chess, checkers, othello, backgammon,
and the like. However, all of these games are perfect-information games: each
player has perfect information about the current state of the game at all points
during the game. Unlike classical strategic games, practical adversarial reason-
ing problems force the decision-maker to solve the problem in the environment of
highly imperfect information. Some of the game-tree search techniques used for
perfect-information games can also be used in imperfect-information games, but
only with substantial modifications.

In this chapter,1 we classify and describe techniques for game-tree search
in imperfect information games. In addition, we offer case studies of how
these techniques have been applied to two imperfect-information games: Texas
Hold’em, which is a well-known poker variant, and kriegspiel chess, an imperfect-
information variant of chess that is the progenitor of modern military wargaming
[15].

Classical Game-Tree Search
In order to understand how to use game-tree search in imperfect-information
games, it is first necessary to understand how it works in perfect-information
games. Most game-tree search algorithms have been designed for use on games
that satisfy the following assumptions:

1This work was supported by the following grants, contracts, and awards: ARO grant
DAAD190310202, ARL grants DAAD190320026 and DAAL0197K0135, the ARL CTAs on
Telecommunications and Advanced Decision Architectures, NSF grants IIS0329851, 0205489
and IIS0412812, UC Berkeley contract number SA451832441 (subcontract from DARPA’s REAL
program). The opinions expressed in this chapter are those of the authors and do not necessarily
reflect the opinions of the funders.

The figures and tables in this chapter are c© 2005 Dana Nau and are used with permission.

1

• The game is a sequential-move game, i.e., it consists of a sequence of actions
called moves. Examples include moving a piece in a game such as chess, check-
ers, othello, or backgammon, and playing a card in a game such as poker or
bridge.

• It is a two-player game, i.e., the moves are made by two independent agents (or,
in games such as bridge, two teams of agents) called players.

• The game has real-valued payoffs, i.e., whenever the game ends, each player (or
team of players) receives a payoff that can be expressed as a real number. For
example, a player’s payoff in poker is the amount of money that he/she wins or
loses. In chess or checkers, the payoffs can be represented numerically as 1 for
a win, −1 for a loss, and 0 for a draw.

• The game is a zero-sum game, i.e., the two players (whom we will call Max and
Min) are adversaries. Technically, a zero-sum game is one in which the sum of
the payoffs is always zero, e.g., chess, checkers, and poker. But the term “zero
sum” is often used to include many games in which the sum of the payoffs is
nonzero, provided that these games can be translated into equivalent games in
which the sum is zero (e.g., by subtracting some constant c from the payoffs of
both players). Bridge is an example of such a game. Probably the best-known
example of a non-zero-sum game is the prisoner’s dilemma [3].

• The game is a perfect-information game, i.e., the players always have complete
information about the game’s current state. This includes games such as chess,
checkers, othello, and backgammon, but it excludes most card games and some
board games (e.g., battleship and kriegspiel chess).

Games satisfying the above requirements can be represented by game trees
such as the simple one shown in Figure 1. In this figure, the square nodes represent
states where it is Max’s move, the round nodes represent states where it is Min’s
move, and the edges represent moves. The terminal nodes represent states in
which the game has ended, and the numbers below the terminal nodes are the
payoffs. The figure shows the payoffs for both Max and Min; but we will usually
show only the payoffs for Max (since Min’s payoff is always the negative of Max’s
payoff).

Suppose that two players are playing a game, the current state is s, and the
player to move is p. It has become conventional to say that “perfect” play for p at
s consists of choosing the move that produces the highest possible payoff if both
players play perfectly from that point onwards. From this, it follows that at s, the

2

Min’s turn to move:

5 –4 9 0 –7 –2 9 0

Max’s turn to move:

Max’s turn to move:

s1

s4 s5 s6 s7

s2 s3

s8 s9 s10 s11 s12 s13 s14 s15

Payoffs for Max:

Terminal nodes:

–5 4 –9 0 7 2 –9 0Payoffs for Min:

m(s2) = 5 m(s2) = –2

m(s2) = 5 m(s2) = 9 m(s2) = –2 m(s2) = 9

m(s2) = 5

Figure 1: A simple example of a game tree.

effective payoff for Max is

m(s) =

Max’s payoff at s if s is a terminal node,
max{m(t) : t is a child of s} if it is Max’s move at s,
min{m(t) : t is a child of s} if it is Min’s move at s,

(1)

where child means any immediate successor of s.
For example, in Figure 1,

m(s2) = min(max(5,−4),max(9, 0)) = min(5, 9) = 5;

m(s3) = min(max(s12),max(s13),max(s14),max(s15) = min(7, 0) = 0.

Hence the perfect play for Max at s1 is to move to s2. The formula for m(s)
is a special case of von Neuman and Morgenstern’s famous Minimax Theorem,
hence m(s) is called Max’s minimax value at s. The minimax value for Min is, of
course, −m(s).

If one chooses a move by applying Eq. (1) directly, this requires searching
every state in the game tree, but most nontrivial games have so many states that
it is completely infeasible to explore all of them. Hence a number of techniques
have been developed to speed up the computation. The best known ones include

• Alpha-beta pruning, which is a technique for deducing that the minimax values
of certain states cannot have any effect on the minimax value of s, hence those

3

states and their successors do not need to be searched in order to compute s’s
minimax value.

• Limited-depth search, which uses the following modified version of Eq. 1,
where d is an arbitrary number called the cutoff depth, and e(s) is a static eval-
uation function that uses ad hoc techniques to produce an estimate of m(s):

m(s, d) =

p’s payoff at s if s is a terminal state,
e(s) if d = 0,
max{m(t, d− 1) : t is a child of s} if it is Max’s move at s,
min{m(t) : t is a child of s} if it is Min’s move at s.

