
Real-Time Planning for
Covering an Initially-Unknown Spatial Environment

Vikas Shivashankar1 and Rajiv Jain1 and Ugur Kuter2 and Dana Nau1,2,3

1Department of Computer Science, 2Institute for Advanced Computer Studies, and
3Institute for Systems Research

University of Maryland, College Park, Maryland 20742, USA
{svikas, rajivj,ukuter,nau}@cs.umd.edu

Abstract

We consider the problem of planning, on the fly, a path
whereby a robotic vehicle will cover every point in an ini-
tially unknown spatial environment. We describe four strate-
gies (Iterated WaveFront, Greedy-Scan, Delayed Greedy-
Scan and Closest-First Scan) for generating cost-effective
coverage plans in real time for unknown environments. We
give theorems showing the correctness of our planning strate-
gies. Our experiments demonstrate that some of these strate-
gies work significantly better than others, and that the best
ones work very well; e.g., in environments having an average
of 64,000 locations for the robot to cover, the best strategy re-
turned plans with less than 6% redundant coverage, and took
only an average of 0.1 milliseconds per action.

Introduction

This paper focuses on planning and execution of a path
whereby a robotic vehicle will cover every point in an ini-
tially unknown spatial environment. This problem is becom-
ing increasingly relevant in a variety of mobile robotics ap-
plications, such as robotic vacuum cleaning, mine detection,
and lawn maintenance. In such applications, the robot is
simply started and allowed to explore the environment by it-
self. As the robot moves, the on-board sensors provide the
robot information about the environment, its layout, and its
boundaries, and enable it to perform coverage in real time.

Most existing work on planning algorithms that guarantee
coverage of a target environment have generally assumed
that the environment is known rather than unknown. Ex-
isting works typically require more sensory and computa-
tional power than the simpler robots may have on board
(Acar, Choset, and Atkar 2001; Acar et al. 2003; Chen and
Song 2005), and they were tested in only some small-sized
coverage-planning scenarios (LaValle 2004; Choset 2000;
Simmons and Koenig 1995; Pirzadeh and Snyder 1990).

We formalize RUC (Real-time Unknown-environment
Coverage) planning, i.e., the problem of generating, on the
fly, a path whereby a robotic vehicle will cover every point in
an initially unknown spatial environment. We describe four
new planning strategies: Closest-First Scan (CFS), Greedy-
Scan (GS), Delayed Greedy-Scan (DGS) and Iterated Wave-
Front (IWF), which is a generalization, to unknown environ-

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ments, of the well-known WaveFront algorithm (Zelinsky et
al. 1993). We provide theorems showing that our planning
strategies are correct.

We present several experimental comparisons of the
strategies on 200 randomly-generated RUC problems. These
problems used 20 different floor layouts, of which 18 lay-
outs were obtained from Google Images and 2 layouts were
handcrafted to provide hard problems. Our results include
the following:

• Our planning strategies can quite easily run in real time.
On average, our floor layouts contained 64,000 locations
for the robot to visit; and in terms of the average decision
time per action, CFS, GS, DGS, and IWF averaged 0.099,
0.12, 0.1, and 1.592 milliseconds, respectively.

• Our strategies generated plans with only a small amount
of redundancy. The average percentage of times the robot
visited a location more than once was 6.41% with CFS,
10.31% with GS, 5.86% with DGS, and 5.15% with IWF.

• Finally, DGS consistently outperformed the other strate-
gies in terms of the average total cost (total number of
moves and turns) of the solution plans.

Definitions

We perform planning in a spatial environment Σ, modeled
as an n × m grid world. There are two kinds of cells (i.e.,
locations) in Σ: free and occupied. A location l′ is reachable
from another location l in Σ if there is a path from l to l′ such
that all of the locations on that path are free. In such a case,
l′ is said to be l-reachable. If there is no such path, l′ is
unreachable from l.

Figure 1 shows an illustration of a spatial environment
that represents a floor layout in a house. Each point on this
two dimensional floor layout is a location. The points drawn
in black denote occupied locations that the robot cannot
move through. From the location l0 of the robot as shown in
the figure, l1 is a reachable location and l2 is not: every path
from l0 to l2 contains at least one occupied location.

