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Abstract

This paper examines the value of innovation within a culture
by looking at “innovate” moves in the Cultaptation Project’s
social learning game (Boyd et al. 2008). We produce a math-
ematical model of a simplified version of this game, and pro-
duce analytic methods for determining optimal innovation be-
havior in this game. In particular, we provide an efficient al-
gorithm for determining how to balance innovation with the
need to exploit one’s accumulated knowledge. We create an
agent for playing the social learning game based on these re-
sults.

Intro
The development of innovations is important to a society,
yet the exploitation of those same innovations is clearly also
important and many times, a tradeoff must be made between
the two. This paper examines the utility of a simple kind
of innovation in the Cultaptation Project’s social learning
game, and shows how we can solve the problem of deciding
how to balance innovation with the exploitation of accumu-
lated knowledge.

The European Commission’s Cultaptation Project was
created to address the evolution of human cultures, and
the project’s researchers have created a game to examine
the relative merits of social learning strategies (Boyd et al.
2008). Each player in the game has three kinds of possi-
ble moves: innovate, observe, and exploit. The game’s au-
thors devised these moves to be simple analogs of the fol-
lowing three kinds of activities: innovating (spending time
and resources learning something new), observing (learning
something from another player), and exploiting (using the
learned knowledge). At each step of the game, each player
must choose one of these three activities, and the algorithm
or rules that a player uses for making this choice are the
player’s “social learning strategy.”

Finding a good social learning strategy is clearly a hard
question, particularly because the game is defined in such a
way that the utility functions are a priori unknown. How-
ever, hidden within the hard question of determining social
strategies is another hard question of determining the value
of innovation: if one decides to use innovation instead of
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observation, what is the best way to accomplish this? This
second question is the focus of our study.

The contributions of this paper are:
• A mathematical model for a simplified versions of the

Cultaptation game called the SRI game.
• A formula for determining optimal strategies in the SRI

game that requires access to the underlying probability
distribution.

• Experiments detailing the performance of the smart-
innovator agent, showing it to behave near optimally with
wide varieties of underlying probability distribution func-
tions.

• An analysis of an alternative scoring system in the SRI
game, which more directly relates to the Cultaptation’s
version of the social learning game by using per-round
payoff rather than total-lifetime payoff.

• A polynomial-time algorithm computing optimal behav-
ior in the SRI under this new scoring system. The al-
gorithm uses state-aggregation and a variant of Dijkstra’s
algorithm to find an optimal sequence of moves.

Definitions
Social Learning Game
In this section, we lay out the Cultaptation Project’s social
learning game from (Boyd et al. 2008). We assume a prob-
ability distribution π over the integers. There are nb exploit
moves, with each move’s utility value being drawn from π.
We further assume a change probability of c. On each round
of game play, with probability c, each move’s value will be
replaced with another drawn from π. Let vi,j be the value
of move i in round j. When a player makes an exploit move
i on round j they receive the utility vi,j . A player’s total
utility will be the sum of its utility on every round.

There will be n agents in this environment. In the gen-
eral game, each agent ai can make two other moves apart
from the nb exploit moves: innovate (I) and observe (O).
Upon making an I move in round r, the value vi,r of a ran-
domly chosen move i gets added to the agent’s repertoire as
the value of move i. The agent receives no utility on rounds
where she makes an I move. Upon making an O move, an
agent will get to observe the value received by some other
agent who made any exploit move on the last round. Agents



round # 1 2 3 4 5 . . . k

I1’s move I 1 1 1 1 . . . 1
I1’s Utility 0 3 6 9 12 . . . 3 · (k − 1)
I2O’s move I I O 3 3 . . . 3
I2O’s Utility 0 0 0 8 16 . . . 8 · (k − 3)

Table 1: The sequence of moves from Example 1 and their
utility values.

receive no utility for O moves. When a move is observed,
the observed move’s value on the last move (vi,r−1) is added
to the agent’s repertoire. If no other agent made an exploit
move last round, the observing agent receives no informa-
tion.

