Improvements on a Heuristic Algorithm for Multiple-Query

Optimization *
Kyuseok ShimT Timos Sellis* Dana Nau®

Department of Computer Science
University of Maryland
College Park, Maryland 20742

{shim,timos,nau}@cs.umd.edu

Abstract

Multiple-query processing has received a lot of attention recently. The problem arises
in many areas, such as extended relational database systems and deductive database
systems. In this paper we describe a heuristic search algorithm for this problem. This
algorithm uses an improved heuristic function that enables it to expand only a small
fraction of the nodes expanded by an algorithm that has been proposed in the past. In
addition, it handles implied relationships without increasing the size of the search space
or the number of nodes generated in this space. We include both theoretical analysis
and experimental results to demonstrate the utility of the algorithm.

Index Terms: Multiple query optimization, relational databases, heuristic algorithms,
algorithm complexity

*This research was partially sponsored by the National Science Foundation under Grants IRI-8719458,
IRI-8907890, NSFD CDR-85-00108 (to the University of Maryland Systems Research Center), and IRI-
9057573 (PYI Award), by DEC and Bellcore, by the Air Force Office for Scientific Research under Grant
AFOSR-89-0303, and by UMIACS.

T Also supported by a Korean Government Overseas Scholarship.

{Also with University of Maryland Institute for Advanced Computer Studies (UMIACS).

$Also with the University of Maryland Systems Research Center (SRC).

1 Introduction

There are many applications where more than one query is presented to a database sys-
tem in order to be processed. First, consider a database system enhanced with inference
capabilities (deductive database system). A single query given to such a system may result
in multiple queries that have to be run over the database. This is because a deductive
database may include more than one definition for the same predicate. For example, the
following three rules

(R1) A — BiABsAN...ABy

(R2) A — CiACyN...NCy

(R3) A — DiADyA...AND,
define the predicate A. A query on A would have to evaluate all three queries that cor-
respond to the right-hand sides of the above rules. The problem of multiple-query opti-
mization also arises in an environment where queries from various users are processed in
batches and the queries share some common relations. This can be particularly useful in
distributed database systems where queries (or sub-queries) arrive to sites in order to be
processed; again, devising an execution schedule that can provide answers to all queries
avoiding duplicate page accesses, becomes a very crucial problem.

Sellis in [Sel88, SGI0] suggests a heuristic algorithm to solve the MQO problem. The al-
gorithm performs a search over some state space defined over access plans. A similar branch
and bound algorithm has been suggested in [GM82] by Grant and Minker, while a dynamic
programming algorithm was later suggested by Park and Segev [PS88]. In addition, a prob-
lem similar to the MQO problem arises in the field of Artificial Intelligence, in the problem
of generating plans (i.e., sequences of actions) to achieve multiple goals. One technique that
has been used successfully in some application domains (including manufacturing planning
[KNY92]) has been to develop separate plans for each goal, and then to merge these plans
together to produce a plan for the conjoined goal. In order to find an optimal way to merge
these plans, a heuristic search algorithm has been developed [YNH89, YNH90, YNH92] that
is similar in some respects to Sellis’ algorithm.

In this paper we describe a new algorithm for the MQO problem. This algorithm
represents an extension and improvement of both Sellis’ [Sel88, SG90] algorithm for the
MQO problem and the plan-merging algorithm of Yang et al [YNH&9]. It uses an improved
heuristic function that enables it to expand only a fraction of the nodes expanded by Sellis’
algorithm. In addition, it handles implied relationships without increasing the size of the
search space or the number of nodes generated in this space. To demonstrate the superiority
of this algorithm, we compare its performance to Sellis” algorithm both analytically and
experimentally.

In the next section we formalize the multiple-query optimization problem. In Section 3,
we briefly outline the search algorithms used in this paper and describe Sellis” algorithm
[Sel88, SGI0] which will be used as a point of comparison to ours. In Section 4, we describe
our algorithm and discuss its performance. In Section 5, we show how both Sellis’ algorithm
and our algorithm can be modified to handle implied relationships without increasing the
size of the search space or the number of nodes generated. In Section 6, we present some
experimental performance results, while Section 7 presents concluding remarks.

2 Multiple-Query Optimization

Assume that a database D is given as a set of relations {Ry,R9, ...,R,,}, each relation
defined on a set of attributes. An access plan for a query @ is a sequence of tasks, or basic
relational operations, that produces the answer to ¢). For example, given two relations
EMP (name,dept_name) and DEPT(dept_name,floorno), with obvious meanings for the
various fields, the following SQL query which retrieves the names of all employees who work
on the first floor

select EMP.name

from EMP, DEPT

where DEPT .floor no = 1 and EMP.dept_name = DEPT.dept_name
can be processed by performing the following tasks

(T1) TEMP1 := DEPT where floorono = 1

(T2) TEMP2 := EMP join TEMP1

(T3) RESULT := TEMP2[name]
Notice that in general there exist many possible alternative plans to process a query.

Tasks have some cost associated with them which reflects both the CPU and I/O cost

required to process them. The cost of an access plan is the cost of processing its component
tasks. Assume now that a set of queries Q={ Q,Q2,...,Q,} is given. A global access plan
for Q corresponds to a plan that provides a way to compute the results of all n queries.
A global access plan can be constructed by choosing one plan for each query and then
merging them together. We will refer to the minimal cost plans for processing each query
@Q); individually, as locally optimal plans. Similarly, we use the term globally optimal
plan to refer to a global access plan with minimal cost. Due to common tasks, the union of
the locally optimal plans does not necessarily give the globally optimal plan. Now, we can
define the Multiple-Query Optimization (MQO) problem as follows:

Given n sets of access plans Py, Pa, ..., P, with P,={Pi1, Pia, ..., Pir, } being the
set of possible plans for processing @;, 1 < ¢ < n,

Find a global access plan G P by selecting one plan from each P; such that the
cost of G P is minimal.

3 State-Space Search Algorithms for MQO

The search space for the MQO problem is constructed by defining one state for each possi-
ble combination of plans among the queries [Sel88, SG90]. In particular, suppose we need
to perform n queries (J1,@2, ..., ,, and suppose that for each query @;, the set of pos-
sible access plans for processing Q; is P; = {Pn, Pi2,..., P, }. Then the state space is
constructed as follows:

1. Every state s is an n-tuple < Py, Paj,, ..., Py;, >, where for each i, either P;;, € P;
(in which case s suggests that P;;, be used to process query);), or else P;;, = NULL
(in which case s does not suggest a plan for processing ¢);). The cost of s, denoted
by scost(s), is the total cost required for processing all of the queries in s.

2. The initial state is the state sy =< NULL,NULL,...,NULL >, and the states sp =<
Pij, Pojyy ooy Prj, > with Py, # NULL, for all ¢, are the final states.

3. Given a state s =< Py;,, Paj,, ..., P, >, let

min{i|P;;, = NULL}, if {i|P;;, = NULL} # 0

n+1 otherwise.

next(s) = { (1)

4. Let the state s have at least one NULL entry and m = nexzt(s), then the immediate
successors of s include every state s' =< Py, , Pak,, . . ., Puk, > satisfying the following
properties:

Piki = Piji forl1 <i< m;
Pmkm S Pm7
Pir, = NULL, for m <2 < n.