The robot has three actions: move from one location to
a neighboring location in Σ,1 turn the robot left, and turn

1We assume that the robot cannot move diagonally; however
this does not restrict the generality of our formalism and the plan-
ning strategies presented in this paper.

63

Proceedings of the Twenty-Fourth International Florida Artificial Intelligence Research Society Conference

l0.

l1.

l2.

Figure 1: An illustration of a real-time coverage-planning
environment. The points drawn as black pixels denote occu-
pied locations that the robot cannot move through. From l0,
the location l1 is reachable and l2 is unreachable.

the robot right. A plan is a sequence of actions that, when
executed, induces a path in Σ starting from an initial location
l0 and ending in a location l. We define Lπ as the set of all
locations visited by the execution of π in l0. A plan π covers
Σ if every l0-reachable location in Σ is in Lπ .

The robot is given no prior knowledge of the environment.
For example it does not know initially the location it is in,
the boundaries of the environment, which locations are free
and which are occupied, and the enclosed spaces formed by
the occupied locations. Thus, the robot must decide which
direction it can or should move along only using its sensors
and its mental map of the environment, as defined below.

The robot has four sensors for the directions North, South,
East, and West. The sensors are directional, i.e., they return
distance information about a particular direction d at a loca-
tion l. The sensors are not capable of returning information
beyond an occupied location. For example in Figure 1, the
robot’s sensors provide information about the obstacles such
as the walls, furniture, and other objects on the floor lay-
out. Given a location symbol s and a direction d, the sensor
function σd(s) specifies the length of the path that starts in
the robot’s current location and ends in an occupied location
along d.

The mental map M of the robot is a tuple (G, V, F,O),
where G is a snapshot of the area mapped out by the robot
so far, initialized to the empty grid in the beginning. V holds
the set of cells in G that are already visited by the robot, and
F and O are the sets of free and occupied locations that the
robot discovers in G. A mental cell is said to be uncovered
if it is free but not visited. A mental cell is said to be unob-
served if is neither free nor occupied. Note that we assume
no knowledge of the size or shape of Σ in M .

A real-time unknown-environment coverage (RUC) plan-
ning problem is a tuple P = (Σ, l0,M0, σ), where Σ is a
spatial grid world environment, l0 is the initial location of
the robot in Σ, M0 is the robot’s initial mental map of Σ,
and σ is the robot’s sensor function. A solution for P is a
plan π that covers Σ.

Algorithm 1: A high-level description of a generic RUC
planning strategy S . Initially, V = F = O = ∅.

1 Procedure S(G, V, F,O, σ);
2 begin
3 get an arbitrary mental cell s in G for the current location ;
4 V ← V ∪ {s}; π ← ∅;
5 〈G, V, F,O〉 ← UPDATEMAP(G, V, F,O, σ, s);
6 repeat

7 π′ ← GENERATESUBPLAN (G, V, F,O, s);
8 π ← π.π′ ;
9 repeat

10 remove action a from head of π′ and execute it;
11 get the next cell s;
12 V ← V ∪ {s} ;
13 〈G, V, F,O〉 ← UPDATEMAP(G, V, F,O, σ);
14 until π′ = φ;
15 until F = V ;
16 return π;

Strategies for Solving RUC Problems

Algorithm 1 shows a high-level description of a generic
RUC planning strategy S . The input to the planning pro-
cedure is the empty mental map (G, V, F,O) where G is ini-
tialized to a k × k grid for some number k, and the sensor
model σ. Note that the robot does not initially know the
other locations and the transitions in the environment Σ. In
Line 3, S arbitrarily selects a cell s in G as the robot’s cur-
rent location.

