Enabling Technologies for Automated Redesign

William C. Regli
National Institute of Standards and Technology
Manufacturing Systems Integration Division
Building 22D, Room A-127
Gaithersburg, MD 20899
regli@nist.gov

James Hendler
Computer Science Department
Institute for Advanced Computer Studies
University of Maryland
College Park, MD 20742 USA
hendler@cs.umd.edu

Dana S. Nau
Computer Science Department
Institute for Advanced Computer Studies
University of Maryland
College Park, MD 20742 USA
nau@cs.umd.edu

April 28, 1995

Abstract

In this paper we identify AI technologies for enabling interactive automated redesign. We anticipate that these technologies can have great potential impact on future generations of intelligent CAD systems and methodologies.

1 Introduction

Computer-aided design (CAD) and CAD software is fast becoming a ubiquitous component of the modern manufacturing workplace. The decreasing costs of computational power has made sophisticated software for tasks such as finite element and mechanical analysis essential for increasing engineering quality and productivity. Software tools designed to reduce time-consuming build-test-redesign iterations are becoming crucial components for supporting concurrent engineering.

Many of these are tools for design analysis and critiquing. For example, they might examine whether a candidate design violates manufacturing or functional constraints (such as stress, acceleration, and so forth), or they might attempt to find possible suggestions to the user about how to improve a design [17, 14, 29, L31]. Other analysis tools might include those that help the designer foresee potential problems with product life-cycle considerations such as performance, producibility, reliability, maintainability, and so forth.

In order to realize the advantages of collaborative engineering, these design analysis and critiquing systems must consider downstream manufacturing and life-cycle activities during the design phase. This has stretched the limits of traditional design activities and increased their complexity—presenting a variety of difficult computational problems.

---

*Also affiliated with: Computer Science Department and Institute for Systems Research, University of Maryland, College Park.
The automated redesign problem cuts across all of these issues and is of increasing interest to researchers, in both academia and industry. While some commercial software tools exist (such as those to reduce the number of parts in an assembly), satisfying solutions to the general redesign problem have eluded researchers. Existing systems vary significantly by approach, scope, and level of sophistication, with most attempting to capture manufacturability problems as collections of rules or heuristics. However, it has proven difficult to capture subtle manufacturability problems with hard-coded and coarse rules. Many problems can only be detected at the manufacturing planning level; problems that are compounded when multiple artifacts interact, not only in assemblies, but across the manufacturing enterprise. As a further complication, design is an interactive process and thus all of these computations must be handled in real-time.

This paper is written with several objectives in mind:

1. To identify promising new AI technologies for enabling redesign and produce initial outlines for how they may be effectively applied to the real-world manufacturing problem;
2. To help overcome two possible risks in the application of AI to computer-aided design: (1) that AI practitioners will apply their technologies to naive or unrealistically simplified versions of the real-world manufacturing problems or (2) that manufacturing engineers will apply the AI technologies in a manner that does not fully exploit their strengths, ignores their computational costs, or overlooks their representational deficiencies.\(^1\)

We anticipate that this work will serve to further the development of redesign systems by both expanding and improving the application of AI technologies to the problem; leading to the development of systematic methodologies for automated redesign. This will speed the introduction of automated designer's aids that can exploit opportunities in automation and research and development engineering problems for the design stage.

\(^1\) For example, in the early 1980s, rule-based expert systems were widely tested as prototypes for use in production solutions in several thousand automobile-based systems, they were also applied to design problems for which they were not well suited and produced poor results. The failure of these systems to deliver the results that were promised resulted in much wasted effort.

2 Intelligent Automated Redesign

Many design problems are similar to design problems that have already been solved. Such problems can be approached by taking an existing design and modifying it, rather than producing a new design from scratch. There are several different types of redesign problems:

1. Redesign for changes in functional specifications. In many situations, the functional requirements a new design are minor variations on those of a previous design. One approach to solving this problem is to retrieve the old design and adapt it to fit the new requirements. An example of this kind of problem is redesigning a gear box housing to accommodate a larger gear.

2. Redesign for manufacture with new processes. The availability of new manufacturing processes introduces the need to redesign products to take advantage of them. For example, engine blocks traditionally were manufactured using casting followed by machining operations. But as die casting becomes a more economical process, the need for lighter cars is leading designers to contemplate the possibility of die-cast engine blocks. Although these engine blocks will have very similar functionality to what they had before, some redesigns will be needed to adapt the old design of engine blocks to the die casting process.

3. Redesign for changing production resources. The production resources for an organization change over time; new tools and technologies are added, production resources are prone to failure and downtime, etc. In an agile corporation, meeting the demands of the marketplace might require that products be redesigned to accommodate these changes.