The agent may only make I or O moves and moves from
the repertoire (having been put there through either an I or an
O move). Notice that because of the probability of change c,
the value of vi,r on the current round r may not be the same
as what is stored in the agent’s repertoire.

Example 1 Consider two strategies: the innovate-once
strategy (hereafter I1) which innovates exactly once and ex-
ploits that innovated move for the rest of the game, and the
innovate-twice-observe-once strategy (hereafter I2O) which
innovates twice, observes once, and exploits the higher val-
ued move for the rest of the game. For simplicity of expo-
sition, we allow only four exploit moves: 1, 2, 3, and 4;
and exactly two agents, one I1 and one I2O. We suppose a
uniform distribution over [1, 10] (with mean 5) and a proba-
bility of change of 0. Suppose the initial utility values for the
moves are: v1,0 = 3, v2,0 = 5, v3,0 = 8, v4,0 = 5. On the
very first move, I1 will make an innovate, which we suppose
gives I1 the value of move 1, putting v1,0 as the value for
move 1 in I1’s repertoire. On every sequential move, I1 will
make move 1, exploiting the initial investment. If the agent
dies k rounds latter, then the history of moves and payoffs
will be that given in Table 1; giving a utility of 3 · k − 1.

In contrast, I2O will make an innovate, giving the value
for move 3: v3,1 = 8, then makes another innovate giving
the value for move 2: v2,2 = 5, and finally observes. On
move 2, I1 made move 1, and since these are the only two
agents, this was the only exploit move made. Therefore I2O
observes that another agent got a value of 3 from move 1
last round. On move 4, I2O’s repertoire consists of {v1,2 =
3, v2,2 = 5, v3,1 = 8}. Since the probability of change is
0, the obvious best move is move 3, which I2O makes for
the rest of her life. The average per-round utility of I2O on
round k is 8 · k − 3, so for rounds 2 to 4, I2O will actually
have a worse than I1, while after round 4, the utility of I2O
will actually be higher.

There are many potential setups for these sorts of games.
Generally the de facto objective is to acquire more utility
than other players, though one can imagine games where
the objective is for an individual or group to maximize util-
ity. In the Cultaptation social learning competition, an evo-
lutionary setup is used. Each game starts with 100 agents.
Each round each agent has a 2% chance of dying. On death,
an agent is replaced, and if there is no mutation, the strategy

used by this newborn agent is chosen from the agents cur-
rently alive according to their average lifetime utility (the
new agent is naı̈ve and shares nothing except social learning
strategy with its parent). In this game, the strategy with the
highest average per round utility is the most likely to prop-
agate. Mutation happens 2% of the time, and if there is a
mutation, then one of the competing strategies is chosen at
random and added to the pool (without regard for any strat-
egy’s performance). Through mutation, new strategies can
be introduced into otherwise homogeneous populations.

In the social learning competition, there are two sorts of
games into which an agent may be placed. First is a pairwise
contest, where one contestant strategy starts with a domi-
nant population of agents, and an invader strategy is intro-
duced only through mutation. The second is the melee con-
test, which starts with a dominant strategy of simple aso-
cial learners, and is invaded by several contestant strategies
through mutation. We call any instance of either an invasion
or a melee game a Culptaptaion game.

Simplified Games
In this paper, we will examine a simplified form of the Cul-
taptation social learning game.

The simplified form is a finite-round innovation game.
In this game, we take the original social learning game
and eliminate observe moves, the probability of change,
and the possibility of death. We further set the number of
rounds to some positive integer l. We call this the set-round-
innovation game (SRI game). In the SRI game there is only
ever one agent. The goal of the SRI game is to achieve max-
imal utility over the entire game.

Another simplified form of the game, similar to the first,
we have called the variable-round-innovation game (VRI
game). In this game, agents die with probability 0.02 each
round, instead of living a fixed number of rounds. The VRI
game was discussed in a previous paper by the same authors
(Carr et al. 2008).

Problem Description
The motivation for this work comes from the following
result, which implies that innovation moves must be per-
formed even in the version of the social learning game on
which the social learning competition will be based.

Proposition 1 If no agent ever innovates in any form of the
social learning game, then the utility of all agents will al-
ways be zero.