(2)
• Transposition tables. These are hash tables in which one can store the minimax

values of some of the states. This way, if those states occur more than once in
the game tree, it will not be necessary to compute their values more than once.

• Quiescence search. This is a modified version of Eq. 2 in which if d = 0,
we will still continue to search below e(s) if s is not quiescent, if something
is happening at s (e.g., a pending capture in chess) that is likely to make e(s)
inaccurate.

Most good game-tree search programs use a combination of these and several
other techniques.

Game-Tree Search in Imperfect Information Games
In an imperfect-information game, a player p’s belief state is the set b =
{s1, s2, . . . , sn} of all states that are consistent with the information currently
available to p. If the players move in alternation, then in principle it is possible
to model the game as an imperfect-information game tree G in which each node
u represents a belief state bu, and the set of edges emanating from u represents
the moves(u) of all moves that a player might be able to make at u (i.e., a move
is in moves(u) if it is applicable to at least one state in bu). In such a game tree,
the utility value of u would depend on the probability distribution over bu; i.e., it
depends on the probability, for each state s ∈ bu, that the current state is actually
s. However, in practice this approach presents some immense difficulties:

One difficulty is that the game tree may have a very large branching factor.
Generally the set moves(bu) of all moves that a player might be able to make
is much larger than the set of moves applicable to each state s ∈ bu, hence the

4

branching factor of the imperfect-information game tree is much larger than what
it would be if we had perfect information. Since the size of a game tree generally
is exponential in the tree’s branching factor, this means that the game tree for an
imperfect-information game can dwarf the game tree that we would get if we had
perfect information.

As an example, consider a two-player card game in which an ordinary deck
of playing cards is divided into its four suits, and each player is dealt one card of
each suit. Suppose the players play cards in alternation until neither player has
any cards left. If Max can see what cards are in both player’s hands, then the
branching factor (the number of nodes that are immediate successors) is 5 − n
at Max’s n’th move and 5 − n at Min’s n’th move, for n = 1, 2, 3, 4. Thus the
number of leaf nodes in the game tree is

4× 4× 3× 3× 2× 2× 1× 1 = 48.

But suppose that Max can see the cards in his/her hand, but not the cards in Min’s
hand—just the cards that Min has already played. This changes the branching
factor at Min’s n’th move to 12× (5−n), so the number of leaf nodes in the game
tree is

(12× 4)× 4× (12× 3)× 3× (12× 2)× 2× (12× 1)× 1 = 11943936.

Another difficulty is how to determine, for each possible move that an adver-
sary might be able to make, the probability that the adversary actually can make
that move. In card games where the cards are dealt to the players, this probability
(or a reasonable estimate) can be computed from the probabilities of the possible
card distributions. But in a game like kriegspiel chess, in which the uncertainty
arises from not knowing what moves the adversary has already made, there is no
clear way to compute such a probability.

A third difficulty is that even if the above probabilities were known, it still
is not clear how to compute an estimate of a node’s utility value. In perfect-
information games, the minimax formula has been successful because it provides a
pretty good (although not perfect) model of how a strong adversary might behave.
But if the adversary’s information about the game is imperfect, then it is unlikely
that the adversary will make the move predicted by the minimax formula. Some
other model of the adversary is needed instead, and often it is unclear what this
model should be.

Several ways have been developed to try to circumvent the above difficulties.
They can be classified into three main types (which are often used in combination

5

with each other): aggregation techniques, Monte-Carlo sampling, and opponent
modeling. We will now discuss each.

Aggregation Techniques
Similarity-based aggregation. There are cases in which two different states in a
game are similar enough to be treated as equivalent. For example, in bridge, cards
that have similar rank may often be viewed as equivalent: playing one of them
will usually have the same effect as playing any of the others. This effectively
decreases the branching factor of the search space by reducing the number of plays
that need to be evaluated. This idea was initially developed for use in the game
of sprouts [Applegate et al., 1991], and it has been used successfully in bridge in
combination with Monte Carlo sampling [Ginsberg, 1996]. More recently, in the
game of poker, it has been used in the development of a computer program that
plays at the level of an good human player [Billings et al., 2003].

Strategy-based aggregation. The normal approach to game tree generation is
action-based: each branch corresponds to an action that one might take. In
strategy-based game tree generation, each branch instead corresponds to some
strategy that a player might try. For example, bridge play is composed strate-
gies such as ruffing, cross-ruffing, finessing, cashing out, etc. For each strategy,
one can define applicability conditions telling whether the strategy is a reasonable
thing to try, and partially-instantiated game-tree fragments giving the possible
ways that the strategy might be carried out. This reduces the branching factor of
the game tree because the number of applicable strategies at each point is usu-
ally smaller than the number of possible actions. The primary drawback of this
approach is that a substantial amount of human effort needed to make sure that
the set of strategies is complete and correct—and for this reason it has not been
widely used. However, it has been used successfully in computer bridge [Smith et
al., 1998].

Monte-Carlo Sampling
In an imperfect-information game G, suppose we can generate a hypothesis h for
what the missing information is. If the hypothesis h is correct, then this will reduce
the game to a perfect-information game G(h) that can be searched using ordinary
game-tree search techniques. In general, we will not know whether h is correct—

6

but if we have a probability distribution over the set H of all possible hypotheses,
then we can use Monte Carlo techniques as follows. First, use the probability
distribution to randomly generate n hypotheses h1, . . . , hn for what the missing
information might be. Next, do an ordinary minimax game-tree search on each of
the games G(h1), G(h2), . . . , G(hn), and average the results in order to produce
approximate utility values for the nodes of G. The larger the value of n, the
better the approximations will be, and even for a large value of n, we can search
G(h1), G(h2), . . . , G(hn) much more quickly than we could search G itself.

