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Abstract In this paper, we present a contract-based, decen-
tralized planning approach for a team of autonomous
unmanned surface vehicles (USV) to patrol and guard an
asset in an environment with hostile boats and civilian traf-
fic. The USVs in the team have to cooperatively deal with
the uncertainty about which boats pose an actual threat
and distribute themselves around the asset to optimize their
guarding opportunities. The developed planner incorporates
a contract-based algorithm for allocating tasks to the USVs
through forward simulating the mission and assigning esti-
mated utilities to candidate task allocation plans. The task
allocation process uses a form of marginal cost-based con-
tracting that allows decentralized, cooperative task negotia-
tion among neighboring agents. The task allocation plans are
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realized through a corresponding set of low-level behaviors.
In this paper, we demonstrate the planner using two mis-
sion scenarios. However, the planner is general enough to be
used for a variety of scenarios with mission-specific tasks
and behaviors. We provide detailed analysis of simulation
results and discuss the impact of communication interrup-
tions, unreliable sensor data, and simulation inaccuracies on
the performance of the planner.

Keywords Decentralized planning · Task allocation ·
Unmanned vehicles · Unmanned surface vehicles

1 Introduction

Teams of cooperative, highly-maneuverable unmanned sur-
face vehicles (USVs) Corfield and Young (2006) can be uti-
lized for guarding of designated regions or assets (e.g. oil
tankers, commercial cargo ships, etc.) in naval missions. The
use of autonomous robotic systems brings several advan-
tages which include reducing the risk of human fatalities and
significantly decreasing the cost of missions, while preserv-
ing the expected level of security. This, however, imposes
multiple challenging requirements on the decision-making
capability of these vehicles.

The guarding of an asset by a team of USVs requires coop-
erative patrolling of the surrounding area, approaching and
observing passing boats, recognizing the hostile boats, and
taking other appropriate means to maximize the effectiveness
of the mission (see Fig. 1). Intelligent, balanced decisions
about which tasks to perform must be made by the vehicles
to prevent adversaries from reaching the asset undetected.
This presents a non-trivial challenge for the USVs, since the
identity of the hostile boats may not be known at the time
they enter the visibility range of the USVs. In addition, the
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Fig. 1 A team of unmanned surface vehicles (USVs) is guarding an
oil tanker against hostile boats in a region with civilian traffic. During
the operation, each boat is assigned a probability of being hostile based
on observations made by the USVs

possibility of intermittent communication interruptions, noisy
sensor data, and the differential constraints of the vehicles all
impose additional complications. The vehicles also have to
consider the time dependencies of the problem, since select-
ing current tasks requires knowledge of what future tasks
are possible in order to maximize the expected performance
of the entire team. Finally, the task allocation must be done
efficiently despite the very large state-action space, and the
developed approach should be general enough to be usable
for a range of scenarios and missions.

This paper presents a decentralized, contract-based plan-
ning approach for a team of USVs to patrol and guard a
given region containing a valuable asset against hostile boats
in an environment with civilian traffic. The work is mostly
concerned with high-level task allocation and behavior opti-
mization to allow safe, high-performance, autonomous oper-
ation. The developed planner computes an approximate solu-
tion to an instance of the MT-MR-TA (i.e., multi-task robots,
multi-robot tasks, time-extended allocation) variant of the
task allocation problem (Gerkey and Matarić 2004).

The developed planning approach uses a decentralized
algorithm where each USV is responsible for managing its
own task assignment and negotiating exchanges with the
other vehicles. The individual USVs use two-side share and
offer contracts to incrementally agree on the set of observe,
guard, and delay tasks. These contracts allow the vehicles
to establish a specific communication and task allocation
protocol. Model-predictive simulations are leveraged during
the evaluation of candidate task allocations, i.e., by looking
ahead to estimate the utility of the task allocation based on
the future states of the boats in the scene.

The tasks are realized by corresponding parameterized
behaviors, which are optimized for a specific mission defined
by the number of available USVs, estimated number of
intruders, spatial distribution of the incoming boats with
respect to the target, expected distribution of civilian traf-
fic, etc. These behaviors implement a local, reactive obsta-
cle avoidance that respects the differential constraints of the
vehicles. The weighting of each tasks and parametrization of
the behaviors are optimized to account for their individual
contributions to the overall guarding strategy.

The developed planner is capable of generating a task
allocation plan efficiently using an online computation and
is scalable to a large number of vehicles. We demonstrate
its performance in simulation using a team of autonomous
unmanned surface vehicles (USVs) guarding a stationary
asset. We compare it to a baseline approach, which does not
perform online task re-allocation, and a heuristic strategy that
does not use predictive simulation to aid in the task assign-
ment. We demonstrate that the use of model-predictive sim-
ulation leads to significantly higher performance and robust-
ness than the pure use of task-tailored heuristic rules. We
also show that through careful Monte-Carlo sampling over
the distribution of possible worlds, the model-predictive sim-
ulation produces better results, even if the number of samples
is kept relatively small.

We believe this paper presents a novel application of
contract-based task allocation with model-predictive simula-
tion to the domain of planning for unmanned surface vehicles.
We provide a detailed analysis of the developed approach
and discuss lessons learned when designing the algorithm
so that this information may be used by robotic practition-
ers attempting solve related problems. These contributions
include: (1) an analysis of the trade-off between computa-
tional effort and plan quality when varying parameters of the
algorithm; (2) an analysis of the scalability/computational
complexity of the approach for different numbers of USVs
or boats; (3) an analysis of the effect of the errors in model-
predictive simulation or opponent model on the planner; and
(4) an analysis of the impact of sensor noise or communica-
tion uncertainty on the planner.

Our results demonstrate that simulating only a few seconds
into the future is enough to see performance gains of greater
than 50 % when evaluating task exchanges. Additionally,
we show that even using a small sample size, Monte-Carlo
sampling is beneficial for dealing with sensor uncertainty or
uncertainty about the opponent model. Finally, the running
time analysis reveals that the algorithm has a fast execution
time and low-order polynomial time complexity in relation
to the number of USVs, suggesting that the algorithm has the
computational efficiency needed for online planning.

The outline of the paper is as follows: in Sect. 2 we review
existing approaches to multi-agent guarding, patrolling and
task assignment problems. In Sect. 3, we provide a formal
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definition of our multi-agent planning problem. In Sect. 4 we
provide a detailed description of our approach. In Sect. 5 we
describe an experimental setup and discuss our results. We
provide a brief summary of future work in Sect. 6.

2 Related work

The outlined problem can be decomposed into multiple
components, e.g., accelerated simulation (Thakur and Gupta
2011; Thakur et al. 2012), trajectory planning for collision-
free guidance Švec et al. (2011), Švec et al. (2012), Thakur
et al. (2012), Švec et al. (2013), Bertaska et al. (2013),
Švec et al. (2013), learning of interception behaviors (Švec
and Gupta 2012), and multi-agent task allocation and plan-
ning.

In this paper, our focus is mostly on task allocation and
planning. Hence, we provide an overview of representative
approaches in this domain for intentionally cooperative sys-
tems of robotic agents Parker (2008). In particular, we focus
on distributed and hybrid teams of agents Dias et al. (2006).

Task planning involves the manual or automated decom-
position of mission objectives into individual subtasks, which
may be arranged in hierarchical trees, or clustered and
assigned as roles to individual robots. The subtasks then need
to be allocated to the robots based on a number of factors
according to the multi-robot task allocation (MRTA) taxon-
omy in Gerkey and Matarić (2004). The particular factors
include the number of tasks that can be performed by a sin-
gle robot (i.e., ST as single-task robots, and MT as multi-task
robots), the number of robots that may be required to fulfil
a task (i.e., SR as single-robot tasks, and MR as multi-robot
tasks), whether the current assignment of tasks is optimized
for future task assignments or not (i.e., IA as instantaneous
task allocation and TA as time-extended allocation), and the
level of task interdependencies. The variant mostly related
to our work is MT-MR-TA, which is known in general to be
NP-hard, making efficient computation of the optimal task
allocation infeasible.

The core techniques for solving MRTA problems can
be categorized into behavior-based and negotiation-based
approaches (Parker 2008; Mosteo and Montano 2010)
depending on whether the robots solely rely on the states of
other robots and their capabilities, or explicitly communicate
to decide on the tasks.

The behavior-based approaches do not favor explicit com-
munication among agents to allocate the tasks. Rather, the
task allocation is decided based on the known states and skills
of other agents in a purely distributed manner. A short survey
of the techniques that belong to this category can be found
in Parker (2008).

Our task allocation algorithm, an extension of our previ-
ous work Raboin et al. (2013), belongs to the category of

negotiation-based approaches where agents must individu-
ally communicate to decide on the task assignment. This
negotiation-based category includes contract and market-
based techniques for allocating tasks between agents, as
opposed to more centralized approaches Simmons et al.
(2000). A survey on the current state-of-the-art market-based
techniques for multirobot task allocation is given in Dias
et al. (2006), Parker (2008), Shoham and Leyton-Brown
(2010).

