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Abstract
We give a formalism and an algorithm for synthesizing controllers to coordinate interactions among
hierarchically organized agents. Typical applications are, for example, in harbor or warehouse au-
tomation. The formalism models agents as hierarchical input/output automata, and models a system
of interacting agents as the parallel composition of the automata. It extends the usual parallel com-
position operation of I/O automata with a hierarchical composition operation for refining abstract
tasks into lower-level subtasks. We provide an algorithm to synthesize hierarchically organized
controllers to coordinate the agents’ interactions in order to drive the system toward desired states.
Our contribution is mostly theoretical: we formally define the representation, and present theorems
about its properties (i.e., the parallel and hierarchical composition are distributive operations), as
well as the correctness and completeness of the synthesis algorithm.

1. Motivation

Consider a collection of collaborative agents, having different capabilities and programmed to do
different things under different conditions. Given a complex task or goal to accomplish, and a de-
scription of how each agent is programmed to behave, how can we organize the agents and manage
their interactions in order to jointly accomplish a desired objective?

In this paper we provide a knowledge representation framework and algorithms for the above
problem. In our formalism, the agents are represented as hierarchical input/output automata. Our
algorithms synthesize a hierarchically organized collection of finite-state controllersfor managing
the interactions among the agents in order to achieve the goal.

As a motivating example, consider a warehouse automation infrastructure such as the Kiva sys-
tem (D’Andrea, 2012) that controls thousands of robots moving inventory shelves to human pickers
preparing customers orders. According to (Wurman, 2014), “planning and scheduling are at the
heart of Kiva’s software architecture”. Right now, this appears to be done with extensive engineer-
ing of the environment, e.g., fixed robot tracks and highly structured inventory organization. A more
flexible approach for dealing with contingencies, local failures, modular design and easier novel de-
ployments, would be to model each agent (robot, shelf, refill, order preparation, etc.) through its
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possible interactions with the rest of the system, and automatically synthesize control programs to
coordinate these interactions.

The idea of composing finite-state automata into a larger system has been used for a long time
in the area of system specification and verification, e.g., (Harel, 1987). Although less popular, it has
also been used in the field of automated planning for applications that naturally call for composition,
e.g., planning in web services (Pistore et al., 2005; Bertoli et al., 2010), or for the automation of a
harbor or a large infrastructure (Bucchiarone et al., 2012).

In our approach, each agent is modeled as an input/output automaton σ whose state transitions
are governed by messages that are sent to and received from the other agents. If Σ = {σ1, . . . , σn} is
a set of such agents, planning for them does not mean generating a plan or policy as is typically done
in AI planning. Instead, it means synthesizing a control automaton σc to manage the interactions
among the agents in Σ. The agents don’t send messages to each other directly, but instead send them
to σc, which receives their messages and decides which messages to send to the agents to drive them
toward a desired goal. Nondeterministic planning techniques can be used for synthesizing σc.

Known automata techniques provide the basis to our work, but are subject to several restrictions
that limit their scope for our purpose. A large system such as a harbor (Bucchiarone et al., 2012) or
a logistics network (Boese & Piotrowski, 2009) is generally both distributed and hierarchical:

• These aren’t tightly-integrated monolithic systems. They are composed of agents that may even
be geographically distributed. It is more convenient and scalable to rely on distributed controllers
to coordinate their actions.

• Agents are composed hierarchically of components for various subtasks. One chooses which
components (from among various alternatives) to incorporate into an agent.

The problem of generating a distributed hierarchy of controllers for such agents is novel in the
field. It initially requires a theoretical basis, which is the purpose in this paper (no application nor
experimental results are reported here). Our contributions are:

• We formally define the notion of refinement for hierarchical communicating input/output au-
tomata, call them IOAs, and propose a formalization of planning and acting problems for in-
teracting agents in this original framework.

• We provide theorems about the main properties of this class of automata. In particular, the opera-
tions of parallel composition and refinement are distributive. The proof of this critical feature for
the synthesis algorithm requires careful developments.

• Distributivity allows us to show that the synthesis of a hierarchical control structure for a set of
IOAs can be addressed as a nondeterministic planning problem.

• We propose a new algorithm for solving this problem, and discuss its theoretical properties.

In the rest of the paper we present the representation and its properties, the algorithm for the
synthesis of a hierarchical control structure comprised of multiple distributed controllers, we discuss
the state of the art, and concluding remarks.
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2. Representation

The proposed formalism relies on a class of automata endowed with composition and refinement
operations. Furthermore, both agents and their components are modeled as hierarchical IOAs, hence
in describing the formalism we sometimes will use “agent” and “component” interchangeably.

Automata. The building block of the representation is a particular input/output automata (IOA)
σ = 〈S, s0, I, O, T,A, γ〉, where S is a finite set of states, s0 is the initial state, I,O, T and A are
finite sets of labels called respectively input, output, tasks and actions, γ : S×(I∪O∪T ∪A)→ S
is a deterministic state transition function. Our definition of IOA is similar to that (Lynch & Tuttle,
1988) apart from the fact that we also have transitions that are tasks that can be hierarchically refined.
The IOA uses its inputs and outputs to interact with other IOAs and the environment. The semantics
of an IOA views inputs as uncontrollable transitions, triggered by messages from the external world,
while outputs, tasks, and actions are controllable transitions, freely chosen to drive the dynamics of
the modeled system. An output is a message sent to another IOA; an action has some direct effects
on the external world. No precondition/effect specifications are needed for actions, since a transition
already spells out the applicability conditions and the effects. A task is refined into a collection of
actions. We assume all transitions to be deterministic.