Statistical sampling has an important theoretical limitation [13]: it does
not produce correct evaluations of information-gathering moves or moves in-
tended to deceive the opponent (see chapters 2.3 and 2.4 of this book), be-
cause neither kind of move is even possible in the perfect-information game trees
G(h1), G(h2), . . . , G(hn). Despite this limitation, statistical sampling has worked
well in practice in several games. Examples of such games include bridge [30, 14],
scrabble [26], and poker [4].

Opponent Modeling
Opponent modeling is an essential part of expert human game-playing. At the
professional level, baseball players know which batters are susceptible to fastballs,
basketball players know their opponents’ better shooting hands, chess players will
study the past openings of their opponents before meeting them in tournament
play, and poker players are proceeded by their reputations.

In classical game-tree search on perfect-information games, the minimax for-
mula is a simple model for the opponent: it assumes an computationally un-
bounded opponent capable of making the move that is worst for us at any point
in the game. In perfect-information games, very little opponent modeling other
than this has been done in any explicit sense,2 but a certain amount of opponent
modeling often appears implicitly. For example, one source of static evaluation
functions for chess is automated analysis of databases of the games played by
chess grandmasters [16]. A chess program using such a static evaluation function
implicitly attempts to push its opponent towards a board position that is would be
unfavorable to one of the grandmasters whose games appear in the database.

In partial-information games, opponent modeling has a much more important

2A notable exception is [9], an interesting theoretical model for opponent modeling in total
information games that provides a syntax and algorithm for dealing with concepts such as “he
thinks that I think that he thinks”

7

role to play. Most of the work on opponent modeling in partial-information games
has been done in the game of poker, where the need to model an opponent’s betting
style is quite obvious.

For the game of Texas Hold’em (see the case study later in this chapter), one
approach [7] is to keep a record of a player’s past moves, and assume that his/her
future behavior will be similar to how he/she behaved under similar conditions in
the past. A more recent approach [11] uses a neural net to aggregate the avail-
able information into a prediction of the opponent’s next move. In both of these
works, the programs that do opponent modeling far outperform those which do no
modeling.

For some additional work on opponent modeling (specifically, a reinforcement
algorithm for constructing opponent models in extensive games), see chapter 3.5.3

Combining the Techniques
In most practical applications, two or more of the above techniques are used in
combination with each other. For example, statistical sampling and aggregation
can be combined by using an aggregation technique to construct a simplified ver-
sion of the game tree, doing the statistical sampling on this simplified game tree,
and using the results of the sampling to choose a move in the original (unsimpli-
fied) game. This has been used in several bridge programs [30, 14] and at least
one poker program [4].

Case Study: Texas Hold’em
Texas Hold’em is a variant of poker that originated sometime during the 1920s. It
falls into a class of poker games called “community card” or “shared card” games,
which are so called because some of the cards are dealt face-up in the center of the
table and are shared by all of the players. The rest of each player’s hand consists
of “hole cards” which are dealt specifically to that player and are not seen by the
other players. Each player’s hand is comprised of his/her hole cards together with
the community cards.

3In addition, we have developed some very successful techniques for building and maintaining
opponent models in the Iterated Prisoner’s Dilemma with Noise [2], which is a version of the
Iterated Prisoner’s Dilemma in which accidents and miscommunications can occur. However, the
work is beyond the scope of this book.

8

Texas Hold’em is currently the most popular of the community card poker
games, and a number of books have been published on how to play it [17, 27, 22,
28, 10]. It has been called the “Cadillac of Poker,”4 and is well respected as one
of the most strategically complex poker variants. In principle it can be played by
up to 22 players, but in practice it is generally played by groups of 2 to 10 people.

Game play in Texas Hold’em works as follows: each player is dealt two cards
face down. The cards are the player’s hole cards and represent their hidden infor-
mation. There is then a round of betting reffered to as pre-flop. Pre-flop betting is
begun with a forced bet by the two players left of the dealer. This bet is called the
blind. After this betting round, three cards are exposed face-up in the center of the
table. These are community cards which all players may use in their hand. These
three cards are called the flop and following their exposure there is another round
of betting, this time with no forced bets or blinds. After this round, if there are
still players left, another community card, called the turn, is exposed. Following
another betting round the final community card, called the river, is shown. There
is then a final betting round, and if there are players left in the game, there is a
showdown in which the players show their highest five card hand (created using
the two hole cards and the five community cards). The player with the highest of
these hands wins.

In Limit Texas Hold’em, the betting rounds have a specified structure. Players
play in clockwise order. On his/her turn, each player has one of three options: bet,
call, or fold. The bet action raises the amount of money that all players must call
by a fixed amount. A fold causes a player to leave the hand: the player needs not
put any more money into the pot, but also has no ability to win the hand. When
a player calls, he/she matches the current bet and stays in the current hand. The
initial bet is 0 (except in pre-flop where the blind is generally worth one bet).
There is generally a cap of 4 on the number of bet actions which may be made
by all players in any betting round. Thus, in a two player poker game, there are
17 possible ways which a round of betting may proceed, only 9 of which end in a
call.

Play
Poker has been a subject of AI research for yearly 30 years [12], but most work has
either consisted primarily of theoretical analysis [34, 35, 18] or has concentrated
on specific aspects of poker rather than the entire game [31, 29, 19].

