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Abstract

Multiple�query processing has received a lot of attention recently� The problem arises

in many areas� such as extended relational database systems and deductive database

systems� In this paper we describe a heuristic search algorithm for this problem� This

algorithm uses an improved heuristic function that enables it to expand only a small

fraction of the nodes expanded by an algorithm that has been proposed in the past� In

addition� it handles implied relationships without increasing the size of the search space

or the number of nodes generated in this space� We include both theoretical analysis

and experimental results to demonstrate the utility of the algorithm�
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� Introduction

There are many applications where more than one query is presented to a database sys�

tem in order to be processed� First� consider a database system enhanced with inference

capabilities �deductive database system�� A single query given to such a system may result

in multiple queries that have to be run over the database� This is because a deductive

database may include more than one de�nition for the same predicate� For example� the

following three rules

�R�� A � B� � B� � � � ��Bl

�R�� A � C� � C� � � � �� Cm

�R�� A � D� �D� � � � ��Dn

de�ne the predicate A� A query on A would have to evaluate all three queries that cor�

respond to the right�hand sides of the above rules� The problem of multiple�query opti�

mization also arises in an environment where queries from various users are processed in

batches and the queries share some common relations� This can be particularly useful in

distributed database systems where queries �or sub�queries� arrive to sites in order to be

processed	 again� devising an execution schedule that can provide answers to all queries

avoiding duplicate page accesses� becomes a very crucial problem�

Sellis in 
Sel��� SG�
� suggests a heuristic algorithm to solve the MQO problem� The al�

gorithm performs a search over some state space de�ned over access plans� A similar branch

and bound algorithm has been suggested in 
GM��� by Grant and Minker� while a dynamic

programming algorithm was later suggested by Park and Segev 
PS���� In addition� a prob�

lem similar to the MQO problem arises in the �eld of Arti�cial Intelligence� in the problem

of generating plans �i�e�� sequences of actions� to achieve multiple goals� One technique that

has been used successfully in some application domains �including manufacturing planning


KNY���� has been to develop separate plans for each goal� and then to merge these plans

together to produce a plan for the conjoined goal� In order to �nd an optimal way to merge

these plans� a heuristic search algorithm has been developed 
YNH��� YNH�
� YNH��� that

is similar in some respects to Sellis� algorithm�

In this paper we describe a new algorithm for the MQO problem� This algorithm

represents an extension and improvement of both Sellis� 
Sel��� SG�
� algorithm for the

MQO problem and the plan�merging algorithm of Yang et al 
YNH���� It uses an improved

heuristic function that enables it to expand only a fraction of the nodes expanded by Sellis�

algorithm� In addition� it handles implied relationships without increasing the size of the

search space or the number of nodes generated in this space� To demonstrate the superiority

of this algorithm� we compare its performance to Sellis� algorithm both analytically and

experimentally�

In the next section we formalize the multiple�query optimization problem� In Section ��

we brie�y outline the search algorithms used in this paper and describe Sellis� algorithm


Sel��� SG�
� which will be used as a point of comparison to ours� In Section �� we describe

our algorithm and discuss its performance� In Section �� we show how both Sellis� algorithm

and our algorithm can be modi�ed to handle implied relationships without increasing the

size of the search space or the number of nodes generated� In Section �� we present some

experimental performance results� while Section � presents concluding remarks�
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� Multiple�Query Optimization

Assume that a database D is given as a set of relations fR��R�� � � � �Rmg� each relation

de�ned on a set of attributes� An access plan for a query Q is a sequence of tasks� or basic

relational operations� that produces the answer to Q� For example� given two relations

EMP�name�dept name� and DEPT�dept name��oor no�� with obvious meanings for the

various �elds� the following SQL query which retrieves the names of all employees who work

on the �rst �oor

select EMP�name

from EMP� DEPT

where DEPT��oor no � � and EMP�dept name � DEPT�dept name

can be processed by performing the following tasks

�T�� TEMP� �� DEPT where �oor no � �

�T�� TEMP� �� EMP join TEMP�

�T�� RESULT �� TEMP�
name�

Notice that in general there exist many possible alternative plans to process a query�

Tasks have some cost associated with them which re�ects both the CPU and I�O cost

required to process them� The cost of an access plan is the cost of processing its component

tasks� Assume now that a set of queries Q�f Q�� Q�� � � � � Qng is given� A global access plan

for Q corresponds to a plan that provides a way to compute the results of all n queries�

A global access plan can be constructed by choosing one plan for each query and then

merging them together� We will refer to the minimal cost plans for processing each query

Qi individually� as locally optimal plans� Similarly� we use the term globally optimal

plan to refer to a global access plan with minimal cost� Due to common tasks� the union of

the locally optimal plans does not necessarily give the globally optimal plan� Now� we can

de�ne the Multiple�Query Optimization �MQO� problem as follows�

Given n sets of access plans P��P�� � � � �Pn� with Pi�fPi�� Pi�� � � � � Pikig being the

set of possible plans for processing Qi� � � i � n�

Find a global access plan GP by selecting one plan from each Pi such that the

cost of GP is minimal�

� State�Space Search Algorithms for MQO

The search space for the MQO problem is constructed by de�ning one state for each possi�

ble combination of plans among the queries 
Sel��� SG�
�� In particular� suppose we need

to perform n queries Q�� Q�� � � � � Qn� and suppose that for each query Qi� the set of pos�

sible access plans for processing Qi is Pi � fPi�� Pi�� � � � � Pikig� Then the state space is

constructed as follows�

�� Every state s is an n�tuple � P�j� � P�j� � � � � � Pnjn �� where for each i� either Piji � Pi