We define a state of an IOA as a tuple of internal state variables each of which keeps track of a
particular information relevant for that IOA (a representation similar to the one described in Chapter
2 of (Ghallab et al., 2016)). States are a tuple of state variables’ values, i.e., if {x1, . . . , xk} are the
state variables of σ, and each has a finite range xi ∈ Di, then the set of states is S ⊆

∏
i=1,kDi,

whereDi is a finite set of values that determine the range of the state variable xi. We assume that for
any state s ∈ S, all outgoing transitions have the same type, i.e., {u | γ(s, u) is defined} consists
solely of either inputs, or outputs, or tasks, or actions. For simplicity we assume s can have only
one outgoing transition if that transition is an output, action or a task. Alternative actions or outputs
can be modeled by a state that precedes s and receives alternative inputs, one of them leading to s.

Note that despite the assumption that our transition function γ is deterministic, an IOA can
model nondeterminism through its inputs. It may receive multiple different inputs at any particular
state. These inputs can be messages from external world modeling nondeterministic outcomes of
events or commands. For example, a sensing action a in state s is a command transition, 〈s, a, s′〉;
several input transitions from s′ model the possible outcomes of a; these inputs to σ are generated
by the external world.

A run of an IOA is a sequence 〈s0, u0, . . . , si, ui, si+1, . . .〉 such that si+1 = γ(si, ui) ∀i. It
may or may not be finite.

Example 1. The IOA in Figure 1(a) models a door with a spring-loaded hinge that closes automat-
ically when the door is open and not held. To open the door requires unlatching it, which may not
succeed if it is locked. Then it can be opened, unless it is blocked by some obstacle. Whenever the
door is left free, the spring closes it (the “close” action shown in red).

Parallel Composition. Consider a system Σ = {σ1, . . . , σn}, with each σi modeled as an IOA.
These components interact by sending output and receiving input messages, while also triggering
actions and tasks. The dynamics of Σ can be modeled by the parallel composition of the compo-
nents, which is a straightforward generalization of the parallel product defined in (Bertoli et al.,
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(a) (b)

Figure 1. (a): An IOA σd for a spring door. The bold incoming arrows represent inputs of σd coming from
other IOAs or the environment. The outgoing arrows represent messages sent by σd to other IOAs. The red
transition ‘close’ is a command. (b): An IOA for a robot going through a doorway.

2010) which is same as the asynchronous product of automata. The parallel composition of two
IOAs σ1 and σ2 is σ1 ‖ σ2 = 〈S1×S2, (s01 , s02), I1 ∪ I2, O1 ∪O2, T1 ∪ T2, A1 ∪A2, γ〉,

where γ((s1, s2), u) =

{
γ1(s1, u)× {s2} if u ∈ I1 ∪O1 ∪A1 ∪ T1,

{s1} × γ2(s2, u) if u ∈ I2 ∪O2 ∪A2 ∪ T2.

By extension, σ1 ‖ σ2 ‖ σ3 ‖ . . . ‖ σn is the parallel composition of all of the IOAs in Σ. The
order in which the composition operations is done is unimportant, because parallel composition is
associative and commutative.1

We assume the state variables, as well as the input and output labels, are local to each IOA.
This avoids potential confusion in the definition of the composed system. It also allows for a robust
and flexible design, since components can be modeled independently and added incrementally to a
system. However, the components are cooperative in the sense that all of them have a common goal.

If we restrict the n components of Σ to have no tasks but only inputs, outputs and actions,
then driving Σ towards a set of goal 2 states can be addressed with a nondeterministic planning
algorithm for the synthesis of a control automaton σc that interacts with the parallel composition
σ1 ‖σ2 ‖σ3 ‖ . . . ‖σn of the automata in Σ. The control automaton’s inputs are the outputs of Σ and
its outputs are inputs of Σ. Several algorithms are available to synthesize such control automata,
e.g., (Bertoli et al., 2010). But in this paper, we also allow the components to have hierarchy within
themselves and we generate a hierarchical control structure.

Hierarchical Refinement. With each task we want to associate a set of methods for hierarchi-
cally refining the task into IOAs that can perform the task. This is in principle akin to HTN planning
(Erol et al., 1994), but if the methods refine tasks into IOAs rather than subtasks, they produce a
structure that incorporates control constructs such as branches and loops. This structure is like a
hierarchical automaton (see, e.g., (Harel, 1987)). However, the latter relies on a state hierarchy (a
state gets expanded recursively into other automata), whereas in our case the tasks to be refined are
transitions. This motivates the following definition.

1. Proofs of all of the results stated in this paper are at https://www.cs.umd.edu/ patras/long_appendix.pdf.
2. goal is represented through a set of states of IOA
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(a) (b)

Figure 2. (a): The IOA σmove of a method for the move task. (b): The IOA σmonitor of a monitoring method.

A refinement method for a task t is a pair µt = 〈t, σµ〉, where σµ is an IOA that has both an ini-
tial state s0µ and a finishing state sfµ. Unlike tasks in HTN planning (Nau et al., 1999), t is a single
symbol rather than a term that takes arguments. Note that σµ may recursively contain other subtasks,
which can themselves be refined. Consider an IOA σ = 〈S, s0, I, O, T,A, γ〉 that has a transition
〈s1, t, s2〉 in which t is a task. A method µt = 〈t, σµ〉 with σµ = 〈Sµ, s0µ, sfµ, Iµ, Oµ, Tµ, Aµ, γµ〉
can be used to refine this transition by mapping s1 to s0µ, s2 to sfµ and t to σt.3 This pro-
duces an IOA, R(σ, s1, µt) = 〈SR, s0R, I ∪ Iµ, O ∪ Oµ, T ∪ Tµ \ {t}, A ∪ Aµ, γR〉, where

SR = (S \ {s1, s2}) ∪ Sµ; s0R =

{
s0 if s1 6= s0,

s0µ otherwise;

γR(s, u) =



γµ(s, u) if s ∈ Sµ \ {s0µ, sfµ},
s0µ if s ∈ S and γ(s, u) = s1,

sfµ if s ∈ S and γ(s, u) = s2,

γ(s, u) if s ∈ S \ {s1, s2} and γ(s, u) /∈ {s1, s2},
γ(s1, u) ∪ γµ(s, u)if s = s0µ,

γ(s2, u) ∪ γµ(s, u)if s = sfµ.

