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Abstract

The most common representation formalisms for planning
are descriptive models. They abstractly describe what the ac-
tions do and are tailored for efficiently computing the next
state(s) in a state transition system. But acting requires oper-
ational models that describe how to do things, with rich con-
trol structures for closed-loop online decision-making. Using
descriptive representations for planning and operational rep-
resentations for acting can lead to problems with developing
and verifying consistency of the different models.

We define and implement an integrated acting-and-planning
system in which both planning and acting use the same oper-
ational models, which are written in a general-purpose hierar-
chical task-oriented language offering rich control structures.
The acting component is inspired by the well-known PRS
system, except that instead of being purely reactive, it can
get advice from the planner. Our planning algorithm, RAE-
plan, plans by doing Monte Carlo rollout simulations of the
actor’s operational models. Our experiments show significant
benefits in the efficiency of the acting and planning system.

1 Introduction

Numerous knowledge representations have been proposed
for describing and reasoning on actions. However, for the
purpose of planning, the dominant representation is the one
inherited from the early STRIPS system and formalized
in various versions of the PDDL description language, in-
cluding representations for planning under uncertainty, like
PPDDL. This class of descriptive models of actions is tai-
lored to efficiently compute the next states in a state tran-
sition system. It is quite limited. In particular it cannot rea-
son about ongoing activities, react and adapt to an unfolding
context. As argued by many authors, e.g., (Pollack and Horty
1999), plans are needed for acting deliberately, but they are
not sufficient for realistic applications. Acting requires op-
erational models that describe how to do things, with rich
control structures for closed-loop online decision-making.
Most approaches for the integration of planning and act-
ing seek to combine descriptive representations for the for-
mer and operational representations for the latter (Ingrand
and Ghallab 2017). This has several drawbacks in particular
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for the development and consistency verification of the mod-
els. By ‘consistency verification of the models’, we mean a
growing body of work (eg, in the context of certifying self-
driving cars) for the formal verification of operational mod-
els, such as PRS-like procedures, using model checking and
theorem proving. (de Silva, Meneguzzi, and Logan 2018)
attempts to do this. It is highly desirable to have a single
representation for both acting and planning. But this repre-
sentation cannot be solely descriptive, because that wouldn’t
provide sufficient functionality. The planner needs to be able
to reason directly with the actor’s operational models.

We present an integrated planning and acting system in
which both planning and acting use the actor’s operational
models. The acting component is inspired by the well-
known PRS system (Ingrand et al. 1996). It uses a hierarchi-
cal task-oriented operational representation with an expres-
sive, general-purpose language offering rich control struc-
tures for closed-loop online decision-making. A collection
of refinement methods describes alternative ways to handle
tasks and react to events. Each method has a body that can
be any complex algorithm. In addition to the usual program-
ming constructs, the body may contain subtasks, which need
to be refined recursively, and sensory-motor commands,
which query and change the world non-deterministically.
Commands are simulated when planning and performed by
an execution platform in the real world when acting.

Rather than behaving purely reactively like PRS, our ac-
tor interacts with a planner, RAEplan. To decide how to re-
fine tasks or events, RAEplan does Monte Carlo rollouts with
applicable refinement methods. When a refinement method
contains a command, RAEplan takes samples of its possi-
ble outcomes, using either a domain-dependent generative
simulator, when available, or a probability distribution of its
possible outcomes. We have implemented and evaluated our
approach, and the results show significant benefits.

Next we discuss related work, followed by descriptions of
the operational models, the acting and planning algorithms,
our benchmark domains and experimental results, and a dis-
cussion of the results and concluding remarks.

2 Related Work

To our knowledge, no previous approach has proposed the
integration of planning and acting directly within the lan-
guage of an operational model. Our acting algorithm and



operational models are based on the RAE algorithm (Ghal-
lab, Nau, and Traverso 2016, Chapter 3), which in turn is
based on PRS. If RAE and PRS need to choose among sev-
eral eligible refinement methods for a given task or event,
they make the choice without trying to plan ahead. This ap-
proach has been extended with some planning capabilities
in PropicePlan (Despouys and Ingrand 1999) and SeRPE
(Ghallab, Nau, and Traverso 2016). Unlike our approach,
those systems model commands as classical planning opera-
tors; they both require the action models and the refinement
methods to satisfy classical planning assumptions of deter-
ministic, fully observable and static environments, which are
not acceptable assumptions for most acting systems.