�in which case s suggests that Piji be used to process query Qi�� or else Piji � NULL

�in which case s does not suggest a plan for processing Qi�� The cost of s� denoted

by scost�s�� is the total cost required for processing all of the queries in s�
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�� The initial state is the state s� �� NULL�NULL� � � � �NULL �� and the states sF ��

P�j� � P�j� � � � � � Pnjn � with Piji �� NULL� for all i� are the �nal states�

�� Given a state s �� P�j� � P�j� � � � � � Pnjn �� let

next�s� �

�
minfijPiji � NULLg� if fijPiji � NULLg �� �

n� � otherwise�
���

�� Let the state s have at least one NULL entry and m � next�s�� then the immediate

successors of s include every state s� �� P�k� � P�k� � � � � � Pnkn � satisfying the following

properties�

Piki � Piji for � � i � m	

Pmkm � Pm	

Piki � NULL� for m � i � n�

The cost of the transition from s to s� is the additional cost needed to process the new

plan Pmkm � given the �intermediate or �nal� results of processing the plans in s�

Note that the search space is a tree� in the sense that there is exactly one path from s� to

each of its successors�

All of the algorithms described in this paper are versions of the following procedure�

which is a special case of the A� state�space search algorithm 
Nil�
��

procedure MQO�search�

OPEN �� fs�g

loop

remove from OPEN the state s that has the smallest value for f�s�

�if there is more than one such node� then we select the one at the deepest level�

if s is a �nal state then exit� returning s

generate s�s successor states� and insert them into OPEN

repeat

The primary di�erence between MQO�search and A� is that A� has some additional coding

to increase the e�ciency in the case where the search space is a graph� In the case of the

multiple query optimization problem� the search space is a tree� so this additional coding

is unnecessary� MQO�search may equally well be considered to be a branch�and�bound

procedure 
NKK����

MQO�search works by starting from the initial state s�� and expanding states one by

one �expanding a state s means generating all its immediate successors�� To choose which

state to expand next� it always selects for expansion the state s having the smallest value

for f�s� � scost�s� � h�s�� where scost�s� is the actual cost of getting from s� to s� and

h�s� is a heuristic function which approximates the cost of getting from s to a �nal state�

The performance of A� algorithm depends on the choice of h�s�� The better this function

approximates the cost to a �nal state� the faster the algorithm� This brings up the issue of

admissibility of heuristic functions�

The heuristic function h�s� is admissible if it always returns a lower bound on the

additional cost that will be incurred in getting from s to a �nal state� Since MQO�search

is a special case of A�� it follows from theorems given in 
Nil�
� that if h�s� is admissible�
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then MQO�search is guaranteed to �nd a �nal state sF such that the cost of getting from

s� to sF is minimal among all paths leading from s� to �nal states� In the worst case�

MQO�search may require time exponential in the number of plans per query� but on the

average the complexity depends on how closely the heuristic function estimates the actual

cost 
Pea����

Given two admissible heuristic functions h� and h�� h� is said to be more informed than

h�� if for every non��nal node n� h��n� � h��n�� If h� is more informed than h�� then when

MQO�search is run using h�� it is guaranteed to expand at least as many nodes as it does

with h��

We now return to the discussion of Sellis� heuristic �A�� algorithm� Let s ��

P�k� � P�k�� � � � � Pnkn � be any state� The heuristic function used in 
Sel��� SG�
� is the

function

ht�s� � �
next�s���X

i��

est cost�Piki� �
nX

i�next�s�

min
ji


est cost�Piji���� scost�s�� ���

The function est cost is de�ned on plans as

est cost�Piji� �
X
t�Piji

est cost�t�� ���

and on tasks as

est cost�t� �
cost�t�

nq
� ���

where nq is the number of queries the task t occurs in� and cost�t� is the cost of task t�

Since est cost�Piji� � cost�Piji� for every plan� it is easy to see that ht is admissible and

MQO�search is guaranteed to �nd an optimal solution� Below we give an example which

illustrates the heuristic�

Example � Suppose three queries Q�� Q� and Q� are given along with their plans� P���

P��� P��� P��� P��� P��� We will use tkij to indicate the k�th task of plan Pij � The cost for

each task involved in each plan is as follows�

Plan Task Cost Task Cost Task Cost

P�� t��� �
 t��� �
 t��� �


P�� t��� �� t��� �


P�� t��� �
 t��� �


P�� t��� �
 t��� �
 t��� �

P�� t��� �
 t��� �
 t��� �


P�� t��� �
 t��� �
 t��� �

Given the actual task costs and assuming that the identical tasks are t��� � t��� � t����

the estimated costs �est cost� for these tasks are�

Task t��� t��� t��� t��� t��� t��� t��� t��� t��� t��� t��� t��� t��� t��� t��� t���

Estimated cost �
 �
 �
 �� �
 �
 �
 �
 �
 � �
 �
 �
 �
 �
 �

The estimated costs for the plans are�
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Plan P�� P�� P�� P�� P�� P��

Estimated cost �
 �� �
 �� �
 ��

In the state � P���NULL�NULL �� since scost�� P���NULL�NULL �� � �
� f��

P���NULL�NULL �� becomes �
 � �
 �minf�
� ��g�minf�
� ��g� �
 � �
�

In the state � P���NULL�NULL �� since scost�� P���NULL�NULL �� � ��� f��

P���NULL�NULL �� becomes �� � �� � minf�
� ��g� minf�
� ��g � �� � ��� Because

f�� P���NULL�NULL �� is less than f�� P���NULL�NULL ��� we expand the state

� P���NULL�NULL � which results to two new states such as � P��� P���NULL � and

� P��� P���NULL �� The portion of the search space explored by MQO�search using this

heuristic function ht is illustrated in Figure �� Numbers in circles are used to indicate the

order in which nodes are generated and the number on each edge represents the cost of a

transition between the corresponding states� �

In order to compute the heuristic values quickly� Sellis� algorithm pre�computes an

estimated cost for each plan Pij � and during the search� it uses this same estimated cost

regardless of what other plans it is combined with� In order to guarantee that this cost will

be a lower bound to the actual cost of reaching a �nal state� the algorithm pro�rates the

cost of each task t in P based on the largest possible number of times t can appear in some

combination of plans� In states where it is possible for t actually to appear in that many

plans� this will produce a tight bound for t� but in states where t cannot appear in that

many plans as estimated� the bound will be more conservative than necessary�

Due to the inaccuracy of the estimated costs� the algorithm can explore a large portion of

the search space� in some cases exploring more states than the branch and bound algorithm

suggested by Grant and Minker 
GM���� For example� in Example �� the algorithm explored

almost every state in the search space� In the Section �� we introduce a new heuristic

function that overcomes this problem�

� New Heuristic Function

��� Heuristic Function

In this section� we propose a new improved heuristic function which overcomes the ine��

ciencies mentioned above� The new heuristic function pro�rates the cost of common tasks

assuming the best case just for the remaining queries to be processed ignoring the tasks

which appear in the state�

The new heuristic function for a state s �� P�j� � P�j�� � � � � Pnjn � is de�ned as

hn�s� �
nX

i�next�s�

min
ji


new est cost�Piji��� ���

The function new est cost is de�ned as follows on tasks

new est cost�t� �

�

 if t � Piji for � � i � next�s�
cost�t�
nr

otherwise
���

where nr is the number of remaining queries to be processed which have any plan containing

the task t� For a plan Piji � we de�ne new est cost on the plans �analogous to Equation ��
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Figure �� The portion of the search space explored by MQO�search using ht
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as

new est cost�Piji� �
X
t�Piji

new est cost�t�� ���

To illustrate the e�ect of hn� we will redo Example �� In the state �

P���NULL�NULL �� the estimated cost of t��� and t��� are considered as zero since they

are the identical tasks with t��� and so� appeared in plan P��� For other tasks that are in the

plans of remaining queries Q� and Q�� there is no common tasks and so� their estimated

cost are considered the same as the actual cost� Since scost�� P���NULL�NULL �� � �
�

f�� P���NULL�NULL �� becomes �
 �minf�
� ��g�minf�
� ��g� �
�

In the state � P���NULL�NULL �� there are no tasks for the plans in remaining queries

Q� and Q� that appear in plan P��� However� there are common tasks which appear only

in the plans of the remaining queries� The identical tasks are

t��� � t���

and so� their estimated cost is considered as the half of the actual cost� The estimated costs

for the tasks in the plans of remaining queries are as follows�

Task t��� t��� t��� t��� t��� t��� t��� t��� t��� t��� t���

Estimated cost �� �
 �
 �
 � �� �
 �
 �
 �
 �

Therefore� the estimated costs for the plans in the remaining queries are

Plan P�� P�� P�� P��

Estimated cost �� �� �� ��

Since scost�� P���NULL�NULL �� � ��� f�� P���NULL�NULL � becomes �� �

minf��� ��g � minf��� ��g � ��� Because f�� P���NULL�NULL �� is less than f��

P���NULL�NULL ��� we expand the state � P���NULL�NULL � which results to two

new states such as � P��� P���NULL � and � P��� P���NULL �� The search space for the

new heuristic function is shown in Figure �� Note that �� states are generated using the

heuristic ht while only � states are generated with the new heuristic hn�

As it can be seen from the above� with hn we estimated the cost of getting to a �nal

state by taking into account only the remaining queries to be processed ignoring those tasks

that appeared in a state s� Therefore� the new heuristic function gives a more tight bound

than the previous heuristic function and it makes MQO�search to have faster convergence

to the optimal solution� In the next section we study the properties of the new heuristic

function hn and formally prove that it is a better heuristic�

��� Proof of Admissibility

Assume that the algorithm visits a state s� The estimated cost of a task is zero� if it

appears in a plan already selected in state s� Hence� for a task already selected in the state

s� the admissibility criterion is satis�ed� Otherwise� the estimated cost of a task t will be

calculated as cost�t�
nr

� where nr is the number of remaining queries Qnext�s�� Qnext�s���� � � � �

Qn task t occurs in� For tasks which are not shared among remaining queries� the cost to
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Figure �� The portion of the search space explored by MQO�search using hn�s�
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be considered when calculating hn will be the tasks� actual cost and therefore it is clear

that the criterion for admissibility is also satis�ed� However� for tasks which are shared but

not chosen yet� and since we add their estimated cost� cost�t�
nr

� whenever they are selected�

the total cost to be considered in hn�s� will be at most the same as the actual cost �i�e�
cost�t�
nr

	 nr � cost�t��� Therefore� the criterion is satis�ed for those cases as well� and hn is

admissible�

��� Time Complexity

We now compare the complexity of our algorithm with that of Sellis 
Sel��� SG�
�� First

we examine the number of states produced by each algorithm� and then we examine the

complexity of computing the heuristic function values at each node�

����� Number of Nodes Expanded

Let Ni denote the number of candidate access plans for query Qi� Regardless of whether ht
or hn is used� the best�case complexity of the search algorithm is the same� �

Pn
i��Ni� � ��

Consider the worst case for ht� It is easy to see �for example� this is alluded to in 
PS����

that in the worst case� ht will generate every node in the search space� Thus� in the worst

case� the number of nodes generated will be

�
nX
i��

iY
k��

Nk� � � � ��N�N� � � �Nn��

Now� consider the new heuristic hn� Suppose we are running MQO�search and let s be

a state at level n � �� With hn� we estimate the cost of identical tasks� which are already

present in a given state s �� P�k� � P�k� � � � � � P�n���k�n���
�NULL �� as zero and estimate

the cost of other tasks in the plans of Qn as their original cost� Note that� excluding those

tasks which appear in the state s� either the task in the plans of Qn has no identical task

or it has identical tasks but they exist only among the plans of Qn and so nr in Equation �

becomes � in both cases� Therefore� for every state s at level n � �� hn�s� � h��s� where

h��s� is the cost of the minimal cost path from s to a goal state�

Let s be the �rst state selected for expansion at level n� �� and let u be any other state

in the OPEN list� Since MQO�search selected s for expansion rather than u� this means

that f�s� � f�u�� Thus for every goal state u� which is a descendant of u� f�u� � scost�u���

Next� MQO�search will expand s� Since hn�s� � h��s�� this means that s has at least one

successor s� such that scost�s�� � scost�s��hn�s� � f�s�� Since s� is a goal state� it follows

that hn�s
�� � 
 and thus f�s�� � scost�s�� � f�s� � f�u�� so s� is the next state that

MQO�search will select for expansion� At this point� MQO�search will realize that s� is the

optimal goal� and will terminate� returning s��

�From the above argument� it follows that even in the worst case� MQO�search will

expand only one state at level n��� and thus will generate only Nn states at level n� Thus�

the total number of nodes generated in the worst case will be no greater than

�
n��X
i��

iY
k��

Nk� �Nn � � � ��N�N� � � �Nn����

Thus� in the worst case� Sellis� algorithm will generate ��Nn� times as many states as ours�

�




We can prove that in all cases� the number of nodes expanded by using hn will never

be more than the number of nodes expanded by using ht� To do this� we prove that hn is

more informed than ht� Let us assume that the set of identical tasks is fc�� c�� � � � � cgg and

the number of queries among Q�� Q�� � � � � Qn in which the task ci occurs is nqi � Let us also

assume for a state s that the number of plans in which task ci occurs is npi and Piji are the

plans selected in state s� Then� the cost of getting from the initial state s� to the current

state s is

scost�s� �
next�s���X

i��

est cost�Piji� �
gX

i��

�nqi � npi�est cost�ci�

Therefore� according to Equation ��

ht�s� �

next�s���X
i��

est cost�Piji� �
nX

i�next�s�

min
ji


est cost�Piji��� scost�s�

�
nX

i�next�s�

min
ji


est cost�Piji���
gX

i��

�nqi � npi�est cost�ci�

�
nX

i�next�s�

min
ji


new est cost�Piji�� � hn�s��

����� Complexity of Computing ht and hn

We turn next to discuss the complexity of computing the ht and hn functions on a given

state� The computation of Sellis� heuristic ht is very fast� Once we �nd the cheapest plan

for each query according to est cost� we just add their est cost values and subtract scost�s�

�cf� Equation ��� Hence� assuming that we pre�compute the estimated cost values before

starting the algorithm� the complexity of computing the heuristic ht is just O��� in each

state� However� in our improved heuristic� we have to re�calculate the estimated cost in

each state of the search space� Thus� it follows that for each node� we spend more time

computing hn compared to computing ht� However the amount of time spent for MQO�

search is not determined solely by the complexity of computing ht or hn at each node�

Instead� in order to expand any state� we have some execution time overhead to deal with

stack management for recursion� to calculate scost�s�� and to maintain sorted list of OPEN

in decreasing f value� Although we spend more time at each node� we generate su�ciently

fewer states that we would expect our search algorithm to have a lower time complexity�

This hypothesis has been con�rmed experimentally� as shown in Section �� The details of

computing e�ciently the heuristic function appear in Section ����

� Extending the Algorithms to Handle Implications

In this section� we extend both Sellis� algorithm and ours to cover implied relationships

among tasks�

A task ti implies task tj �ti 
 tj� i� ti is a conjunction of selection predicates on

attributes A�� A�� � � � � Al of some relation R� and tj is a conjunction of selection predicates

on the same relation R and on attributes A�� A�� � � � � Ak with l � k� and it is the case that

for any instance of the relation R the result of evaluating ti is a subset of the result of

evaluating tj � Two tasks ti and tj are identical �ti � tj� if ti 
 tj and tj 
 ti�

��



For a task ti� let tj be the tasks such that ti 
 tj holds but tj 
 ti does not hold� Then

the result of tj can be used as the input for computing the result of task ti� This results in

savings in terms of the time needed to compute ti� Of course� to get this savings tj has to

be executed before ti� To express this� we use the notation tj � ti�

Let R be a relation and ti and tj be two tasks on R such that ti � tj or ti � tj � Then�

tj can be processed using the result of ti instead of R� Let CR be the cost of accessing R to

evaluate ti and Cti be the cost of accessing the result of ti� We assume that the results of ti
and tj are stored for later use �temporary results�� Then� the cost of processing ti is CR�to

read the data� � Cti�to write the result�� With sharing� the savings that can be achieved

are

savings�tj� �

�
CR � Cti if ti � tj

CR � Cti if ti � tj
���

For the �rst case� we incur a savings since instead of accessing R we access the result of

ti� In the second case� more savings is achieved because not only R needs not be accessed