Proof: All utility comes from exploiting moves available
in an agent’s repertoire. Any move in the repertoire due to
an observation requires there to have been an earlier exploit.
Any move in a repertoire was therefore originally discovered
by an innovate move. Thus any non-zero utility implies that
at least one agent made at least one innovate at one point.

This implies that innovation is necessary in all social
learning games, including the Cultaptation game. Thus even
in the full Cultaptation game there is motivation to deter-
mine how many times one must innovate in order to opti-
mize one’s utility.



A quick analysis of the SRI game determines that only
certain kinds of innovations are useful. Consider any inno-
vate move made after an exploit move. It is possible that that
innovation discovers a move with higher utility than the pre-
vious exploit. In this case, we would want to have innovated
before exploiting – in fact, in the general case, all innovates
should come before any exploits. Therefore we need only
consider strategies which innovate a given number of times.

The question remains, however, how many innovates is
best? This is our problem.

Definition 1 (Optimal Innovation Problem) Given a
probability distribution π, what is the optimal number of
innovates in the SRI game?

Analytic Results
SRI Game
In this section, we introduce and prove a formula which al-
lows for the computation of the optimal number of innovates
for a given distribution in the SRI game.

To present these results, we will represent the utilities of
each of the n actions as a set V = v1, v2, . . . , vn and we will
assume, without loss of generality, that v1 ≤ v2 ≤ · · · ≤ vn.

Possible Strategies First, we examine the strategies that
players may adopt for agents in this version of the game.
Players must choose either I or E for each of l rounds. Thus,
there are 2l possible strategies. Note, however, that there are
far fewer intelligent strategies. For instance, I is the only
move that makes sense for the first round, since the agent
does not know any actions and, thus, cannot choose one to
exploit. Similarly, E is the only move that makes sense for
the last round, since the agent would not have the opportu-
nity to use any action it learned by choosing I.

Finally, note that, since action utilities do not change, it
never makes sense to choose a strategy with an I move fol-
lowing an E move, since this strategy would be guaranteed to
do at least as well by swapping the two moves, since the total
number of times the agent exploits remains the same, and the
utility of the action it chooses to exploit is at least as high.
Thus, the only strategies worth considering are those that
begin by innovating k consecutive times, where 0 < k < l,
and then exploit l − k consecutive times. For the rest of the
analysis, we will refer to the strategy that begins by innovat-
ing k times as Sk.

Expected Utility of a Strategy Since all of the strategies
we are concerned with contain some number of I moves fol-
lowed by E moves, we can obtain the expected utility of a
strategy by multiplying the utility of the best action found
with k innovates by l − k, the number of times the strategy
exploits:

Proposition 2 LetF (k, V ) be the expected utility of the best
action found with k random draws from V . Then the ex-
pected utility of Sk is:

E(Sk) = (l − k)F (k, V )

Now, however, we need to derive F (k, V ). Since F is
the expected maximum value of k draws from V , we can

obtain it by summing the maximum value of every possible
sequence of k innovates, and dividing by the number of pos-
sible sequences. Our assumption that v1 < v2 < · · · < vn

will help here; we note that, if on a given sequence of in-
novates the maximum utility discovered is vi, then the other
utilities discovered is some permutation of k−1 values from
v1, v2, . . . , vi−1. Since there are P (i − 1, k − 1) = (i−1)!

(i−k)!

of these permutations and the maximum value can be found
on any one of the k innovates, there are k (i−1)!

(i−k)! ways to dis-
cover a maximum value of vi. Since there are P (n, k) =

n!
(n−k)! possible sequences of discoveries, we know that

F (k, V ) =

∑n
i=k

(
k (i−1)!

(i−k)!vi

)
n!

(n−k)!

. (1)

Now that we have F (k, V ), and we know that the only
strategies worth considering are ones that innovate for k
moves and then exploit for l−k moves, we can easily calcu-
late the optimal strategy by finding the value of k that maxi-
mizes the strategy’s expected value.
Theorem 1 Given a distribution V and lifetime l, the op-
timal strategy for the SRI game is to innovate a number of
times equal to

argmaxk ((l − k)F (k, V )) (2)
and exploit thereafter.
This theorem follows from the discussion above.