Most of the currently existing market-based approaches
for cooperative task assignment are based on the Contract Net
Protocol (CNP) Smith (1980), one of the pioneering negotia-
tion (auction) protocols for implementation of task allocation
algorithms in a distributed setting. According to this protocol,
the robots explicitly communicate and negotiate tasks using
a specific strategy. This leads to a gradual improvement in
the assignment of tasks to robots that have the best capa-
bilities to perform them. The market-based task allocation
approaches differ on the type of the negotiation protocol. The
protocol defines the way in which the agents offer or request
tasks given their capabilities, how many of these tasks can be
involved in a single contract (e.g., cluster contracts if more
than one task is dealt with), how many agents are involved in
a single negotiation (e.g., so-called multi-agent contracts if
more than two agents are considered), or whether the agents
offer tasks in exchange for another task, e.g., in the form of
swap contracts in exchange-like auctions (Sandholm 1998;
Shoham and Leyton-Brown 2010).

The representative market-based techniques include
MURDOCH (Gerkey and Matarić 2002) and TraderBots
(Dias 2004), solving the ST-SR-IA and ST-SR-TA variants,
respectively.

A distributed, market-based approach MURDOCH for
hierarchical task allocation was introduced in Gerkey and
Matarić (2002). The approach is based on the CNP protocol
and publish/subscribe communication model. It can handle
robot failures by reassigning the tasks to the most suitable
robots in a greedy fashion, and can consider newly created
tasks in the allocation process.

The market-based approach TraderBots (Dias 2004) was
developed for distributed coordination of self-interested ag-
ents. The approach is known for its capability to create cen-
tralized sub-groups within the distributed team to improve the
global task allocation efficiency. The approach is able to deal
with disruptions in communication through exchange task
style of auctioning. Zlot and Stentz present an extension of
the TraderBots approach for complex task allocation in Zlot
and Stentz (2006). The approach explicitly considers the task
structure and its properties to produce more efficient alloca-
tions. This includes complex decisions on subtasks sharing
among the robots. The subtasks are hierarchically arranged
into a task tree, which allows them to be negotiated at differ-
ent levels.
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The Hoplites approach (Kalra et al. 2005) was developed
for solving a complex coordination of a distributed group of
robots with highly coupled tasks. The approach is market-
based is one of the first approaches able to solve the ST-
MR-IA type of problems. It provides planned coordination
in addition to the tight coordination capability. It combines
two different coordination strategies, i.e., the passive, purely
local strategy according to which the robots have to quickly
decide on the tasks, and the active, market-based strategy
which allows them to agree on the tasks in more complex
scenarios.

A task allocation approach for computing a combination
of strongly and weakly cooperative solutions for a group
of heterogeneous robots operating in the context of a single
task allocation application was introduced in Tang and Parker
(2007). More specifically, the ASyMTRe-D algorithm for
the synthesis of coalitions within the group was combined
with a market-based approach for the allocation of weakly
cooperative tasks. According to the authors, the approach is
thus highly flexible and amenable to a large variety of robotic
applications.

A game-theoretic approach is introduced in Fang et al.
(2013) for solving the “Mobile Resources protecting Moving
Targets” (MRMT) problem, where multiple defenders must
guard a set of moving targets against multiple attackers. The
authors represent the problem as a continuous time Stack-
elberg game and use linear programming to find a Strong
Stackelberg equilibrium. This approach has the advantage
of offering a minimum performance guarantee against any
possible opponent, something that our work lacks. However,
compared to our work, the interaction between defenders and
attackers in their model is highly simplistic. They do not con-
sider the movement of the attackers, so the notion of blocking
or intercepting an attacker is only dealt with abstractly. The
attacker may choose an arbitrary time to attack one of the
targets, and the probability of the attack succeeding is deter-
mined by whether or not the target is currently within the
“protection radius” of one or more defenders. In contrast,
we explicitly model the movement of USVs and intruders
when blocking or intercepting, and include that information
directly in our strategy evaluation. We also address the prob-
lem of neutral, non-hostile boats that must be distinguished
from intruders through observation, something which their
work does not directly address.

Similar to the work above, the work in Bošanský et al.
(2011) computes a Stackelberg equilibrium for a defensive
game with multiple moving targets and multiple attackers.
Unlike the work above, this work does consider the move-
ment of the attackers, but the problem space is very heavily
discretized. Their approach depends on solving an NP-hard
non-linear program, so the largest problem they evaluated
used a 5x4 grid to represent the environment. Because their
model is fairly coarse, this work does not address differen-

tial constraints or realistic blocking behavior. This approach
was utilized in the marine domain to protect merchant ships
against pirate boats (Jakob et al. 2012). Additional work
on Stackelberg games in this domain includes the incorpo-
ration of Quantal Response models for adversary behavior
(Shieh et al. 2012) and accounting for the constrained mobil-
ity and limited endurance of defender agents (Vanek et al.
2012).

In the USV domain, a decentralized, behavior-based
STAGS approach for a multi-USV system to protect sen-
sitive areas against intruders was developed in Zhang and
Meng (2010). The deployment of the vehicles is controlled
by a heuristic algorithm that uses dynamically created gaps
between the vehicles and the asset. The parameters of the
approach are optimized to improve its performance by min-
imizing the average response time and missing rate.

Purely rule-based approaches include Simetti et al. (2010)
as a part of the Swarm Management Unit (SMU) used for
controlling a team of USVs to carry out surveillance and
guarding an asset by intercepting detected intruders. The
approach selects which USVs should intercept a detected
intruder based on domain-specific heuristics. The positions
of the USVs are optimized according to two criteria, i.e.,
preventing the intruders from getting too close to the asset
and minimizing the interception time. The aim is to find a
balance between the desired coverage of the area around the
asset and the level of security.

Related research also includes techniques for patrolling
a polygonal area using a group of agents. A survey of the
current state-of-the-art patrolling algorithms is provided in
Portugal and Rocha (2011). The representative approaches
are evaluated in detail in Portugal and Rocha (2011) in
terms of the average idleness of a patrolling graph and scal-
ability to the number of agents metrics. In our approach,
the patrolling strategy is computed indirectly through the
market-based exchange of guard tasks commanding the vehi-
cles to computed waypoints or predefined patrolling loca-
tions.

In contrast to the previously outlined approaches, our work
makes explicit consideration of sensing uncertainty when
differentiating intruder boats from other non-hostile boats
(i.e., by requiring observation of passing boats to identify
threats), and accounts for differential constraints of the USVs
and their complex interaction with the intruders when allo-
cating tasks (i.e., when executing intercepting and block-
ing strategies). We show that by carefully integrating the
model-predictive simulation with the underlying task allo-
cation, features such as differential constraints and sensing
uncertainty can be directly considered during task alloca-
tion and still run efficiently. We provide a detailed analysis
of the developed approach and describe lessons learned for
realizing high-fidelity task allocation with unmanned surface
vehicles.
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3 Problem formulation

We define a multi-agent planning problem where a team of
USVs must defend a stationary target from an attack by a set
of hostile intruder boats interspersed among other non-hostile
boats. The USV team does not know a priori which boats
are hostile intruders, but can estimate the probability that
a boat is an intruder through observation. Once an intruder
is identified, an alert is triggered, and the objective of the
USV team becomes to delay the hostile boats from reaching
the target for as long as possible. This is done by actively
blocking the path of the intruders, forcing the intruders to
slow down or change direction.

In addition to uncertainty about which boats are intruders,
the USV team must deal with noisy sensor data, which creates
uncertainty over the position of passing boats, and random
communication interruptions, which create periods of time
where USVs cannot exchange information directly.

The formal definition of the problem includes:

(i.) a team of USVs U = {u1, u2, . . . um} responsible for
defending the target from intruder boats,

(ii.) a set of passing boats B = {b1, b2, . . . bn} including a
subset of one or more hostile intruders I ⊆ B,

(iii.) the location ltarget of the stationary target,
(iv.) a vehicle state space X ⊆ R

3 × S, where each state
x = {x, y, ψ, v} defines the coordinates x , y, heading
angle ψ , and surge speed v of a single boat or USV,

(v.) a global state space S ⊆ R × X (m+n), where each
global state s defines the time t ∈ R, and the vehicle
state xui ∈ X and xb j ∈ X for every USV ui and boat
b j in the scene,

(vi.) a control action space Q(x) ∈ R
2 for each x ∈ X ,

where each control action q = {Δv,Δψ} defines a
change in surge speed Δv and heading angle Δψ ,

(vii.) a pair of probabilistic opponent models, PB,bi (q|s)
and PI,bi (q|s), for passing boats and intruders respec-
tively, which define the probability of boat bi perform-
ing control action q given global state s,

(viii.) a non-finite set of observations O , where each obser-
vation ob j = {̃xb j , fb j } provides a noisy estimate x̃b j

of the vehicle state xb j and observed features fb j of
the boat b j (e.g., color, size, etc.),

(ix.) an observation function �i (ob j |s) which returns the
probability that the USV ui will perform observation
ob j in global state s, adding ob j to USV ui ’s observa-
tion history Oui ∈ O ,

(x.) a communication reliability function Ci, j (s) which
returns the probability that the USV ui can communi-
cate with the USV u j in global state s,

(xi.) an intruder classification function P(bi ∈ I |Ou j )

which returns the probability that boat bi is an intruder
given observation history Ou j ,

(xii.) a response team probability threshold palert , defining
the probability P(bi ∈ I |Ou j ) above which an alert
will be triggered.