Various acting approaches similar to PRS and RAE have
been proposed, e.g., (Firby 1987; Simmons 1992; Sim-
mons and Apfelbaum 1998; Beetz and McDermott 1994;
Muscettola et al. 1998; Myers 1999). Some of these have re-
finement capabilities and hierarchical models, e.g., (Verma
et al. 2005; Wang et al. 1991; Bohren et al. 2011). While
such systems offer expressive acting environments, e.g.,
with real time handling primitives, none of them provide the
ability to plan with the operational models used for acting,
and thus cannot integrate acting and planning as we do. Most
of these systems do not reason about alternative refinements.

(Musliner et al. 2008; Goldman et al. 2016; Goldman
2009) propose a way to do online planning and acting, but
their notion of “online” is different from ours. In (Musliner
et al. 2008), the old plan is executed repeatedly in a loop
while the planner synthesizes a new plan (which the authors
say can take a large amount of time), and the new plan isn’t
installed until planning has been finished. In RAEplan, hier-
archical task refinement is used to do the planning quickly,
and RAE waits until RAEplan returns.

The Reactive Model-based Programming Language
(RMPL) (Ingham, Ragno, and Williams 2001) is a compre-
hensive CSP-based approach for temporal planning and act-
ing which combines a system model with a control model.
The system model specifies nominal as well as failure state
transitions with hierarchical constraints. The control model
uses standard reactive programming constructs. RMPL pro-
grams are transformed into an extension of Simple Tempo-
ral Networks with symbolic constraints and decision nodes
(Williams and Abramson 2001; Conrad, Shah, and Williams
2009). Planning consists in finding a path in the network
that meets the constraints. RMPL has been extended with
error recovery, temporal flexibility, and conditional execu-
tion based on the state of the world (Effinger, Williamsd, and
Hofmann 2010). Probabilistic RMPL are introduced in (San-
tana and Williams 2014; Levine and Williams 2014) with
the notions of weak and strong consistency, as well as un-
certainty for contingent decisions taken by the environment
or another agent. The acting system adapts the execution
to observations and predictions based on the plan. RMPL
and subsequent developments have been illustrated with a
service robot which observes and assists a human. Our ap-
proach does not handle time; it focuses instead on hierarchi-
cal decomposition with Monte Carlo rollout and sampling.

Behavior trees (BT) (Colledanchise 2017; Colledanchise
and Ogren 2017) can also respond reactively to contingent

events that were not predicted. Planning synthesizes a BT
that has a desired behavior. Building the tree refines the act-
ing process by mapping the descriptive action model onto
an operational model. Our approach is different since RAE
provides the rich and general control constructs of a pro-
gramming language and plans directly within the operational
model, not by mapping from the descriptive to an opera-
tional model. Moreover, the BT approach does not allow for
refinement methods, which are a rather natural and practical
way to specify different possible refinements of tasks.

Approaches based on temporal logics and situation cal-
culus (Doherty, Kvarnstrom, and Heintz 2009; Hihnel, Bur-
gard, and Lakemeyer 1998; Claflen et al. 2012; Ferrein and
Lakemeyer 2008) specify acting and planning knowledge
through high-level descriptive models and not through op-
erational models like in RAE. Moreover, these approaches
integrate acting and planning without exploiting the hierar-
chical refinement approach described here.

Our methods are significantly different from those used in
HTNs (Nau et al. 1999): to allow for the operational models
needed for acting, we use rich control constructs rather than
simple sequences of primitives. The hierarchical represen-
tation framework of (Bucchiarone et al. 2013) includes ab-
stract actions to interleave acting and planning for compos-
ing web services—but it focuses on distributed processes,
which are represented as state transition systems, not opera-
tional models. It does not allow for refinement methods.