In Line 5, S updates G using the UPDATEMAP subrou-
tine. Algorithm 2 describes the UPDATEMAP procedure.
The input to the procedure is the current mental map, the
sensor model σ and the current location s. For each direc-
tion d, UPDATEMAP gets the sensory information about the
distance σd(s) from s to the closest occupied locations in
Σ in direction d (Line 4). UPDATEMAP then updates the
mental map of the robot with that information (Lines 7 – 9).
Since the robot’s sensors cannot see beyond an occupied lo-
cation in a given direction d, UPDATEMAP knows that all
of the locations between the robot’s current location and the
occupied location along direction d are free. Assuming li
denotes the cell i units from s in direction d, it marks cells

Algorithm 2: Description of the UPDATEMAP subrou-
tine

1 Procedure UPDATEMAP (G, V, F,O, σ, s);
2 begin
3 foreach direction d do
4 c ← σd(s) ;
5 if c > distmax(s, d) then
6 Expand G by c− distmax(s, d) units along

direction d;
7 for i < c do
8 F ← F ∪ {li};
9 O ← O ∪ {lc};

10 return (G, V, F,O);

64

Figure 2: An example environment in which the robot is
initially at location A. The GS strategy in this scenario
will keep changing the robot’s direction to move along
the path 〈A,B,C,D,E, F,G,H, I〉, along which the max-
imum number of uncovered cells lie. As a result, the robot
visits the locations A,B,C,D,E, F, and G several times.

l1 . . . lc−1 in the robot’s mental map as free (Line 8) and lc
as occupied (Line 9).

If the number of cells from the current cell s to the bound-
ary of the mental grid G in direction d, say distmax(s, d), is
less than σd(s), then UPDATEMAP expands G with σd(s)−
distmax(s, d) rows or columns of cells depending on d
(Lines 5 – 6). All of the new cells in the expanded G are
marked as unobserved, except the ones just sensed by the
robot. Finally, UPDATEMAP returns the updated mental
map.

In Lines 6–15 of Algorithm 1, S successively generates
and executes plans in Σ. In each iteration, it invokes the
subroutine GENERATESUBPLAN to get the partial plan π′
to execute in that iteration. RUC planning strategies differ
in the implementation of this subroutine, as described in the
following sections. S then updates π with the partial plan π′
(Line 8) and executes π′. At each step of the execution, it
marks the resulting cell s as ’visited’ and updates the mental
map at s using UPDATEMAP (Lines 12 and 13).

When the set of visited cells V is equal to the set of free
cells F , S terminates and returns the plan π (Line 16).

Closest-First Scan (CFS). The CFS strategy implements
GENERATESUBPLAN as follows. It first checks for uncov-
ered cells adjacent to s. If it finds any, it randomly chooses
one of them and returns π′ consisting of the move action to
that cell. If not, it performs a breadth-first search in G to find
an uncovered cell s′ closest to s and the corresponding plan
π′ to get to it. It then returns π′.

Greedy Scan (GS). When there exist uncovered cells ad-
jacent to s, instead of randomly choosing one of them as
CFS does, GS calculates the number of uncovered cells from
s in each direction d and greedily chooses the direction dmax

that maximizes this quantity. It then returns the partial plan
π′ consisting of a single move action along dmax.

Note that this strategy has the potential for trapping the
robot in a location with no adjacent uncovered cells. In such
situations, we perform breadth-first search in G to move the
robot to the closest uncovered cell.

Delayed Greedy-Scan (DGS). The strategies above may
often cause the robot to visit a cell multiple times, particu-
larly in environments that contain many obstacles. For ex-
ample, consider the environment shown in Figure 2. The
robot starts in the location A in the middle. During execu-
tion, GS will change the robot’s direction at each timestep to

move along the path along which the maximum number of
uncovered cells lie. GS can therefore, because of its greedy
choices at every timepoint, fragment the map badly leading
to many revisits.

DGS alleviates this issue by delaying the decision-making
to the end of execution of a sub-plan rather than an action.
It implements the GENERATESUBPLAN routine as follows.
In a cell s, DGS calculates the number nd of consecutive un-
covered cells starting from s in each direction d and chooses
the direction dmax that maximizes this quantity. It then re-
turns a partial plan π′ consisting of ndmax move actions in
the direction dmax. In case there are no adjacent uncovered
cells, we perform breadth-first search in G to move the robot
to the closest uncovered cell.