The objective of the USV team is to find a set of policies
ΠU = {πu1 , πu2 , . . . , πum } that maximize the expected delay
time, E[tdelay], defined as the time difference between when
the alert is first triggered and when an intruder first arrives at
the target, or tdelay = tarrival − talert . Thus, the optimal set
of policies Π∗U is defined as,

Π∗U = arg max
ΠU

E[tdelay |ΠU ]. (1)

Exactly computing Π∗U is likely to be intractable, so we are
interested only in finding a set of policies that can be com-
puted efficiently, even if they are sub-optimal.

The motivation behind maximizing E[tdelay] is to provide
a hypothetical response team as much time as possible to
deal with the intruders. Although the response team is not
modeled explicitly as part of the problem, we assert that the
longer intruders are delayed from reaching the target, the
more time the response team will have to repel an attack,
make emergency preparations, or perform other task which
are beneficial the overall mission. Additionally, by having
the alert triggered by the response team, we isolate the USVs
from the responsibility of classifying intruders or weighing
the cost of false alarms.

For the motion of the boats and USVs, we use a simple
steering model where control action q = {Δv,Δψ} deter-
mines the change in surge speed v and orientation ψ , while
Δx = v cos(ψ) and Δy = v sin(ψ) determine the change
in coordinates (x, y). To estimate the movement of the USV
after a time step Δt , we use the formula

x′ = x+Δx(q)Δt (2)

where Δx(q) = {Δx,Δy,Δψ,Δv} represents the change
in vehicle state x given control action q.

The set of control actions Q(x) = A(x)×Θ(x) is subject
to physical constraints, where

A(x) = {Δv : amin(x) ≤ Δv ≤ amax (x)} (3)

Θ(x) = {Δψ : θmin(x) ≤ Δψ ≤ θmax (x)} (4)

define the minimum and maximum change in surge speedΔv
and turning angle Δψ given vehicle state x. We assume that
the maximum turning radius decreases as the surge speed
v increases. Each boat has a maximum surge speed, vmax ,
which it cannot accelerate past. We also assume that boats
cannot travel in reverse, so amin(x) is zero when the surge
speed v is zero.
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Fig. 2 Planning and control architecture for one USV

To accurately reflect the limitation of USVs’ knowledge,
policy πui must depend only on information that is acces-
sible to the USV ui at the time the policy is executed. The
information known to USV ui at time t , includes:

(a.) the state xui of USV ui up to time t
(b.) USV ui ’s observation history Oui up to time t
(c.) information received from other USVs before time t

When in communication, USVs are permitted to exchange
arbitrary information, including their current state and obser-
vation histories. USVs are also assumed to have access
to opponent models PB,b j (q|s) and PI,b j (q|s), classifier
P(b j ∈ I |Oui ), target location ltarget and response team
threshold palert when computing their policies.

The parameterization of opponent models PB,bi (q|s) and
PI,bi (q|s), observation function �i (ob j |s), communication
reliability function Ci, j (s) and intruder classification func-
tion P(bi ∈ I |Ou j ) are described in the experimental setup
in Sect. 5. The noisy state estimates x̃b j produced via obser-
vation are assumed to be the result of adding Gaussian noise
to the individual components of the state vector x, whose
variances are also provided in Sect. 5.5 to accompany the
relevant set of experiments.

4 Approach

We present a solution technique for the problem described
in Sect. 3. Our approach, illustrated in Fig. 2, consists of
three major components: (1) a decentralized task allocation
process that determines the high-level task assignment of
each USV; (2) a set of parameterized behaviors that map each
USV’s task assignment into a unique motion goal; and (3)
a control action policy that selects a control action for each
USV to reach its motion goal while performing local obstacle
avoidance. Each of these processes operate concurrently and

are performed online, updating as new sensor information
becomes available.

Our approach utilizes a set of domain-specific tasks that
are specified by the system developer. For the purposes of the
problem defined in this paper, we define the set of high-level
tasks, H ⊆ Ho ∪ Hg ∪ Hd , as the union of three distinct task
types:

(i.) a set of observe tasks, Ho, where USVs are responsible
for gathering information about passing boats

(ii.) a set of guard tasks, Hg , where USVs must position
themselves in vulnerable areas around the target

(iii.) a set of delay tasks, Hd , where USVs must intercept
and then block a hostile boat

Each task h j ∈ Ho ∪ Hd specifies a single boat to observe
or delay, while each h j ∈ Hg specifies a single location
to guard. The task assignment Hui ⊆ H for USV ui may
contain any combination of these tasks.

The joint task allocation A = {Hu1 , Hu2 , . . . Hum } defines
the current task assignment for all USVs and is computed
online and updated during each planning step via a decentral-
ized task allocation process. Our algorithm uses both heuris-
tic and model-predictive simulation to determine how the
task allocation should be updated. This process is described
in Sect. 4.3.

Since communication between USVs can be interrupted,
each USV ui maintains a local task allocation Aui rep-
resenting ui ’s belief about the joint task allocation A
based on the most recent information made available to
ui . The local task allocation Aui , together with the obser-
vation history Oui , form the input to USV ui ’s motion
goal selection Mui (Oui ,Aui ) and control action selection
πui (Oui ,Aui ) policies. These are defined in Sects. 4.1
and 4.2.

Both motion goal selection and control action selec-
tion policies are based on hand-coded heuristics which are
tuned offline using a genetic algorithm. The set of tun-
ing parameters 	 = {γguard , γintr , γdist , γlead , γblock,

γmax , γini tialr , γoccupied , γslowr , γgoalr , γ f anr , γ f anθ } deter-
mine the low-level behavior of the USVs when select-
ing motion goals or performing obstacle avoidance. The
tuning process used for these parameters is described in
Sect. 4.7.

The sequence of state estimates {̃xb j ,1, x̃b j ,2, . . . x̃b j ,n} for
boat b j contained in USV ui ’s observation history Oui are
processed using a simple Kalman filter, where lb j (Oui ) rep-
resents the estimate of boat b j ’s location given Oui and
Kb j (Oui ) represents the corresponding covariance matrix.
We will refer to these as simply lb j and Kb j throughout the
paper.
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4.1 Behaviors

The behaviors for USV ui are a set of hand-coded heuristics
that map ui ’s task assignment Hui to a unique motion goal
Mui (Oui ,Aui ). The rules for computing this motion goal are
defined below.

Each task h j ∈ Hui assigned to USV ui is given a task-
specific motion goal, Mh j (Oui ,Aui ), defined as

Mh j (Oui ,Aui ) =

⎧

⎪

⎨

⎪

⎩

boat location, lb j , if h j ∈ Ho,

guard location, lg j , if h j ∈ Hg,

intercept point, lint , if h j ∈ Hd .

(5)

For observe or guard tasks, this motion goal corresponds to
the estimated boat location lb j or pre-defined guard location
lg j associated with task h j . For delay tasks, the motion goal
is an intercept point lint positioned along a line between some
intruder b j and the target.

Since USV ui can be assigned multiple tasks, ui ’s desired
motion goal may differ from the motion goal of any individual
task. The desired motion goal for ui is

Mui (Oui ,Aui ) =
{

Mh j (Oui ,Aui ), if ∃h j ∈ Hui ∩ Hd ,

Mw(Oui ,Aui ), otherwise,

(6)

which returns Mh j (Oui ,Aui ) = lint if Hui contains some
delay task h j ∈ Hd . Otherwise, it returns a weighted motion
goal (see Fig. 3) based on the USV ui ’s currently assigned
guard and observe tasks,

Mw(Oui ,Aui ) =
∑

h j∈Hui
wh j (Oui )Mh j (Oui ,Aui )

∑

h j∈Hui
wh j (Oui )

, (7)

where wh j (Oui ) is the weight of task h j , equal to γguard if
h j is a guard task, and equal to wb j (Oui ) if h j is an observe
task for boat b j ,

wb j (Oui ) = γintr P(b j ∈ I |Oui )

(

1+ γdist

|ltarget − lb j |

)

.

(8)

The parameters γguard , γintr , and γdist are tuned by the
genetic algorithm using the method described in Sect. 4.7.

We simplify the calculation of intercept point lint by
assuming both USVs and intruders can travel in any direc-
tion at maximum velocity, ignoring differential constraints
and acceleration. If the intruder follows a linear path directly
to the target, then lint is the closest intercept point for the
USV along that path.