�since the result of tj is identical to that of ti�� but the temporary result of ti can also be

used as the result of tj � Therefore� there is no need to write the result of tj in a separate

temporary relation�

Sellis 
Sel��� suggested the following way to handle implied relationships� Consider two

queries� Q� and Q� such that Q� has a more restrictive selection than Q�� Clearly it would

be better to consider executing Q� �rst since� in that case� the result of Q� can be used

to answer Q�� the opposite being impossible� Therefore arbitrary ordering for the queries

in MQO�search would be ine�ective� Sellis suggested as a possible solution a new way to

�ll the next available NULL slots in a state vector s� Instead of using the function next�s�

of Section � to identify the next query to be considered� the algorithm would be allowed

to replace any available �NULL� position of s� This results in a larger fanout for each

state and clearly more processing for MQO�search� The worst case complexity of the states

explored with this modi�cation for implied relationships is �
Pn

i��

Qi
j��

Pn
k��Nk���� while

it is �
Pn

i��

Qi
k��Nk� � � for identical relationships only� Clearly this adds a signi�cant

overhead to the algorithm�

In the rest of this section we extend the heuristic algorithms to cover implied relation�

ships�

��� Merging Tasks

After a global optimizer picks the appropriate plans among several possible query plans� a

sequence of tasks must be produced to indicate the order in which these tasks need to be

processed� For example� consider the two access plans� P� and P�� of Figure �� The task

ordering for the global access plan is shown in Figure �� To form such a global plan� the

implication relationships as well as identical relationships need to be taken under account�

There are two kinds of interactions among the tasks in the access plans for MQO prob�

lem�

�� An identical�task interaction is an interaction when a task in one plan is identical to

a task in one of the other plans�

�� A mergeable�task precedence interaction is an interaction which requires that a task

��



a in some plan Piki is executed before a task b in some other plan Pjkj in order to

achieve savings by using a�s result� We denote this interaction as a� b�

Note that the precedence graph of the tasks in the access plans is acyclic� and thus� it

is always possible to merge a set of plans into a global access plan�

Suppose we are given the following�

�� A set of plans P � fP�j� � P�j�� � � � � Pnjng containing one plan Piji for each query Qi�

Let N be the total number of tasks in P �

�� A list of interactions among the tasks in the plans such as identical�task interactions

and mergeable�task precedence interactions� Letm be the total number of interactions

in this list� Then m � O�N���

The global access plan is the set of tasks in P � with additional ordering constraints im�

posed upon the tasks to handle the interactions� This merged plan is denoted by merge�P�

and to generate it� we use the following procedure which is a topological sorting algorithm

with a simple extension to handle the identical tasks� We call it the �Merge Algorithm� and

it is shown in Figure ��

The Merge Algorithm works as follows� First� we initialize the list of global ordering to

be empty and mark all tasks in P as unvisited� Then� we check each task in P in turn� When

an unvisited task is found� we visit it using procedure DFS which is a Depth�First�Search

algorithm with an extension to handle the identical tasks�

In each call to DFS�t�� we mark the task t and its identical tasks in P as visited and

we call them equivalence group�t�� Then� we examine each task u adjacent to t �denoted by

Adj
t� above� and recursively visit u if it is unvisited� Here� adjacent tasks are those tasks

in P which should be executed later than t due to a mergeable�task precedence interaction�

After this� for each task u in equivalence group�t�� we examine each task which comes later

than u in the same plan and recursively visit it� if it is unvisited� After we �nish these steps�

we insert the task t into the front of the list of global ordering� This merging can be done

in O�N�� time and savings in cost can be calculated based on the above result order�

In the next subsection� we extend the heuristic algorithm of Section � to handle the case

of implied relationships�

��� Extension to the Heuristic Algorithm

As we mentioned in the beginning of this section� the worst�case complexity of the states

explored with the heuristic algorithm for implied relationships by Sellis in 
Sel��� is

�
Pn

i��

Qi
j��

Pn
k��Nk� � �� since we have to consider not only one query but all remain�

ing queries in each state� However� if we use the merge algorithm of the previous section�

we can still consider one query in each state and the size of the search space becomes the

same as without implied relationships� i�e� �
Pn

i��

Qi
k��Nk� � ��

Now we show how the heuristic function ht in 
Sel��� SG�
� can be extended to deal with

implied relationships� To model the existence of both identical and implied relationships�

we de�ne equivalence groups among tasks� An equivalence group for a task t contains all

tasks which are identical to the task t� including t itself� Suppose we have a mergeable�task

precedence interaction such that g� � g� � � � � � gn� and gi has mi identical tasks� Let

��
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Figure �� Task ordering in the global access plan for P� and P�

procedure Merge�

Global Order �� �

for each task t � P do

visited
t� �� false

for each task t � P do

if not visited
t� then DFS�t�

return Global Order

procedure DFS�t��

for each task u � equivalence group�t� do

visited
u� �� true

for each task u � Adj
t� do

if not visited
u� then DFS�u�

for each task u � equivalence group�t� do

for each task v which comes

later than u in the same plan do

if not visited
v� then DFS�v�

Insert the task t onto the front of Global Order

Figure �� Merge Algorithm
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gcost�gi� be Cgi���to read the data from gi��� � Cgi �to write the result� and Cg� � CR�

Then� the estimated cost of task gi in an equivalence group and having a mergeable�task

precedence interaction is de�ned as

est cost group�gi� � gcost�gi� ���

while the estimated cost of other tasks which do not occur in a mergeable�task precedence

interaction is the cost of the tasks themselves� Then� the estimated cost of a task t is

est cost�t� �
est cost group�t�

nq
��
�

where nq is the number of queries the task t occurs in with identical�task interaction�

The estimated cost of a plan and the heuristic function is the same as in Section �� i�e�

est cost�Piji� �
X
t�Piji

est cost�t�

ht�s� � �
next�s���X

i��

est cost�Piki� �
nX

i�next�s�

min
ji


est cost�Piji���� scost�s��

Since est cost�Piji� � cost�Piji� for every plan� it is easy to see that ht is admissible and