There are two important points to note here. Firstly, we
consider only the number of consecutive uncovered cells to
generate π′ in contrast to GS where we consider all uncov-
ered cells in a particular direction. This ensures that we
cover a small number of uncovered cells immediately reach-
able from s rather than a large number of uncovered cells far
away from s, minimizing the number of revisits.

Secondly, we do not make a decision after every move,
but execute all ndmax

actions in π′ before making the next
decision. This minimizes fragmentation of G. For exam-
ple, in Figure 2, the sequence of cells visited by the DGS
strategy would be 〈A,B,E, F, I, F,E,B,A,C,D,G,H〉,
which has much lesser revisits than GS.

Iterated WaveFront (IWF). The IWF planning strategy
is based on the WaveFront algorithm reported by Zelinsky
et al (Zelinsky et al. 1993). The WaveFront algorithm per-
forms a breadth-first search from a specified location in an a
priori known environment and marks each cell with the min-
imum depth in the tree until every cell in the map is reached.
The outcome of this search is the WaveFront map. Once the
map is generated, the WaveFront algorithm follows the path
from cells with the highest values to ones with the lowest
values, never returning to a covered cell. This results in a
coverage of the map, ending at the goal state.

IWF generalizes the WaveFront algorithm to unknown en-
vironments. Algorithm 3 shows the implementation of the
GENERATESUBPLAN routine for IWF. Since the map of the
environment is not available to the algorithm, IWF generates
wavefront maps over its mental map to reach an unobserved
cell. In particular, IWF calculates the set C of all unob-
served cells closest to s in G and chooses a cell g randomly
from it (Lines 3 – 4). If there are no such cells, then IWF
selects an uncovered cell g in G closest to s (Line 6). With g,
IWF creates a WaveFront map and calculates the path (and
corresponding plan π) in this map from s to g with decreas-
ing wavefront values (Lines 7 and 8). If g has no adjacent
uncovered locations, then we perform a breadth-first search
to estimate π′′, the plan to reach the closest uncovered cell
(Line 10). It then returns the concatenation of π′ and π′′
(Line 11).

65

Algorithm 3: A high-level description of the GENER-
ATESUBPLAN routine used by IWF.

1 Procedure IWF-GENERATESUBPLAN(G, V, F,O, s);
2 begin
3 let C be the set of all unobserved cells closest to s;
4 if C �= ∅ then arbitrarily select a cell g from C ;
5 else
6 let g be an uncovered cell closest to s ;
7 create a WaveFront map with g;
8 let π′ be the plan to traverse path of highest numbers ;
9 if there are no adjacent uncovered cells of g then

10 π′′ ← perform breadth-first search to estimate plan
to reach nearest uncovered cell ;

11 return π′.π′′;

Formal Properties

All of the strategies described above are provably correct,
i.e. a plan π returned by any of the strategies for the problem
P , is guaranteed to cover all l0-reachable cells.

Let S represent the generic planning strategy described in
the previous section and M = (G, V, F,O), the mental map
obtained after executing S .

Theorem 1. V = F iff all l0-reachable cells are covered.

Proof. Let us assume the contrary, i.e. V = F but there
exists an l0-reachable cell (say ln) that is uncovered. Since
ln is l0-reachable, there exists a path L=< l0, l1, ..., ln >
of free cells. Assuming without loss of generality that ln is
the first uncovered cell on this path, this implies that by the
geometry of the map, ln should have been added to F when
the robot reached ln−1. In all the strategies, a cell is added
to V only when it is covered. Therefore, this implies that
since ln was added to F but not subsequently covered (and
hence not in V), V �= F , leading to a contradiction.

Suppose all l0-reachable cells are covered. Since a cell is
added to F only if it is l0-reachable, F can contain only l0-
reachable cells. Since a cell is added to V once it is covered,
when all l0-reachable cells are covered, V = F .

Theorem 2. S(G, V, F,O, σ) always terminates.

Proof. Since an RUC problem is bounded, the number of
l0-reachable cells is finite. Also, |V |, the number of l0-
reachable cells visited by the robot, monotonically increases
since all of the strategies execute at least one move action
into a free cell in every iteration. Since |F | (and therefore,
|V |) is bounded above by the number of l0-reachable cells,
all strategies are guaranteed to terminate.