More formally, to find lint for a single USV ui assigned
to a single intruder b j , the intercept point calculation finds

Fig. 3 USV u1 approaches the weighted motion goal Mw(Oui ,Aui )

corresponding to two observe tasks for boats b1 and b2 and a guard task
for location l1

the nearest point in the set of possible intercepts Lint (ui , b j ),
defined as

Lint (ui , b j ) = {l : L path(ui , b j ) ∩ Ltarget (b j )} (9)

where L path(ui , b j ) is the set of points for which some lin-
ear path for ui intercepts some linear path for b j at their
respective maximum velocities,

L path(ui , b j ) =
{

l : |l − lu j |
vmax,ui

= |l − lb j |
vmax,b j

}

, (10)

and Ltarget is the set of points l that lie on the path between
b j and the target,

Ltarget (b j ) = {l : ∃s≥0[lb j + s(l − lb j ) = ltarget ]}. (11)

We define Lint (Hui ) as the union of Lint (ui , b j ) for all
boats b j with a corresponding delay task h j ∈ Hui ∩ Hd .
The point lint (Hui ) is the intercept point l ∈ Lint (Hui ) that
minimizes its distance to ui ’s current location.

lint (Hui ) =
{

arg minl∈Lint |l − lui |, if Lint (Hui ) �= ∅,
ltarget , otherwise.

(12)

If Lint (Hui ) is empty, no intercept is reachable, so USV ui

will head to the location of the target instead.
When multiple USVs are assigned to delay b j , the calcu-

lation of Lint (Hui ) incorporates a speed reduction for each
additional USV that intercepts the intruder. An example of
this calculation for multiple USVs is shown in Fig. 4. The
calculation estimates the speed of the intruder as vb j (k) =
vmax,b j ∗ (γblock)

k after it has been intercepted by k USVs.
The calculation adjusts the intercept points for all subse-
quent USVs accordingly. Since vb j (k) underestimates the
real travel time of the boats and USVs, we define a lead-time
parameter, γlead , which the calculation adds to USV ui ’s
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Fig. 4 Heuristic model of USVs u1 and u2 intercepting intruder b1
in a simplified version of the problem. The intercept points serve as a
motion goal for the delay behavior of the USVs

starting time when computing the intercept. The parameters
γlead and γblock are tuned by the genetic algorithm using the
method described in Sect. 4.7.

4.2 Control action selection

Given USV ui ’s motion goal Mui (Oui ,Aui ) and vehicle
state xui , an appropriate control action q ∈ Q(xui ) must
be selected to direct ui towards its goal while avoiding col-
lisions with other boats or static obstacles. Let ψui be ui ’s
current heading angle and let φMui

be the desired heading
angle in the direction of Mui . The steering angle to achieve
this new heading is determined by,

ΔψMui
(xui ) = arg min

Δψ∈Θ(xui )
|d(φMui

, ψui +Δψ)|. (13)

where d(φ j , φk) is the difference between any two angles φ j

and φk . Similarly, the change in surge speed is determined
by,

ΔvMui
(xui ) = arg min

Δv∈A(xui )
|ηMui

− (vui +Δv)| (14)

where ηMui
is the desired surge speed of USV ui as it

approaches Mui . The resulting control action is simply,

qMui
(xui ) = {ΔvMui

(xui ),ΔψMui
(xui )}. (15)

However, this control action may lead to a collision with
obstacles such as other boats or rocks. To reduce the chance
of collision, the desired heading φMui

and velocity vMui
are

adjusted using reactive obstacle avoidance.
As depicted in Fig. 5, each USV has an obstacle avoid-

ance fan with radius γ f anr and angular span γ f anθ to iden-
tify which obstacles pose a risk of collision. Headings within
the obstacle avoidance fan are considered blocked if they
are occupied by an obstacle or will become occupied by an
obstacle within some time tlead based on the obstacles’ cur-
rent velocities. Obstacles are assumed to have a non-zero
radius.

Fig. 5 USV u1 adjusts its heading to steer away from the region
blocked by boat b1 based on the depicted obstacle avoidance fan

Let Z = {z1, z2, . . . , zn} be a set of unblocked sec-
tors inside the obstacle avoidance fan, where each z j =
[φ j,a, φ j,b] is a range of angles that are not blocked and where
the ordering constraint φ j,b ≤ φ j+1,a holds for all j < n.
Let φ j,mid be a midpoint between φ j,a and φ j,b. Heading φ is
considered safe if it is within the obstacle avoidance fan, and
φ ∈ [φ1,a, φ1,mid ] or φ ∈ [φn,mid , φn,b], which is trivially
true if n = 1.

If φ∗Mui
is the most direct heading to the motion goal, the

adjusted heading after reactive obstacle avoidance is,

φMui
=

{

φ∗Mui
, if φ∗Mui

is safe,

φk,mid s.t. zk = zmax , otherwise,
(16)

where zmax is the widest unblocked sector,

zmax = arg max
z j∈Z
|d(φ j,b, φ j,a)| (17)

The surge speed of the USV is not affected by obstacle avoid-
ance unless Z = ∅, at which point the USV will slow to a
stop. Thus, the desired surge speed is,

ηMui
=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, if Z = ∅,
vmax,ui

|Mui−lui |
γslowr

, if |Mui − lui | < γslowr ,

vmax,ui , otherwise,

(18)

where lui is ui ’s current location, and γslowr determines at
what distance the USV should start to slow down.

We define non-zero acceptance radius γgoalr such that
USV ui is considered at its destination if it is within the
distance γgoalr of its motion goal Mui . The resulting policy
for USV ui is simply,
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Fig. 6 USV u1 intercepts intruder b1, diverting it from its intended
path to the asset

πui (Oui ,Aui ) =
{

qMui
(xui ), if |Mui − lui | > γgoalr ,

qstop(xui ), otherwise,

(19)

where qstop(xui ) = {amin(xui ), 0} is a control action that
quickly halts the movement of the USV.

The control action selection for passing boats is identi-
cal to USVs, only a different motion goal Mb j and different
set of parameters γ f anr , γ f anθ and γslowr are selected. For
our experiments detailed in Sect. 5, the parameters for the
passing boats including intruders are predefined, while the
parameters for the USVs are learned using a genetic algo-
rithm, described in Sect. 4.7.

If one or more USVs move within the obstacle avoidance
fan of an another boat, the boat will be forced to adjust its
trajectory to avoid a collision. This is illustrated in Fig. 6,
where a USV intercepts an intruder, diverting its trajectory
away from the target.

4.3 Task allocation

The joint task allocation A is periodically updated via a
decentralized task re-allocation process that is performed
concurrently by each of the USVs. This process behaves like
a local hill-climbing algorithm, where each USV ui evaluates
variations of the task allocation Aui that differ by exchang-
ing one or two tasks. This process is less computationally
demanding than evaluating all possible task allocations. It
also makes it easier to decentralize the re-allocation process,
since each exchange alters the task assignment of at most two
USVs. However, a disadvantage of this approach is that it will
only find locally optimal solutions, a limitation common to
many hill-climbing algorithms.

Before the task re-allocation process can be performed,
an initial task allocation Aui ,0 must be assigned to the USV
team. We assume that the initial allocation will be assigned
by the system developer. In our case, we assign each USV one
or more guard tasks h j ∈ Hg , distributed uniformly at radius
γini tialr around the target. For each new boat b j that enter
the scene, the nearest USV assigns itself an observation task
h j ∈ Ho. If any boats are identified as intruders, meaning

(a) (b) (c)

Fig. 7 Candidate task allocations a the current task allocation A with-
out modification, b modification of A with a delay task offered to USV
u2 by USV u1, c modification of A with a delay task shared to USV u2

(a) (b)

Fig. 8 A conditional “swap” exchange, composed of two distinct offer
exchanges a the current task allocation A where USV u2 by USV u1 are
assigned delay tasks for separate intruders, b modification of A where
USV u2 by USV u1 have swapped delay tasks

P(bi ∈ I |Ou j ) > palert , the observation task for that boat
becomes an equivalent delay task, h j ∈ Hd .

At regular time interval talloc, each USV ui performs a task
re-allocation step, in which ui computes a revised allocation
A′ui

, defined as

A′ui
= arg max

Aui , j∈C
˜E[tdelay |Oui ,Aui , j ] (20)

where C is a set of candidate task allocations produced
by Algorithm 1, and ˜E[tdelay |Oui ,Aui , j ] is the estimated
utility of candidate Aui , j given observation history Oui as
computed by the model-predictive simulation described in
Sect. 4.5. Each candidate Aui , j ∈ C differs from Aui by
sharing or offering one or more tasks from Hui to another
USV, as depicted in Figs. 7 and 8.