4. Redesign for improved manufacturability, reliability, maintainability, etc. In all component design procedures, the design goes through a design cycle consisting of analysis and review of the design. Now commonly referred to as design for "X" (DFX), where "X" can refer to cost effectiveness, quality, or other life cycle considerations such as reliability, maintainability, environmental impact, etc. Ideally, this design phase review should take into account the balance all of the production and performance constraints. This is not possible for all facets of the production process. For example, it is usually only after a component enters the production cycle that experienced process planners and machinists may discover that alterations in the design would be beneficial.

A current goal is to develop stage tools for design phase analysis that can suggest design revisions, thus helping improve the design's ability to satisfy the constraints imposed by each "X." Our work toward the development of such a tool is described in [9].

This is a problem of increasing interest to researchers, in both academia and industry. For mechanical and electro-mechanical devices, it is much more difficult to reason about the many subtle interactions among the device requirements than it is for purely electrical devices. For example, changing the shape or size of a mechanical housing will change its strength and rigidity in ways that may be hard to predict without doing an extensive analysis (for example, using finite-element techniques).

While some commercial software tools exist (such as those to reduce the number of parts in an assembly), satisfying solutions to the general redesign problem have eluded researchers. Existing systems vary significantly by approach, scope, and level of sophistication. Most automated redesign methodologies employ expert systems and efforts to capture manufacturability problems as collections of rules or heuristics. However, even at the level of individual components, many manufacturability problems are too subtle to be hard-coded in some rules. The fact that many problems can only be detected at the manufacturing planning level makes it difficult for existing rule-based approaches to capture design difficulties or propose reasonable alternative designs. These problems are compounded when multiple artifacts interact, not only in assemblies, but across the manufacturing enterprise. Further complicating matters is the fact that design is an interactive process and thus all of these computations must be handled in real-time.

An interactive redesign system will need to be capable of analyzing the artifact's design history, its relationship to similar parts in a company's corporate manufacturing database and the constraints imposed by the different interacting design and manufacturing teams working concurrently on the product.

Some of the specific problems to be addressed are as follows:

- how to represent and reason about partial or incomplete designs;
- how to access and intelligently reuse legacy information (for example, in a corporate knowledge base);
- how to mediate conflicts to satisfy contradictory manufacturing constraints;
- how to provide quick responses for computing environments.

These problems—and some possible approaches for addressing them—are described in the following section.

3 Challenges

3.1 Applications of Plan Retrieval and Reuse

In the area of AI planning systems, a relevant technology is that of case-based planning and particularly the subarea of plan reuse. In general, the case-based methods focus on the use of a memory of past plans for use in current situations. The analogy in manufacturing is to variant planning approaches. Two aspects of the AI technology are particularly relevant to manufacturing design—the methods used for the retrieval of past plans and the techniques appropriate for applying the old plans to new situations. Although these are highly related, we treat them here as two separate areas.
3.1 Plan Retrieval

Given a set of old plans, there are several techniques that can be used to find the one (or ones) most appropriate for solving a new problem. The simplest of these techniques is that of feature vectors, representing the plan in terms of a simple list of "keywords" like features. This technique is not efficient in the use of group technology codes for variant process planning [5], and then we will not discuss it further.

More interesting, perhaps, are techniques which seek by "indexing" a previous plan based on some set of relevant features arranged in an appropriate data structure for choosing features sequentially with each depending on the previous answer. As an example, a famous program called Chef [20, 18, 10] stored plans for cooking Chinese meals. A sequence of choices were made to decide which previous plan was most like a current one. The first choice might be, for example, to distinguish which type of dish (deep fry, stir fry, bake, etc.). Depending on this choice, the next might be to determine some choice of ingredients (meat or no meat, etc.). Indeed at the leaves of such a "decision tree" would be the particular plans for cooking those meals. The advantage of such a scheme is that a large number of plans can be accessed with time logarithmic to the total number of stored plans.

There are several problems with this indexing approach. One is that the set of relevant features must be chosen beforehand. However, if the features are to be of different importance at different times (i.e., sometimes ingredients are important, other times we might care about how long it takes to cook the meal), a second problem is that the features most useful may not be easily identifiable. This means that human intervention "knowledge engineering" work may be required to tune the trees into the indexing scheme. Where this happens, it is difficult to scale this technology to large memory size, as would most likely be needed in complex manufacturing domains.

Recent work [1, 13, 26] is focusing on overcoming these problems with indexing by using more efficient, high-performance algorithms to improve memory access. This means that rather than an a priori indexing scheme, patterns of features can be dynamically checked to find relevant plans in memory. This technology allows for the automated creation of case bases and for scaling to the kinds of large memories that will be needed for storing large sets of engineering designs.