Note that we do not require every run in σµ to actually end in sfµ. Some runs may be infinite, some
other runs may end in a state different from sfµ. Such a requirement would be unrealistic, since the
IOA of a method may receive different inputs from other IOA, which cannot be controlled by the
method. Intuitively, sfµ represents the “nominal” state in which a run should end, i.e., the nominal
path of execution.4

Example 2. Figure 1(b) shows an IOA for a robot going through a doorway. It has one task, move
and one action, cross. It sends to σd (Figure 1(a)) the input free if it gets through the doorway
successfully. The move task can be refined using the σmove method in Figure 2(a).

3. If σ contains multiple calls to t or σµ contains a recursive call to t, the states of σµ must first be renamed, in order to
avoid ambiguity. This is like standardizing a formula in automated theorem proving.

4. Alternatively, we may assume we have only runs that terminate, and a set of finishing states Sfµ. We simply add a
transition from every element in Sfµ to the nominal finishing state sfµ.
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Example 3. Figure 2(a) shows a refinement method for the move task in Figure 1(b). σmove starts
with a start_monitor output to activate a monitor IOA that senses the distance to a target. It then
triggers the task get_closer to approach the target. From state v2 it receives two possible inputs:
close or far. When close, it ends the monitor activity and terminates in v4, otherwise it gets closer
again.

Figure 2(b) shows a method for the monitor task. It waits in statem0 for the input start_monitor,
then triggers the sensing action get-distance. In response, the execution platform may return either
far or close. In states m5 and m6, the input continue_monitor goes to m1 to sense the distance
again, otherwise the input end_monitor goes to the final state m7.

Planning Problem. We are now ready to define the planning problem for this representation.
Consider a system modeled by Σ = {σ1, . . . , σn} and a finite collection of methods M, such
that for every task t in Σ or in the methods of M there is at least one method µt ∈ M for task
t. An instantiation of (Σ,M) is obtained by recursively refining every task in the composition
(σ1 ‖ σ2 ‖ ...σn) with a method in M, down to primitive actions. Let (Σ,M)∗ be the set of
all possible instantiations of that system, which is enumerable but not necessarily finite. Infinite
instances are possible when the body of a method contains the same or another task which can
further be refined leading to an infinite chain of refinements. A planning problem is defined as a
tuple P = 〈Σ,M, Sg〉, where Sg is a set of goal states. Each of the initial components in Σ has
a set of goal states, and Sg is the Cartesian product of those sets. In other words, the job of the
synthesized controller is to make the overall system reach a state such that each component in Σ is
in one of its goal states. It is solved by finding refinements for tasks in Σ with methods inM. In
principle this is akin to HTN planning, but we have IOAs that receive inputs from the environment
or from other IOAs, thus modelling nondeterminism. We need to control the set of IOAs Σ in order
to reach (or to try to reach) a goal in Sg. For this reason a solution is defined by introducing a
hierarchical control structure that drives an instantiation of (Σ,M) to meet the goal Sg.

We will use the same terminology as in (Ghallab et al., 2016, Section 5.2.3). A solution just
means that some of the runs will reach a goal state. Other runs may never end, or may reach a
state that is not a goal state. A solution is safe if all of its finite runs terminate in goal states, and a
solution is either cyclic or acyclic depending on whether it has any cycles.5

The hierarchical control structure is a pair 〈Σc, rDict〉 where Σc is a set of control automata
and rDict is a task refinement dictionary. A single control automaton drives an IOA σ by receiving
inputs that are outputs of σ and generating outputs that act as inputs to σ. We represent the controlled
system, i.e., σ controlled by σc, as σc.σ. The formal definition of controlled system is similar to
the one in (Ghallab et al., 2016, Section 5.8). rDict is a dictionary which should have as its keys all
of the tasks in Σ and its refinement. rDict[t] is a method which should be used to refine task t in
order to achieve Sg. So, rDict uniquely defines an instantiation of (Σ,M). Finally, Σ is controlled
by 〈Σc, rDict〉, and the hierarchical controlled system φs = 〈Σc, rDict〉 . (Σ,M) will have one

5. In the terminology of (Cimatti et al., 2003), a weak solution is what we call a solution, a strong cyclic solution is
what we call a safe solution, and a strong solution is what we call an acyclic safe solution.
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Figure 3. A hierarchical control structure for the ‘door’ (Figure 1(a)), refined the ‘robot’ for going through
a doorway (Figures 1(b) and 2(a)), and the ‘monitor’ (Figure 2(b)). The inputs and outputs of the robot, door
and monitor are preceded with r:, d: and m: respectively.

of the following forms:

σc . (φ1 ‖ φ2), where σc ∈ Σc and φ1,φ2 are IOAs; (1)
σc .R(φ3, s, µt), where σc ∈ Σc, rDict[t] = σµ,φ3 is an IOA and t is a task in state s; (2)

σc . σ, where σc ∈ Σc and σ ∈ Σ. (3)

Above, φ1,φ2 and φ3 are hierarchical controlled systems. The form it will have depends on the
ordering of parallel and hierarchical composition chosen by MakeCntrlStruct to synthesize the con-
troller (see Section 3).