Finally, a wide literature on MDP-based probabilistic
planning and Monte Carlo tree search refers to simulated
execution, e.g., (Feldman and Domshlak 2013; 2014; Koc-
sis and Szepesvari 2006; James, Konidaris, and Rosman
2017) and sampling outcomes of action models e.g., RFF
(Teichteil-Konigsbuch, Infantes, and Kuter 2008), FF-replan
(Yoon, Fern, and Givan 2007) and hindsight optimization
(Yoon et al. 2008). The main conceptual and practical dif-
ference with our work is that these approaches use descrip-
tive models, i.e., abstract actions on finite MDPs. Although
most of the papers refer to doing the planning online, they
do the planning using descriptive models rather than oper-
ational models. There is no notion of integration of acting
and planning, hence no notion of how to maintain consis-
tency between the planner’s descriptive models and the ac-
tor’s operational models. Moreover, they have no notion of
hierarchy and refinement methods.

3 Operational Models

Our formalism for operational models extends that of (Ghal-
lab, Nau, and Traverso 2016, Chapter 3). Its features al-
low for dealing with a dynamic environment through an ex-
ecution platform that handles sensing and actuation. The
main ingredients are state variables, tasks, events, refine-
ment methods, and commands. Let us illustrate the repre-
sentation informally on simple examples.

Example 1. Consider several robots (UGVs and UAVs)
moving around in a partially known terrain, performing op-
erations such as data gathering, processing, screening and
monitoring. This domain is specified with the following:

e a set of robots, R = {g1, g2, a1,as},



e a set of locations, L = {base, z1, 22, 23, 24},
e a set of tools, TOOLS = {ey, €2, €3},

e loc(r) € L and data(r) € [0,100], for r € R, are observ-
able state variables that gives the current location and the
amount of data the robot r has collected,

o status(e) € {free, busy} is an observable state variable
that says whether the tool e is free or being used,

e survey(r,l) is a command performed by robot r in loca-
tion | that surveys | and collects data.

Let explore(r, 1) be a task for robot r to reach location |
and perform the command survey(r,1). In order to survey,
the robot needs some tool that might be in use by another
robot. Robot r should collect the tool, then move to the lo-
cation | and execute the command survey(r,l). Each robot
can carry only a limited amount of data. Once its data stor-
age is full, it can either go and deposit data to the base, or
transfer it to an UAV via the task depositData(r). Here is a
refinement method to do this.

m1-explore(r, )
task: explore(r,[)
body: getTool(r)

moveTo(r, )

if loc(r) = [ then:
Execute command survey(r, [)
if data(r) = 100 then depositData(r)

else fail O

Above, getTool(r), moveTo(r,l) and depositData(r) are
subtasks that need to be further refined via suitable refine-
ment methods. Each robot can hold a limited amount of
charge and is rechargeable. Depending on what locations
it needs to move to, r might need to recharge by going to the
base where the charger is located. Different ways of doing
the task get-Tool(r) can be captured by multiple refinement
methods. Here are two of them:

m1-getTool(r) m2-getTool(r)

task: getTool(r) task: getTool(r)
body: for e in TOOLS do body: for e in TOOLS do
if status(e)=free: if status(e) = free:

I + loc(e) recharge(r)
moveTo(r, ) l < loc(e)
take(r, e) moveTo(r, )
return take(r, e)

// no tool is free return

fail fail

UAVs can fly and UGVs can'’t, so there can be different pos-
sible refinement methods for the task moveTo(r,1) based on
whether r can fly or not.

A refinement method for a task ¢ specifies how to perform
t, i.e., it gives a procedure for accomplishing ¢ by perform-
ing subtasks, commands and state variable assignments. The
procedure may include any of the usual programming con-
structs: if-then-else, loops, etc. Here is an example:

Example 2. Suppose a space alien ©) is spotted in one of
the locations | € L of Example 1 and a robot has to react to
it by stopping its current activity and going to l. Let us repre-
sent this with an event alienSpotted(l). We also need an ad-

ditional state variable: alien-handling(r)e{T, F} which indi-
cates whether the robot r is engaged in handling an alien. A
refinement method for this event is shown below. It can suc-
ceed if robot r is not already engaged in negotiating with an-
other alien. After negotiations are over, the methods changes
the value of alien-handling(r) to F.
m-handleAlien(r, 1)
event: alienSpotted({)
body: if alien-handling(r) = F then:
alien-handling(r) < T
moveTo(r, [)
Execute command negotiate(r, [)
alien-handling(r) < F
else fail O

Commands correspond to programs to be run by the exe-
cution platform. They are used in RAEplan through a gener-
ative simulator or simply defined, as in our experiments, as
probability distributions of their possible outcomes.