The cost of the transition from s to s’ is the additional cost needed to process the new
plan P, , given the (intermediate or final) results of processing the plans in s.

Note that the search space is a tree, in the sense that there is exactly one path from sq to
each of its successors.

All of the algorithms described in this paper are versions of the following procedure,
which is a special case of the A* state-space search algorithm [Nil80]:

procedure MQO-search:

OPEN := {so}

loop
remove from OPEN the state s that has the smallest value for f(s)
(if there is more than one such node, then we select the one at the deepest level)
if s is a final state then exit, returning s
generate s’s successor states, and insert them into OPEN

repeat

The primary difference between MQO-search and A* is that A* has some additional coding
to increase the efficiency in the case where the search space is a graph. In the case of the
multiple query optimization problem, the search space is a tree, so this additional coding
is unnecessary. MQO-search may equally well be considered to be a branch-and-bound
procedure [NKK84].

MQO-search works by starting from the initial state sg, and expanding states one by
one (expanding a state s means generating all its immediate successors). To choose which
state to expand next, it always selects for expansion the state s having the smallest value
for f(s) = scost(s) 4+ h(s), where scost(s) is the actual cost of getting from sg to s, and
h(s) is a heuristic function which approximates the cost of getting from s to a final state.
The performance of A* algorithm depends on the choice of h(s). The better this function
approximates the cost to a final state, the faster the algorithm. This brings up the issue of
admissibility of heuristic functions.

The heuristic function h(s) is admissible if it always returns a lower bound on the
additional cost that will be incurred in getting from s to a final state. Since MQO-search

is a special case of A*, it follows from theorems given in [Nil80] that if h(s) is admissible,

then MQO-search is guaranteed to find a final state sp such that the cost of getting from
S0 to sp is minimal among all paths leading from sg to final states. In the worst case,
MQO-search may require time exponential in the number of plans per query, but on the
average the complexity depends on how closely the heuristic function estimates the actual
cost [Pea84].

Given two admissible heuristic functions hy and hg, hq is said to be more informed than
ha, if for every non-final node n, hi(n) > hay(n). If hy is more informed than hg, then when
MQO-search is run using ho, it is guaranteed to expand at least as many nodes as it does
with hq.

We now return to the discussion of Sellis’ heuristic (A*) algorithm. Let s =<
Py, Pogy, ..., Puk, > be any state. The heuristic function used in [Sel88, SG90] is the
function

newt(s)—1 n
hi(s) = (Z est_cost(Py,) + Z min[est_cost(Piji)]) — scost(s). (2)
=1 1=next(s) 7

The function est_cost is defined on plans as

est_cost(P;;,) = Y est_cost(t), (3)
tEPm
and on tasks as
t(t
est_cost(t) = cost{), (4)
g

where n, is the number of queries the task ¢ occurs in, and cost(t) is the cost of task ¢.
Since est_cost(P;;,) < cost(P;;,) for every plan, it is easy to see that h; is admissible and
MQO-search is guaranteed to find an optimal solution. Below we give an example which
illustrates the heuristic.

Example 1 Suppose three queries (J1,()2 and ()5 are given along with their plans: Py,
Pio, Py, Pay, P31, P33. We will use tfj to indicate the A-th task of plan F;;. The cost for
each task involved in each plan is as follows.

Plan Task Cost Task Cost Task Cost
Pty 30t U 10
Pyt 25 13, 10
Pyt 30 t3 20
Pay il 10 3, 10 3 5
Pyt 30t U= 10
Pyt 10 10 3 5

Given the actual task costs and assuming that the identical tasks are t}, = 3, = t1,,
the estimated costs (est_cost) for these tasks are:

1 2 3 1 2 1 2 1 2 3 1 2 3 1
Task tll tll tll t12 t12 t21 t21 t22 t22 t22 t31 t31 t31 t32

2
t32

3
t32

Estimated cost 10 10 10 25 10 10 20 10 10 5 10 10 10 10

10

5

The estimated costs for the plans are:

Plan Py Pia Pyy Pay Py Pa
Estimated cost 30 35 30 25 30 25

In the state < Py1, NULL,NULL >, since scost(< P;;, NULL,NULL >) = 50, f(<
Py1,NULL,NULL >) becomes 50 + 30 + min{30,25} + min{30,25} — 50 = &0.

In the state < Pi3, NULL,NULL >, since scost(< P2, NULL,NULL >) = 35, f(<
P53, NULL,NULL >) becomes 35+ 35 + min{30,25} + min{30,25} — 35 = 85. Because
f(< P11, NULL,NULL >) is less than f(< Pi3, NULL,NULL >), we expand the state
< P11, NULL,NULL > which results to two new states such as < Pjy, Po1, NULL > and
< P11, Py5, NULL >. The portion of the search space explored by MQO-search using this
heuristic function hy is illustrated in Figure 1. Numbers in circles are used to indicate the
order in which nodes are generated and the number on each edge represents the cost of a
transition between the corresponding states. a

In order to compute the heuristic values quickly, Sellis’ algorithm pre-computes an
estimated cost for each plan F;;, and during the search, it uses this same estimated cost
regardless of what other plans it is combined with. In order to guarantee that this cost will
be a lower bound to the actual cost of reaching a final state, the algorithm pro-rates the
cost of each task ¢ in P based on the largest possible number of times ¢ can appear in some
combination of plans. In states where it is possible for ¢ actually to appear in that many
plans, this will produce a tight bound for ¢, but in states where ¢ cannot appear in that
many plans as estimated, the bound will be more conservative than necessary.

Due to the inaccuracy of the estimated costs, the algorithm can explore a large portion of
the search space, in some cases exploring more states than the branch and bound algorithm
suggested by Grant and Minker [GMS82]. For example, in Example 1, the algorithm explored
almost every state in the search space. In the Section 4, we introduce a new heuristic
function that overcomes this problem.

4 New Heuristic Function

4.1 Heuristic Function

In this section, we propose a new improved heuristic function which overcomes the ineffi-
ciencies mentioned above. The new heuristic function pro-rates the cost of common tasks
assuming the best case just for the remaining queries to be processed ignoring the tasks
which appear in the state.

The new heuristic function for a state s =< Py;,, Paj,, ..., Pyj, > is defined as
n
ho(s)= > min[new_est_cost(Py,)]. (5)
1=next(s) I

The function new_est_cost is defined as follows on tasks

0 ift € Py, for 1 <@ < next(s)
new_est_cost(t) = cost(y)

Ty

(6)

otherwise

where n, is the number of remaining queries to be processed which have any plan containing
the task ¢. For a plan P;;,, we define new_est_cost on the plans (analogous to Equation 3)

®

< NULL,NULL,NULL >

50 35

@ ®

< Py, NULL,NULL > < Pi2,NULL,NULL >
(f = 80, hy = 30) (f = 85, h; = 50)
20 25 50 25

@ ®) &

< P11, P51, NULL > < Pi1, Py, NULL > < Pi2, P51, NULL > < Pig, Py, NULL >
(f = 85, hy = 15) (f = 80,h; = 5) (f = 90, h = 5) (f = 85, hy = 25)

20 25 20 25 50 25

® © @ (2)

< P, Por, Py > < Piy, Por, Pao > < Pry, Pag, P3y > < Piy, Pag, P3g > < Pia, Pyg, P31 > < Pia, Pag, P3p >
(f=90,hy,=0) (f=95h;=0) (f=95h,=0) (f=100,h;,=0) (f=110,h;, =0) (f=85,h;=0)

Figure 1: The portion of the search space explored by MQO-search using h;

as

new_est_cost(P;;,) = Z new_est_cost(t). (7)
tEPi]i

To illustrate the effect of h,, we will redo Example 1. In the state <
P11, NULL,NULL >, the estimated cost of t}; and t}; are considered as zero since they
are the identical tasks with ¢}, and so, appeared in plan Pj;. For other tasks that are in the
plans of remaining queries ()3 and s, there is no common tasks and so, their estimated
cost are considered the same as the actual cost. Since scost(< Py1, NULL,NULL >) = 50,
f(< P11, NULL,NULL >) becomes 50 + min{20,25} + min{20,25} = 90.

