
The GoDeL Planning System: A More Perfect Union of Domain-Independent and
Hierarchical Planning

Vikas Shivashankar1 Ron Alford1 Ugur Kuter2 Dana Nau1

1Department of Computer Science, Institute of Systems Research, and
Institute for Advanced Computer Studies, University of Maryland at College Park

2Smart Information Flow Technologies LLC, Minneapolis
svikas@cs.umd.edu ronwalf@cs.umd.edu ukuter@sift.net nau@cs.umd.edu

Abstract
One drawback of Hierarchical Task Network
(HTN) planning is the difficulty of providing com-
plete domain knowledge, i.e., a complete and cor-
rect set of HTN methods for every task. To pro-
vide a principled way to overcome this difficulty,
we define a simple formalism that extends classical
planning to include problem decomposition using
methods, and a planning algorithm based on this
formalism.
In our formalism, the methods specify ways to
achieve goals (rather than tasks as in conven-
tional HTN planning), and goals may be achieved
even when no methods are available. Our plan-
ning algorithm, GoDeL (Goal Decomposition with
Landmarks), is sound and complete irrespective
of whether the domain knowledge (i.e., the set of
methods given to the planner) is complete.
By comparing GoDeL’s performance with vary-
ing amounts of domain knowledge across three
benchmark planning domains, we show experimen-
tally that (1) GoDeL works correctly with partial
planning knowledge, (2) GoDeL’s performance im-
proves as more planning knowledge is given, and
(3) when given full domain knowledge, GoDeL
matches the performance of a state-of-the-art hier-
archical planner.

1 Introduction
Although HTN planning has generally been acknowledged to
be more useful for practical applications than other kinds of
AI planning, its applicability is limited by the difficulty of
providing a complete set of domain knowledge, i.e., a set of
HTN methods capable of generating plans for every possi-
ble planning problem in a given domain. The purpose of our
work is to provide a way of overcoming this difficulty. Our
contributions include the following:

• We describe a simple extension to classical planning to
include hierarchical decomposition. Like HTN plan-
ning, our formalism involves hierarchical decomposi-
tion using methods; but in our formalism the methods
are for achieving goals rather than tasks, and goals may

be achieved regardless of whether there are methods for
achieving them.
• We present the GoDeL (Goal Decomposition with

Landmarks) planning algorithm, which incorporates
techniques for method decomposition, domain-
independent heuristics, and planning landmarks. We
present several theorems, including soundness and
completeness irrespective of whether GoDeL is given a
complete set of methods.
• We present experimental results for an implementation

of GoDeL (for landmark generation in GoDeL, we used
code from the well-known LAMA planner [Richter and
Westphal, 2010]). The results show that GoDeL works
correctly with partial planning knowledge (i.e., an in-
complete set of methods), and its performance improves
as more planning knowledge is given. When given com-
plete domain knowledge, GoDeL performs as well or
better than a state-of-the-art hierarchical planner, GDP-
h [Shivashankar et al., 2012].

2 Preliminaries
Our definitions are based on those in [Ghallab et al., 2004,
Chap. 2], but generalized to include goal networks.

We define a planning domain D as a finite state-transition
system in which each state s is a finite set of ground atoms
of a first-order language L, and each action a is a ground in-
stance of a planning operator o. A planning operator is a triple
o = (head(o), precond(o), effects(o)), where precond(o) and
effects(o) are conjuncts of literals called o’s preconditions
and effects, and head(o) includes o’s name and argument list
(a list of the variables in precond(o) and effects(o)).

An action a is executable in a state s if s |= precond(a), in
which case the resulting state is γ(a) = (s − effects−(a)) ∪
effects+(a), where effects+(a) and effects−(a) are the atoms
and negated atoms, respectively, in effects(a). A plan π =
〈a1, . . . , an〉 is executable in s if each ai is executable in the
state produced by ai−1; and in this case γ(s, π) is the state
produced by executing the entire plan. If π and π′ are plans
or actions, then their concatenation is π ◦ π′.

A goal network is a way to represent the objective of sat-
isfying a partially ordered sequence of goals (hence one can
think of it as a particular kind of temporally extended goal).
Formally, it is a pair gn = (T,≺) such that:



• T is a finite nonempty set of nodes;
• each node t ∈ T contains a goal gt that is a DNF (dis-

junctive normal form) formula over ground literals;
• ≺ is a partial order over T .

A planning problem is a triple P = (D, s0, gn), where D is
a planning domain, s0 is the initial state, and gn = (T,≺) is
a goal network.
Definition 1. The set of solutions for P is defined as follows:

Case 1. If T is empty, the empty plan is a solution for P .

Case 2. Let t be a node in T that has no predecessors. If
s0 |= gt, then any solution for P ′ = (D, s0, (T

′,≺′)) is
also a solution for P , where T ′ = T −{t}, and≺′ is the
restriction of ≺ to T ′.