Theorem 3. The plan π returned by S(G, V, F,O, σ) covers
all l0-reachable cells.

Proof. By Theorems 1 and 2, since all strategies terminate
(and are guaranteed to by Theorem 2) when V = F , the
plan π returned by the strategies is guaranteed to cover all
l0-reachable cells.

��

�����

������

������

������

������

�� �� �� �� �� 	�
� �� �� �������������������	��
����������

��
��
��
��
	�
�

�
��

	�
�
��
�
��
	�
�

����������

��� ���� ���� ���

Figure 3: Comparison of the total cost (i.e., the sum of to-
tal number of extra steps and turns) of CFS, DGS, GS, and
IWF. Each datapoint is the average of the total cost over 10
randomly-generated RUC planning problems per floor lay-
out.

Experiments

We have conducted several experiments to compare the per-
formance of our four planning strategies. Our primary hy-
potheses was that DGS and IWF would significantly out-
perform CFS and GS in terms of the average total cost, with
IWF having the least number of forward moves and the DGS
strategy having the fewest number of turns.

We have implemented a simulation environment using
Java 1.6 for RUC problems described above. The simulation
environment stores the map of the environment to validate
the plan generated by the RUC planning strategies. Note,
however, that this map is not available to the strategies them-
selves. The execution engine uses a bitmap representation
for an input floor layout. A floor layout in this representation
is a black-and-white image, where white spaces denote free
locations whereas the black spaces denote occupied ones.

We have used 20 different floor layouts, of which 18 lay-
outs were obtained from Google Images and 2 layouts were
handcrafted to provide hard problems. We have acquired the
layouts from Google Images by searching for the keywords
“room,” “floor,” and “blueprint,” and by choosing the first
images that contained floor layouts or enclosed spaces sim-
ilar to Figure 1. The average size of our experimental floor
layouts were 64,000 locations.

We converted the layout images to black and white bitmap
images so they could be run in the simulation. This limits the
bias in creating manual floor layouts, while still picking re-
alistic environments. Additionally this approach provided a
diverse set of layouts. In the simulations, we have generated
10 random initial locations for the robot on each floor layout.
If an initial location was an occupied location on the layout
or in locations such as inside the sofa in Figure 1, we have
not used the resulting RUC planning problem and generated
a new random problem instead.

For mobile robots, sometimes turns occupy more time and
induces more errors than moving in straight lines (Choset
2001), depending on the specific robot and the environment.
For that reason we graphed total cost and the number of turns
separately. Figure 3 shows the results of the comparisons

66

��

�����

�����

	����

�����

������

������

������

�� �� �� �� �� 	�
� �� �� �������������������	��
����������

�
�
�
�
�
��
�
��
	�
�

��

����������

��� ���� ���� ���

��

�����

�����

�����

�����

�����

	����

����

�����

�����

�� �� �� �� �� 	�
� �� �� �������������������	��
����������

�
�
�
�
�
��
�
��
�
	

�
�
��

�

��

����������

��� ���� ���� ���

Figure 4: Average number of turns (top) and extra steps (bot-
tom) performed by CFS, DGS, GS, and IWF in 20 floor lay-
outs. Each datapoint is the average of the total cost over 10
randomly-generated RUC planning problems in a floor lay-
out.

of the average total cost of the plans generated by the four
strategies. The total cost of a plan executed by the robot is
the sum of the average number of extra steps, i.e., the robot’s
moves into a cell that’s already been visited before, and the
average number of turns the robot performed.

In these experiments, DGS performed better than the
other 3 strategies consistently across almost all planning
problems. DGS’ solutions had an average cost 45% lesser
than those of GS and 18.29% lesser than those of IWF. IWF
performed in general worse than CFS because the actions
generated by IWF moved the robot in a step-like manner;
thus alternating between moving forward and turning quite
often. For example, in the presence of diagonal walls, IWF
moved the robot along the border since it optimizes only on
the number of steps, disregarding the number of turns.