In the state < Pyo, NULL, NULL >, there are no tasks for the plans in remaining queries
()2 and ()3 that appear in plan P;o. However, there are common tasks which appear only
in the plans of the remaining queries. The identical tasks are

1 41
t21:t31

and so, their estimated cost is considered as the half of the actual cost. The estimated costs

for the tasks in the plans of remaining queries are as follows:

Task t%l t%l t%z t%z t%z tzlal t:2)>1 t%l tzlaz t%z t%z
Estimated cost 15 20 10 10 5 15 10 10 10 10 5

Therefore, the estimated costs for the plans in the remaining queries are

Plan Py Py P31 Pa
Estimated cost 35 25 35 25

Since scost(< Py, NULL,NULL >) = 35, f(< P2, NULL,NULL > becomes 35 +
min{35,25} + min{35,25} = 85. Because f(< Pi2, NULL,NULL >) is less than f(<
Pi1,NULL,NULL >), we expand the state < P2, NULL,NULL > which results to two
new states such as < Pjo, Poy, NULL > and < Pjg, Pso, NULL >. The search space for the
new heuristic function is shown in Figure 2. Note that 13 states are generated using the
heuristic ks while only 7 states are generated with the new heuristic h,,.

As it can be seen from the above, with h, we estimated the cost of getting to a final
state by taking into account only the remaining queries to be processed ignoring those tasks
that appeared in a state s. Therefore, the new heuristic function gives a more tight bound
than the previous heuristic function and it makes MQO-search to have faster convergence
to the optimal solution. In the next section we study the properties of the new heuristic
function h, and formally prove that it is a better heuristic.

4.2 Proof of Admissibility

Assume that the algorithm visits a state s. The estimated cost of a task is zero, if it
appears in a plan already selected in state s. Hence, for a task already selected in the state

s, the admissibility criterion is satisfied. Otherwise, the estimated cost of a task ¢ will be

cost(t)

calculated as , where n, is the number of remaining queries Qpcpi(s)s @newt(s)+1s - - -

T

() task t occurs in. For tasks which are not shared among remaining queries, the cost to

@

< NULL,NULL,NULL >

50 35

@ ®

< Py, NULL,NULL > < Py, NULL,NULL >
(f = 90, h,, = 40) (f = 85, hy, = 50)
50 25

@ ®

<P12,P21,NULL> <P12,P22,NULL>
(f=105,h, = 20) (f=85.h, = 25)

50 25

O, @

< Pia, Pyg, Py > < Pig, Pag, P3g >
(f=110,h,=0)(f =85,h, =0)

Figure 2: The portion of the search space explored by MQO-search using h,(s)

be considered when calculating h,, will be the tasks’” actual cost and therefore it is clear

that the criterion for admissibility is also satisfied. However, for tasks which are shared but

cost(t)

not chosen yet, and since we add their estimated cost, , whenever they are selected,

the total cost to be considered in h,(s) will be at most the same as the actual cost (i.e.
cost(t)
Ny
admissible.

«n, = cost(t)). Therefore, the criterion is satisfied for those cases as well, and h,, is

4.3 Time Complexity

We now compare the complexity of our algorithm with that of Sellis [Sel88, SG90]. First
we examine the number of states produced by each algorithm, and then we examine the
complexity of computing the heuristic function values at each node.

4.3.1 Number of Nodes Expanded

Let N; denote the number of candidate access plans for query @);. Regardless of whether h;
or h, is used, the best-case complexity of the search algorithm is the same: (3°7° | N;) 4 1.

Consider the worst case for hy. It is easy to see (for example, this is alluded to in [PS88])
that in the worst case, hy will generate every node in the search space. Thus, in the worst
case, the number of nodes generated will be

no1

O T Nk)+1=0(NyN;...N,).
i=1 k=1

Now, consider the new heuristic h,. Suppose we are running MQO-search and let s be
a state at level n — 1. With h,,, we estimate the cost of identical tasks, which are already
present in a given state s =< Py, Pog,, . . .,P(n_l)k(n_l),NULL >, as zero and estimate
the cost of other tasks in the plans of @, as their original cost. Note that, excluding those
tasks which appear in the state s, either the task in the plans of),, has no identical task
or it has identical tasks but they exist only among the plans of (),, and so n, in Equation 6
becomes 1 in both cases. Therefore, for every state s at level n — 1, h,(s) = h*(s) where
h*(s) is the cost of the minimal cost path from s to a goal state.

Let s be the first state selected for expansion at level n — 1, and let u be any other state
in the OPEN list. Since MQO-search selected s for expansion rather than wu, this means
that f(s) < f(u). Thus for every goal state v’ which is a descendant of u, f(u) < scost(u’).
Next, MQO-search will expand s. Since h,(s) = h*(s), this means that s has at least one
successor s’ such that scost(s') = scost(s)+ h,(s) = f(s). Since s’ is a goal state, it follows
that h,(s’) = 0 and thus f(s') = scost(s’) = f(s) < f(u), so s’ is the next state that
MQO-search will select for expansion. At this point, MQO-search will realize that s’ is the
optimal goal, and will terminate, returning s’.

JFrom the above argument, it follows that even in the worst case, MQO-search will
expand only one state at level n — 1, and thus will generate only N, states at level n. Thus,
the total number of nodes generated in the worst case will be no greater than

n—1 1
O TI Ne)+ N+ 1=0(NyNy. .. Nyy).
=1 k=1

Thus, in the worst case, Sellis’ algorithm will generate ©(N,,) times as many states as ours.

10

We can prove that in all cases, the number of nodes expanded by using h, will never
be more than the number of nodes expanded by using h;. To do this, we prove that h, is
more informed than h;. Let us assume that the set of identical tasks is {¢q,¢2,...,¢,} and
the number of queries among ()1, @2, ...,y in which the task ¢; occurs is ny,. Let us also
assume for a state s that the number of plans in which task ¢; occurs is n,, and P;;, are the
plans selected in state s. Then, the cost of getting from the initial state s to the current

state s is
newt(s)—1 g
scost(s) = Z est_cost(Py;;) + Z(nql — ny, Jest_cost(c¢;)

Therefore, according to Equation 2,

newt(s)—1 n
hi(s) = Z est_cost(P,) + Z Ir;in[est_cost(Piji)] — scost(s)
=1 i=next(s) '
n g
= Z min[est_cost(Py,)] — Z(nql — ny, Jest_cost(c;)
1=next(s) 7 =1

n

Z min[new_est_cost(Py,)] = hy(s).