When to Stop Innovating? Now that we can find the ex-
pected utility of strategies, we can tell if adding more inno-
vate moves to a strategy will give us a higher expected util-
ity. This will be helpful if, for example, we are building an
agent that must decide each turn whether to keep innovating
or not. If we want to get the maximum expected utility, we
are interested in the value of k such that performing k + 1
innovates does not improve out expected utility. In other
words,

(l − k)F (k, V ) ≥ (l − k − 1)F (k + 1, V ). (3)

Experimental Results for SRI Game
To test the effectiveness of Formula 1 and to ensure that
no mistakes were made in its calculation, we compared the
expected value predicted by the formula to actual expected
values achieved in simulation experiments. To do this, we
chose two distributions for π: normal and exponential dis-
tributions, each with mean 50 and variance 850. For each
distribution, we considered games which lasted exactly 100
rounds, and computed the expected average per round util-
ity of an agent which performs i innovations by averaging
that agent’s utility over a total of 500 thousand simulations.
This value is reported as “Measured EV”. We then used For-
mula 1 to compute another expected utility for innovating
after i rounds. These computed values are reported in the
figure as “Predicted EV”. Figure 1 shows the result of this
experiment both distributions.

We notice that in the figure, the predicted values match up
exactly with the meausred values for both distributions. This
we take as evidence that Formula 1 is correctly computed.
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Figure 1: Comparing the utility predicted by equation 1 with
the utility achieved in simulations when the underlying dis-
tribution is both normal and exponential. Notice that the
measured values are almost exactly the same as the predicted
values, such that the lines showing the measured expected
value are overlaid by the predicted values.

Estimating an Optimal k

Thus far, we have only tried computing the optimal number
of innovate moves when the set of actions V is known in
advance. For the Cultaptation game described earlier in this
paper, as well as in many real world situations, this is an
unreasonable assumption. Instead, an agent must estimate
the optimal number of innovations given only what it has
learned from previous moves in the game.

The smart-innovator strategy estimates V based on the
actions it has learned from previous innovate moves in the
game, and bases its decisions on that. Let L = l1, l2, . . . , lk
be the set of actions that the agent has already innovated by
round k.

We could just assume that V = L, and decide whether to
innovate further by computing F (k+ 1, L). However, since
L has only k values, innovating more than k times would al-
ways appear pointless. It is not alway pointless to innovate
more than k times, so this would be suboptimal. What we
can do instead is use L to estimate π, the underlying distri-
bution, and then generate an approximation (or several) of
V from the estimate of π.

For a given assumed family of underlying probability dis-
tribution (i.e. normal, uniform, exponential) over V , we can
estimate the distribution parameters by measuring the mean
and standard deviation of L. By sampling from this new dis-
tribution, we can create a new set of actions V ′ that models
the true distribution of V . We can then compute the inequal-
ity (l− k)F (k, V ′) ≥ (l− k− 1)F (k+ 1, V ′) (Formula 3),
and decide whether to continue innovating based on that.

No single V ′ is guaranteed not to yield the same optimal
number of innovates as V , but by generating multiple V ′s
and averaging the results we hope to reach a close approxi-
mation. Algorithm 1 shows how this procedure works under
the assumption that π is some normal distribution.

For situations when the family of the underlying distri-
bution is not known a priori, a χ2 goodness-of-fit test can

be used to compare several distributions (normal, uniform,
etc), and determine which is best. From this estimation one
can form a new distribution that may be representative of V ,
thereby eliminating the need to assume one particular family
of probability distributions.

Algorithm 1 Determine an estimate of the optimal number
of innovates with observed values L = {l1, . . . , lk}, and
number of rounds l, under the assumption that π is a normal
distribution.
Smart Innovator(L,l)

Let m be the mean of L.
Let σ be the standard deviation of L
Let normal(m,σ) be a normal PDF with mean m and
standard deviation σ.
Let LHS = 0 {Left hand side of inequality}
Let RHS = 0 {Right hand side of inequality}
for 100 trials do

Create V ′ = {v1, . . . , vnb
} where each vi is a random

draw from normal(m,σ).
Let LHS = LHS + (l − k)F (k, V ′)
Let RHS = RHS + (l − k − 1)F (k + 1, V ′)

end for
If LHS < RHS innovate this round.
Otherwise exploit.