4 RAE

RAE (Refinement Acting Engine) is from (Ghallab, Nau, and
Traverso 2016, Chapter 3). The first inner loop (line 1) reads
each new job, i.e., each task or event that comes in from an
external source such as the user or the execution platform,
as opposed to the subtasks generated by refinement methods.
For each such job 7, RAE creates a refinement stack, R, (the
a denotes acting), analogous to a computer program’s execu-
tion stack. Agenda is the set of all current refinement stacks.

Algorithm 1: RAE (Refinement Acting Engine)

Agenda < empty list

while True do
1 for each new task or event T in the input stream
do

s < current state; m < RAEplan(s, 7,0, ())
if m = failed then output(“failed”, 7)
else
R, < anew, empty refinement stack
push (7, m, nil, ®) onto R,
insert R, into Agenda

2 for each R, € Agenda do
Progress(R,,)
3 | if R, is empty then remove it from Agenda

Task frames and refinement stacks. A rask frame is a
four-tuple » = (7, m, i, tried), where 7 is a task, m is the
method instance used to refine 7, ¢ is the current instruction
in body(m), with ¢ = nil if we haven’t yet started execut-
ing body(m), and fried is the set of methods that have been
already tried and failed for accomplishing 7.

A refinement stack is a finite sequence of stack frames
R, = {p1,...,pn). If Ry is nonempty, then top(R,) =
P1; reSt(R ) = <p27 v apn> Ra - top( )reSt( )
To denote pushing p onto R,, we write p.R, =



(p, p1, P2, - .-, pn). Refinement stacks used during planning
will have the same semantics, but we will use the notation
R, instead of R, to distinguish it from the acting stack.

Progression in methods. If (7,m,i,tried) = top(R,)
and s is the current state, then next(s, R,) is the refine-
ment stack produced by going to the next instruction af-
ter i. If m has more instructions after 4, next(s, R,) =
(m, ', 7, tried).rest(R,), where i’ is the next instruction
in body(m), taking into account the effects of control
structures such as if-then-else, loops, etc. If body(m) has
no more instructions to execute after i, then 7 (the task
in top(R,)) is finished, hence next(s,R,) = rest(R,)
modified with the topmost frame redirected to point the
next instruction after 7. In other words, if rest(R,) =
(', m’, j, tried).rest(rest(R,)) and j' is the next instruction
in m/ after j, then,

next(s, Ry) = (7/,m’, j', tried") .rest(rest(R,)) if j' # NIL;
= next(s, rest(R,)), otherwise.

In the second inner loop (RAE line 2), for each refine-
ment stack in Agenda, RAE progresses the topmost stack el-
ement by one step, i.e., it executes the next instruction in the
program (see the Progress subroutine at right). It may in-
volve checking the status of a currently executing command
(Progress line 1), following a control structure such as a loop
or if-then-else (Progress line 2), executing an assighment
statement, sending a command to the execution platform, or
handling a subtask 7' by pushing a new stack element onto
the stack (line 5 of Progress). If a method returns without
failure, it has accomplished the task.

When RAE creates a stack element for a task 7, it must
choose (line 1 of RAE, 4 of Progress, and 6 of Retry) a
method instance m for 7. The version of RAE in (Ghallab,
Nau, and Traverso 2016) chooses the methods from a pref-
erence ordering specified by the domain’s author. Instead
of that, we call a planner, RAEplan, to make an informed
choice of m for accomplishing 7. m may have several sub-
tasks. In line 3 of Progress, where m has a subtask 7/, RAE
calls RAEplan to choose a new method m/’ for /.