Ji

IN

1=next(s)

4.3.2 Complexity of Computing h; and h,

We turn next to discuss the complexity of computing the h; and h, functions on a given
state. The computation of Sellis” heuristic h; is very fast. Once we find the cheapest plan
for each query according to est_cost, we just add their est_cost values and subtract scost(s)
(cf. Equation 2). Hence, assuming that we pre-compute the estimated cost values before
starting the algorithm, the complexity of computing the heuristic h; is just O(1) in each
state. However, in our improved heuristic, we have to re-calculate the estimated cost in
each state of the search space. Thus, it follows that for each node, we spend more time
computing h, compared to computing h;. However the amount of time spent for MQO-
search is not determined solely by the complexity of computing h; or h, at each node.
Instead, in order to expand any state, we have some execution time overhead to deal with
stack management for recursion, to calculate scost(s), and to maintain sorted list of OPEN
in decreasing f value. Although we spend more time at each node, we generate sufficiently
fewer states that we would expect our search algorithm to have a lower time complexity.
This hypothesis has been confirmed experimentally, as shown in Section 6. The details of

computing efficiently the heuristic function appear in Section 6.2.

5 Extending the Algorithms to Handle Implications

In this section, we extend both Sellis” algorithm and ours to cover implied relationships
among tasks.

A task t; implies task t; (t; = t;) iff t; is a conjunction of selection predicates on
attributes Ay, Ay, ..., A; of some relation R, and ¢; is a conjunction of selection predicates
on the same relation R and on attributes Ay, Ag, ..., Ax with [< k, and it is the case that
for any instance of the relation R the result of evaluating ¢; is a subset of the result of
evaluating ¢;. Two tasks ¢; and ¢; are identical (t; = ¢;) if t; = ¢; and ¢; = ¢;.

11

For a task ¢;, let t; be the tasks such that ¢; = ¢; holds but ¢; = ¢; does not hold. Then
the result of ¢; can be used as the input for computing the result of task ¢;. This results in
savings in terms of the time needed to compute ¢;. Of course, to get this savings ¢; has to

be executed before ¢;. To express this, we use the notation ¢; — ¢;.

Let R be a relation and ¢; and t; be two tasks on R such that ¢; — t; or {; = ¢;. Then,
t; can be processed using the result of ¢; instead of R. Let C'r be the cost of accessing R to
evaluate ¢; and C}, be the cost of accessing the result of ;. We assume that the results of ¢;
and ¢; are stored for later use (temporary results). Then, the cost of processing ¢; is Cr(to
read the data) + Cf,(to write the result). With sharing, the savings that can be achieved

are
Cr— Cti if t; — t;

8
CR‘|‘Cti iftiEt]' ()

savings(t;) = {

For the first case, we incur a savings since instead of accessing R we access the result of
t;. In the second case, more savings is achieved because not only R needs not be accessed
(since the result of ¢; is identical to that of ¢;), but the temporary result of ¢; can also be
used as the result of ¢;. Therefore, there is no need to write the result of ¢; in a separate
temporary relation.

Sellis [Sel88] suggested the following way to handle implied relationships. Consider two
queries, (J1 and ()5 such that ()1 has a more restrictive selection than (5. Clearly it would
be better to consider executing (), first since, in that case, the result of ()3 can be used
to answer (}1, the opposite being impossible. Therefore arbitrary ordering for the queries
in MQO-search would be ineffective. Sellis suggested as a possible solution a new way to
fill the next available NULL slots in a state vector s. Instead of using the function next(s)
of Section 3 to identify the next query to be considered, the algorithm would be allowed
to replace any available (NULL) position of s. This results in a larger fanout for each
state and clearly more processing for MQO-search. The worst case complexity of the states
explored with this modification for implied relationships is (3°1 H;‘:1 >or—1 Nk)+ 1, while
it is (3°rq [Tp=y NVk) + 1 for identical relationships only. Clearly this adds a significant
overhead to the algorithm.

In the rest of this section we extend the heuristic algorithms to cover implied relation-

ships.

5.1 Merging Tasks

After a global optimizer picks the appropriate plans among several possible query plans, a
sequence of tasks must be produced to indicate the order in which these tasks need to be
processed. For example, consider the two access plans, P; and P,, of Figure 3. The task
ordering for the global access plan is shown in Figure 4. To form such a global plan, the
implication relationships as well as identical relationships need to be taken under account.

There are two kinds of interactions among the tasks in the access plans for MQO prob-

lem.

1. An identical-task interaction is an interaction when a task in one plan is identical to

a task in one of the other plans.

2. A mergeable-task precedence interaction is an interaction which requires that a task

12

a in some plan P, is executed before a task b in some other plan Pk, in order to
achieve savings by using a’s result. We denote this interaction as a — b.

Note that the precedence graph of the tasks in the access plans is acyclic, and thus, it

is always possible to merge a set of plans into a global access plan.

Suppose we are given the following:

1. A set of plans P = {P1j,, Paj,, ..., Ppj, } containing one plan P;; for each query @);.
Let N be the total number of tasks in P.

2. A list of interactions among the tasks in the plans such as identical-task interactions

and mergeable-task precedence interactions. Let m be the total number of interactions
in this list. Then m = O(N?).

The global access plan is the set of tasks in P, with additional ordering constraints im-
posed upon the tasks to handle the interactions. This merged plan is denoted by merge(P)
and to generate it, we use the following procedure which is a topological sorting algorithm
with a simple extension to handle the identical tasks. We call it the ‘Merge Algorithm’ and
it is shown in Figure 5.

The Merge Algorithm works as follows. First, we initialize the list of global ordering to
be empty and mark all tasks in P as unvisited. Then, we check each task in P in turn. When
an unvisited task is found, we visit it using procedure DFS which is a Depth-First-Search
algorithm with an extension to handle the identical tasks.

In each call to DFS(t), we mark the task ¢ and its identical tasks in P as visited and
we call them equivalence_group(t). Then, we examine each task u adjacent to ¢ (denoted by
Adj[t] above) and recursively visit u if it is unvisited. Here, adjacent tasks are those tasks
in P which should be executed later than ¢ due to a mergeable-task precedence interaction.
After this, for each task u in equivalence_group(t), we examine each task which comes later
than w in the same plan and recursively visit it, if it is unvisited. After we finish these steps,
we insert the task ¢ into the front of the list of global ordering. This merging can be done
in O(N?) time and savings in cost can be calculated based on the above result order.

In the next subsection, we extend the heuristic algorithm of Section 3 to handle the case
of implied relationships.

5.2 Extension to the Heuristic Algorithm

As we mentioned in the beginning of this section, the worst-case complexity of the states
explored with the heuristic algorithm for implied relationships by Sellis in [Sel88] is
ooy H;‘:l > k=1 Nr) + 1, since we have to consider not only one query but all remain-
ing queries in each state. However, if we use the merge algorithm of the previous section,
we can still consider one query in each state and the size of the search space becomes the
same as without implied relationships, i.e. (X0, [Teey M) + 1.