MQO�search is guaranteed to �nd an optimal solution� Let us give an example to illustrate

how this heuristic function works�

Example � Suppose three queries Q�� Q� and Q� are given along with their plans� P���

P��� P��� P��� P��� P��� We will again use tkij to indicate the k�th task of plan Pij � The cost

for each task involved in each plan is as follows�

Plan Task Cost Task Cost Task Cost

P�� t��� �� t��� �
 t��� �


P�� t��� �� t��� �


P�� t��� �
 t��� �


P�� t��� �
 t��� �


P�� t��� �� t��� �


P�� t��� �
 t��� �
 t��� �


Let us assume that the mergeable�task precedence interaction list has information of the

form t��� � t��� � t��� where CR � ��� Ct���
� �
� Ct���

� � and Ct���
� ��� Ctkij

represents the

cost to write the result of task tkij �or to read the output �le of task tkij�� CR is the cost to

read the input relations� Therefore� in the table above for the actual costs� the cost for a task

t in the implied relationships is calculated as CR � Ct	 e�g�� the cost of t��� � �� � �
 � ���

t��� � �� � � � �
 and t��� � �� � �� � ��� Since there is no identical�task interaction� the

estimated cost of each equivalence group for a task and estimated cost for the task is the

same� For the tasks t���� t
�
�� and t���� we get

est cost�t���� � �� � �
 � �� est cost�t���� � �
 � � � �� est cost�t���� � �� � �� � ���

Given the information above� the estimated costs �est cost� for the tasks are�

��



Task t��� t��� t��� t��� t��� t��� t��� t��� t��� t��� t��� t��� t��� t���

Estimated cost �� �
 �
 �� �
 �� �
 �
 �
 �� �
 �
 �
 �


and the estimated costs for the plans are�

Plan P�� P�� P�� P�� P�� P��

Estimated cost �� �� �� �
 �� �


The search space generated by the heuristic algorithm for Example � is shown in Figure ��

�

��� Extension to the New Heuristic Algorithm

In this section� we show how we can extend our new heuristic algorithm of Section � to

accommodate implied relationships�

Let us assume that there is a mergeable�task precedence interaction g� � g� � � � �� gn

and the tasks� which cannot be processed later because the query in which they exist has

been already chosen but the plan in which they occur has not been chosen� are removed

from this interaction list�

Let us also assume that the queries processed at state s were Qi and Qj � and that the

task gi in Qi and gj in Qj were chosen in this state where � � i � j � n� The cost of

producing gi is CR � Cgi while the cost for producing gj is Cgi � Cgj �

First� let us consider the tasks from g� to gi��� If any task gk among these tasks

is executed in the future� the cost added to the cost of merge�s� is only �Cgk since we

considered the cost of task gi as CR � Cgi � So� we estimate the cost of each equivalence

group for the tasks among g��� � � �gi�� as follows

new est cost group�gk� � �Cgk ����

where k � �� � � � �i� �� For the task gi� the estimated cost becomes zero since it is already

processed at the state s� For the tasks gi��� � � � �gj � the same idea for estimating the cost

still holds� However� for the tasks gj��� � � � � gn� we have to calculate their estimated cost

di�erently� Let gcost�gp� be Cgp�� � Cgp � Then� we de�ne the estimated cost of each

equivalence group for the tasks gj��� � � � � gn as follows

new est cost group�gk� � gcost�gp� ����

where k � j � �� � � � �n� Again� the estimated cost of the equivalence group for other

tasks which do not occur in mergeable�task precedence interaction is the cost of the tasks

themselves� Then the estimated cost of a task t is de�ned as

new est cost�t� �
new est cost group�gt�

nq
����

where nq is the number of queries the task t occurs in with the identical�task interaction�

The heuristic function for state s is the same as in Section �� i�e��

hn�s� �
nX

i�next�s�

min
ji


new est cost�Piji��
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Figure �� The portion of the search space explored by MQO�search using ht�s�
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where� for a plan Piji � we de�ne �analogously to Equation ��

new est cost�Piji� �
X
t�Piji

new est cost�t��

Again� since new est cost�Piji� � cost�Piji� for every plan� it is easy to see that hn is

admissible and MQO�search is guaranteed to �nd an optimal solution� In Section ���� we

present in detail how the new heuristic function can be calculated e�ciently�

To illustrate the e�ect of hn� we will redo Example �� Note that since there is no

identical�task interaction� the estimated cost of each equivalence group for a task is the

same as the estimated cost for the task� From the initial state� we consider two states�

� P���NULL�NULL � and � P���NULL�NULL ��

For the state � P���NULL�NULL �� the mergeable�task precedence interaction list

is t��� � t��� � t���	 t
�
�� is the task we already processed� Based on the formulas given

above� the estimated cost of the task t��� becomes �Ct���
� �� and that for the task t��� is

Ct���
� Ct���

� ��� Using these estimated costs of tasks� the estimated cost of each plan will

be

Plan P�� P�� P�� P��

Estimated cost �� �
 �� �


Since cost�merge�� P���NULL�NULL ��� � ��� f�� P���NULL�NULL �� becomes �� �

minf��� �
g� minf��� �
g� ����

We now turn to examine the state � P���NULL�NULL �� Since we have chosen P���

task t��� cannot be processed in the subtree of this node� In this case the mergeable�task

precedence interaction list becomes t��� � t���� Therefore the estimated costs of the task t���
and task tt

�
�� becomes

new est cost�t���� � �� � � � �� new est cost�t���� � �� � �� � ���

Given those estimated costs for tasks� the estimated cost of each plan becomes as follows