Experimental Results for Smart-Innovator

To confirm that the smart-innovator strategy produces close
to optimal results, we compared the average number of
rounds spent innovating by agents performing this strategy,
versus the known optimal number of innovate moves com-
puted by the formula earlier in this paper. For simplicity, we
assume the agent is given the family of distribution (normal,
laplace, etc.), but not its parameters. For each of these dis-
tributions, the agent was required to innovate for at least 5
moves before estimating V ′.

The results in Table 2 show the average performance for
50 trials of a 100 round SRI game. Notice that the smart-
innovator strategy is able produce close to optimal results
for a range of standard deviation values, even though it was
not given those values in advance.

For a single run of the SRI game, the smart-innovator
strategy may produce a higher utility than expected for the
optimal number of innovates. This is because the expected
value is a prediction of the average case, not a prediction of
the best case. It is entirely possible for a single run of smart-
innovator or any other strategy to draw higher or lower util-
ity than expected. This is exhibited in the standard deviation
values column of Table 2.

In (Carr et al. 2008) a similar results was found for the
variable-round-innovation game. While introducing proba-
bility of death did increase the variance in performance re-
sults, on average the smart-innovator strategy was still able
to approximate the optimal number of innovates.



Distribution Mean Stdev Optimal Io Average SI Stdev of SI Expected Io Average SI Stdev of SI
Innovates Innovates Innovates Utility Utility Utility

40 11 10 1.15 96.07 95.76 8.18
Uniform 50 80 12 12 1.34 147.53 147.73 16.04

160 13 13 1.28 250.8 246.4 28.3
40 15 14 1.46 101.59 103.52 17.85

Normal 50 80 17 16 1.48 160.65 165.01 37.83
160 18 18 1.95 279.75 277.16 76.41
40 19 17 1.93 106.5 111.17 44.26

Laplace 50 80 21 21 1.59 172.7 161.86 45.98
160 23 23 1.36 306.1 304.94 161.61
40 20 20 0.99 120.1 119.46 24.66

Exponential 50 80 22 23 0.81 200.41 180.24 56.37
160 24 24 1.28 361.81 373.47 150.03

Table 2: Table showing the optimal number of innovates in the SRI game (Io), compared with the average number of innovates
performed by the smart-innovator strategy (SI). Note that regardless of the distribution or its parameters, the SI strategy either
correctly estimates, or comes very close to correctly estimating the optimal number of innovate moves.

Optimizing Average Per-round Utility
The strategies presented thus far attempt to maximize the to-
tal lifetime utility of an agent in the SRI version of the social
learning game. However, in the social learning competition,
a winning strategy must achieve the largest agent population
across many trials. Therefore, the goal of a winning strategy
should be to maximize an agent’s probability of reproduc-
ing.

In the competition, the probability agent i will reproduce
on round k is defined as

Rik =
Pik∑
j Pjk

(4)

Where Pik is the per round utility of agent i on round
k, equal to the agent’s total utility divided by the number
of rounds it has been alive. The average number of times
agent i will reproduce during an n round game is simply∑n

k=0Rik. Thus, an agent will reproduce at a rate propor-
tional to its average per-round utility, divided by the per-
round utility of all the agents in the environment.

During the competition, a single agent cannot know the
value Pik for any of the other agents. The agent is also un-
aware of the respective population densities for each strat-
egy, or the exact round number of the game. This makes
it difficult for an agent to know its probability of reproduc-
ing during a particular round. For this reason, we make a
simplifying assumption that the denominator in equation 4
is, on average, constant over the lifetime of an agent. This
will allow us to maximize the average per-round utility, as
an approximate means of maximizing the reproduction rate.