Figure 4(top) shows the comparison of average number of
turns generated by the CFS, DGS, GS, and IWF strategies in
our 20 floor layouts, respectively. IWF returned plans with
a high number of turns as compared to both DGS and CFS:
more precisely, the number of turns it produced was 46.07%
higher than those produced by CFS. Figure 4(bottom) shows
the comparison of average number of extra steps of the CFS,
DGS, GS, and IWF strategies. Here, IWF did 20% better
than CFS and 20.95% better than GS. This demonstrates
that the IWF strategy optimizes heavily on the number

��

��

��

	�

��

���

���

���

�	�

���

�� �� �� �� �� 	�
� �� �� ��� ��� ��� ��� ��� ��� �	� �
� ��� ��� ���

�
�
��
�
�
��
�
�
�	

�
��
��
��
��
�
�
�
�
�
�

�����������

��� ���� ���� ���

Figure 5: Percentages of free space covered multiple times
by CFS, DGS, GS, and IWF in 20 floor layouts. Each data-
point is the average percentage over 10 random RUC plan-
ning problems in a floor layout.

of steps, which might be preferable in case of errors in the
odometer.

Figure 5 compares the percentage of the floor layout re-
visited by the robot across all test layouts, as a measure of
the redundancy in the solutions produced by our strategies.
IWF performed the best with an average revisit percentage
of 5.15%. DGS has an average revisit percentage of 5.86%
while CFS revisits 6.41% of the free locations. GS, how-
ever, performs badly in comparison to the others, having a
revisit percentage of 10.31%. This indicates that the so-
lutions generated by IWF, DGS and in some cases, CFS
have minimal redundancy.

In our experiments above, CFS and DGS were the two
best performers in terms of the average running times. These
strategies averaged 5.287 seconds and 5.315 seconds per
floor layout, respectively. GS too performed similarly with
an average running time of 6.279 seconds per floor layout.
IWF is an order of magnitude worse, averaging 95.085 sec-
onds per layout. The difference in running times of IWF and
the others is due to the additional complexity in generating
a new WaveFront map each time the robot reaches a goal or
a location whose neighbors are already covered.

The results showed that our planning strategies are
able to decide and execute an action in the world very
quickly: in terms of the decision times per move, CFS, GS,
DGS, and IWF averaged 0.099, 0.12, 0.1 and 1.592 millisec-
onds, respectively.2 Hence, we believe that they are suitable
for real-time robot RUC planning applications.

Related Work

There appears to be little use of coverage planning by com-
panies such as iRobot3, which makes the most popular robot
vacuum cleaner. The most state-of-the-art vacuum cleaners
in the market today make use of random patterns to achieve

2All of the experiments were run on a 2.0 GHz Dual Core com-
puter with 4 GB of memory.

3 http://www.irobot.com/

67

coverage, the hypothesis being that these random moves, ex-
ecuted over a sufficiently long period of time, will achieve
near-complete coverage.

Most existing works address coverage planning in known
environments. Choset (Choset 2000) proposed the sound
and complete Boustrophedon Decomposition algorithm to
solve coverage-planning problems, assuming a fully known
environment. Simmons and Koenig (Simmons and Koenig
1995) proposed algorithms to navigate robots through corri-
dors, given approximate structural information of the corri-
dors such as shape, size, etc. Choset (Choset 2001) provides
an exhaustive survey of coverage planning methods.

Pirzadeh and Snyder (Pirzadeh and Snyder 1990) focus
on coverage planning in unstructured terrains where the po-
sition of the obstacles is unknown, but the structure of the
environment is known a priori. Chen and Song (Chen and
Song 2005) discuss coverage motion control for cleaning
robots using infrared sensors. However, their approach ne-
cessitates presence of landmark beams to guide the robot,
specifically around the obstacles.

Acar et al (Acar, Choset, and Atkar 2001) focus on robotic
de-mining for an unknown environment based on the con-
cept of critical points. The robots used, however, require
more complex sensors that can detect these critical points.
They extend this work to outdoor environments with em-
phasis on mine-detecting applications (Acar et al. 2003).