4This description was used, for example, in the 1998 movie Rounders.

9

The best-known and most successful work on building complete poker players
has been done by a group of researchers at the University of Alberta [7, 6, 4]. Their
ambition is to build a poker player for the game of Texas Hold’em that better than
the best human players. They are well on their way toward doing so [32].

Their best-known approach, reported in [4], is to use linear programming tech-
niques to compute game-theoretic optimal strategies on a simplified version of
2-player Texas Hold’em, and use those strategies in the real (i.e., unsimplified)
game. They have since supplanted this algorithm with one that uses game-tree
search techniques along the lines of what we described in the Game-Tree Search
section earlier in this chapter [5]. But since that work is not yet published, we
cannot provide the details here.

Opponent Modeling
In this section we discuss two different opponent-modeling techniques for the
game of Texas Hold’em. Both of these techniques were developed by researchers
at the University of Alberta [7, 11].

In [7], opponent modeling is accomplished using the probability that the op-
ponent is holding each of the various possible hole cards. These hole cards are
initially assigned weights based on the a priori random distribution caused by the
deal. As the opponent makes actions through the game, the opponent-modeling
program recomputes these weights to be consistent with the opponent’s actions.
For instance, if an opponent calls one bet pre-flop and then raises on the flop, it
is likely that the opponent has a hand which was ok pre-flop but likely to win
the hand after the flop. That is, the hand may have a been expected to win with
probability 0.55 before the flop, and with probability 0.75 after the flop.5 The
player’s chances of winning changed, and therefore so did their action. The key
to player modeling in [7] is the idea that each player is comfortable with each
possible action only when the win probability meets certain criteria, and further,
that the criteria is particular to each individual player. That is, a player will call
when their hand is likely to win with a probability above 0.5, likely to raise with
hands with winning probability more than 0.75, and likely to fold otherwise. On
re-weighting, weights of hands consistent with opponent action increase at the
expense of those hands which are not consistent.

As an example of this, consider the following situation: we have 9♥9♦. This

5It should be noted that “win probability” would be more accurately stated as “expected value”.
For purposes of presentation, this has been left out, but a full explication can be found in [7].

10

is a good opening hand so we raise when we get the chance. Our model of the
opponent at this point gives equal weight to each of the 1225 other starting hands.
The opponent then, on her action, re-raises us. This affects our opinion of the
opponent’s hand – our opponent model tells us that the opponent is likely to re-
raise with a hand which will win at least 60% of the time. So we now adjust
the weights to take this into account, making only a very few hands possible. In
fact, in two player play, only pocket pairs, hands containing an ace, or very few
hands containing a king are that likely to win. At this point we call,6 and we move
to the flop. It is our misforturne that A♣J♠2♣ falls on the flop. The opponent
bets at this point and we must re-weight the opponent’s hands again. Using the
same heuristic model, we now increase the weight of all hands which win more
than 60% of the time. At this point, there is extremely high probability that the
opponent has a pair of aces, which, in poker lingo, dominates our pair of nines.
Therefore we fold. Had we not been using any opponent modeling, we may have
called, a play which has an expected payoff of about 0.05 on our bet of 17, an
undesirable situation. Thus we see both that opponent modeling is necessary and
how this particular method of opponent modeling fills that need.

In Davidson et al. [11], opponent modeling is accomplished via an artificial
neural network. The network takes as input all of the various aspects of the game,
and returns if it thinks the opponent will bet, check or fold. How this information
can be used in deciding our next move is obvious: if we know the opponent wants
to fold, we should always bet, forcing the fold. The disadvantage to this technique
is that it requires much data and training, and that it is susceptible to subtle, high
level sorts of play such as the slowplay. Davidson et al. show this technique
to work significantly better than the previous weight-based approach in practice
against reasonable human players.

Case Study: Kriegspiel Chess
We now describe our own work on the game of kriegspiel chess.8 Kriegspiel
chess [20, 21] is an imperfect-information variant of chess that was developed
by a Prussian military officer in 1824 and became popular as a military training
exercise. It is the progenitor of modern military wargaming [15].

Kriegspiel chess is like ordinary chess except that neither player can see the

6This is likely not the best action at this point, but we assume it for purposes of exposition.
7if the opponent actually does have an ace
8Most of this section is excerpted from [23], which contains some additional technical details.

11

Figure 2: A kriegspiel chess board from the viewpoint of White. Black has just
taken White’s bishop in the space marked “?”. Hence White knows Black has a
piece there but not what the piece is.

other’s pieces. However, a player can get information about the opponent through
interactions such as captures (see Figure 2), checks, and moves that are blocked
because an opponent’s piece is in the way. When player x captures one of player
y’s pieces, a referee announces that he/she has made a capture but not what piece
was captured, and the referee removes the captured piece from y’s board but does
not say what piece captured it. When x tries to make a move that is illegal (an
attempted pawn take, or moving into check, or attempting to jump an opponent’s
piece), the referee announces that the move is illegal but not why. When x puts
y’s king in check, the referee tells both players that y’s king is in check, and gives
them partial information about how the check occurred (namely by rank, file, long
diagonal, short diagonal, knight, or some combination of the above). Both players
hear all referee announcements.

The published literature on kriegspiel chess is rather small. Two books have
been written on how to play kriegspiel chess [20, 21]. [33] describes a program to
act as the referee that advises the kriegspiel players of illegal moves, captures,

12

and the like. [25] describes a search strategy for some imperfect-information
games that are simpler than kriegspiel. [8] describes some search strategies for
kriegspiel-chess endgames. [24] describes a program that uses logical reasoning
techniques to predict forced wins in kriegspiel chess. But this technique is feasible
only at points where the belief states are relatively small, such as the endgame.