The average per-round utility for an agent i in an n round
game is defined as the average of its per-round utility for
every round in the game

Ai =
1
n

n∑
k=1

Pik (5)

This formula can be rewritten as an expected value cal-
culation in terms of the sequence of moves M , and a set of
actions V

A(M,V ) =
1
n

n∑
k=1

1
k

k∑
j=1

Mj ∗ F (Kj , V ) (6)

Where Mj ∈ {0, 1} is equal to 1 if the move on round j
is an exploit, and 0 if the move is an innovate. The value Kj

is the number of innovate moves performed by round j, and
can be derived from M . The formula F (k, V ) returns the
expected value of k innovates, and is unchanged from the
earlier discussion.

Using equation 6 we can evaluate the average per-round
utility of an arbitrary sequence of innovates or exploits. It
turns out that maximizing this formula is not the same as
maximizing the total lifetime utility. The following coun-
terexample shows that these two measurements differ.

Example 2 Consider a four round SRI game with a single
agent, where the set of values learned through innovating is
V = {0, 48}. Observe that no more than two innovate moves
is ever desired, since there are only two distinct values in V.
The expected value of a single innovate is 24, and the ex-
pected lifetime utility from one innovate followed by three
exploits is 72. The expected lifetime utility from two inno-
vates followed by two exploits is 96. Therefore, to maximize
the total lifetime utility, the agent should innovate exactly
twice.

The average per-round utility for one innovate followed
by three exploits, according to equation 7, is 11.5. The av-
erage per-round utility for two innovates followed by two
exploits, according to the same equation, is 10. Therefore,
the number of innovates required to maximize average per-
round utility is one, different from the number required to
maximize total lifetime utility. In this example, maximizing
the value of one measure will decrease the value of the other.
No other sequence of moves will perform any better.

Example 2 shows that a new way to compute the optimal
number of innovate moves is needed. It would be relatively
easy to extend the work from the SRI games to include this



Moves Per-Round Total Lifetime
Utility Utility

IEIEEE... 69.25 1782.5
IEEIEE... 69.08 1765.0
IIEEEE... 69.02 1800.0

Table 3: Table showing the top three strategies for maxi-
mizing the per-round utility in a 20 round SRI game, with
V = {65, 100}.

new calculation. However, this will not work, because a pre-
viously held assumption is no longer true.
Proposition 3 There exists a set of actions V and number of
rounds n such that the sequence of moves that maximizes the
average per-round utility contains an exploit move before an
innovate move.

This proposition differs from before, where the goal was
to maximizing total lifetime utility, and we could guaran-
tee that all optimal strategies were of the form of k inno-
vates followed by n− k exploits. When attempting to max-
imize the average per-round utility, a simple 20 round SRI
game with innovate values V = {65, 100} is an exception
to this previously held rule. The strategy innovate, exploit,
innovate, and then exploit 17 times outperforms all other
sequences of moves. The search can no longer be limited to
strategies that innovate k times then exploit.

This problem could be solved by performing a brute force
search over all sequences of innovate and exploit moves, and
choosing the sequence that maximizes the per-round utility.
However, there are 2n such sequences for an n round game,
so for large values n this method is simply intractable.

Finding M in Polynomial Time
Given an n round SRI game with set of actions V , there
is a polynomial time algorithm for computing the sequence
of innovate and exploit moves M that maximizes the aver-
age per-round utility of an agent. While there are 2n possi-
ble sequences to evaluate, exponential time complexity can
be avoided by reducing the search to a polynomially sized
graph problem. The algorithm takes advantage of the fact
that the expected value of an exploit move depends only on
the number of innovates performed and the round number.

First, observe that equation 6 can be simplified by factor-
ing out the summation over k

A(M,V ) =
1
n

n∑
j=1

Mj ∗ F (Kj , V ) ∗
n∑

k=j

k−1 (7)

Several parts of equation 7 can now be pre-computed. Let
F be set of values returned by the expected value compu-
tation F (k, V ) for all values 1 ≤ k ≤ n, and let S be the
set of values computed by the finite series

∑n
k=j k

−1 for all
rounds 1 ≤ j ≤ n. Both sets are at most length n, and
can be computed in polynomial time. Let A = F × S (the
Cartesian product of F and S). The set A is also polyno-
mially bounded, and represents the expected utility of any
exploit move given k innovates and j rounds.