Example 4. The IOA on the right in Figure 3 is a control automaton for the IOAs in Figures 1(a)
and 1(b). This control automaton is for the system when the move task has not been refined. The
IOA on the left controls the refined robot IOA in Figure 2(a) and the monitor IOA in Figure 2(b).

3. Solving Planning Problems

This section describes our planning algorithm, MakeCntrlStruct (Figure 1(a)). It solves the planning
problem 〈Σ,M, Sg〉where Σ is the set of IOAs,M is the collection of methods for refining different
tasks and Sg is the set of goal states. The solution is a set of control automata, Σc and a task
refinement dictionary, rDict such that Σ driven by Σc and refined following rDict reaches the desired
goals states, Sg. Depending on how one of its subroutines is configured, MakeCntrlStruct can search
either for acyclic safe solutions, or for safe solutions that may contain cycles.

Before getting into the details of how MakeCntrlStruct works, we need to discuss a property
on which it depends. Given a planning problem, MakeCntrlStruct constructs a solution by doing
a sequence of parallel composition and refinement operations. The following theorem shows that
composition and refinement can be done in either order to produce the same result:

Theorem 1 (distributivity). Let σ1, σ2 be IOAs, 〈s1, t, s2〉 be a transition in σ1, and µt = 〈t, σµ〉 be
a refinement method for t. Then R(σ1, s1, µt) ‖ σ2 = R(σ1 ‖ σ2, s

∗
1, µt), where s∗1 = {(s1, s)|s ∈

Sσ2}

Thus the algorithm can choose the order in which to do those operations (line (*) in Table 1(a),
which is useful because the order affects the size of the search space.
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MakeCntrlStruct (Σ0,M, Sg)
Σ← Σ0; Σc ← ∅; rDict← empty dictionary
while (there are unrefined tasks in Σ or |Σ| > 1):

nondeterministically choose
which-first ∈ {compose, refine} (*)

if (which-first = compose):
select σi, σj ∈ Σ and remove them
σcij ← MakeCntrlAutomaton (σi ‖ σj , Sg)
if σcij is a failure, then return failure
else:

Σc ← Σc ∪ {σcij}
Σ← Σ ∪ {σcij . (σi ‖ σj)}

else if (which-first = refine):
select σ ∈ Σ which has task t
(transition 〈s1, t, s2〉) and remove it
nondeterministically choose

a method µt ∈M to refine t
tnew ← unique new name for t
rDict[tnew]← σµ
Σ← Σ ∪R(σ, s1, µt)

return 〈Σc, rDict〉

ControlledActingWithIOAs (Σ,M, Sg)
〈Σc, rDict〉 ← MakeCntrlStruct(Σ,M, Sg)
for σ ∈ Σc ∪ Σ :

ExecuteAsync(σ, rDict, Sg)

ExecuteAsync(σ, rDict, Sg)
s← initial state of σ
while s is not final and s /∈ Sg do
〈s, a, s′〉 ← transition coming out of s
switch (type(a)):

case input: a← ReceiveInput( )
case output: GenerateOutput(a)
case command: ExecuteCommand(a)
case task: σµ ← rDict[a]

ExecuteSync(σµ, rDict, Sg)
s← γ(s, a)

if s ∈ Sg then return Success
else return Failure

(a) (b)

Table 1. (a): Pseudocode for our controller synthesis algorithm. (b): Pseudocode for running IOAs with a
synthesized hierarchical controlled structure.

Algorithm. Table 1(a) shows our algorithm for synthesizing hierarchical control structures
using planning. It does a sequence of parallel and hierarchical compositions of the IOAs in Σ until
there are no more unrefined tasks and all pairs of interacting components have been composed.

As discussed in the previous section, (Σ,M)∗ is the set of all possible instantiations of our
system, which is enumerable but not necessarily finite. Among this set, some instantiations are
desirable with respect to our goal. The while loop in MakeCntrlStruct implicitly constructs an in-
stantiation of (Σ,M) by doing a series of parallel and hierarchical compositions. In each iteration
of the loop the algorithm makes the choice of whether to do a parallel composition or a refinement.
The size of the search space depends on the order in which the choices are made. In an implemen-
tation, the choice would be made heuristically. We believe some of the heuristics will be analogous
to constraint-satisfaction heuristics (Dechter, 2003; Russell & Norvig, 2009). The while loop exits
when the implicit instantiation of (Σ,M) is complete, i.e., there are no more tasks to refine, and all
interactions between pairs of IOAs have been taken into account through parallel composition.

When MakeCntrlStruct chooses to compose, it uses the MakeCntrlAutomaton subroutine to cre-
ate a control automaton σcij for a pair of IOAs σi and σj which interact with each other. σi and σj
are randomly selected from Σ. We do not include pseudocode for MakeCntrlAutomaton, because
it may be any of several planning algorithms published elsewhere. For example, the algorithm in
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(Bertoli et al., 2010) will generate an acyclic safe solution if one exists, and (Bertoli et al., 2010)
discusses how to modify that algorithm so that it will find safe solutions that aren’t restricted to
be acyclic. Several of the algorithms in (Ghallab et al., 2016, Chapter 5) could also be used. If
MakeCntrlAutomaton succeeds, we include σcij in our set of solution control automata, Σc and add
the controlled system, σcij . (σi ‖ σj) to Σ. Otherwise, we fail and terminate this nondeterministic
branch. Note that, we could allow new components to enter the system at this stage as follows.
Instead of selecting σj randomly from Σ, we could lookup the components that interact with σi
through a specific method and include these new components in Σ. Then, we could select σj from
updated Σ. This simple extension allows new agents to join in at any stage of the synthesis without
compromising on the correctness.