How to build a really good program to play kriegspiel chess is largely an un-
solved problem. Even among human players, kriegspiel chess is a notoriously dif-
ficult game to win [20, 21]; most games end in draws. Kriegspiel chess presents
some difficulties that do not occur in other imperfect-information games (e.g.,
bridge, scrabble, and poker):

1. Twenty moves into a kriegspiel chess game, a conservative estimate is that at
each node of the game tree, the belief-state size—i.e., the number of states
consistent with the current sequence of observations—can be more than 1013.
In comparison, the belief-state size in Bridge is only about 107, and in Texas
Hold’em it is only about 1000.

2. In bridge and poker, usually the statistical sampling is not done on the game
itself, but on a simplified approximation in which the state space and belief
states are much smaller. In bridge, the approximation is done by treating var-
ious sets of states as if they were equivalent, a technique that was first used
in the game of sprouts [1]. In poker, a linear-programming approximation has
been used [4]. But in kriegspiel chess, it is unclear how or whether such an
approximation could be constructed. For our case study, we did not attempt to
construct one.

3. In bridge, poker, and scrabble, the opponent’s actions are observable. The un-
certainty about the current state arises from external events that can be modeled
stochastically: the random deal of the cards in bridge or poker, and the random
choice of a tile in Scrabble. This makes it relatively easy to tell whether or not
a state s is consistent with a belief state b, and to assign a probability to s given
b.

In kriegspiel chess, the opponent’s actions are not observable, and this uncer-
tainty has no simple stochastic model. Telling whether a state s is consistent
with the current belief state b means checking whether there is a history (i.e., a
sequence of moves) that is consistent with b and leads to s, and in the average
case this takes exponential time. And there is no clear way to put a probability
distribution on the states in the belief state.

For our case study, we constructed several algorithms for generating the ran-

13

Table 1: Abstract statistical-sampling algorithm for move evaluation. Game-
tree-search is a perfect-information game-tree search algorithm such as the ones
described earlier in this chapter.

procedure Choose-move(S)
M ← {moves applicable to states in S}
for every s ∈ S and every m ∈M do

vs,m ← Game-tree-search(γ(s,m))
return argmaxm∈M

∑
s∈S vs,mP (s)

dom sample of game boards used in the tree search. AOSP generates game boards
that are consistent with the entire sequence O of observations that a player has
made during the game. LOS only requires consistency with the last observation oi.
HS behaves like AOSP at the beginning of the game, but as the game progresses
it gradually switches over to behaving like LOS. The next section describes the
algorithms in more detail.

At first glance, one might expect LOS to be the worst of the the algorithms,
AOSP to be the best, and HS to be somewhere in between. But our theoretical
analysis on some simplified game-tree models suggests that in some cases HS
may outperform AOSP; and our experiments show HS outperforming AOSP in
kriegspiel chess.

Algorithms
We first introduce some notation. As the game progresses, the players’ moves
will generate a sequence of states Si = 〈s0, s1, . . .〉 called the game history. At
each state si, each player pj will be able to make an observation oij of si; usually
oij will include complete information about pj’s position and partial information
about the other player’s position. At si, player pj’s observation history is Oij =
〈o1j, o2j, . . . , oij〉, and pj’s belief state is bij = {all states that satisfy Oij}.

Our sampling algorithms will be based on the following properties of a state
s: s is last-observation consistent if it is consistent with oij , and all-observation
consistent if it is consistent with Oij .

Table 1 shows an abstract version of statistical game-tree search. S is the sam-
ple set of states, γ(s,m) is the state produced by performing move m in state s,
Game-tree-search is a perfect-information game-tree-search algorithm such as
alpha-beta, and P is a probability distribution over the states in S. Some addi-

14

tional code must be added to handle the case where a move m is applicable to
some states but not others; this code is game-specific and we do not discuss it
here.

We now can define three different sampling algorithms that provide input for
Choose-move. In each case, k is the desired number of states in the statistical
sample, and i is how many moves the players have played so far.

• LOS (Last Observation Sampling) If there are fewer than k last-observation
consistent states, then let S contain all of them; otherwise let S contain k such
states chosen at random. Return Choose-move(S).

• AOSP (All Observation Sampling with Pool): AOSP returns a move, and stores
a set of states (a pool) to use as input to use the next time AOSP is called. Every
state in the pool is to be consistent with Oij , though we do not assume that all
such states are in the pool. Let S0 be the pool AOSP returned last time, and
M = {all of the other player’s possible responses to pj’s last move}. Let S1 =
{γ(s,m) | s ∈ S0,m ∈ M , m is applicable to s, and γ(s,m) satisfies Oij}. If
|S1| < k, then let S2 = S1; otherwise let S2 contain k states chosen at random
from S1. Let m = Choose-move(S2). Return (m, {γ(s,m) | s ∈ S1}).

• HS (Hybrid Sampling): Like AOSP, HS returns a move and a set of states.
Compute S1 and S2 same as in AOSP. If |S2| < k then let S3 be a set of k −
|S2| random last-observation consistent states; otherwise S3 = ∅. Let m =
Choose-move(S2 ∪ S3). Return (m, {γ(s,m) | s ∈ S1}).

Theoretical Analysis
Analyzing the performance of these algorithms is impossible without making sim-
plifying assumptions, but there is more than one set of assumptions one might
make. Below we do two analyses, based on two different sets of assumptions.
The differing assumptions lead to differing conclusions about which algorithm
will do better.