The method GenerateCandidates(Oui ,Aui , ui ) in
Algorithm 1 produces a set of candidate task allocations C
by iterating through every task h j ∈ Hui in USV ui ’s task
assignment and setting up potential exchanges with every
USV uk ∈ U on the team.
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Algorithm 1 GenerateCandidates(Oui ,Aui , ui ): Gener-
ate a set of candidate task allocations.
1: C ← {Aui }
2: for each h j ∈ Hui ∩ Hd do
3: for each uk ∈ U do
4: C ← C ∪ ShareTask(Aui , h j , uk)

5: for each h j ∈ Hui ∩ (Hg ∪ Ho) do
6: for each uk ∈ U do
7: C ← C ∪ OfferTask(Aui , h j , ui , uk)

8: return C

Fig. 9 An example of a communication network

The method ShareTask(Aui , h j , uk) returns a new task
allocation A′ui

that differs from Aui by appending task h j to
USV uk’s task assignment Huk . The result is a task allocation
where both ui and uk share task h j .

The method OfferTask(Aui , h j , ui , uk) is very similar
to ShareTask, only it removes task h j from USV ui ’s task
assignment Hui before adding it to USV uk’s task assign-
ment Huk . The method can also be modified to include con-
ditional “swap” exchanges, composed of two distinct offer
exchanges, depicted in Fig. 8. This is applicable to situations
where USV ui is already assigned a delay task h1 and then
USV u j offers ui an additional delay task h2. USV ui can-
not intercept and block two different boats at the same time,
so ui will “swap” task h1 for task h2. This is equivalent to
u j offering to h2 to ui and ui offering to h1 to u j , but both
exchanges are represented by a single candidate task alloca-
tion, allowing the combined exchanges to be evaluated by
the predictive simulation.

4.4 Communication protocol

Communication between USVs is modeled as a network of
pairwise connections, as shown in Fig. 9. At each time step
tk , each USV attempts to synchronize its information with
the other USVs. If USV u j is able to communicate with
USV ui , then u j ’s most recent observation history Ou j and
task assignment Hu j of USV u j are merged into USV ui ’s
observation history Oui and global task allocation Aui . If
USV ui cannot directly communicate with USV u j , it may

still learn of u j ’s observations and task assignment through a
third USV that can communicate with both agents, but it will
take an additional time step for this information to propagate.

For USV ui to either offer or share a task with another
USV u j , the two USVs must explicitly agree to the
exchange. If no communication is possible between ui and
u j , then exchanges between these agents cannot be per-
formed until communication is re-established. Since commu-
nication interruptions occur at random, the USV evaluates all
candidate exchanges even if communication is not possible,
then determines whether communication has been restored
once the evaluation is finished. If the best-performing candi-
date allocation cannot be applied due to interrupted commu-
nication, then the USV selects the next best candidate.

To avoid conflicts that might result from concurrency, the
protocol requires that USV ui retain the exclusive right to
assign tasks from Hui to another USV. For offer and share
exchanges, this rule is trivial to enforce, since USV ui is
the agent that initiates the exchange. However, for “swap”
exchanges, USV ui must ask another USV u j to offer some
task h2 in exchange for the task h1. Since exchanges are
evaluated concurrently, task h2 may no longer be in u j ’s task
assignment at the time the request is made. In this situa-
tion, USV ui must forego the swap and perform a different
exchange from its list of candidates.

4.5 Predictive simulation

During task re-allocation process, USV ui uses model-
predictive simulation to evaluate the set of candidate task
allocations C generated by the method in Algorithm 1.
The predictive simulation estimates the expected delay time
E[tdelay |Oui ,Ai ] for each candidate task allocation Ai ∈ C ,
given USV ui ’s observation history Oui . The simulation uses
the probabilistic opponent models defined in Sect. 3 to esti-
mate the future control actions of passing boats and intruders,
and uses the control action selection policies for the USVs
defined in Sect. 4.2 to estimate the control actions of other
USVs.

USV ui estimates Ai ’s performance for the set of possible
worlds W consistent with USV ui ’s observation history Oui .
Since USV ui is uncertain which boats are intruders and
about the location of each boat, each possible world w j ∈
W consists of a set of possible intruder boats I j ⊆ B and
an approximate of the global state s j ∈ S. The set W is
non-finite, so the algorithm uses Monte-Carlo sampling to
select nsample possible worlds to estimate the expected utility,
E[tdelay |Oui ,Ai ], for each candidate task allocation Ai ∈ C .

For simplicity, we assume the probability distributions
over I and s are statistically independent, meaning

P(w j |Oui ) = P(I j = I |Oui )P(s j = s|Oui ).
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where I is the true set of intruders and s is the true global
state. Each global state s j is sampled using the state estimate
lb j and covariance matrix Kb j produced by the Kalman fil-
ter described in Sect. 4. The algorithm samples the set of
intruders Ii with probability,

PIi =
⎛

⎝

∏

b j∈Ii

P(b j ∈ I |Oui )

⎞

⎠

⎛

⎝

∏

b j∈B\Ii

1− P(b j ∈ I |Oui )

⎞

⎠

where PIi is an approximation of P(Ii = I |Oui ) computed
by assuming that the appearance of each intruder is statis-
tically independent. If nsample = 1, the possible world w j

with the highest probability P(w j |Oui ) is sampled, rather
than a random sample.

The task re-allocation process is not simulated during the
predictive simulation. This is to prevent the predictive sim-
ulation from recursively calling itself, which would lead to
an exponential increase in the computational workload as
the simulation searches deeper. Each trial is also given a
maximum lookahead time, tlookahead , after which the util-
ity is estimated using the intercept point heuristic described
in Sect. 4.6.

4.6 Heuristic evaluation function

After the maximum lookahead time tlookahead has expired,
the predictive simulation uses a heuristic to estimate the value
of task allocation Aui given global state s j . The heuristic
uses the calculation for the intercept point lint , defined in
Sect. 4.1, to estimate the arrival time of an intruder given
some subset of USVs assigned to delay it. This estimate is not
as accurate as performing a full predictive simulation, but it
can be performed very quickly, which is useful for evaluating
the state of the world after the maximum lookahead time
has passed. When multiple intruders are present, we use the
minimum time estimate across all intruders to approximate
the expected utility E[tdelay |Oui ,Ai ] for the USV team.

During the task re-allocation process, USVs can use
heuristics to evaluate task exchanges directly without using
predictive simulation at all. For example, delay tasks can be
quickly evaluated by performing a predictive simulation with
tlookahead set to zero. For guard or observe tasks, the esti-
mated arrival time from the intercept point calculation does
not provide useful information, but alternative heuristics can
be used as well.

To evaluate guard or observe task exchanges for USV ui ’s,
we developed a heuristic that prioritizes the exchange of task
h j ∈ Hui whose motion goal Mh j is furthest from USV ui ’s
current motion goal Mui . This task is offered to the USV uk

whose current motion goal is closest to task h j ’s motion goal.
If uk is assigned a delay task, then the heuristic considers the
distance between uk’s current motion goal and the motion

goal for the new task as multiplied by γoccupied , to discourage
giving too many tasks to USVs that are already responsible
for delaying an intruder.

We evaluate the performance of this heuristic candidate
selection strategy as an alternative to the predictive simula-
tion in the experimental results in Sect. 5.

4.7 Optimization of behaviors

We use a genetic algorithm (GA) (Holland 1992) to opti-
mize the 12 underlying parameters γguard , γintr , γdist , γlead ,
γblock , γmax , γini tialr , γoccupied , γslowr , γgoalr , γ f anr and
γ f anθ , of the behavior and control action selection policies
to further improve the expected utility of the USV policy.
The optimization of these parameters allows the USVs to
make balanced decisions between guarding a certain loca-
tion, observing incoming boats, and intercepting and delay-
ing the movement of identified intruders.

For the results presented in Sect. 5, the genetic algorithm
was run for 150 generations using a population size of 100
chromosomes, where each chromosome represented a com-
plete set of parameters. The parameters of the initial popula-
tion were assigned at random, while subsequent populations
were bred based on the fitness values of the previous gen-
eration. Each chromosome’s fitness was measured using the
median delay time from 250 random simulation runs. We
utilized roulette wheel selection to determine the breeding
population, and applied genetic operators with a crossover
rate of 0.35 and mutation rate of 0.08. Each chromosome
in the subsequent population might have some or all of its
parameters modified by these operators.

4.8 Complexity analysis

Given the set of tasks H and the set of USVs U , the number
possible task allocations is O(|2HU |), which is too large to
explore exhaustively. The number candidate task allocations
selected by Algorithm 1 is a more modest O(|H ×U |). This
means the number of candidates evaluated increases linearly
as the number of USVs or tasks increases. Since we are using
predictive simulation to evaluate each candidate, increasing
the number of USVs should also increase the time it takes
to perform a simulation. As a result, the time complexity of
a single task re-allocation step should be O(|H ×U | · |U |),
which grows quadratically as the number of USVs increases.
This is confirmed by the experimental results in Sect. 5.4.