Now we show how the heuristic function h; in [Sel88, SG90] can be extended to deal with
implied relationships. To model the existence of both identical and implied relationships,
we define equivalence groups among tasks. An equivalence group for a task ¢ contains all
tasks which are identical to the task ¢, including ¢ itself. Suppose we have a mergeable-task
precedence interaction such that g1 — ¢o — ... — ¢,, and ¢; has m; identical tasks. Let

13

Plan P; Plan P,
TEMP1 — TEMP?2 — TEMP1 — TEMP?2 —
R1.A <40 R2.B <20 R1.A <50 R2.B <10
RESULT — RESULT —

TEMP1L.C=TEMP2.C TEMPL.C =TEMP2.C

Figure 3: Two access plans P, and Py

TEMP11 —
TEMP1.A4< 50
TEMP1 —
R1.A <40 TEMP2] —
N TEMP2.B <20 [~ TEMP2—
\ / R2.B <10
.
RESULT — RESULT —

TEMPL.C=TEMP21.C TEMPI1.C =TEMP2.C

Figure 4: Task ordering in the global access plan for P; and P,

procedure Merge:
Global_Order := 0
for each task t € P do
visited[t] := false
for each task t € P do
if not visited[t] then DFS(¢)
return Global_Order

procedure DFS(t):
for each task u € equivalence_group(t¢) do
visited[u] := true
for each task v € Adj[t] do
if not visited[u] then DFS(u)
for each task u € equivalence_group(t¢) do
for each task v which comes
later than u in the same plan do
if not visited[v] then DFS(v)
Insert the task ¢ onto the front of Global_Order

Figure 5: Merge Algorithm

14

gcost(g;) be Cy,_, (to read the data from ¢;_1) + Cy, (to write the result) and Cy, = Ck.
Then, the estimated cost of task g; in an equivalence group and having a mergeable-task
precedence interaction is defined as

est_cost_group(g;) = gcost(g;) (9)

while the estimated cost of other tasks which do not occur in a mergeable-task precedence
interaction is the cost of the tasks themselves. Then, the estimated cost of a task ¢ is

est_cost_group(t)

est_cost(t) =

(10)

g

where n, is the number of queries the task ¢ occurs in with identical-task interaction.
The estimated cost of a plan and the heuristic function is the same as in Section 3, i.e.

est_cost(Py;,) = Z est_cost(t)

tEPm
newt(s)—1 n
hi(s) = (Z est_cost(Py,) + Z min[est_cost(Piji)]) — scost(s).
=1 1=next(s) 7

Since est_cost(P;;,) < cost(P;;,) for every plan, it is easy to see that h; is admissible and
MQO-search is guaranteed to find an optimal solution. Let us give an example to illustrate
how this heuristic function works.

Example 2 Suppose three queries (J1,()2 and ()5 are given along with their plans: Py,
Pyo, Pyy, Pog, P31, Py, We will again use tfj to indicate the k-th task of plan F;;. The cost
for each task involved in each plan is as follows.

Plan Task Cost Task Cost Task Cost
Py th 3513 0 10

Pyt 0 3, 30t 10

Let us assume that the mergeable-task precedence interaction list has information of the
form t1, — t}, — ¢}, where Cp = 25, Cp, =10,Cy =5and Oy =17 thj represents the
cost to write the result of task tfj (or to read the output file of task tfj). CR is the cost to
read the input relations. Therefore, in the table above for the actual costs, the cost for a task
t in the implied relationships is calculated as Cr + Cy; e.g., the cost of 1, = 25 + 10 = 35,
t, =254+ 5 =30 and t}; = 25+ 17 = 42. Since there is no identical-task interaction, the
estimated cost of each equivalence group for a task and estimated cost for the task is the
same. For the tasks t};, t3; and ¢}, we get

est_cost(t];) = 17+ 10 = 27 est_cost(ty;) = 10+ 5 = 15 est_cost(t3;) = 25 + 17 = 42.

Given the information above, the estimated costs (est_cost) for the tasks are:

15

Task t%l t%l til))l t%z t%z t%l t%l t%z t%z tzlal t:2)>1 tzlaz t%z t%z
Estimated cost 27 10 10 25 20 15 20 10 40 42 10 10 30 10

and the estimated costs for the plans are:

Plan Py Pia Pyy Pay Py Pa
Estimated cost 47 45 35 50 52 50

The search space generated by the heuristic algorithm for Example 2 is shown in Figure 6.
O

5.3 Extension to the New Heuristic Algorithm

In this section, we show how we can extend our new heuristic algorithm of Section 4 to
accommodate implied relationships.

Let us assume that there is a mergeable-task precedence interaction g1 — g2 — ... — g,
and the tasks, which cannot be processed later because the query in which they exist has
been already chosen but the plan in which they occur has not been chosen, are removed
from this interaction list.

Let us also assume that the queries processed at state s were @); and ¢);, and that the
task g; in @; and g¢; in (); were chosen in this state where 1 < ¢ < 57 < n. The cost of
producing g; is Cr + C,, while the cost for producing g; is Cy, + C,.

First, let us consider the tasks from ¢y to g;—1. If any task g; among these tasks
is executed in the future, the cost added to the cost of merge(s) is only 2C,, since we
considered the cost of task ¢g; as Cr + C,,. So, we estimate the cost of each equivalence

group for the tasks among g1,...,g;_1 as follows
new_est_cost_group(gi) = 20y, (11)
where k =1, ...,0 — 1. For the task g;, the estimated cost becomes zero since it is already
processed at the state s. For the tasks g;41, ...,g;, the same idea for estimating the cost
still holds. However, for the tasks ¢;11,...,¢,, we have to calculate their estimated cost
differently. Let gcost(g,) be Cy _, + Cy,. Then, we define the estimated cost of each
equivalence group for the tasks g;41, ..., g, as follows
new_est_cost_group(gi) = gcost(g,) (12)
where kK = j 4+ 1, ...,n. Again, the estimated cost of the equivalence group for other

tasks which do not occur in mergeable-task precedence interaction is the cost of the tasks

themselves. Then the estimated cost of a task ¢ is defined as

_est_cost_
new_est_cost(t) = new-est-cost-group(g:) (13)
g

where n, is the number of queries the task ¢ occurs in with the identical-task interaction.

The heuristic function for state s is the same as in Section 4, i.e.,

hn(s) = Z Ir;in[new_est_cost(Piji)]
i=next(s) '

16

®

< NULL,NULL,NULL >

55

@

< Pi1,NULL,NULL >
(f =132,h; = 77)

©

<P11,P21,NULL> <P11,P22,NULL>
(f=132,h, =42) (f = 147, h, = 42)

44 50

an

< P, Py, Py > < Piy, Pog, P3g >
(f=134,hy =0) (f = 140,h; = 0)

45

®

< Pio, NULL,NULL >
(f = 130, hy = 85)

O ®

<P12,P21,NULL> <P12,P22,NULL>
(f = 130, A, = 35) (f = 145, hy = 50)

® @

< P, Py1, Py > < Prg, Poy, P3g >
(f=139,hy =0) (f = 145,h; = 0)

Figure 6: The portion of the search space explored by MQO-search using hy(s)

17

where, for a plan P;;,, we define (analogously to Equation 3)

new_est_cost(Py;,) = Z new_est_cost(t).
teb;;,
Again, since new_est_cost(P;;;) < cost(P;;,) for every plan, it is easy to see that h,, is
admissible and MQO-search is guaranteed to find an optimal solution. In Section 6.2, we
present in detail how the new heuristic function can be calculated efficiently.