Game-tree analysis. Suppose each state has exactly b children, for some constant
b. Suppose that we know all of pj’s moves but not the other player’s moves. If
the number of states is very large (e.g., 1013 as described earlier), then during the
early stages of the game, the number of states grows exponentially, with roughly
bi/2 possible states at the i’th move. Suppose that for each state s where it is the
other player’s move, the observation history Oij eliminates, on the average, some
fraction 1/c of that player’s possible moves, where c > 1. Then the number of

15

possible states at the i’th move given Oij is (b/c)i/2. Thus the probability of any
individual state at depth i being consistent with Oij is (1/c)i/2, which approaches
0 at an exponential rate as i increases.

Thus, if the game continues to grow as a tree with a branching factor of b, then
our analysis suggests the following:

• AOSP’s sample set S2 will decrease in size as the game progresses. The prob-
ability of a state s’s successors being consistent with bi is 1/c, since s is al-
ready known to be consistent with bi−1. Hence as the game progresses, S2 will
soon become too small for the results to have much statistical significance and
AOSP’s play will begin to resemble random play.

• Each board generated by LOS is unlikely to be consistent with the current belief
state; thus the values computed by LOS are likely to be close to random.

• At the beginning of the game, HS will behave identically to AOSP. As the game
proceeds and the size of S2 decreases, HS will put more and more randomly
generated boards into S3, thus making the results more noisy. Thus HS’s quality
of play is likely to be worse than AOSP’s.

Game-graph analysis. If there are n possible states in the game, then the number
of moves at each level cannot continue to grow exponentially, but will eventually
flatten out. The game “tree” will be a graph rather than a tree, with n nodes
(at most) at each depth, one for each possible state. There will be b edges from
each node at depth i to nodes at depth i + 1, 1/c of which are consistent with
any given observation; suppose these edges go to a random set of nodes. Then
for each state s, the probability (under certain independence assumptions) that it
is reachable in i moves is about min(1, (n − 1)i−3((b/c)/(n − 1))i−1). In other
words, the probability that a randomly chosen state s has a history consistent with
Oij approaches 1 exponentially. This suggests the following:

• Rather than degrading to random play as in the game-tree analysis of the previ-
ous section, AOSP’s quality of play will eventually level off at some level above
that, depending on the number of states available in the pool.

• As the game proceeds, the probability of a randomly generated board being
consistent with the current belief state will increase toward 1; thus LOS will
produce increasingly good quality of play. However, its play will be limited by
the fact that it has no good way to assign relative probabilities to its randomly
generated boards.

• At the beginning of the game, HS will behave identically to AOSP. As the game

16

proceeds and AOSP’s sample size decreases, HS will fill up the rest of the sam-
ple with randomly generated boards—but as the game proceeds, it will become
increasingly likely that these randomly chosen boards are consistent with the
current belief state. Thus HS’s quality of play is likely to be better than AOSP’s.

Discussion. With the first set of assumptions, AOSP is likely to perform much
better than LOS, and somewhat better than HS. With the second set of assump-
tions, it is unclear which of LOS and AOSP will be better, but HS is likely to
perform better than AOSP and LOS.

Since both sets of assumptions represent extremal cases, our analyses suggest
that the actual performance is likely to be somewhere in between. In particular, it
seems plausible that HS will perform better than AOSP, i.e., that if last-observation
consistent boards are included in the statistical sample later in the game, this will
help rather than hurt the evaluations. The section after next describes our experi-
mental test of this hypothesis.

Timed Algorithms
In order to make fair comparisons among LOS, AOSP, and HS, they cannot be
implemented in the exact way described in the Algorithms section. They must be
modified to take, as an additional input variable, the amount of time t available to
decide on a move. This is necessary so that the algorithm can do as well as it can
within that amount of time. We call the modified algorithms Timed LOS, Timed
AOSP, and Timed HS.

Timed LOS. Rather than taking the set S as input as shown in Table 1, Timed
LOS generates the members of S one at a time and evaluates them as they are
generated, so that it can generate and evaluate as many boards as it can during the
time available. Once the time is up, it returns the move whose average value is
highest, as shown in Table 1.

Timed AOSP. Timed AOSP maintains a pool of states P = {s1, . . . , sp} that
are known to be consistent with the current belief state b. Using an estimate of
how long Game-tree-search will take on each board, it calculates some number
of boards kt that it can evaluate during the available time t. The estimate kt is
deliberately a little low, to try to keep Timed AOSP from running overtime and

17

to ensure that there will be time left over to attempt to generate more consistent
boards. There are three cases:

• If p ≥ kt then Timed AOSP calls Choose-move({s1, . . . , skt}), and returns the
recommended move.

• If 0 < p < kt then Timed AOSP calls Choose-move(P), and returns the
recommended move.

• If p = 0 then Timed AOSP returns a random move.

During whatever remains of the available time, AOSP tries to generate more his-
tories that are consistent with b; and for every such history, it adds the resultant
board to the pool.

Each time the referee makes an announcement, Timed AOSP must update
the pool to be consistent with the announcement. This can cause the pool to either
shrink (when Timed AOSP is told a move is illegal) or to grow (when Timed AOSP
is told that the opponent has moved). This computation occurs at the beginning of
AOSP’s turn.

If the pool were allowed to grow unchecked, it could potentially get quite
large; hence we limit its size to 20,000 boards. If the number of boards in the
pool ever goes higher than this, we remove enough boards to get to the number of
boards down to 10,000. Because the 30 second time limit allows only enough time
to call Choose-move on a set about 350 boards from the pool, this is believed
adequate.