The algorithm in this paper considers only single-task
exchanges (or two-task exchanges, in the special case of
swaps). If we consider arbitrary sequences of exchanges
of length k, then there are O(|H × U |k) such sequences.
The number of possible sequences grows exponentially as k
increases, meaning it will be prohibitively time consuming
to evaluate all such sequences for large values of k. However,
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the problem can be made slightly more efficient by applying
some selective pruning.

In our implementation in Sect. 5.1, we narrow the set
of candidate task allocations by pruning certain types of
exchanges. First, we eliminate share exchanges for guard
and observe tasks, so only one instance of these tasks will
exist at a time. Second, we limit the number of USVs that
can simultaneously delay a single intruder, determined by the
parameter γmax . Both of these changes reduce the total num-
ber of tasks in A by eliminating redundant assignments while
still preserving at least one copy of each task. Additionally,
we only consider “swap” exchanges in the case described in
Sect. 4.3 so that the number of candidates evaluated remains
O(|H ×U |).

5 Results

We have evaluated our planning approach by performing
experiments in two simulated scenarios, depicted in Figs. 10
and 11. The motion model used for the experiments is the
same motion model used by the predictive simulator, which
was defined by Eq. 2 in Sect. 3. Details about the parame-
trization of the simulator are provided in the experimental
setup below, followed by results and discussion for a num-
ber of different experiments. We discuss limitations of the
experiments in Sect. 5.7.

5.1 Experimental setup

In scenario 1, shown in Fig. 10, the target is positioned within
a circular region without any static obstacles. In scenario 2,
shown in Fig. 11, the target is positioned near static terrain,
restricting the direction of incoming boats. In scenario 1 there
are a total of 5 USVs and 3 intruders, while in scenario 2 there
are 3 USVs and 2 intruders. In both scenarios, passing boats
will continuously enter and leave the operating space, with
a maximum of 8 passing boats appearing in the scene at any
given time.

At the beginning of each trial, the positions of passing
boats are initialized at random locations around the target.
During each trial run, new boats appear at random locations
along the boundary of the operating space, which is defined
as a ring in scenario 1, (with an inner and outer radius of 80
and 100 m), or as two rectangles on the left and right sides
of the target in scenario 2 (with a distance of 80 m from the
target and a width of 20 m). The rate at which new boats
appear is balanced with the rate at which other boats leave
the operating space, restricted to the maximum of 8 passing
boats.

Each boat’s initial trajectory is a path tangent to a ran-
domly sized circle (or semi-circle in scenario 2) surrounding
the target with minimum and maximum radius of 30 and 60

Fig. 10 Scenario 1, five USVs defend a target in an open ocean with
several passing boats. Boats x3 and x6, identified as intruders, are pur-
sued by USVs u2 and u3. The tasks assigned to each USV are depicted
as lines

Fig. 11 Scenario 2, three USVs defend a target that is protected by
terrain to the south. USVs u1 and u2 are actively blocking intruder x2,
reducing the speed at which it approaches the target

m. Unlike non-hostile boats, intruders will change their tra-
jectory and turn towards the target when they pass within 60
m If an intruder passes within 5 m of a USV, it will assume
it is being blocked and start approaching the target immedi-
ately. Whether a boat will be an intruder or not is determined
by the amount of time elapsed during the simulation. Only
non-intruder boats will appear during the first 30 s of the sim-
ulation, immediately followed by 2 or 3 intruders depending
on the scenario. As a result, a group of intruders will always
appear at or around the same time in the simulation.

Both intruders and non-intruder boats use the same reac-
tive obstacle avoidance strategy described in Sect. 4.2. For
intruders, the parameters γ f anr and γ f anθ are set to 10 m
and 120 ◦ respectively, while for non-intruders they are set
to 15 m and 180 ◦. The intruder is given a more aggressive
set of parameters allowing it to approach other boats more
closely before adjusting its trajectory. For USVs, these para-
meters are optimized using the genetic algorithm described
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in Sect. 4.7. The maximum surge speed for all USVs and
other boats is fixed at 10 m/s.

To make the interactions between USVs and intruders
more challenging, intruders will perform evasive actions to
avoid being blocked. If the intruder is blocked by another
boat and diverted away from the target for some time t , where
t > t f li p, the intruder will turn away from the blocking boat
and reverse its direction of movement. For each evasive turn,
the value of t f li p is selected at random, uniformly between 1
and 3 seconds, to introduce non-deterministic behavior into
the intruder strategy. We show that intruders which perform
evasive turns are more difficult to defend against in Sect. 5.2.
However, this model is not guaranteed to be a best-response
to the USV team’s strategy, and therefore cannot be used to
determine the worst-case performance against any theoreti-
cal opponent.

The observation classification function provides a simu-
lated probability that each boat is an intruder based on the
quality of the observations made by the USV team. The obser-
vation quality αb j ∈ [0, 1] for boat b j is initially set to 0 and
increases monotonically while USV ui is within 50 m of boat
b j . If d represents the distance between ui and b j , then αb j

increases at a rate of δlearn(1 − d/50) per second, with the
default learning rate δlearn = 0.5. This means it takes at most
5 seconds to obtain an observation quality of αb j = 1 when
observing boat b j from a distance of 30 meters.

The function P(b j ∈ I |Oui ) returns a prior probability
of 0.05 when αb j = 0, indicating that no observations have
occurred. The choice of 0.05 is arbitrary, but is meant to
represent a small non-zero chance that each boat could be
an intruder. As αb j increases, the probability P(b j ∈ I |Oui )

converges linearly to 1 or 0 depending on whether or not bi is
actually an intruder. Gaussian noise with standard deviation
0.1(1− αb j ) is added to the probability function so that the
change is non-monotonic. For all simulations, the value palert

for determining whether a boat should be classified as a threat
was set to 0.6.

During the predictive simulation, the lookahead time
tlookahead is set to 5 s, and the Monte-Carlo sample size
nsamples is set to 5 for all experiments unless otherwise indi-
cated. These parameters are useful for ensuring the predictive
simulation can be executed in real time while still obtaining
good performance.

5.2 Strategy comparison

To evaluate the performance of the approach defined in
Sect. 4, we performed experiments on several strategy vari-
ants. All the strategies evaluated use the same motion goal
and control action selection policies defined in Sects. 4.1
and 4.2, but they differ in how the task allocation process is
performed:

(a) Scenario 1

(b) Scenario 2

Fig. 12 Average delay time across 1,000 randomly seeded trials for
USV teams using baseline, heuristic, pred-noswap or predictive strate-
gies

(1) the predictive strategy uses the complete task allocation
strategy described in Sect. 4,

(2) the heuristic strategy does not use predictive simula-
tion, but performs task allocation based on the heuristic
approach described in Sect. 4.6,

(3) the baseline strategy does not perform task exchanges at
all, instead each USV waits at its guard location until an
intruder is identified, then delay tasks are assigned using
the heuristic in Sect. 4.6,

(4) the pred-noswap strategy is a variant of the predic-
tive strategy that does not use the conditional “swap”
exchange discussed in Sect. 4.3.

Figures 12 a) and b) show the average delay time across
1,000 randomly generated trial for each of the four different
strategies. The box plots show the median, upper and lower
quartile of the data set, while the whiskers mark the 5th and
95th percentiles. The mean value is marked with a small
square in each figure.

As expected, the predictive and pred-noswap strategies
performed best, followed by the heuristic strategy, while the
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Fig. 13 Median delay time for
each generation of the genetic
algorithm when optimizing
strategies for scenarios 1 and 2.
Results shown for the
best-performing chromosome in
the population

(a) Scenario 1 (b) Scenario 2

Fig. 14 Median delay time
across 1000 randomly seeded
trials for baseline, heuristic and
predictive strategies as the
learning rate δlearn increases

(a) Scenario 1 (b) Scenario 2

baseline strategy performed worst. For scenario 1, the pre-
dictive strategy increased the median delay time by 110 %
compared to the baseline strategy and by 87 % compared
to the heuristic strategy. For scenario 2, the increase was 68
% compared to the baseline strategy and 29 % compared to
the heuristic strategy. The predictive strategy also performed
better when the “swap” exchange was included, increasing
delay time by 31 % in scenario 1 and 4.5 % in scenario 2.

The difference in delay time between the heuristic and
predictive strategies is less for scenario 2 when compared to
scenario 1, possibly due to the smaller number of choices
during the task allocation step, decreasing the likelihood of
the heuristic selecting a bad candidate.

To optimize the parameter set 	 for each of the three main
strategy types, the genetic algorithm described in Sect. 4.7
was performed six separate times, once for every combina-
tion of strategy and scenario. An exception was made for the
pred-noswap strategy, which was given the same parame-
ter set as the predictive strategy. The change in performance
across 150 generations is shown in Fig. 13a and 13b for sce-
narios 1 and 2, respectively. Most of the gains occurred within
the first 50 generations of the algorithm.