Case 3. If action a is applicable in s0 and π is a solution for
P ′′ = (D, γ(s0, a), gn), then a ◦ π is a solution for P .

In cases where gn contains just a single node, the defini-
tions of P and its solutions reduce to the conventional defi-
nitions of a classical planning problem and its solutions. In
such cases we will say that P is classical.

A method m has a head head(m) and preconditions
precond(m) like those of a planning operator, and a sequence
of subgoals, subgoals(m) = 〈g1, . . . , gk〉, where each sub-
goal gi is a conjunct of literals. We define the postcondition
of m to be post(m) = gk if subgoals(m) is nonempty; other-
wise post(m) = precond(m).
Example 2. In the Logistics domain, a method to move a
package p from locations l to l′ within a city might look like:
• head: move-package-within-city(p, l, l′)
• precond: package-at(p, l), truck(t), same-city (l, l′)

• subgoals: 〈truck-at(t, l), in-truck(p, t), truck-at(t, l′),
package-at(p, l′)〉

Notice that unlike conventional definitions of HTN plan-
ning problems (e.g., [Ghallab et al., 2004, Chapter 11]), in
which methods are essential to the definition of a solution,
our definition of a planning problem and its solutions does
not involve methods at all. In our planning algorithm (see
the next section), the purpose of methods is to provide guid-
ance for what parts of the search space to examine next. This
guidance is based on relevance, as defined here:

If a is an action or a ground instance of a method, then a is
relevant for a goal formula g if effects(a) (if a is an action) or
post(a) (if a is a method instance) entails at least one literal
in g and does not entail the negation of any literal in g.

3 Planning Algorithm
The Goal Decomposition with Landmarks (GoDeL) planning
algorithm, when given a problem (D, s0, gn), works as fol-
lows: It chooses a g from gn that has no predecessors and (1)
first attempts to decompose g using one of the given methods,
(2) if not, then it automatically infers subgoals to insert into
gn using landmark-based techniques, and (3) if neither of the
above steps work, it falls back to traditional action-chaining.

Algorithm 1 describes the GoDeL planning algorithm. It
takes as input a planning problem P = (D, s, gn), a set of

Algorithm 1: A nondeterministic version of GoDeL. Ini-
tially, (D, s, gn) is the planning problem, M is a set of
methods, and π is 〈〉, the empty plan. used methods, a
global variable, is a mapping from states to methods ap-
plied in those states; it is initially set to the empty map.
subgoals inferred is a boolean initially set to false.

Procedure GoDeL (D, s, gn,M, π)1
if gn is empty then return π2
nondeterministically choose a goal formula g in gn3
without any predecessors
if s |= g then4

return GoDeL(D, s, gn− {g},M, π)5

U ← {operator and method instances applicable to s and6
relevant to g}
U ← U − used methods[s]7
while U is not empty do8

nondeterministically remove a u from U9
if u is an action then10

res1← GoDeL(D, γ(s, u), gn,M, π ◦ u)11

else12
add u to used methods[s] and set13
subgoals inferred to false
res1← GoDeL(D, s, subgoals(u) ◦ gn,M, π)14

if res1 6= failure then return res115

if subgoals inferred 6= true then16
subgoals inferred← true17
lm← Infer-Subgoals (D, s, g)18
if lm 6= ∅ then19

res2← GoDeL (D, s, lm ◦ gn,M, π)20
if res2 6= failure then return res221

A ← {operator instances applicable to s}22
if A = ∅ then return failure23
nondeterministically choose an a ∈ A24
return GoDeL (D, γ(s, a), gn,M, π ◦ a)25

methods M , and the partial plan π generated so far. Lines 2
– 5 specify the base cases of GoDeL. If these are not satis-
fied, the algorithm nondeterministically chooses a goal g with
no predecessors and generates U , all method and operator in-
stances applicable in s and relevant to g. It then nondetermin-
istically chooses a u ∈ U to progress the search (Lines 6 – 9).
If u is an action, the state is progressed to γ(s, u) (Line 11). If
u is a method, the subgoals of u are added to gn, adding edges
to preserve the total order imposed by subgoals(u) (Line 15).
In either case, GoDeL is invoked recursively on the new plan-
ning problem.

If GoDeL fails to find a plan in the previous step, it then
uses the Infer-Subgoals procedure to infer lm, a network of
subgoals that are to be achieved enroute to achieving g (Line
18). The subgoals are added to gn, adding edges to preserve
the partial order in lm. The algorithm is then recursively in-
voked on the new planning problem (Line 20). If this call
also returns failure, then the algorithm falls back to action
chaining (Lines 22 – 25), returning failure if no actions are
applicable in s.