To illustrate the effect of h,, we will redo Example 2. Note that since there is no
identical-task interaction, the estimated cost of each equivalence group for a task is the
same as the estimated cost for the task. From the initial state, we consider two states,
< Py, NULL,NULL > and < Py, NULL,NULL >.

For the state < P;1, NULL,NULL >, the mergeable-task precedence interaction list
is t3, — t1; — ti; #, is the task we already processed. Based on the formulas given
above, the estimated cost of the task ¢}; becomes 201%1 = 34 and that for the task ¢l is

Cyi, + €y = 15. Using these estimated costs of tasks, the estimated cost of each plan will
be

Plan Py Py P31 Pa
Estimated cost 35 50 44 50

Since cost(merge(< P11, NULL,NULL >)) = 55, f(< P11, NULL,NULL >) becomes 55 +
min{35,50} + min{44,50} = 134.

We now turn to examine the state < Pjo, NULL, NULL >. Since we have chosen P2,
task t1, cannot be processed in the subtree of this node. In this case the mergeable-task
precedence interaction list becomes ¢}, — ¢3,. Therefore the estimated costs of the task t1;
and task %21 becomes

new_est_cost(ty,) = 1745 =22 new_est_cost(th,) = 25+ 17 = 42.

Given those estimated costs for tasks, the estimated cost of each plan becomes as follows

Plan P21 P22 P31 P32
Estimated cost 42 50 52 50

Since cost(merge(< P2, NULL,NULL >)) = 45, f(< Pi3, NULL,NULL >) be-
comes 45 + min{42,50} + min{52,50} = 137. Therefore we will expand the state
< Py, NULL,NULL > at this point and we get two states, < Py, Py, NULL > and
< P11, P2, NULL >.

At the state < Pyq, Po;, NULL >, the mergeable-task precedence interaction list is t; —
1, — t3,, with t}; and ¢}, being the tasks we have already processed. The estimated cost of
task 1, becomes 201%1 = 30, and the estimated costs of plans to be processed will be Ps; =
44 and P33 = 50. Since cost(merge(< Py1, P21, NULL >)) = 90, f(< P11, Py1, NULL >)
becomes 90 + min{44,50} = 134.

Finally, at the state < Pi1, Pso, NULL >, the interaction list is ¢3; — ¢}, (since t}; cannot
be considered). The estimated cost of task ¢}; becomes 2Cy = 30 and the estimated
costs of the plans to be processed will be P33 = 44 and Ps; = 50. Since cost(merge(<
Piy, Py, NULL >)) = 105, f(< Pi1, P22, NULL >) becomes 105 + min{44,50} = 149.
Therefore we will expand the state < Pyq, Py, NULL >. The search space of this new
heuristic algorithm for Example 2 is shown in Figure 7. Note that 11 states are generated
with the heuristic h; while only 7 states are generated with the new heuristic h,.

18

®

< NULL,NULL,NULL >

55 45

@ ®

< Py, NULL,NULL > < Pi2,NULL,NULL >
(f =134, h, = 79) (f = 137, hy, = 92)
35 50

O ®)

<P11,P21,NULL> <P11,P22,NULL>
(f=134,h, = 44) (f =149, h, = 44)

44 50

® @

< P, Py, Py > < Piy, Pog, P3g >
(f=134,h, =0)(f = 140, h, = 0)

Figure 7: The portion of the search space explored by using MQO-search using h,,(s)

19

Range of Range of
Query Set | No of Queries | No of Plans | No of Tasks | Task cost | Sharability
QSET1 10 [3-6] [3-6] [5-100] 10%
QSET?2 10 [3-6] [3-6] [5-100] 20%
QSET3 10 [3-6] [3-6] [5-100] 30%
QSET4 10 [3-6] [3-6] [5-100] 40%
QSET5 10 [3-6] [3-6] [5-100] 50%
QSET6 10 [3-6] [3-6] [5-100] 60%
QSETT 10 [3-6] [3-6] [5-100] 70%
QSETS 10 [3-6] [3-6] [5-100] 80%
QSETY 10 [3-6] [3-6] [5-100] 90%
QSETI10 10 [3-6] [3-6] [5-100] 100%
QSET11 10 2 [4-6] [5-100] 30%
QSET12 15 2 [4-6] [5-100] 30%
QSET13 10 4 [4-6] [5-100] 30%
QSET14 15 4 [4-6] [5-100] 30%
QSET15 20 4 [4-6] [5-100] 30%
QSET16 10 2 [4-6] [5-100] 30%

Table 1: Query sets used in the Experiment

6 Experimental Results and Comparisons

In this section, we present simulation results for the improved heuristic algorithm and
compare them with Sellis” previous heuristic algorithm in [Sel88, SG90].

6.1 Experimental Testbed

Our experiments were performed on a DECStation 5000/200 and the simulation software
was written in C. The experiments were run over randomly generated query sets. The
queries are randomly generated as a set of plans, which are sets of tasks. The costs of indi-
vidual tasks are also randomly generated. For experiments involving implied relationships,
the costs of deriving the implications among tasks are included in the cost model. The
following quantities were used as input parameters by the random query generator while
generating a query set:

1) Minimum and Maximum number of queries in a query set.

2) Minimum and Maximum number of plans for a query.

3) Minimum and Maximum number of tasks in a plan.
4) Minimum and Maximum cost of a task.

5) Sharability : This factor represents the percentage of tasks in the interaction list

among all tasks of the queries.

To study the performance of the two heuristic functions, we generated 16 query data
sets QSET1-QSET16. Each set consists of 10 queries with a fixed sharability varying from
10% to 100%. Except query set QSET16, all query sets have identical tasks only. Table 1
shows the parameters used to generate query data sets QSET1-QSET16.

20

6.2 Implementation Details for Computing the New Heuristic Function

To calculate the heuristic function in each step of the MQO search algorithm, we can
compute repeatedly the estimated cost of tasks and plans in the remaining queries. However,
this approach blindly computes the estimated costs of tasks and plans, even if the estimated
cost of the tasks having no commonalities does not change. To speed up the computation
overhead of the heuristic function, we use the following method in our implementation.
Before we start the execution of the algorithm, we first calculate the cost of all plans
using the actual costs of the tasks ignoring any possible commonalities. Let us call the
cost computed in this manner, the individual cost of the plan. Then, whenever we cal-
culate the estimated cost of the plan, we compute it from the individual cost of the
plan taking into account only the tasks which have common tasks. Then, for a state
s =< Pigy, Pagyy ooy Pyryy NULL, NULL >, the heuristic function is computed in the fol-

lowing way.