Figures 14 a) and b) show the average delay time as the
learning rate δlearn is varied. The utility of the USV team

Table 1 Median delay time for baseline, heuristic, predictive strategies
in scenario 1 against intruders that perform evasive turns and those that
don’t

Evasive Non − evasive

Baseline 9.0s 21.2

Heuristic 10.1s 67.6

Predictive 19.0s 158.3

decreases as the learning rate decreases, and increases as the
learning rate increases. This is true for all of the strategies
evaluated. However, the predictive strategy remains the pre-
ferred strategy for all δlearn > 0. The special case where
δlearn = 0 means that the USV team is unable to identify
the intruders through observation, resulting in a delay time
of zero.

Table 1 shows the average delay time when each of the
strategies is performed against a set of evasive or non-evasive
intruders in scenario 1. As expected, non-evasive intruders
are delayed from reaching the target for longer than evasive
intruders. In practice, this occurred because the non-evasive
intruders would become locked in a continuous blocking pat-
tern with a single USV, looping around the target for an
extended period of time. The evasive intruder was able to
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(a) Scenario 1

(b) Scenario 2

Fig. 15 Average delay time across 1,000 randomly seeded trials for
the predictive strategy as the lookahead time, tlookahead , increases

break this pattern by intermittently flipping direction, reach-
ing the target more quickly. We use the evasive intruder model
for all the remaining experiments in this paper.

5.3 Running-time tradeoff

Figures 15 and 16 show the change in USV team utility as
the duration and sample size of the predictive simulation
increases. Generally, performing more and better simulations
result in higher utility for the USV team, but takes longer to
execute.

Figures 15 a) and b) show the benefit of increasing the
lookahead time, tlookahead , for the predictive strategy in sce-
nario 1 and 2. Longer values tlookahead correspond with
more time spent evaluating each predictive simulation. The
predictive simulation will run for a maximum duration of
tlookahead , after which the static evaluation function (defined
in Sect. 4.6) is performed to quickly estimate the value of
the remainder of the simulation. When tlookahead = 0, no
predictive simulation is run at all, and the static evaluation
function is performed immediately.

Increasing tlookahead from 0 s to 8 s offers a 151 % increase
in the median utility for scenario 1, and a 79 % increase in
the median utility for scenario 2. The benefit of increasing
tlookahead starts to diminish at around five seconds, possibly
due to the gradual accumulation of errors in the simulation.

Figures 16 a) and b) show the benefit of increasing the
sample size, nsample, for the predictive strategy in scenario
1 and 2. The value of nsample corresponds with the num-
ber of possible worlds evaluated via Monte-Carlo sampling.
Increasing nsample from 1 to 8 offers a 25 % increase in the
median utility for scenario 1, and a 14 % increase in the
median utility for scenario 2.

Increasing tlookahead or nsample individually should result
a linear increase in running time for the predictive simu-
lation. However, if the goal is to maximize USV utility, the
tradeoff between the quality of the evaluation and the running
time of the task re-allocation step should be considered. Both
tlookahead and nsample suffer from diminishing returns as their
value increases; each additional second added to tlookahead

or sample added to nsample is less valuable than the previous.
This suggests that the ideal selection of values for tlookahead

and nsample will vary depending on the computational power
available.

One motivation for minimizing the running time of the
predictive simulation is to reduce the time between realloca-
tion steps, talloc. As shown in Fig. 17, reducing talloc has a
positive effect on utility for both the heuristic and predictive
strategies. However, Fig. 17 also shows that reducing talloc

alone is not sufficient to maximize utility, since the heuris-
tic strategy is out-performed by the predictive strategy even
when USVs are allowed to exchange tasks at very high fre-
quency. This suggests that, at least for some range of values
talloc, time is better spent carefully evaluating which tasks to
exchange instead of exchanging tasks quickly based on an
inexpensive heuristic.

5.4 Scalability

Figures 18 and 19 show the effect that increasing the num-
ber of USVs or passing boats simultaneously appearing in
the scene has on the computational workload of predictive
strategy. Running time was measured using an Intel Core 2
Q6600 Quad processor with a 2.4 GHz clock speed with the
algorithm running in a single thread. Results are shown for
scenario 1, but similar results should be expected for other
scenarios.

Figure 18 shows that increasing the number of USVs
causes a roughly linear increase in the number of candidate
task allocations evaluated and a polynomial increase in the
running time. As explained in Sect. 4.8, the number of candi-
date task allocations evaluated by predictive simulation is at
most O(|U × H |), where U is the set of USVs and H is the
set of tasks. The number of USVs is directly proportional to
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Fig. 16 Average delay time
across 1,000 randomly seeded
trials for the predictive strategy
as the number of samples
nsample increases

(a) Scenario 1 (b) Scenario 2

Fig. 17 Median delay time
across 1,000 randomly seeded
trials for the baseline, heuristic
and predictive strategies as the
re-allocation time interval talloc
increases

(a) Scenario 1 (b) Scenario 2

Fig. 18 Average running time
and number candidate task
allocations evaluated across
1,000 randomly seeded trials, as
the number of USVs varies, for
the predictive strategy in
scenario 1

(a) (b)

the number of task exchanges that are considered. Similarly,
increasing the number of USVs increases the running time
of each predictive simulation. As a result, doubling the num-
ber of USVs from 4 to 8 increases running time of the task
re-allocation step by 3.4 times, from 525 ms to 1805 ms.

Figure 19 shows the effect of increasing the number of
passing boats in scenario 1. Since each passing boat must
be assigned an observe or delay task, increasing the number

of boats should result in a linear increase in the number of
tasks, similar to increasing the number of USVs. However,
the effect is much less pronounced than in Fig. 18, because
a single USV does not have to evaluate every new task that
is added. Thus, the cost of adding a USV is greater than the
cost of adding a new boat or task to evaluate.

The median running time for a single USV to compute a
task re-allocation step when there are 5 USVs and 8 passing
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Fig. 19 Average running time
and number candidate task
allocations evaluated across
1,000 randomly seeded trials, as
the number of passing boats
varies, for the predictive strategy
in scenario 1

(a) (b)

Fig. 20 Median delay time
across 1,000 randomly seeded
trials for USV teams using the
predictive strategy when
normally distributed error is
added to the result of the
predictive simulation

(a) Scenario 1 (b) Scenario 2

boats (the default parameters for scenario 1) was 805 ms,
which is within the 1 second allocated in the experimental
setup. This result, combined with the low-order polynomial
complexity of the algorithm, suggests that the approach is
efficient and that online computation is feasible on equivalent
hardware.

5.5 Robustness

The reliability of the predictive strategy depends on how
accurately the predictive simulation is able to estimate the
expected value of candidate task allocations. Since the simu-
lator used for our experiments and and the predictive simula-
tor used by USVs both use the same motion model, it is rela-
tively easy for the USVs to estimate the expected value. How-
ever, we cannot expect the same level of fidelity in the real
world. To determine what effect inaccuracies in the predic-
tive simulation have on performance, we tried several ways
to make the simulation less reliable: (1) adding normally dis-
tributed error to the utility value returned by the predictive
simulation, (2) adding normally distributed error to the USV

sensor measurements and (3) using the incorrect opponent
model in the predictive simulation.

The results of the first experiment are shown in Fig. 20.
There is a significant drop in performance as the utility value
returned by the predictive simulation becomes noisier. For
scenario 1, the performance of the predictive strategy drops
below that of the purely heuristic strategy when standard error
exceeds 4.5 s. For scenario 2, this occurs when the standard
error exceeds 3.0 s.

For the results in Fig. 21, we added normally distributed
error to the USVs’ sensor measurements of the locations (x
and y coordinates) of the passing boats. The labels on the
figure display the standard deviation of this error at an obser-
vation range of 80 m or greater. For ranges between 80 m
and 0 m, the amount of error was decreased linearly based
on distance, so that the measurements had no error if taken at
0 m range. As mentioned in Sect. 4, each USV uses a Kalman
filter to produce estimates of the boats’ locations based on
this sensor data. The results show a gradual decrease in util-
ity as the sensor measurements become noisier, however the
predictive strategy remains the best-performing strategy in
spite of the noise.
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Fig. 21 Median delay time
across 1,000 randomly seeded
trials for USV teams using the
predictive strategy when
normally distributed error is
added to USV sensor
measurements

(a) Scenario 1 (b) Scenario 2

To evaluate how sensitive the predictive simulation is to
the accuracy opponent model, we created three variations
on the opponent model by modifying the intruders’ level of
aggression:

(1.) the “normal” model is the standard intruder model
described in Sect. 5.1,

(2.) the “timid” model avoids collisions more actively and
performs evasive turns less frequently, increasing γ f anr

and γ f anθ by 10 % and increasing t f li p by 100 % com-
pared to the normal model,

(3.) the “aggressive” model avoids collisions less actively
and performs evasive turns more frequently, decreasing
γ f anr and γ f anθ by 10 % and decreasing t f li p by 50 %
compared to the normal model.

For each opponent model, we produced a complementary
predictive strategy, named Pred(N), Pred(T) and Pred(A),
where the predictive simulation used the normal, timid, or
aggressive model of the intruder respectively. We also pro-
duced a fourth strategy, Pred(R), where one of the three
intruder models is selected at random using Monte-Carlo
sampling at the start of each predictive simulation. For each
of the strategies, the GA parameters 	 were tuned for the
normal intruder model.