5 RAEplan

RAEplan does a recursive search to optimize a criterion.
We first consider the simple case where the simulation of
methods never fails; then we’ll explain how to account for
planning-time failures (which are distinct from running-time
failures addressed by Retry) using an adequate criteria.

We choose a refinement method that has a refinement tree
with a minimum expected cost for accomplishing a task 7
(along with the remaining partially accomplished tasks in
the current refinement stack).

Estimated Cost. Let C*(s, R,,) be the optimal expected
cost, i.e., the expected cost of the optimal plan for accom-
plishing all the tasks in the refinement stack Iz, in state s.

If R, is empty, then C*(s,R,) = 0 because there are
no tasks to accomplish. Otherwise, let (7,m,i,tried) =
top(Rp). Then C*(s, R,) depends on whether ¢ is a com-
mand, an assignment statement, or a task:

Progress(R,,):
(1,m, step, tried) < top(R,) // step is
the current step of m
if step # nil then // m is running
1 if type(step) = command then
case execution-status(step):
still-running: return;
failed: Retry(R,); return;
successful: continue;
if there are no more steps in m then
| pop(R,); return;
2 step < Next Instruction of m
case type(step):
assignment:
update s according to step; return;
command:
send step to execution platform;
return,
task: continue;
3 7/ < step; s < current state ;
R, < acopy of R,
4 m’ < RAEplan(s, 7,0, R,)
if m’ = failed then Retry(R,); return;
5 push (7', m/, nil, ) onto R,

Retry(R,):
(1, m, step, tried) < pop(R,)
addmtotried // m didn’t succeed
R, < acopy of R,
6 s < current state; m’ <— RAEplan(s, 7, tried, R),)
if m’ # failed then
| push (7, m/, nil, zried) onto R,

else if R, is empty then
output(“failed to accomplish”, 7)
remove R, from Agenda

else Retry(R,)

e If i is a command, then C*(s,R,) =
EVyeg [{cost(s,i,s") + C*(s',next(s’, Rp))}], (1)
where S’ is the set of outcomes of command 4 in s and
FEV stands for expected value.

e If i is an assignment statement, then C*(s,R,) =
C*(s',next(s’, R,)), where s’ is the state produced from
s by performing the assignment statement.

e If i is a task, then C*(s, R,) recursively optimizes over
the candidate method instances for ¢. That is
C*(s, Rp) = minyep C*(s, (¢, m/,nil, 0).R,),
where M’ = Candidates(i, s).
By computing C*(s, R,,), we can choose what method to
use for a task. The algorithm for doing this is:
C*-Choice(s, 7, Rp)
M <« Candidates(r, s)
return argmin,, . ,,C* (s, (1,m,0,0).R),)



Next, let us see how to account for planning failures. Note
that C'* cannot handle failures because the cost of a failed
command is oo, resulting in an expected value of co in equa-
tion 1 for all commands with at least one possibility of fail-
ure. In order to overcome this, we introduce the efficiency
criteria, v = 1/cost, to measure the efficiency of a plan.
RAEplan maximizes efficiency instead of minimizing cost.

Efficiency. We define the efficiency of accomplishing a task
to be the reciprocal of the cost. Let a decomposition of a task
7 have two subtasks, 7, and 72, with cost ¢; and ¢, respec-
tively. The efficiency of 71 is e; = 1/c; and the efficiency
of 75 is ea = 1/co. The cost of accomplishing both tasks is
c1 + ca, so the efficiency of accomplishing 7 is

1/(c1 + c2) = erea/(e1 + e2). ()

If ¢c; = 0, the efficiency for both tasks is es; likewise for
co = 0. Thus, the incremental efficiency composition is:

e1®ey = egife; = 00, else 3)
e1 if ea = 00, else ejes/(e1 + e3).

If 7 (or o) fails, then ¢; is 0o, e = 0. Thus e; @ e5 =
0, meaning that 7 fails with this decomposition. Note that
formula 3 is associative.

Estimated efficiency. We now define £, (s, 1?,) as an esti-
mate of expected efficiency of the optimal plan for the tasks
in stack R, when the current state is s. The parameters b and
k denote, respectively, how many different method instances
to examine for each task, and how large a sample size to use
for each command. Additional details are on the next page,
in the Experiments and Analysis subsection.