Exploit

Innovate

Figure 2: The graph constructed to findM for the four round
SRI game described in example 2. The sequence innovate,
exploit, exploit, exploit maximizes the average per-round
utility. A variant of Dijkstra’s algorithm is able to find this in
polynomial time, by finding the path with greatest total edge
weight. Only edge weights for the horizontal exploit moves
are shown.

According to equation 7, innovate moves provide no
direct utility, while exploit moves provide the utility de-
rived directly from each element in A. That is, for
(F (k, V ),

∑n
i=j i

−1) ∈ A, an exploit move at round k after
j innovates contributes exactly F (k, V ) ·

∑n
i=j i

−1 to the
sum in A(M,V ) (Equation 7). For this reason we will focus
only on the states associated with elements in A. We can
construct a graph G that represents the (n2 + n)/2 possible
states of this kind. Let there be a vertex in G for every el-
ement in A, connected by edges representing innovate and
exploit moves.

An innovate edge in G should connect the vertex repre-
senting k innovates and round j to the vertex for k+1 inno-
vates and round j + 1. An exploit edge should connect the
vertex for k innovates and round j to the vertex for k inno-
vates and round j + 1. Innovate moves have an edge weight
of zero, while exploit moves have an edge weight equal to
the expected utility defined in A.

The above construction should produce a directed acyclic
graph with (n2 + n)/2 vertices and n2 − n edges. Let the
vertex representing round one be known as vertex a. There
should be n terminal vertices representing the last round in
the game, where j = n. To complete the graph, connect
each of the terminal vertices to a dummy vertex with an in-
novate and an exploit edge, applying the same rule for edge
weights used earlier. Let this dummy vertex be known as
vertex b. Since there are only polynomial number of vertices
and edges, andA can be computed in polynomial time, com-
plete construction of G should happen in polynomial time.

Lemma 1 For every unique n-length sequenceM , there ex-
ists a corresponding path in G from vertex a to vertex b.

Proof: Every path from a to b in G is of length n, because
all vertices corresponding to rounds j < n lead to vertices
corresponding to rounds j + 1. Every vertex except b has
exactly one innovate and one exploit edge, so there should



be 2n possible ways to traverse the graph from vertex a to
vertex b.

Lemma 2 The sum of the edge weights for a path from a to
b divided by n is equal to the expected average per-round
utility for the corresponding sequence M .

Proof: Every exploit edge has a weight equal to the expected
value of an exploit move for jth round and the kth innovate,
as defined in equation 7. Every exploit edge will correctly
lead to the vertex for the next round, and the kth innovate.
Every innovate edge will correctly lead to the vertex for the
next round, and k + 1 innovates.

The problem of finding an optimal M can now be solved
by using a variant of Dijkstra’s algorithm on the graph we
constructed. We can extract M from the graph by searching
for the path from a to b that maximizes the value of the edge
weights. Dijkstra’s algorithm can be performed in polyno-
mial time, and extracting the sequence M can be done in
linear time.

Theorem 2 Given an n round SRI game with set of actions
V , the sequence M that maximizes the expected value of the
average per-round utility of an agent can be computed in
polynomial time.

Proof: Sets F and S can both be computed in linear time if
the factorial values are pre-computed. Thus, computing the
set of states A can be done in O(n+n2). Construction of G
can be done in time linear to the number of states in A, and
produces a graph with n2 edges and (n2 + n)/2 vertices.
Performing Dijkstra’s algorithm on a graph with edges M
and vertices N can be done in time O(|M | + |N |log|N |),
so the complexity of running the algorithm on G should be
O(n2 + (n2 + n)log(n2 + n)). As each individual step can
be done in polynomial time, the sum of all the steps should
also be polynomial.

Related Work
This work addresses a simplified version of the Cultaptation
social learning game, first discussed in (Carr et al. 2008).
The authors are aware of no other work on this particu-
lar game, although there are related problems in anthropol-
ogy, biology and economics, where effective social learning
strategies and their origins are of particular interest.