The results in Table 2 show the median delay time when
using each of the different task re-allocation strategies against
each of the three intruder models. As expected, the USV
team performed best when the correct opponent model was
used. Additionally, the Pred(R) strategy was the second-best
performing strategy in several cases, and performed better
than the heuristic strategy in all of the cases.

One key result of this experiment is that using the cor-
rect model of the intruder can have a significant impact on
the performance of the algorithm. For example, using the
Pred(A) strategy against the timid intruder causes the pre-
dictive strategy to perform worse than the heuristic strategy.

Table 2 Median delay time across 1,000 randomly seeded trials for
USV teams using the predictive, heuristic, and baseline strategies
against intruders with timid, normal or aggressive behaviors

Normal (s) Timid (s) Aggressive (s)

Scenario 1

Pred(N) 19.2 17.5 13.8

Pred(T) 18.5 36.9 12.8

Pred(A) 11.4 10.2 15.5

Pred(R) 18.1 28.4 13.8

Heuristic 10.0 10.6 9.5

Baseline 9.2 s 9.0 9.0

Scenario 2

Pred(N) 19.3 16.9 18.2

Pred(T) 18.7 22.8 15.6

Pred(A) 16.6 14.4 20.8

Pred(R) 19.0 18.2 19.0

Heuristic 15.0 15.4 16.1

Baseline 11.4 11.0 13.9

This is because the Pred(A) strategy assumes the intruder
is aggressive, when it is actually timid, and makes worse
predictions than the other predictive strategies. In contrast,
Pred(T) was the best-performing strategy for this situation,
while Pred(R) was the second-best.

These results suggest that when the intruder model is not
exactly known, decent performance can be obtained by using
Monte-Carlo sampling over the set of possible intruder mod-
els. Additionally, using a model that closely approximates the
correct model, (e.g. using the normal model to approximate
the timid intruder, or the aggressive model to approximate the
normal intruder), results in better utility than using a model
that poorly approximates the correct model (e.g. using the
aggressive model to approximate the timid intruder). This
suggests that the predictive simulator still provides useful
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Fig. 22 Median delay time
across 1,000 randomly seeded
trials for USV teams using the
predictive, heuristic, and
baseline strategies when
communication between USVs
is interrupted

(a) Scenario 1 (b) Scenario 2

information even if the model used does not exactly match
the behavior of the opponent.

5.6 Interrupted communication

To determine the effect of communication interruptions
on USV team performance, we performed simulation runs
where the communication link between each pair of USVs
had a random chance of being interrupted. Fig. 22 shows the
average utility for each of the three strategies when the chance
of communication being interrupted is varied. The interrup-
tion probability determines the likelihood of an interruption
event occurring between a pair of USVs during a 1 s time
interval. If an interruption event occurs, the two USVs can-
not exchange information for the whole 1 s interval. Each
interruption event is modeled as statistically independent,
so repeated interruptions can block communication between
two USVs indefinitely.

As the probability of interruption increases, the perfor-
mance of the USV team is negatively impacted. This is true
for all three strategies. Going from no interruption, to inter-
ruptions occurring with 0.5 probability every second, the
mean delay time of the predictive strategy drops from 19.2
s to 14.2 s in scenario 1, and from 19.1 s to 15.2 s in sce-
nario 2, a difference of 26 and 20 % respectively. The impact
on the heuristic strategy is more significant, dropping from
from 10.1 s to 6.0 s in scenario 1, and from 15.3 s to 8.5 s in
scenario 2, a difference of 40 and 44 % respectively.

For both scenarios, the difference in performance between
the heuristic and predictive strategies decreases as the prob-
ability of interruption increases. Since task exchanges are
not possible without communication between agents, high
interruption renders the additional predictive simulation less
effective. The predictive strategy still out-performs both the
heuristic baseline strategies in all but the most extreme lev-
els of interruption. The baseline strategy also performs better
than the heuristic strategy when the interruption probability

exceeds 0.1. This may be due to the fact that the baseline
strategy uses very few task exchanges to begin with and is
therefore better optimized for situations with low communi-
cation.

5.7 Limitations

One limitation of our experimental design is that we do not
directly incorporate concurrency into the simulation. The
implementation is single-threaded, meaning that the task re-
allocation step for each USV is performed sequentially. As
a result, some of the concurrency issues that may be experi-
enced in a real world scenario are not directly evaluated by
our experiments.

Due to concurrency it is possible for the system to cycle
between two or more locally sub-optimal task allocations.
This can occur when two different USVs perform separate
exchanges without being mutually aware of the other’s deci-
sion. The two exchanges together may have a lower expected
utility than the original task allocation, causing the exchanges
to be reversed in the subsequent iteration. In this paper, we
did not develop mechanisms specifically to deal with these
types of cycles, however, this and other concurrency issues
are something that should be evaluated more closely in future
work.

Another limitation of our experimental design is that sim-
ulator used during experiments uses the same motion model
for boat physics as the predictive simulator used by the USVs
to evaluate candidate task allocations. In the real world, it
may be unrealistic to expect the same level of fidelity from a
predictive simulation. Meanwhile, the results in Sect. 5.5 sug-
gest that it is important for the predictive simulator to provide
good estimates of utility. To address this issue in future work,
we intend to perform experiments using a higher fidelity sim-
ulation environment (Thakur and Gupta 2011; Thakur et al.
2012).
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6 Conclusions and future work

We have developed a decentralized, contract-based planning
approach for protecting an asset by a team of USVs oper-
ating in an environment with civilian traffic. The developed
planner is able to deal with uncertainty about which boats
are actual intruders and accounts for complex interactions
between USVs and intruders when allocating tasks. The plan-
ner combines high-level task allocation with low-level user
defined behaviors by using model-predictive simulations to
evaluate plan performance. The planner is capable of com-
puting the task allocation efficiently, is scalable to large teams
of USVs, and can be optimized for a specific mission.

We have evaluated the performance of the planner in two
different simulation scenarios. In both scenarios, the devel-
oped model-predictive planner had a significant performance
advantage compared to the baseline and heuristic strategies.
We also evaluated the scalability of the planner for large
numbers of USVs and passing boats, explored the trade-off
between plan quality and execution time, and evaluated the
planner’s robustness in dealing with noisy sensor data, inac-
curate opponent models and high levels of communication
interruption.

In our results, we show that by carefully tuning and inte-
grating the model-predictive simulation into the task allo-
cation process, features such as differential constraints and
sensing uncertainty can be directly considered during task
allocation and still run efficiently. We also demonstrate that
the use of model-predictive simulation leads to significantly
higher performance and robustness than the pure use of task-
tailored heuristic rules. We show that through careful Monte-
Carlo sampling over the distribution of possible worlds, the
model-predictive simulation produces better results despite
the fact that the task-tailored heuristics are computation-
ally more efficient. These results suggest that time is better
spent carefully evaluating which tasks to exchange instead of
exchanging tasks quickly based on an inexpensive heuristic.

In future work, we would like to explore ways to improve
the planner under high communication uncertainty. Since
explicit task exchanges between agents are not possible when
communication is interrupted, it may be beneficial to blend
contract-based task exchanges with purely local task assign-
ment as communication between agents becomes less reli-
able. Another idea worth investigating is whether the algo-
rithm should always perform the best exchange with the boats
currently in communication, or wait a bit longer for openings
in communication to perform task exchanges with higher
expected value. More work should also be done to evaluate
the effect of concurrency on task exchanges in an experimen-
tal setting.

Significant gains in performance might also come from
improved sampling of candidate task allocations during the
task re-allocation process. The current algorithm behaves like

a local search, evaluating a small number of variations based
on the current task allocation. Stochastic sampling beyond
this local set of candidates could reduce the likelihood of
becoming stuck in a local minimum, increasing the utility of
the USV team.

Additional study can be carried out using more sophisti-
cated heuristic approaches. In particular, a heuristic approach
can be developed that can reason about longer sequences
of task exchanges than the model-predictive strategy in the
same amount of time. It would be worth investigating whether
careful and thus slower reasoning about fewer and/or shorter
sequences of task exchanges is more beneficial than fast rea-
soning about longer and/or a larger number of plans of task
exchanges.

Finally, we would like to extend this approach to more
complex scenarios, such as defending a moving target,
accounting for coordinated behavior from the intruders,
incorporating static obstacles with complex shapes into the
environment, or by applying the algorithm in the ground and
aerial vehicles domains. To do this, the blocking and guarding
behaviors may need to be modified and new tasks may need
to be created to account for changes in the target’s position,
incorporate path planning to navigate around obstacles, or
model the motion constraints of different vehicles. Adding
more sophisticated behaviors and corresponding tasks for
the current scenarios, such as cooperative blocking for two
or more USVs, may also improve performance without any
changes to the high level task allocation process.
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