When MakeCntrlStruct chooses to refine, it chooses a refinement method µt selected fromM
to refine t. The task refinement dictionary rDict maps every instance of all tasks present in Σ to the
body of the most optimal refinement method for them. So, we add σµ (the body of method µt) to the
task refinement dictionary rDict with key tnew. Notice that we rename the task t to tnew to identify
every instance of task t uniquely. Then, we add the resulting IOA, after doing the refinement, to Σ
and continue the loop.

MakeCntrlStruct is sound and complete; footnote 1 has a link to the proof. Completeness guar-
antees that we find the hierarchical control structure when it exists, but does not guarantee that our
algorithm will terminate or return “no” when there is no control structure for the problem.

4. Planning and Acting

In order to run a set of agents, represented through 〈Σ,M〉 to achieve a common goal Sg, we need
to choose among alternative methods µt ∈ M for refining a task t, and alternative inputs in a state
s that is followed by distinct actions or outputs. These decisions are determined by the controller
synthesis algorithm in Table 1(a), through the synthesis of a pair 〈Σc, rDict〉. Table 1(b) gives pseu-
docode for running the IOAs using a synthesized hieararchical control structure. We run all the IOAs
in Σ ∪ Σc asynchronously, while (i) triggering the only action or output associated to a state whose
outgoing transition is an action or an output, and (ii) following the received input for a state whose
outgoing transitions are inputs. In some states, these received inputs are nondeterministic outputs
from the external world. Hence, the hierarchical controlled system φs formed by 〈Σc, rDict〉 and
Σ can be viewed as a classical reactive system, which interacts deterministically with a nondeter-
ministic external world. Acting according to a deterministic automaton may seem straightforward
in general, but in the proposed framework it raises several important issues that still lie ahead in our
research agenda, e.g., monitoring and interleaving acting and planning.

Planning for unsafe solutions is generally easier than planning for a safe solution, which may not
exist. If the solution is unsafe, monitoring needs to check whether the interaction with the external
world is driving the system away from the intended goals and whether replanning is needed.

Interleaving planning and acting, which is particularly desirable given the hierarchical nature of
our framework and the interaction with a nondeterministic external world. This corresponds to one
of the motivation of our proposed framework. The idea here is to ignore some of the tasks in the
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planning stage and refine these tasks at the acting stage only. This will provide a basis for future
work (see Section 6) on online synthesis of distributed controllers at acting time.

5. Related Work

To the best of our knowledge, there is no previous formalism for the synthesis of hierarchical dis-
tributed controllers for coordinating multiple agents. (Ghavamzadeh et al., 2006), (Osentoski &
Mahadevan, 2010) and (Jong et al., 2008) use the notion of hierarchy for multi-agent reinforcement
learning. These works allow for a hierarchical representation of the target plan, to be executed in
a collaborative manner. In our framework, the hierarchical representation is in the agent itself; the
synthesized controllers coordinate interactions among hierarchical agents.

(Atkin et al., 2001) proposes a Hierarchical Agent Control Architecture (HAC) with a hier-
archical representation of actions, sensors, and goals. HAC includes a least-commitment partial
hierarchical planner, relying on plan skeletons. Given a set of goals, plans are retrieved, simulated,
and executed. HAC combines hierarchical planning with reasoning by procedural knowledge. Our
approach is different since we allow for reasoning about alternative refinements of tasks through
the automated synthesis of controllers. Hierarchical and procedure based frameworks have been
used in robotic systems, e.g., PRS (Ingrand et al., 1996), RAP (Firby, 1987), TCA (Simmons, 1992;
Simmons & Apfelbaum, 1998), XFRM (Beetz & McDermott, 1994), and the survey of (Ingrand &
Ghallab, 2014). These approaches propose reactive systems, but none of them is based on a formal
account with the synthesis techniques provided in this paper.

(Hu & Feijs, 2003) describes an agent-based architecture for networked devices, where each
agent has a controller. However, the controller does not control inter-agent communication, and no
synthesis of interactions is provided.

Hierarchical planning formalisms (including angelic hierarchical planning (Marthi et al., 2007)
and its extension (Marthi et al., 2008), (Kuter et al., 2009)) do not represent agents that interact
among each other and with the external environment. The hierarchical framework proposed in
(Shivashankar et al., 2012) refines goals instead of tasks; no synthesis of controllers is provided.

Our approach shares some similarities with the hierarchical state machines of (Harel, 1987),
which have been used for the specification and verification of reactive systems. We rely on the
theory of input/output automata (Lynch & Tuttle, 1988), which has been used to specify distributed
discrete event systems, and to formalize and analyse communication and concurrent algorithms.
There is also a vast amount of literature on controllers for discrete-event systems, e.g., (Wong &
Wonham, 1996; Mohajerani et al., 2011). All these works focus on the verification rather than on
the synthesis of hierarchical agents through input/output automata. The work in (Kessler et al.,
2004) is based on hierarchical state machines, however no automated synthesis is provided.

I/O automata have also been used to formalize non hierarchical interactions of web services and
to plan for their composition (Pistore et al., 2005; Bertoli et al., 2010). Our work is also different
from the work in (Bucchiarone et al., 2012, 2013), where abstract actions are represented with goals,
and where (online) planning can be used to generate interacting processes that satisfy such goals.

Our contribution builds on the approach described in (Ghallab et al., 2016, Section 5.8). There,
a system having multiple components is defined by the parallel composition of their automata
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σ1‖ . . . ‖σn, which describes the possible evolutions of the n components. A planner for that system
synthesizes a control automaton that interacts with the σi’s to drive the system to specified goals.
The approach is shown to be solvable with nondeterministic planning algorithms. It is however
limited to flat nonhierarchical automata.