Yang and Luo (Yang and Luo 2004) discuss a neural net-
work based approach to coverage planning in dynamic but
completely known environments, which they then extend
to unknown environments (Luo and Yang 2008). However,
they still assume that the size of the map is known a priori.

Conclusions
We have formalized the problem of planning, in real time,
a path that covers an unknown spatial environment. We
have presented four strategies for the problem, have pre-
sented theorems showing the correctness of these strategies,
and have compared the strategies experimentally in 200 ran-
domly generated planning problems.

Our experiments demonstrated that the three strategies,
IWF, DGS, and sometimes CFS, generated solutions with
low redundancy percentages. The results also showed that
these strategies were able to decide and execute an action
in the world very quickly. Among them, the best strategy
overall was Delayed Greedy-Scan (DGS). It produced plans
having the lowest number of turns and the lowest total cost
of the robot’s movement, and it produced these plans very
quickly. On floor layouts having an average of 64,000 loca-
tions to cover, it had a redundancy percentage of only 5.86%
and took an average of 0.1 milliseconds per action.

In the near future, we will investigate optimality in RUC
planning problems. We intend to start with our redun-
dancy metrics described in the paper and attempt to mini-
mize redundancy in the solution plans as a way of achiev-
ing optimality. One possibility is to start the planning al-
gorithms with an approximate initial mental map as back-
ground knowledge. We are also interested in investigating
heuristics such as the ones used in real-time heuristic search
(Korf 1990).

One limitation of our work is that we only considered
static spatial environments, in which there are no changes
in the world except for the robot’s movements. We intend to
generalize our work to dynamic real-time coverage planning
scenarios, in which there is sensor uncertainty and there are
moving objects other than the robot.

Acknowledgments. This work was supported in part by
DARPA and U.S. Army Research Laboratory contract
W911NF-11-C-0037, AFOSR grant FA95500610405, and
NSF grant IIS- 0948123. The information in this paper does
not necessarily reflect the position or policy of the U.S. Gov-
ernment, and no official endorsement should be inferred.

References
Acar, E.; Choset, H.; Zhang, Y.; and Schervish, M. 2003.
Path planning for robotic demining: Robust sensor-based
coverage of unstructured environments and probabilistic
methods. The International Journal of Robotics Research
22(1):441 – 466.
Acar, E. U.; Choset, H.; and Atkar, P. N. 2001. Com-
plete sensor-based coverage with extended-range detectors:
a hierarchical decomposition in terms of critical points and
voronoi diagrams. In International Conference on Intelli-
gent Robots and Systems.
Chen, C.-H., and Song, K.-T. 2005. Complete coverage
motion control of a cleaning robot using infrared sensors. In
IEEE International Conference on Mechatronics.
Choset, H. 2000. Coverage of known spaces: The bous-
trophedon cellular decomposition. Autonomous Robots
9(3):247–253.
Choset, H. 2001. Coverage for robotics - a survey of recent
results. Annals of Mathematics and Artificial Intelligence
31(1-4):113–126.
Korf, R. 1990. Real-time heuristic search. Artificial Intelli-
gence.
LaValle, S. M. 2004. Planning algorithms.
Luo, C., and Yang, S. 2008. A bioinspired neural net-
work for real-time concurrent map building and complete
coverage robot navigation in unknown environments. IEEE
Transactions on Neural Networks 19(7):1279–1298.
Pirzadeh, A., and Snyder, W. 1990. A unified solution to
coverage and search in explored and unexplored terrains us-
ing indirect control. In IEEE International Conference on
Robotics and Automation, 2113–2119 vol.3.
Simmons, R., and Koenig, S. 1995. Probabilistic robot navi-
gation in partially observable environments. In IJCAI, 1080–
1087.
Yang, S., and Luo, C. 2004. A neural network approach
to complete coverage path planning. IEEE Transactions
on Systems, Man, and Cybernetics, Part B: Cybernetics
34(1):718–724.
Zelinsky, A.; Jarvis, R.; Byrne, J. C.; and Yuta, S. 1993.
Planning paths of complete coverage of an unstructured en-
vironment by a mobile robot. In International Conference
on Advanced Robotics.

68