1. Copy the indiwidual costs of the plans that appear in the remaining queries
Qg+1,Qgt2 .-, Qr into the array that keeps the estimated costs of the plans. (Note
that the individual costs were calculated at the initial step)

2. Scan each identical task interaction list to calculate the estimated cost of the task
in each list. We first check whether there is any task from the interaction list that
appears in Piy, , Pogy, .oy Pyr,. If such a task does exist, we exit immediately and set
the estimated costs of the tasks of the list to zero; this is natural as we can ignore
(cost-wise) those tasks that appear on the path from the start node to the current
state. However, if none of the tasks in the interaction list has been encountered in
the plans that have been processed so far, we count the number of queries among
Qg+1,Qg+2, .-, Qr in which the identical tasks of the list appear. In terms of imple-
mentation, we organize the lists of tasks based on the queries containing the tasks
in an identical task interaction list, so that we can compute the number of queries,
in which a task occurs, by just counting the number of head nodes (of a list) whose
content is non-null. We next compute the estimated cost of the tasks of that list by
dividing the actual cost of any task in the list by the number of queries just derived.
Then we update the estimated costs of plans in which tasks of the current list appear
by scanning the list once again. For each task tfj (i =¢g+41,..,n) in the list, we
update the est_cost(P;;) to be est_cost(P;;) — cost(tfj) + estcost(tfj).

3. Find the minimal estimated cost of the plan for each query among Q41,942 ..., @x
and add them all.

When we have a mergeable task precedence interaction list, we have to modify step
2 above. We first process the mergeable task precedence interaction list to compute the
estimated cost of the task in each group and traverse the identical task interaction list of
each group to change the estimated cost of the task of the group. We then process in the
manner described above the identical task interaction lists that do not appear in mergeable

task precedence interaction lists.

21

6.3 Experiment 1: Identical Relationships

To study the performance of the previous and new heuristic functions, we first tested with 10
query data sets QSET1-QSET10 which have identical relationships only, each set consisting
of 10 queries and with sharability varying from 10% to 100%. Table 1 shows the parameters
used in QSET1-QSET10. For each query set, the heuristic search algorithm was run using
the following six query orders for filling in the state vectors (i.e. the order in which queries
are examined by the algorithm) as they were suggested in [SG90]:

Order 1 : the original order, i.e., increasing query index.
Order 2 : increasing number of plans.
This order of queries maximizes the size of the search space below
a state at level 7, for all 7, 1 <2 < n. As a result of this, for any state s
at level ¢ not expanded by the algorithm, the total number of states
pruned down is maximized.
Order 3 : decreasing average query cost.
Since many times, the error in the lower bound function is proportional to
its actual value, this tries to minimize the error in the cost of any path.
Order 4 : decreasing average estimated query cost.
By assuming that the error in the lower bound function is proportional to
its estimated value, this tries to minimize the error in the cost of any path.
Order 5 : decreasing average query cost per number of plans.
This heuristic is a combination of Order 2 and Order 3.
Order 6 : decreasing average estimated query cost per number of plans.
Similarly, this heuristic is a combination of Order 2 and Order 4.

For each query ordering, we recorded the number of states generated, the total number of
states in the search space, the percentage of the total number of states that were generated
by the heuristic algorithm, and the CPU time. Table 2 summarizes these figures; the
numbers shown are averages of 10 runs. MQO1 is the heuristic algorithm with our new
heuristic function h, and MQO?2 is the one using the previous heuristic function h;. Figure
8 illustrates the effect that the sharability has on the ratio of states generated versus the
total number of states, for both MQO1 and MQO2, and in particular when ordering method
1 (i.e. original ordering) is used. Because Order 3 is the best for both MQO1 and MQO2,
we also show the result of using this ordering method as well. As it can be seen from this
figure, the ratio of states generated versus the total number of states by MQO1 increases
slightly as the sharability becomes large. However, the same ratio for MQO2 reaches a
maximum when sharability becomes 40% with Order 1 and it decreases as the sharability
becomes large. The worst value for the ratio of states generated versus the total number
of states in MQO1 was 0.02436% while it was 0.69561% for MQO2. Note that the ratio
with MQO1 is about 3.5% of the ratio with MQO?2. From the experimental results above,
it is evident that the new heuristic algorithm generates only a small percentage of the total
number of states in the search space for various sharability figures. On the other hand, the
more expensive computation required for h,, compared to hs, was well offset by the gains in
limiting the number of states generated. Most of the times, the CPU cost for MQO1 was
much less than 1 second, while the CPU time for MQO2 was as big as 1041 seconds. This is
due to exploring more search space, and therefore manipulating a larger number of states.

22

MQO Algorithm MQO1 MQO2
Query Query States % CPU States % CPU
Set Order | Generated | Generated | Time(sec) | Generated | Generated | Time(sec)
1 84 0.00251 0.03000 2950 0.10215 2.89667
2 140 0.00275 0.06000 2958 0.15220 3.83000
QSET1 3 127 0.00453 0.05000 2628 0.12713 2.88833
4 160 0.00528 0.06500 2716 0.12692 2.90833
5 101 0.00328 0.04000 2539 0.14981 3.43000
6 153 0.00602 0.06000 2066 0.08875 1.52333
1 215 0.00569 0.11333 23633 0.58595 296.538
2 228 0.00607 0.11833 16257 0.52748 125.342
QSET?2 3 250 0.01088 0.13333 11275 0.28472 51.6933
4 423 0.01404 0.23833 12716 0.30599 71.7567
5 175 0.00645 0.09000 13032 0.44198 84.0383
6 338 0.00995 0.19167 10843 0.26243 56.3117
1 398 0.00808 0.27000 35119 0.63433 1041.62
2 400 0.00832 0.26500 21999 0.45096 362.443
QSET3 3 290 0.00731 0.16500 13755 0.24694 120.118
4 583 0.01233 0.40000 15792 0.28487 162.690
5 274 0.00790 0.15833 14868 0.33141 134.153
6 454 0.01018 0.29000 14223 0.24953 137.887
1 384 0.00802 0.25167 30689 0.69561 544.92007
2 470 0.00981 0.35833 15998 0.35715 160.42667
QSET4 3 348 0.00734 0.23167 9973 0.18990 46.36333
4 592 0.01276 0.41833 10432 0.22320 52.15333
5 387 0.00994 0.24833 10778 0.25330 56.05166
6 544 0.01174 0.39000 9516 0.19542 43.14833
1 452 0.00872 0.32333 28167 0.58325 490.005
2 443 0.00914 0.31333 12701 0.27885 98.8350
QSETS5 3 339 0.00615 0.23833 7812 0.15402 27.4633
4 553 0.01144 0.40667 8073 0.19048 37.9617
5 381 0.00735 0.26500 7813 0.18170 30.5300
6 487 0.00934 0.35000 7273 0.14820 30.5217
1 960 0.01683 0.83333 20188 0.36907 246.0717
2 681 0.01351 0.53333 14221 0.24834 251.7967
QSET6 3 420 0.00809 0.29000 5806 0.10578 17.9517
4 738 0.01254 0.61500 5766 0.10053 16.5800
5 445 0.00911 0.30833 7255 0.14421 38.3933
6 686 0.01227 0.53333 6243 0.10485 22.2033
1 824 0.02155 0.70000 9018 0.21862 32.2050
2 488 0.01378 0.36667 7120 0.16605 31.0600
QSETT 3 389 0.00892 0.29000 2956 0.06719 3.14000
4 582 0.01203 0.48333 3775 0.08156 5.86167
5 368 0.01006 0.26667 3590 0.09781 5.42167
6 466 0.01027 0.35167 3531 0.07668 5.14500
1 858 0.02208 0.69667 4943 0.12477 9.66667
2 593 0.01787 0.46500 3695 0.10142 6.30167
QSETS 3 444 0.01019 0.32833 2108 0.04905 1.69000
4 559 0.01343 0.44833 2544 0.06255 3.73333
5 480 0.01353 0.36000 2550 0.07405 3.24000
6 467 0.01264 0.34833 2151 0.05754 2.02667
1 663 0.01648 0.54667 3155 0.07952 3.67500
2 496 0.01263 0.39500 1912 0.05279 1.32500
QSETI 3 362 0.00829 0.27333 1060 0.02550 0.50500
4 416 0.00916 0.32667 1427 0.03345 0.85333
5 379 0.00933 0.29167 1355 0.03824 0.79667
6 380 0.00932 0.28833 1281 0.03473 0.67333
1 863 0.02436 0.75833 3065 0.08209 3.86667
2 507 0.01577 0.40667 1412 0.04560 0.78000
QSET10 3 353 0.00881 0.27667 885 0.02320 0.39333
4 391 0.00921 0.31833 1122 0.02753 0.63667
5 356 0.01136 0.27500 961 0.03342 0.43667
6 370 0.01070 0.28500 1092 0.03771 0.51000