6. Conclusions and Future Work

We have developed a formalism for synthesizing hierarchical control structure for systems that are
composed of communicating components. This synthesis is done by combining parallel composi-
tion of I/O automata with hierarchical refinement of tasks into I/O automata. This approach can be
used to synthesize plans that are not just sequences of actions, but include rich control constructs
such as conditional and iterative plans. For synthesis of such plans, we describe a novel planning
algorithm for synthesizing hierarchical control structure, that can deal with hierarchical refinements.

We believe this work will be important as a basis for algorithms for online synthesis of real-
time systems, e.g.„ for web services, automation of large physical facilities such as warehouses or
harbors, etc. In our future work, we intend to implement our algorithm and test it on representative
problems from such problem domains. For that purpose, an important topic of future work will be
to extend our algorithm for use in continual online planning. This should be straightforward, since
our acting algorithm already synthesizes the control structure online (see last paragraph of Section
4). As another topic for future work, recall that Theorem 1 (Distributivity) shows that parallel and
hierarchical composition operations can be done in either order and produce the same result. The
size of the planner’s search space depends on the order in which these operations are done, and we
want to develop heuristics for choosing the best order.

Finally, there are several ways in which it may be useful to generalize our formalism. One is to
allow tasks and methods to have parameters, so that a method can refine a variety of related tasks.
Another is to extend the formalism to allow collaboration of two or more methods on a single task.
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Appendix

In this section, we prove some of the important theoretical results which ensure correctness and
completeness of our algorithm to synthesize a hierarchical control structure.6

We will prove Theorem 1 by showing that every run of R(σ1, s1, µt) ‖ σ2 is also a run of R(σ1 ‖
σ2, s

∗
1, µt), and vice-versa. Recall that a run of an IOA is a sequence 〈s0, u0, . . . , si, ui, si+1, . . .〉

such that si+1 = γ(si, ui) for every i. To do this, we will define something called a path which has
a one-to-one correspondence with a run. We will divide a path into unique sub-sequences, calling
them projections, which are responsible for transitions along each of the IOAs involved in a parallel
or hierarchical composition. We will see that projections have certain properties in Theorem 2
and 3. We will manipulate these projections using their properties to form new sequences while
maintaining a set of constraints that they satisfy. Then we show that satisfying this set of constraints
is enough for the sequence to be a path of an IOA (Definition 1), thus proving Theorem 1. Let us
start by defining a path.

A path of an IOA, σ = 〈S, s0, I, O, T,A, γ〉 is a sequence of edge labels (see Figure 4) of the
form 〈a1, a2, ..., an〉, with ai ∈ I ∪O ∪ T ∪ A such that there is a sequence of states 〈s0, s1, ...sn〉
with s0 = s0, si = γ(si−1, ai). In general, such executions may be finite or infinite. A path is said
to be closed if it is finite and if the last state, sn is final, i.e., sn has no edges coming out of it. A
path of an IOA corresponds to a unique run and a run of an IOA corresponds to a unique path.

Figure 4. Examples of a state, edge, edge label, run, and path.

A parallel composition puts together two IOAs (say σ1 and σ2), that can evolve independently.
Any state in σ1 ‖ σ2 is of the form, (s1, s2) where s1 comes from σ1 and s2 comes from σ2. As
a result, we have edges in σ1 ‖ σ2 that correspond to edge labels of σ1 which changes s1 but s2

remains unchanged, as well as edge labels that correspond to edges of σ2 which changes s2, but s1

6. In this section we sketch the proofs. For detailed proofs, see https://www.cs.umd.edu/ patras/long_appendix.pdf.
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remains unchanged. With unique names for edge labels of σ1 and σ2, we can determine whether
an edge label is coming from σ1 or σ2. We can decompose any closed path, say α, of σ1 ‖ σ2 into
two unique paths, called projσ1(α) and projσ2(α), each corresponding to closed paths of σ1 and σ2

respectively. We do this decomposition because we are interested in separating out the ordering of
edge labels (a partial order) in a path that is relevant for a path to be a closed path of σ1 ‖ σ2.

Theorem 2. The projections for parallel composition, projσ1(α) and projσ2(α) are unique sub-
sequences of any closed path α of IOA σ1 ‖ σ2 such that:

• projσ1(α) is a closed path of IOA σ1 and projσ2(α) is a closed path IOA σ2

• |projσ1(α)|+ |projσ2(α)| = |α| and {a1|a1 ∈ projσ1(α)} ∩ {a2|a2 ∈ projσ2(α)} = ∅

Similar to projections for parallel composition, we also define projections for hierarchical com-
position which decomposes any closed path, α of a refined IOA into sub-sequences, one of which
is responsible for edges along the states of the body of the refinement method and another which
is responsible for edges along the states of the IOA being refined. These sub-sequences, which we
will call projσ1(α) and projµt(α), will always be unique as well.

Theorem 3. The projections for hierarchical composition, projσ(α) and projµt(α) for any closed
path α of IOA R(σ, s1, µt) with µt = 〈t, σµ〉 being a refinement method for task t, are unique
sub-sequences of α satisfying the following properties.

If refinement of t is a substring of α (Figure 5), then projσ(α) is a path of σ that is either closed
or ends with t, and projµt(α) is a closed path of body(µt), such that

|projσ(α)|+ |projµt(α)| = |α|+ 1 and {a1|a1 ∈ projσ(α)} ∩ {a2|a2 ∈ projµt(α)} = ∅.

If refinement of t is not a substring of α, then projσ(α) = α is a closed path of σ and projµt(α) = 〈〉.