If R, is empty, then Ej, (s, R,) = oo because there
are no tasks to accomplish. Otherwise, let (1, m, i, tried) =
top(Ry). Then Ej (s, ;) depends on whether i is a com-
mand, an assignment statement, or a task:

o If i is a command, then E (s, R,) =
% ES’ES/ cost(i,i,sl) ° E;k(sl7 neXt(Slv RP))7 4

where S’ is a random sample of k outcomes of command i
in state s, with duplicates allowed. Since S’ has the prob-
ability distributions of the outcomes of the commands, it
converges asymptotically to the expected value of E*.

o If ¢ is an assignment statement, then Ej,(s,R,) =
E; 1.(s',next(s’, Ry)), where s is the state produced from
s by performing the assignment statement.

e If i is a task, then E}, (s, R,) recursively optimizes over
the candidate method instances for ¢. That is:

By 1.(s, Rp) = maxyenr By i (s, (i, m, nil, 0).Rp), (5)

where M’ = Candidates(i, s) if |Candidates(i, s)| < b,
and otherwise M’ is the first b method instances in the
preference ordering for Candidates(i, s).
As we did with C*-Choice, by computing Ej (s, ;) we
can choose what method to use for a task. The RAEplan al-
gorithm is as follows, with b and & being global variables:

RAEplan(s, 7, tried, R),)
M < Candidates(, s) \ tried
return argmax,,, « s Ey 1 (s, (7,m, 0, tried). R))

The larger the values of b and k in Ej (s, R,), the more
plans RAEplan will examine. It can be proved that when
b = max, ({|Candidates(t, s)|} (call it by,q,) and k — o0,
the method instance returned by RAEplan converges to one
with the maximum expected efficiency. We now outline the
proof. It is by induction on the number of remaining push
operations in 2. In the base case, the number of remaining
push operations in R, is 1. This has to be a command, be-
cause if it were a task, then it would further refine into more
commands, resulting in more push operations. The maxi-
mum expected efficiency for a command is just its expected
value. The induction hypothesis is that for any stack R, with
n remaining push operations, £y gives the maximum
expected efficiency. In the inductive step, we show that equa-
tions 4 and 5 converge to the maximum expected efficiency
for any R, with n + 1 remaining push opearations.'

6 Experimental Evaluation
Domains

We have implemented and tested our framework on four do-
mains. The Explorable Environment domain (EE) extends
the UAVs and UGVs setting of Example 1 with a total of 8
tasks, 17 refinement methods and 14 commands. It has dead
ends because robots may run of charge in isolated locations.

The Chargeable Robot Domain (CR) consists of several
robots moving around to collect objects of interest. Each
robot can hold a limited amount of charge and is recharge-
able. It may or may not carry the charger. They use Dijk-
stra’s shortest path algorithm to move between locations.
They don’t know where objects are unless they do a sens-
ing action at the object’s location. They must search for an
object before collecting it. The environment is dynamic due
to emergency events as in Example 2. A task reaches a dead
end if a robot is far away from the charger and runs out of
charge. CR has 6 tasks, 10 methods and 9 commands.

The Spring Door domain (SD) has several robots trying to
move objects from one room to another in an environment
with a mixture of spring doors and ordinary doors. Spring
doors close themselves unless they are held. A robot cannot
simulataneously carry an object and hold a spring door open,
so it must ask for help from another robot. Any robot that’s
free can be the helper. The environment is dynamic because
the type of door is unknown to the robot. There are no dead
ends. SD has 5 tasks, 9 methods and 9 commands.

The Industrial Plant domain (IP) consists of an industrial
workshop environment, as in the RoboCup Logistics League
competition. There are several fixed machines for painting,
assembly, wrapping and packing. As new orders for assem-
bly, paint, etc., arrive, carrier robots transport the necessary
objects to the required machine’s location. An order can be
compound, e.g., paint two objects, assemble them together,
and pack the resulting object. Once the order is done, the
product is delivered to the output buffer. The environment is

"Full proof at http://www.cs.umd.edu/~patras/theorems.pdf




Domain | Dynamic Dead Sensing Robot Concurrent
events ends collaboration tasks
CR v v v - v
EE v v - v v
SD v - - v v
1P v - - v v

Figure 1: Properties of our domains

dynamic because the machines may get damaged and need
repair before being used again; but there are no dead ends.
IP has 9 tasks, 16 methods and 9 commands.