Timed HS. Timed HS works the same as Timed AOSP, with one exception. If
0 ≤ p < kt, then Timed HS generates a set R that contains p− kt random boards
that are consistent with oij (we call these last-observation consistent boards).
Then it calls Choose-move(P ∪R). This rules out the possibility of ever having
to make a random move. It also restricts the amount of time that Timed HS can
spend generating additional boards to put into the pool.

We have implemented all three of these algorithms, using a combination of
C and C++. For Choose-move’s Game-tree-search subroutine, we used the
GPL’ed chess program provided by GNU, and modified it to return a minimax
value for a particular board.

By the time this chapter appears in print, we intend to have made our imple-
mentations publicly available as a kriegspiel-chess game server accessible from
the web.

18

Table 2: Win/loss/draw percentages plus or minus a 95% confidence interval, in
games where between Timed LOS, Timed AOSP, and Timed HS were played
against a random player.

Algorithms Win (%) Loss (%) Draw (%) Runs
LOS v rand 39± 2 0± 0.3 61± 2 559
AOSP v rand 63± 2 0± 0.3 37± 2 560
HS v rand 65± 2 0.5± 0.3 35± 2 558

Table 3: Win/loss/draw percentages plus or minus a 95% confidence interval at
each move, in games between Timed LOS, Timed AOSP, Timed HS, and a random
player.

Algorithms Win (%) Loss (%) Draw (%) Runs
AOSP v LOS 31± 4.8 0± 1 69± 4.8 190
HS v LOS 38± 5 0.5± 1 61± 5 190
HS v AOSP 13.3± 0.4 10.7± 0.4 76± 0.5 1669

Experiments
Our experimental hypotheses (based on the analyses in the Theoretical Analysis
section) were that (1) Timed LOS would perform better than random play, (2)
Timed AOSP would perform better than Timed LOS, and (3) Timed HS would
perform somewhat better than Timed AOSP. We (the authors) disagreed with each
other about the third hypothesis because it was based on a notion that not all
of us believed: that the computation time spent introducing and evaluating last-
observation consistent boards would not be better spent trying to find and evaluate
more all-observation consistent boards.

To test our hypotheses, we played all three algorithms against each other and
against a player who moved at random. Each player plays approximately half of
the games as white and half of the games as black. All experiments were run on
Xeon 2.6GHz chips with 500 MB RAM, running Linux. Each player was allowed
to spend 30 seconds deciding each move, including moves which are decided after
an attempted illegal move.

Table 2 shows the percentage of wins, losses, and draws when each of the
three algorithms is played against a player who makes moves at random. Both
Timed AOSP and Timed HS do much better against the random player than Timed
LOS does. Timed HS does slightly better than Timed AOSP, but the difference

19

is not statistically significant. The large number of draws is unsurprising, since
kriegspiel chess is a notoriously difficult game to win.

Table 3 shows the percentage of wins, losses, and draws when the three players
are played head-to-head against each other. Again, both Timed AOSP and Timed
HS do much better than Timed LOS. Timed HS does somewhat better than Timed
AOSP, and this time the results are statistically significant. Figure ?? shows that
Timed HS and Timed AOSP have nearly the same material at each move in the
game.

Figure 3 shows the number of last-observation boards used by Timed HS at
each move in the games against Timed AOSP. Recall that these are the boards that
Timed HS generates using the LOS algorithm when it runs out of time using the
AOSP algorithm. Near the start of the game, Timed HS acts like Timed AOSP.
In the middle of the game, it acts like a combination of Timed AOSP and Timed
LOS. Near the end of the game, whether it acts like Timed AOSP or Timed LOS
varies greatly, depending on the particular game.

This behavior is very interesting, because it suggests that our hypothesis about
last-observation consistent boards is correct: they become more useful as the game
progresses, because they are more likely to be consistent with the current belief
state. Even though we do not know what probabilities to assign to them in the last
line of Choose-move, they still provide useful information.

Significance of Our Results
One result demonstrated by our work is that statistical sampling approaches can be
useful for game-tree search in kriegspiel chess. This was not obvious beforehand
because of the immense size of the belief states in this game.

A second and more surprising result is that it is not necessary for the random
sample to consist only of game boards that satisfy all of a player’s observations.
In fact, we were able to win more often by starting out with such boards, but grad-
ually switching over (as the game progressed) to boards that merely are consistent
with the latest observation. The reason is that as the game progresses, a board
that is consistent with the last move becomes more and more likely to be consis-
tent with the entire set of observations, even if we have no idea what sequence of
moves might have actually generated this board. To the best of our knowledge,
ours is the first serious attempt at a good player for the entire game of kriegspiel
chess.9

9If you intend to develop your own kriegspiel-chess program, please send email to this

20

PUBLISHER: PLEASE PLACE FIGURE 3 APPROXIMATELY HERE

Figure 3: The average percentage of last-observation consistent boards that Timed
HS used at each move in its games against Timed AOSP.

Summary
Game-tree search on imperfect-information games is much more difficult than on
perfect-information games. The primary problems include (i) exponentially larger
game trees than for perfect-information games, (ii) difficulties in calculating the
probability that a player can make a given move, and (iii) difficulties in calculating
the probability that a player will make a given move.

We have discussed the following techniques for addressing those problems:
similarity-based aggregation, strategy-based aggregation, monte carlo sampling,
and opponent modeling. The University of Alberta’s work on Texas Hold’em
shows that such techniques can provide a basis for computer programs that per-
form as well as very good human players. Our work on kriegspiel chess shows that
such techniques can also be useful in a game that has many orders of magnitude
more uncertainty than poker.

chapter’s authors at the following addresses: Dana Nau 〈nau@cs.umd.edu〉, Austin Parker
〈austinjp@cs.umd.edu〉, and V.S. Subrahmanian 〈vs@umiacs.umd.edu〉. They would like
to inaugurate a kriegspiel chess competition as part of the International Computer Games Associ-
ation’s Computer Olympiad, and need a program to compete against!