Plan P�� P�� P�� P��

Estimated cost �� �
 �� �


Since cost�merge�� P���NULL�NULL ��� � ��� f�� P���NULL�NULL �� be�

comes �� � minf��� �
g � minf��� �
g � ���� Therefore we will expand the state

� P���NULL�NULL � at this point and we get two states� � P��� P���NULL � and

� P��� P���NULL ��

At the state � P��� P���NULL �� the mergeable�task precedence interaction list is t��� �

t��� � t���� with t
�
�� and t

�
�� being the tasks we have already processed� The estimated cost of

task t��� becomes �Ct���
� �
� and the estimated costs of plans to be processed will be P�� �

�� and P�� � �
� Since cost�merge�� P��� P���NULL ��� � �
� f�� P��� P���NULL ��

becomes �
 � minf��� �
g� ����

Finally� at the state� P��� P���NULL �� the interaction list is t��� � t��� �since t
�
�� cannot

be considered�� The estimated cost of task t��� becomes �Ct���
� �
 and the estimated

costs of the plans to be processed will be P�� � �� and P�� � �
� Since cost�merge��

P��� P���NULL ��� � �
�� f�� P��� P���NULL �� becomes �
� � minf��� �
g � ����

Therefore we will expand the state � P��� P���NULL �� The search space of this new

heuristic algorithm for Example � is shown in Figure �� Note that �� states are generated

with the heuristic ht while only � states are generated with the new heuristic hn�

��
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Figure �� The portion of the search space explored by using MQO�search using hn�s�
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Range of Range of

Query Set No of Queries No of Plans No of Tasks Task cost Sharability
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Table �� Query sets used in the Experiment

� Experimental Results and Comparisons

In this section� we present simulation results for the improved heuristic algorithm and

compare them with Sellis� previous heuristic algorithm in 
Sel��� SG�
��

��� Experimental Testbed

Our experiments were performed on a DECStation �


��

 and the simulation software

was written in C� The experiments were run over randomly generated query sets� The

queries are randomly generated as a set of plans� which are sets of tasks� The costs of indi�

vidual tasks are also randomly generated� For experiments involving implied relationships�

the costs of deriving the implications among tasks are included in the cost model� The

following quantities were used as input parameters by the random query generator while

generating a query set�

�� Minimum and Maximum number of queries in a query set�

�� Minimum and Maximum number of plans for a query�

�� Minimum and Maximum number of tasks in a plan�

�� Minimum and Maximum cost of a task�

�� Sharability � This factor represents the percentage of tasks in the interaction list

among all tasks of the queries�

To study the performance of the two heuristic functions� we generated �� query data

sets QSET��QSET��� Each set consists of �
 queries with a �xed sharability varying from

�
� to �

�� Except query set QSET��� all query sets have identical tasks only� Table �

shows the parameters used to generate query data sets QSET��QSET���

�




��� Implementation Details for Computing the New Heuristic Function

To calculate the heuristic function in each step of the MQO search algorithm� we can

compute repeatedly the estimated cost of tasks and plans in the remaining queries� However�

this approach blindly computes the estimated costs of tasks and plans� even if the estimated

cost of the tasks having no commonalities does not change� To speed up the computation

overhead of the heuristic function� we use the following method in our implementation�

Before we start the execution of the algorithm� we �rst calculate the cost of all plans

using the actual costs of the tasks ignoring any possible commonalities� Let us call the

cost computed in this manner� the individual cost of the plan� Then� whenever we cal�

culate the estimated cost of the plan� we compute it from the individual cost of the

plan taking into account only the tasks which have common tasks� Then� for a state

s �� P�k� � P�k�� ���� Pgkg� NULL�NULL �� the heuristic function is computed in the fol�

lowing way�

�� Copy the individual costs of the plans that appear in the remaining queries

Qg��� Qg��� ���� Qn into the array that keeps the estimated costs of the plans� �Note

that the individual costs were calculated at the initial step�

�� Scan each identical task interaction list to calculate the estimated cost of the task

in each list� We �rst check whether there is any task from the interaction list that

appears in P�k� � P�k� � ���� Pgkg� If such a task does exist� we exit immediately and set

the estimated costs of the tasks of the list to zero	 this is natural as we can ignore

�cost�wise� those tasks that appear on the path from the start node to the current

state� However� if none of the tasks in the interaction list has been encountered in

the plans that have been processed so far� we count the number of queries among

Qg��� Qg��� ���� Qn in which the identical tasks of the list appear� In terms of imple�

mentation� we organize the lists of tasks based on the queries containing the tasks

in an identical task interaction list� so that we can compute the number of queries�

in which a task occurs� by just counting the number of head nodes �of a list� whose

content is non�null� We next compute the estimated cost of the tasks of that list by

dividing the actual cost of any task in the list by the number of queries just derived�

Then we update the estimated costs of plans in which tasks of the current list appear

by scanning the list once again� For each task tkij �i � g � �� ���� n� in the list� we

update the est cost�Pij� to be est cost�Pij�� cost�tkij� � estcost�tkij��

�� Find the minimal estimated cost of the plan for each query among Qg��� Qg��� ���� Qn

and add them all�

When we have a mergeable task precedence interaction list� we have to modify step