Figure 1 summarizes the different properties of these do-
mains. CR includes a model of a sensing action that a robot
can use to identify what objects are at a given location. SD
models a situation where robots need to collaborate, and can
ask for help from each other. EE models a combination of
robots with different capabilities (UGVs and UAVs) whereas
in the other three domains all robots have same capabilities.
It also models collaboration. In the IP domain, the allocation
of tasks among the robots is hidden from the user. The user
just specifies their orders; the delegation of the sub-tasks
(movement of objects to the required locations) is handled
inside the refinement methods. CR and EE can have dead-
ends, whereas SD and IP do not have dead-ends.?

Experiments and Analysis

To examine how RAE’s performance might depend on the
amount of planning, we created a suite of test problems for
the four domains. Each test problem consists of a job to ac-
complish, that arrives at a randomly chosen time point in
RAE’s input stream. For each such time point, we chose a
random value and held it fixed throughout the experiments.

Recall that RAE’s objective is to maximize the expected
efficiency of a job’s refinement tree, and the number of plans
generated by RAEplan depends on b (how many different
methods to try for a task) and k& (how many times to simulate
a command). The number of plans examined by RAEplan is
exponential in b and k. As a special case, k = 0 runs RAE
purely reactively, with no planning at all.

We ran experiments with £ = 0, 3,5, 7, 10. In the CR, EE
and IP domains we used b = 1, 2,3 because each task are
at most three method instances. In the SD domain, we used
b= 1,2, 3, 4because it has four methods for opening a door.

In the CR, EE, SD and IP domains, our test suites con-
sisted of 15, 12, 12, and 14 problems respectively. We ran
each problem 20 times to account for the effect of prob-
abilistic non-deterministic commands. In our experiments,
we used simulated versions of the four environments, run-
ning on a 2.6 GHz Intel Core i5 processor. The average (over
20 runs) running time for our experiments ranged from one
minute to 6-7 minutes per test suite.

Efficiency. Figures 2 and 3 show how the average efficiency
E depends on b and k. We see that efficiency increases with
increase in b and k as expected. This is true for all four do-
mains. In the CR domain, efficiency increases considerably

2Full code is online at https://bitbucket.org/sunandita/raeplan.
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Figure 2: Efficiency I averaged over all of the jobs, for var-
ious values of b and k in domains with dead ends.
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Figure 3: Efficiency E averaged over all of the jobs, for var-
ious values of b and k in domains without dead ends.

as we move from b = 1 to b = 2, then (specifically when
k = 3 and 5) decreases slightly as we move to b = 3. This is
possibly because the commands present in the third method
require more sampling to make accurate predictions. Indeed,
with more samples, k = 7 and 10, b = 3 has better efficiency
than b = 2. In the EE domain, we see that the efficiency im-
proves up to k = 5 and then remains stable, indicating that 5
samples are enough for this domain. In the domains without
dead ends (SD and IP), we see a gradual increase in effi-
ciency with k. In Figure 2, the large increase in efficiency
between b = 1 and b = 2 (as opposed to a more uniform
increase) is because RAEplan explores methods according
to a preference ordering specified by the domain’s author.
For many of the problems in our test suite, the 2"¢ method
in the preference ordering turned out to be the one with the
largest expected efficiency. These experiments confirm our
expectation that efficiency improves with b and k.