21

References
[1] David Applegate, Guy Jacobson, and Daniel Sleator. Computer analysis of

sprouts. Technical report, Carnegie Mellon University, 1991.

[2] Tsz-Chiu Au and Dana Nau. Accident or intention: That is the question
(in the iterated prisoner’s dilemma). In International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS), 2006.

[3] Robert Axelrod. The Evolution of Cooperation. Basic Books, 1985.

[4] D. Billings, N. Burch, A. Davidson, R. Holte, J. Schaeffer, T. Schauenberg,
and D. Szafron. Approximating game-theoretic optimal strategies for full-
scale poker. In Proceedings of the International Joint Conference on Artifi-
cial Intelligence (IJCAI), pages 661–668, 2003. Won the IJCAI/AAAI 2003
Distinguished Paper Award.

[5] Darse Billings, October 2004. Personal communication.

[6] Darse Billings, Aaron Davidson, Jonathan Schaeffer, and Duane Szafron.
The challenge of poker. Artificial Intelligence, 134:201–240, 2002.

[7] Darse Billings, Denis Papp, Jonathan Schaeffer, and Duane Szafron. Op-
ponent modeling in Poker. In Proceedings of the National Conference on
Artificial Intelligence (AAAI), pages 493–498, 1998.

[8] A. Bolognesi and P. Ciancarini. Searching over metapositions in kriegspiel.
In Computer Games 2004, 2004.

[9] David Carmel and Shaul Markovitch. Incorporating opponent models into
adversary search. In Proceedings of the National Conference on Artificial
Intelligence (AAAI), 1996.

[10] Bob Ciaffone and Jim Brier. Middle Limit Holdem. Bob Ciaffone, 2002.

[11] A. Davidson, D. Billings, J. Schaeffer, and D. Szafron. Improved opponent
modeling in poker. In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), pages 1467–1473, 2000.

[12] Nicholas Findler. Studies in machine cognition using the game of poker.
Communications of the ACM, 20(4):230–245, 1977.

22

[13] Ian Frank and David A. Basin. Search in games with incomplete informa-
tion: A case study using bridge card play. Artificial Intelligence, 100(1-
2):87–123, 1998.

[14] Matthew L. Ginsberg. GIB: Steps toward an expert-level bridge-playing
program. In IJCAI-99, pages 584–589, 1999.

[15] COL (R) Bill Gray. History of wargaming. http://www.hmgs.org/history.
htm, 2003.

[16] Feng hsiung Hsu, Thomas Anantharaman, Murray Campbell, and Andreas
Nowatzyk. A grandmaster chess machine. Scientific American, 263(4):44–
50, October 1990.

[17] Lee Jones. Winning Low-Limit Hold-em. Conjelco, 1994.

[18] Daphne Koller and Avi Pfeffer. Representations and solutions for game-
theoretic problems. Artificial Intelligence, pages 167–215, 1997.

[19] K. Korb, A. Nicholson, and N. Jitnah. Bayesian poker. In Proceedings of the
Conference on Uncertainty in Artificial Intelligence (UAI), pages 343–350,
1999.

[20] David Li. Kriegspiel: Chess Under Uncertainty. Premier, 1994.

[21] David Li. Chess Detective: Kriegspiel Strategies, Endgames and Problems.
Premier, 1995.

[22] Ed Miller, David Sklansky, and Mason Malmuth. Small Stakes Hold’em.
Two Plus Two Publications, 2004.

[23] Austin Parker, Dana Nau, and V.S. Subrahmanian. Game-tree search with
combinatorially large belief states. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), August 2005.

[24] Stuart Russell and Jason Wolfe. Efficient belief-state AND-OR search, with
application to Kriegspiel. In Proceedings of the International Joint Confer-
ence on Artificial Intelligence (IJCAI), 2005.

[25] M. Sakuta, J. Yoshimura, and H. Iida. A deterministic approach for solving
kriegspiel-like problems. In MSO Computer Olympias Workshop, 2001.

23

[26] Brian Sheppard. World-championship-caliber scrabble. Artificial Intelli-
gence, 134(1-2):241–275, 2002.

[27] David Sklansky. Hold ’em Poker. Two Plus Two Publications, 1996.

[28] David Sklansky and Mason Malmuth. Hold ’em Poker for Advanced Players.
Two Plus Two Publications, 1999.

[29] S. Smith. Flexible learning of problem solving heuristics through adaptive
search. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), pages 422–425, 1983.

[30] Stephen J. J. Smith, Dana S. Nau, and Thomas Throop. Computer bridge: A
big win for AI planning. AI Magazine, 19(2):93–105, 1998.

[31] D. Waterman. A generalization learning technique for automating the learn-
ing of heuristics. Artificial Intelligence, 1:121–170, 1970.

[32] Peter Wayner. The new card shark. The New York Times, pages G1, G7, July
9 2003.

[33] C. S. Wetherell, T. J. Buckholtz, and K. S. Booth. A director for kriegspiel,
a variant of chess. Comput. J., 15(1):66–70, 1972.

[34] N. Zadeh. Winning Poker Systems. Prentice-Hall, 1974.

[35] N. Zadeh. Computation of optimal poker strategies. Operations Research,
25(4):541–562, 1977.

24