σ1: body(µt1): R(σ1, s1, µt1):

Figure 5. Three IOAs: σ1, body(µt1 ), and R(σ1, s1, µt1). Note that a1b1b2a2 is a closed path of
R(σ1, s1, µt1), with projσ1

(a1b1b2a2) = a1t1a2 and projµt
(a1b1b2a2) = b1b2.

In an IOA σ, there may be multiple edges with the same edge label. Thus σ may have multiple
paths formed by rearranging the same edge labels (e.g., see Figure 6). In such cases, we want to
find the relevant set of constraints that these paths should satisfy to be paths of σ.

Definition 1. The set of constraints PO(α, σ) for a path α of an IOA σ is the set of relevant edge
label orderings such that satisfying these constraints is a sufficient condition for α to be a closed
path. In other words, any rearrangement of α that satisfies PO(α, σ) will be a closed path of σ.
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Figure 6. For the IOA σ shown here, the path constraints are PO(〈a, b, c, d〉, σ) = PO(〈a, c, b, d〉, σ) =
{a≺ b, a≺ c, c≺ d, b≺ d}. The constraint a ≺ b means that a should appear before b in a path.

We are now ready to prove Theorem 1. In order to show that R(σ1, s1, µt) ‖ σ2 = R(σ1 ‖
σ2, s

∗
1, µt), we need to show that every closed path of R(σ1, s1, µt) ‖ σ2) is a closed path of

R(σ1 ‖ σ2, s
∗
1, µt) and vice-versa. We only prove the forward direction here (see footnote 6).

Let α be a closed path of R(σ1, s1, µt) ‖ σ2. Then, from Theorem 2, we have projR(σ1,s1,µt)(α)
is a closed path of R(σ1, s1, µt) and projσ2(α) is a closed path of σ2. Now, the proof is dependent
upon whether projR(σ1,s1,µt) has a refinement of t as its substring.

Case 1: α does not have a refinement of t as its substring. Then from Theorem 3,
projσ1(projR(σ1,s1,µt)(α)) = projR(σ1,s1,µt)(α) is a closed path of σ1. Now, we will make use
of the following lemma.

Lemma 1. If α1 is a closed path of IOA σ1 and α2 is a closed path of IOA σ2, then α1.α2 is a
closed path of σ1 ‖ σ2 and PO(α1.α2, σ1 ‖ σ2) = PO(α1, σ1) ∪ PO(α2, σ2).

Let β = projR(σ1,s1,µt)(α). Then β and projσ2(α) are closed paths of σ1 and σ2, so from
Lemma 1, β.projσ2(α) is a closed path of σ1 ‖ σ2 and PO(β.projσ2(α), σ1 ‖ σ2) = PO(β, σ1) ∪
PO(projσ2(α), σ2). α satisfies this set of constraints because β is a sub-sequence of α. Thus,
α is a closed path of σ1 ‖ σ2. Now, since α does not have a refinement of t as its substring, it
is independent of whether t has been refined or not. As a result, α is a closed path of R(σ1 ‖
σ2, s

∗
1, µt).

Case 2: α has a refinement of t as its substring. Then, from Theorem 3, projσ1(projR(σ1,s1,µt)(α))
(call it ω) is a path of σ1 ending with t or closed and projµt(projR(σ1,s1,µt)(α)) (call it β) is a closed
path of body(µt). We also conclude that α satisfies

{u ≺ v|u ∈ β ∧ v ∈ ω ∧ t ≺ v} ∪ {v ≺ u|u ∈ β ∧ v ∈ ω ∧ v ≺ t} (4)

Recall that we know projσ2(α) is a closed path of σ2. Thus from Lemma 1, projσ2(α).ω is a path of
σ1 ‖ σ2 ending with t or closed and

PO(projσ2(α).ω, σ1 ‖ σ2) = PO(ω, σ1) ∪ PO(projσ2(α), σ2). (5)

Now, we will make use of the following lemma.

Lemma 2. If β is a closed path of body(µt) for a refinement method µt for task t and either δ1.t.δ2

is a closed path of IOA σ1 or δ1.t.δ2 is just a path with δ2 = 〈〉, then δ1.β.δ2 is a closed path of
R(σ1, s1, µt) and PO(δ1.α.δ2) = PO(β, body(µt)) ∪ PO(δ1.t.δ2, σ1) ∪ {(u ≺ v)|u ∈ β, v ∈
δ2 and (t ≺ v) ∈ PO(δ1.t.δ2, σ1)}∪ {(v ≺ u)|u ∈ β, v ∈ δ1 and (v ≺ t) ∈ PO(δ1.t.δ2, σ1)}.

In our problem, we can write projσ2(α).ω as δ1.t.δ2 and projµt(projR(σ1,s1,µt)(α)) as β satis-
fying the properties required by Lemma 2. Note that δ2 may be an empty string. So, applying
Lemma 2, δ1.β.δ2 is a closed path of R(σ1 ‖ σ2, s

∗
1, µt), and
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PO(δ1.β.δ2,R(σ1 ‖ σ2, s
∗
1, µt)) = PO(β, body(µt)) ∪ PO(δ1.t.δ2, σ1 ‖ σ2)∪

{u ≺ v|u ∈ β, v ∈ δ2 and (t ≺ v) ∈ PO(δ1.t.δ2, σ1 ‖ σ2)}∪
{v ≺ u|u ∈ β, v ∈ δ1 and (v ≺ t) ∈ PO(δ1.t.δ2, σ1 ‖ σ2)}

= PO(β, body(µt)) ∪ PO(ω, σ1) ∪ PO(projσ2(α), σ2)∪
{u ≺ v|u ∈ β, v ∈ ω and (t ≺ v) ∈ PO(ω, σ1)}∪
{v ≺ u|u ∈ β, v ∈ ω and (v ≺ t) ∈ PO(ω, σ1)} (from (5))

But α is a permutation of δ1.β.δ2 that satisfies the above set of constraints because β and ω are
projections of α and α satisfies (4). Therefore, α is a closed path of R(σ1 ‖ σ2, s

∗
1, µt).