Success ratio. We wanted to assess how robust RAE was
with and without planning. Figures 4 and 5 show RAE’s suc-
cess ratio, i.e., the proportion of jobs successfully accom-
plished in each domain. For the domains with dead ends (CR
and EE), the success ratio increases as b increases. How-
ever, in the CR domain, there is some decrease after k = 3
because we are optimizing efficiency, not robustness. For-
mulating an explicit robustness criterion is non-trivial and
will require further work. For the success ratio experiments,
when we say we’re not optimizing robustness, we mean
we’re not optimizing a specific criterion that leads to bet-
ter recovery if an unexpected event causes failure. RAEplan
looks for the most efficient plan. In our efficiency formula
in Egs. (2,3), a plan with a high risk of failure will have low
efficiency, but so will a high-cost plan that always succeeds.
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Figure 4: Success ratio (# of successful jobs/ total # of jobs)
for various values of b and k in domains with dead ends.
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Figure 5: Success ratio (# of successful jobs/ total # of jobs)
for various values of b and k in domains without dead ends.

In the SD domain, b or £ didn’t make very much differ-
ence in the success ratio. In fact, for some values of b and
k, the success ratio decreases. This is because in our prefer-
ence ordering for the methods of the SD domain, the meth-
ods appearing earlier are better suited to handle the events
in our problems whereas the methods appearing later pro-
duce plans that have lower cost but less robust to unexpected
events. In the IP domain, we observe that success ratio in-
creases with increase in b and k.

Retry ratio. Figures 6 and 7 shows the retry ratio, i.e., the
number of times that RAE had to call the Retry procedure,
divided by the total number of jobs to accomplish.

The Retry procedure is called when there is an execution
failure in the method instance m that RAE choses for a task
7. Retry tries another applicable method instance for 7 that it
hasn’t tried already. This is significantly different from back-
tracking since the failed method m has already been partially
executed; it has changed the current state. In real-world ex-
ecution there is no way to backtrack to a previous state. In
many application domains it is important to minimize the to-
tal number of retries, since recovery from failure may incur
significant, unbudgeted amounts of time and expense.

The retry ratio generally decreases from b = 1to b = 2
and 3. This is because higher values of b and & make RAE-
plan examine a larger number of alternative plans before
choosing one, thus increasing the chance that it finds a better
method for each task. Hence, planning is important in order
to reduce the number of retries. The reason the retry ratio
increases from b = 2 to 3 for some points in IP and EE is
that for a reasonable number of test cases, the third method
in the preference ordering for the tasks appears to be more
efficient but when executed, it is leading to a large number
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Figure 6: Retry ratio (# of retries / total # of jobs) for various
values of b and k in domains with dead ends.
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Figure 7: Retry ratio (# of retries / total # of jobs) for various
values of b and k in domains without dead ends.

of retries, increasing the retry ratio.
In summary, for all the domains, planning with RAEplan
clearly outperforms purely reactive RAE.

7 Concluding Remarks

We have proposed a novel acting and planning system for
integrating acting and planning using the actor’s operational
models. Our experimentation covers different interesting as-
pects of realistic domains, like dynamicity, and the need for
run-time sensing, information gathering, collaborative and
concurrent tasks (see Figure 1). We have shown the differ-
ence between domains with dead ends, and domains without
dead ends through three different performance metrics: effi-
ciency (reciprocal of the cost), which is the optimization cri-
teria of RAEplan, success ratio and retry ratio. Acting purely
reactively in the domains with dead ends can be costly and
risky. The homogeneous and sound integration of acting and
planning provided by RAE and RAEplan is of great benefit
for all the domains which is reflected through a higher ef-
ficiency. In all of the domains, the efficiency increases with
increase in the parameters, b and k£ of RAEplan.

The retry ratio measures the execution effectiveness. Per-
forming many retries is not desirable, since this has a high
cost and faces the uncertainty of execution. We have shown
that both in domains with dead ends and without, the retry
ratio significantly diminishes with RAEplan.

Finally we have devised a novel, and we believe realistic
and practical way, to measure the performance of RAE and
similar systems. While most often the experimental evalu-
ation of systems addressing acting and planning is simply
performed on the sole planning functionality, we devised an



efficiency measure to assess the overall performance to plan
and act, including failure cases. This criteria takes into ac-
count that the cost to execute commands in the real world,
which is usually much larger than the computation cost.

We have shown that the integration of acting and planning
reduces cost significantly. Future work will include more
elaborate experiments, with more domains and test cases.
We also plan to test with different heuristics, compare RAE-
plan with other approaches cited in the related work, and
finally do testing in the physical world with actual robots.
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