Table 2: Results of various query ordering strategies with heuristics.

23

Figure 8: Percentage of states generated versus total number of states

In order to see how the percentage of states generated changes as the search space
increases we tested with five new query sets QSET11-QSET15 (also shown in Table 1). The
results of running these query sets are summarized in Table 3. It is clear that as the number
of states in the search space increases, the percentage of states generated becomes smaller
and smaller. This is an important characteristic of our heuristic algorithm as it also shows

that the number of states generated is consistently kept to a low number.

6.4 Experiment 2: Identical and Implied Relationships

Finally, a last set, QSET16, was tested. This query set is used to illustrate the performance
of algorithm in the presence of implied relationships. The detailed parameters for QSET16
are in Table 1. Note that the parameters in QSET11 and QSET16 are the same except that
in QSET16 there are tasks with implied relationships. The result of our experiments are
summarized in Table 4. In this case, MQO1 and MQO?2 are both the algorithm proposed
in Section 5, with the heuristic functions of sections 5.3 and 5.2 respectively. As it can be
seen, the percentage of states generated in QSET16 with MQO1 is even smaller than that
of QSET11 with MQO1, which means that the heuristic function also performs well with
implied relationships.

In summary, our experimental results show that the new heuristic algorithm significantly
improves the search space and time complexity compared to the heuristic algorithm of
[Sel88]. Furthermore, it is very efficient for both identical and implied relationships.

7 Summary

In this paper, we first studied the performance of existing heuristic algorithms for the
multiple-query optimization problem [Sel88, SG90] and pointed out some deficiencies. A
new heuristic function was proposed to offset these deficiencies. We proved that the new

24

Query Total States % CPU
Set States Generated | Generated | Time(sec)
QSET11 2047 33 1.62188 0.01833
QSET12 65535 70 0.10682 0.03667
QSET13 1398101 125 0.00894 0.06833
QSET14 1431655680 1715 0.00012 2.06667
QSET15 | 1466015416320 2599 0.0000001772 4.64000

Table 3: Results of MQO1 increasing search space.

MQO Total States % CPU
Algorithm | States | Generated | Generated | Time(sec)
MQO1 2047 26 1.26038 0.05000
MQO2 2047 124 6.07719 0.49667

Table 4: Results with QSET16 (implied relationships).

heuristic function is more informed than the one proposed by Sellis, and studied the search
space and time complexity of MQO-search.

We then extended the new improved heuristic algorithm to handle implied relationships,
something that the algorithm of [Sel88] could not handle efficiently. Again, we gave formulas
for the worst case complexity of the extended heuristic algorithm. Finally, we simulated
the new and old algorithms for various query sets, with identical and implied relationships
among queries. The results obtained strengthened our belief that the performance of the
new improved heuristic algorithm is superior to the previous one and the complexity is
much less than the worst case one in most situations.

As interesting issues of future research, we view the following: First, we are trying
to find other strategies of query ordering so that the algorithm can perform even better
with implied relationships. For example, ordering the queries according to the mergeable-
task precedence can be a good strategy because the error in estimating the real costs can
be minimized. The second interesting issue is comparing the the dynamic programming
approach of Park and Segev [PS88] to our heuristic algorithm, especially with respect to
search space and time complexity. A final issue of interest is the average case performance
analysis of our heuristic algorithms. In this paper only best-case and worst-case performance
has been studied. We plan to use the ideas in [Pea84] to study the average performance of
the algorithms assuming a very simple model.

References

[GMT78] H. Gallaire and J. Minker. Logic and Databases. Plenum Press, New York,
1978.

[GM82] J. Grant and J. Minker. On optimizing the evaluation of a set of expressions.
Intern. J. Comput. Inform. Science, March 1982.

25

[KNY92]

[MKGP90]

[Nil80]

[NKKS84]

[Pea84]

[PS88]

[Sel88]

[SG90]

[SPSY]

[SWSS]

[YNHS9]

[YNH90]

[YNH92]

R. Karinthi, D. Nau, and Q. Yang. Handling feature interactions in process
planning. Applied Artificial Intelligence, 6(4):389-415, October-December 1992.
Special issue on Al for manufacturing.

A. Mahanti, R. Karinthi, S. Ghosh, and A. Pal. Al search for minimum-cost set
cover and multiple-goal plan optimization problems: Applications to process
planning. Technical Report CS-TR-2540, Dept. of Computer Science, Univ. of
Maryland, College Park, 1990.

N. J. Nilsson. Principles of Artificial Intelligence. Springer-Verlag, New York,
1980.

D. Nau, V. Kumar, and L. N. Kanal. General branch and bound, and its relation
to A* and AO*. Artificial Intelligence, 23:29-58, 1984. (Also available as Tech.
Report TR-1170, Computer Science Dept., Univ. of Maryland, 1982.).

J. Pearl. Heuristics. Addision-Wesley, Reading, MA, 1984.

J. Park and A. Segev. Using common subexpressions to optimize multiple
queries. in Proc. 4th Intern. Conf. on Data Engineering, pages 311-319, Febru-
ary 1988.

T. Sellis. Multiple-query optimization. ACM Trans. on Database Systems, pages
23-53, March 1988.

T. Sellis and S. Ghosh. On the multiple-query optimization problem. [FEFE
Trans. on Knowledge and Data Fngineering, pages 262-266, June 1990.

A. Segev and J. Park. Identifying common tasks in multiple access plans.
Technical Report LBL-27877, School of Business Administration and Lawrence
Berkeley Lab’s Computer Science Research Department, University of Califor-
nia, Berkeley, December 1989.

T. Sellis and Y. C. Wong. The implementation of a heuristic algorithm for the
multiple-query optimization problem. Unpublished manuscript, March 1988.

Q. Yang, D. Nau, and J. Hendler. Planning for multiple goals with limited
interactions. In Proc. 5th IEEE Conf. on Al Applications, 1989.

Q. Yang, D. Nau, and J. Hendler. Optimization of multiple-goal plans with
limited interaction. Technical Report CS-TR-2411, Dept. of Computer Science,
Univ. of Maryland, College Park, February1990.

Q. Yang, D. Nau, and J. Hendler. Merging separately generated plans with re-
stricted interactions. Computational Intelligence, 8(2):648-676, February 1992.

26