3.2.1 Plan Reuse for Manufacturing Planning

Having found a previously used plan, it is necessary to determine how to use it to solve a new problem. In various process planning systems this is often done by simply displaying an existing process plan and allowing human editing. The techniques of plan reuse focus on both automatically identifying those aspects of the existing plan which need to be changed (useful in an interactive system) and in the automated planning of those changed aspects (essentially a combined generative/variant scheme).

The identification of those aspects needing changing requires two steps. First, a mapping must be identified between the old plan and the new problem. For example, if a previous part had only one drilled hole in it, and the new problem requires two (perhaps with different tolerances or depths), it must be determined which type of hole is the best fit. Although a principal means for doing such mappings efficiently is still an open question, a number of heuristic approaches have been developed. The second step is identifying (and repeating) changes required using the mapping, determined in the first step, to direct the existing planning of the new problem. Two techniques have shown great promise for this. The first is to develop techniques for abstracting plans into "sketches" such that a number of specific plans would all have the same high level plan, but with different details. When a mapping is identified, the skeleton that best covers the new problem is chosen. That skeleton is then fleshed out using the details of the concrete problem. This generates the plan which is expected to solve the problem. One limitation with this approach is that it works best where the skeleton can be automatically identified, and it is unclear what the limitations are on domains that will allow this. 3

A second approach that shows great promise is that of using "plan annotations" to guide the replanning effort. These annotations are information placed by the planner (human or machine) when it first solves the problem (creating the plan to be stored in memory). Similar to the "design for reuse" framework popular in programming languages, the annotation framework allows information to be stored which tracks which components of which items depend on which others, and how various decisions were made. Using this information, efficient approaches have been designed to map and edit existing plans for new problems. To date, this approach has been shown to work with automated (generative) planners in AI domains, and current work is exploring the use of this technique in interactive planning and design systems [23].

3.2 Hierarchical and Partial Information Planning

Engineering design and manufacturing planning are executed concurrently at several different levels of abstraction. For instance, design proceeds from conceptual through embodiment, eventually yielding a detailed design of the product. Similarly, manufacturing planning is done for individual machines, the level of the factory, and enterprise wide. Because it provides a natural way to plan at multiple levels [10, 9, 11], AI techniques for Hierarchical Task-Network (HTN) planning would seem to be ideal for this.

However, some of the barriers to developing the potential of AI planning techniques for planning in practical application domains have been the complexity of HTN planning techniques [9, 7], and the difficulty of integrating them with information about the application domain. AI planners usually represent states of the world as conjunctions of logical atoms (i.e., predicates with arguments), and represent the effects of an operator on the state by adding and deleting atoms from the state. This approach enables AI planners to reason efficiently about partially ordered plans (in which there may be several different possible acceptable orderings for the operators) [24], but it means that such planners cannot be easily used unless the operators' preconditions and effects can easily be represented within the logical formalism.

In domains such as process planning, the preconditions and effects of the planning operators are more naturally represented using solid modeling operations rather than collections of predicates. This can be handled by defining the manufacturing operations as arbitrary pieces of computer code (as in the SPSS process selection system [20] and the Tigrum 2 bridge planner [22]), or as geometric entities (as in the IMACS system for manufacturability analysis [26, 17, 4]). Such representation make it difficult or impossible to represent partially-instantiated operator preconditions and effects, which makes it very difficult to reason about partially ordered plans—but this difficulty can be circumvented either by generating only totally ordered plans (as in SPSS and Tigrum 2), or by first generating totally ordered plans and then removing the ordering constraints after the planner has finished reasoning about the preconditions and effects of the individual operators (as in IMACS).
4 Discussion

As we move toward greater levels of automation in computer-aided engineering environments, greater amounts of information can be captured and reused. One of the areas with great potential is automated redesign. In this paper we have outlined a number of problem areas to be addressed in the development of automated redesign systems, and have examined the potential use of AI techniques to address these problems.

Although the potential is great, to date this potential is largely unexplored. Thus, it seems apparent to us that the current goals are to be the different goals and world views of AI researchers and design researchers, and the mutual lack of familiarity between these two communities. To address this problem, we are beginning the development of a test bed in which to compare AI and manufacturing techniques. We intend to develop a collection of manufacturing design and planning problems and solutions (e.g., design, plan, and planning systems), presented in a way that is accessible to AI researchers for use as a test set or benchmark set. We hope that this will help AI researchers discover ways to apply AI techniques to manufacturing planning in a realistic manner, and possibly to discover issues arising in manufacturing that may be useful for AI in general.

References


*We are expressing ARPA funding for this project in the near future. The PIs are Jim Bender (jim.bender@usc.edu) and Dana Nau (dana@usc.edu). The work will be conducted in conjunct with Steve Ray (smr@mslam.usc.edu) at NIDT. We solicit your input!


[32] S. J. J. Smith and D. S. Nau. A planning approach to design play in bridge. Computational Intelligence, 1996. Accepted subject to revisions; revisions are in progress.