Theorem 4 (Correctness/Soundness). The hierarchical control structure 〈Σc, rDict〉 returned by
MakeCntrlStruct (Σ0,M, Sg) is such that the controlled system always reaches the goal states Sg.

Proof. 〈Σc, rDict〉.〈Σ,M〉 is a hierarchical controlled system φs of one of the forms of expressions
1, 2 or 3 (Page 8).

We do the proof by induction. In the base case, φs is an IOA of the form σc . σ, where σ ∈ Σ0

and σc ∈ Σc. We synthesize a control automaton for one IOA using procedure in (Bertoli et al.,
2010) which is sound. Our induction hypothesis is that for all controlled systems φk of size less
than φs, φk |= Sg. In the inductive step, φs can be of two forms.

Case 1: φs is of the form σc . (φ1 ‖ φ2). From the induction hypothesis, φ1 |= Sg and
φ2 |= Sg. For synthesizing σc, we use the procedure from (Bertoli et al., 2010) to coordinate the
interaction between φ1 and φ2 which is sound. Therefore, φs |= Sg.

Case 2: φs is of the form σc .R(φ3, s, µt). From the induction hypothesis, φ3 |= Sg. For syn-
thesizing σc, we use the procedure from (Bertoli et al., 2010) to coordinate the interaction between
φ3 and σµ which is sound. Therefore, φs |= Sg.

Now, we will prove that MakeCntrlStruct is also complete. But before that, let us state another
result about controlled systems which will be used in the proof of completeness.

Theorem 5. For controlled systems φ1, φ2 and refinement method µt for task t, if there exists two
control automata, σc1 and σc2 , such that the controlled system σc1 . ((σc2 . R(φ1, s1, µt)) ‖ φ2)
satisfies goal Sg then there also exists two control automata σ′c1 and σ′c2 such that the controlled
system σ′c1 . (R(σ′c2 . (φ1 ‖ φ2), s∗1, µt)) satisfies Sg and vice-versa.

Proof. We show that if there are control automata σc1 and σc2 such that σc1 .((σc2 .R(φ1, s1, µt))‖
φ2) |= Sg for some set of goal states Sg, then there are control automata σ′c1 and σ′c2 such that
σ′c1 .R(σ′c2 .(φ1‖φ2), s∗, µt) |= Sg (footnote 6 gives a link to the proof of the converse statement).

Note that σc2 is a control automaton for refined φ1. So, it is independent of φ2. In other
words, φ2 behaves independently whether or not it is controlled by σc2 . Thus, the system (σc2 .
R(φ1, s, µt)) ‖ φ2 functions same as the controlled system σc2 . (R(φ1, s, µt) ‖ φ2). Because
controlled systems are also IOAs, using the Distributivity Theorem (Theorem 1), this is same as the
controlled system, σc2 .R(φ1 ‖φ2, s

∗, µt). Considering σc1 as well, σc1 .(σc2 .R(φ1 ‖φ2, s
∗, µt))

satisfies Sg. So, it is possible to construct a control structure for R(φ1 ‖ φ2, s
∗, µt). This implies

that there are two control automata σ′c1 and σ′c2 such that σ′c1 . R(σ′c2 . (φ1 ‖ φ2), s∗, µt) |= Sg.
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This can be easily shown by contradiction. Assume that σ′c2 doesn’t exist. This means that there is
no control automaton such that φ1 ‖φ2 |= Sg. So, there is no control automaton for any refinement
of φ1 ‖φ2. This is a contradiction. Similarly, assume σ′c1 doesn’t exist. σ′c1 controls the interaction
between body(µt) and φ1 ‖ φ2. This is independent of the controller for interaction between φ1

and φ2. If σ′c1 does not exist, then refining task t in the IOA φ1 ‖ φ2 with method µt cannot be
controlled to satisfy Sg. This is again a contradiction.

Theorem 6 (Completeness). The procedure MakeCntrlStruct (Σ,M, Sg) returns a solution hierar-
chical control structure 〈Σc, rDict〉 if it exists.

Proof. Let the solution hierarchical controlled system be φs as defined in the proof of Theorem 4
such that φs |= Sg. We are considering three cases here as others will be similar.

Case 1: φs = σc . σ. In this case, MakeCntrlStruct will find σc at the first step of control
automaton synthesis.

Case 2: φs = σc . (φ1 ‖ φ2) with φ1 being equal to σc′ .R(φ′, s, µt). Then, from Theorem 5,
there exists a control automata σc̄ and σc̄′ such that σc̄ .R(σc̄′ . (φ′ ‖ φ2), s′, µt) |= Sg. Suppose
our algorithm chose to do the parallel composition of φ′ and φ2 before refining t in φ′. Then, it
will generate the control automata σc̄ and σc̄′ and add them to Σc, thus, guaranteeing completeness.

Case 3: φs = σc .R(φ1, s, µt) with φ1 being equal to σc′ . (φ′ ‖ φ2). Then, from Theorem 5,
there exists control automata σc̄ and σc̄′ such that σc̄ . (σc̄′ . R(φ′, s′, µt) ‖ φ2) |= Sg. Suppose
our algorithm chose to do the refinement of φ′ first and then the parallel composition. Then, it will
generate the control automata σc̄ and σc̄′ and add them to Σc, thus, guaranteeing completeness.

For building rDict, we nondeterministically explore all applicable methods µt for task t, hence
ensuring completeness.
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