� above� We �rst process the mergeable task precedence interaction list to compute the

estimated cost of the task in each group and traverse the identical task interaction list of

each group to change the estimated cost of the task of the group� We then process in the

manner described above the identical task interaction lists that do not appear in mergeable

task precedence interaction lists�

��



��� Experiment �� Identical Relationships

To study the performance of the previous and new heuristic functions� we �rst tested with �


query data sets QSET��QSET�
 which have identical relationships only� each set consisting

of �
 queries and with sharability varying from �
� to �

�� Table � shows the parameters

used in QSET��QSET�
� For each query set� the heuristic search algorithm was run using

the following six query orders for �lling in the state vectors �i�e� the order in which queries

are examined by the algorithm� as they were suggested in 
SG�
��

Order � � the original order� i�e�� increasing query index�

Order � � increasing number of plans�

This order of queries maximizes the size of the search space below

a state at level i� for all i� � � i � n� As a result of this� for any state s

at level i not expanded by the algorithm� the total number of states

pruned down is maximized�

Order � � decreasing average query cost�

Since many times� the error in the lower bound function is proportional to

its actual value� this tries to minimize the error in the cost of any path�

Order � � decreasing average estimated query cost�

By assuming that the error in the lower bound function is proportional to

its estimated value� this tries to minimize the error in the cost of any path�

Order � � decreasing average query cost per number of plans�

This heuristic is a combination of Order � and Order ��

Order � � decreasing average estimated query cost per number of plans�

Similarly� this heuristic is a combination of Order � and Order ��

For each query ordering� we recorded the number of states generated� the total number of

states in the search space� the percentage of the total number of states that were generated

by the heuristic algorithm� and the CPU time� Table � summarizes these �gures	 the

numbers shown are averages of �
 runs� MQO� is the heuristic algorithm with our new

heuristic function hn and MQO� is the one using the previous heuristic function ht� Figure

� illustrates the e�ect that the sharability has on the ratio of states generated versus the

total number of states� for both MQO� and MQO�� and in particular when ordering method

� �i�e� original ordering� is used� Because Order � is the best for both MQO� and MQO��

we also show the result of using this ordering method as well� As it can be seen from this

�gure� the ratio of states generated versus the total number of states by MQO� increases

slightly as the sharability becomes large� However� the same ratio for MQO� reaches a

maximum when sharability becomes �
� with Order � and it decreases as the sharability

becomes large� The worst value for the ratio of states generated versus the total number

of states in MQO� was 
�
����� while it was 
������� for MQO�� Note that the ratio

with MQO� is about ���� of the ratio with MQO�� From the experimental results above�

it is evident that the new heuristic algorithm generates only a small percentage of the total

number of states in the search space for various sharability �gures� On the other hand� the

more expensive computation required for hn compared to ht� was well o�set by the gains in

limiting the number of states generated� Most of the times� the CPU cost for MQO� was

much less than � second� while the CPU time for MQO� was as big as �
�� seconds� This is

due to exploring more search space� and therefore manipulating a larger number of states�

��
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Table �� Results of various query ordering strategies with heuristics�
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Figure �� Percentage of states generated versus total number of states

In order to see how the percentage of states generated changes as the search space

increases we tested with �ve new query sets QSET���QSET�� �also shown in Table ��� The

results of running these query sets are summarized in Table �� It is clear that as the number

of states in the search space increases� the percentage of states generated becomes smaller

and smaller� This is an important characteristic of our heuristic algorithm as it also shows

that the number of states generated is consistently kept to a low number�

��� Experiment �� Identical and Implied Relationships

Finally� a last set� QSET��� was tested� This query set is used to illustrate the performance

of algorithm in the presence of implied relationships� The detailed parameters for QSET��

are in Table �� Note that the parameters in QSET�� and QSET�� are the same except that

in QSET�� there are tasks with implied relationships� The result of our experiments are

summarized in Table �� In this case� MQO� and MQO� are both the algorithm proposed

in Section �� with the heuristic functions of sections ��� and ��� respectively� As it can be

seen� the percentage of states generated in QSET�� with MQO� is even smaller than that

of QSET�� with MQO�� which means that the heuristic function also performs well with

implied relationships�

In summary� our experimental results show that the new heuristic algorithm signi�cantly

improves the search space and time complexity compared to the heuristic algorithm of


Sel���� Furthermore� it is very e�cient for both identical and implied relationships�

� Summary

In this paper� we �rst studied the performance of existing heuristic algorithms for the

multiple�query optimization problem 
Sel��� SG�
� and pointed out some de�ciencies� A

new heuristic function was proposed to o�set these de�ciencies� We proved that the new
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Table �� Results of MQO� increasing search space�

MQO Total States � CPU

Algorithm States Generated Generated Time�sec�

MQO� �
�� �� ����
�� 
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�




MQO� �
�� ��� ��
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Table �� Results with QSET�� �implied relationships��

heuristic function is more informed than the one proposed by Sellis� and studied the search

space and time complexity of MQO�search�

We then extended the new improved heuristic algorithm to handle implied relationships�

something that the algorithm of 
Sel��� could not handle e�ciently� Again� we gave formulas

for the worst case complexity of the extended heuristic algorithm� Finally� we simulated

the new and old algorithms for various query sets� with identical and implied relationships

among queries� The results obtained strengthened our belief that the performance of the

new improved heuristic algorithm is superior to the previous one and the complexity is

much less than the worst case one in most situations�

As interesting issues of future research� we view the following� First� we are trying

to �nd other strategies of query ordering so that the algorithm can perform even better

with implied relationships� For example� ordering the queries according to the mergeable�

task precedence can be a good strategy because the error in estimating the real costs can

be minimized� The second interesting issue is comparing the the dynamic programming

approach of Park and Segev 
PS��� to our heuristic algorithm� especially with respect to

search space and time complexity� A �nal issue of interest is the average case performance

analysis of our heuristic algorithms� In this paper only best�case and worst�case performance

has been studied� We plan to use the ideas in 
Pea��� to study the average performance of

the algorithms assuming a very simple model�
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