The social learning competition attempts to shed light on
an open question in behavioral and cultural evolution. De-
spite the obvious benefit of learning from someone else’s
work, several strong arguments have been made for why
social learning isn’t purely beneficial (Boyd and Richerson
1995; Rogers 1988). The answer to how to best learn in a
social environment is seemingly non-trivial. Game theoret-
ical approaches have been used to explore this subject, but
there is still ongoing research in improving the models that
are used (Henrich and McElreath 2003; Enquist, Ghirlanda,
and Eriksson 2007).

(Laland 2004) discusses strategies for this problem in de-
tail, and explores when it is appropriate to innovate or ob-
serve in a social learning situation. Indiscriminate obser-
vation is not always the best strategy, and there are indeed
situations where innovation is appropriate. This is largely

influenced by the conclusions of (Barnard and Sibly 1981),
which reveals that if a large portion of the population is
learning only socially, and there are few information pro-
ducers, then the utility of social learning goes down.

In the social learning competition, an “observe” move in-
troduces new actions into the repertoire of an agent, which
the agent may optionally exploit. The relationship be-
tween this and social learning in animals is demonstrated by
(Galef Jr. 1995), which differentiates social learning from
mere imitation. In highly variable environments, socially
learned information may not always be the most beneficial,
yet animals that learn socially are still able to learn locally
adaptive behavior. This is the result of having rewards or
punishments associated with expressed behavior, similar to
the utility values in the social learning game, which can
guide the actual behavior of an animal.

Discussing the means of social information transmis-
sion, (Nettle 2006) outlines the circumstances in which ver-
bal communication is evolutionarily adaptive, and why few
species have developed the ability to use language despite its
apparent advantages. The model Nettle describes is similar
to the Cultapatation game, where the cost of innovation ver-
sus observation can vary depending on the parameters of the
system. The modeled population reaches an equilibrium at a
point that includes both individual and social learning. The
point of equilibrium is affected by the quality of observed
information, and the rate of change of the environment.

Other work on similar games include (Giraldeau, Valone,
and Templeton 2002), which outlines reasons why social in-
formation can become unreliable. Both biological factors,
and the limitations of observation, can significantly degrade
the quality of information learned socially. (Schlag 1998)
explores rules that can be applied in a similar social learning
environment which will increase the overall expected payoff
of a population, by restricting how and when agents act on
information learned through observation.

The structure and intentions of the Cultaptation Institute’s
social learning game are much akin to those laid out by Ax-
elrod in his Prisoner’s Dilemma tournament on the evolution
of cooperation (Axelrod and Hamilton 1981). The analysis
of the Prisoner’s Dilemma has had substantial use in many
different areas. It has been used as a model for arms races,
evolutionary systems, and social systems. The Cultaptation
social learning game has similar potential applications, yet
currently no analysis. This work hopes to begin to fill that
void.

Conclusion
In this paper, we have provided mathematical models for
simplified versions of the Cultaptation game, proven their
correctness, and shown their effectiveness in experimenta-
tion. We examined two kinds of payoffs in the SRI game:
per-round payoff and total-lifetime payoff.

In examining total lifetime payoff, we developed an ana-
lytic method for determining the optimal strategy so long as
the underlying move values are known. We extended this to
an approximate sampling algorithm named smart-innovator,
which needs only an estimate of the probability distribution,
and which performed well in our experiments.



In examining per-round payoff, we discovered a polyno-
mial time algorithm for computing the optimal strategy. This
is surprising, as there are an exponential number of potential
strategies. The algorithm uses state aggregation to create a
weighted graph, and then applies a variant of Dijkstra’s algo-
rithm to extract an optimal path through the graph. The path
can be shown to correspond exactly to the optimal strategy.

As future work, we will examine the value of observation
in the Cultaptation game. Initial analysis leads us to believe
that one may posit the existence of a probability distribution
over the observed move values, and then apply the frame-
work detailed in this paper to “guess” the optimal number
of observe moves. By combining this technique with the
techniques given in this paper, we hope to given provable
guarantees about the full Cultaptation game.
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