GoDeL maintains a global map used methods that keeps
track of the set of method instances already used in a given



Algorithm 2: Procedure to deduce possible subgoals for
GoDeL to use. It takes as input a planning problem
P = (D, s, g), and outputs a poset of subgoals. It uses
LMGEN, an abstract landmark generation algorithm that
takes P and generates a DAG of landmarks for it.

Procedure Infer-Subgoals (D, s, g)1
(V,E)← LMGEN(D, s, g)2
L← {v ∈ V : s 6|= v, g 6|= v and ∃ a method m s.t.3
goal(m) is relevant to v}
if L = ∅ then return ∅4
EL ← {(u, v) : u, v ∈ L and v is reachable from u in5
(V,E)}
return (L,EL)6

state s. This is used to prune out used methods from
the set of options U (Line 7) and is updated when a new
method is applied (Line 13). Similarly, GoDeL also uses
subgoals inferred, a boolean variable that keeps track of
whether the goal network has been modified since the last
time the Infer-Subgoals procedure is invoked, ensuring that
the latter is invoked only once between changes to the goal
network. As we shall see in Section 4, these steps are critical
in ensuring GoDeL’s completeness.

Subgoal inference. We now describe the subgoal infer-
ence technique used in GoDeL. This aspect of GoDeL is
motivated by the fact that sometimes the planner may have
methods that tell how to solve some subproblems, but not the
top-level problem. For instance, the method in Example 2
would not be applicable to problems involving transporting
packages across cities, but it is applicable to the subproblems
of moving the package between the start and goal locations
and the corresponding airports. A natural question that then
arises is the following: How can we automatically infer these
subproblems for which the given methods are relevant?

To answer the above question, we use landmarks. A land-
mark for a planning problem P [Hoffmann et al., 2004;
Richter and Westphal, 2010] is a fact that is true at some point
in every plan that solves P . A landmark graph is a directed
graph whose nodes are landmarks and edges denote order-
ings between these landmarks. Therefore, if there is an edge
between two landmarks li and lj , this implies that li is true
before lj in every solution to P .

Therefore, a landmark for a problem P can be thought
of as a subgoal that every solution to P must satisfy at
some point. We can, as a result, use any landmark gen-
eration algorithm (for example, [Hoffmann et al., 2004;
Richter and Westphal, 2010]) to automatically infer subgoals
(and orderings between them) for which the given methods
are relevant.

Algorithm 2 is Infer-Subgoals, the subgoal inference pro-
cedure. It uses an abstract landmark generation procedure
LMGEN that takes as input a classical planning problem P
and generates a DAG of landmarks.

Infer-Subgoals begins by computing the landmark graph
(V,E) for the input problem P . It then computes L, the sub-
set of landmarks in V that have relevant methods (Line 3). It
does not consider trivial landmarks such as literals true in the

state s or part of the goal g. EL is the set of all edges between
landmarks li, ij ∈ L such that there exists a path from li to lj
in (V,E) (Line 5). Infer-Subgoals then returns the resulting
network of landmarks lm = (L,EL).

4 Formal Properties
To show that GoDeL is sound and complete, it is necessary
to show that GoDeL deals correctly with some “corner cases”
involving methods and landmarks, e.g., that it can detect and
recover from cases where the method recursion doesn’t ter-
minate. To keep the proof sketches simple, the following
theorems all deal with the case where the planning prob-
lem P = (D, s0, gn) is classical, i.e., gn contains one node,
hence one goal g. It is straightforward to generalize the theo-
rems to arbitrary goal networks.
Theorem 3 (soundness). Let P = (D, s0, gn) be as de-
scribed above, and M be a set of methods. If a nondeter-
ministic trace of GoDeL(D, s0, gn,M, 〈〉) returns a plan π,
then π is a solution for P .

We omit the (simple) proof due to space constraints.
A planning problem P ′ is reachable by GoDeL from P if

P ′ is in the search space produced by invoking GoDeL on P ,
i.e., if one of GoDeL’s nondeterministic traces includes P ′.
Theorem 4 (search space finiteness). If P = (D, s0, gn) is
as described above, M is a set of methods, and LMGEN is
a sound landmark generation algorithm, then the set of plan-
ning problems reachable by GoDeL from P is finite.

Proof Sketch. Firstly, note that there are two ways by
which goals get added to the goal network, method applica-
tion and subgoal inference. Let us first consider the former.
Note that GoDeL never uses the same method instance twice
to decompose a goal network in the same state (see Lines 7
and 13 in Algorithm 1). Since there are finitely many meth-
ods and the size of the planning problem is finite, it follows
that the size of the largest goal network reachable via method
decomposition from gn’s goal g in the state s is bounded.

With respect to subgoal inference via landmarks, note that
for any classical planning problem Pc = (D, s, g), the set
of landmarks L for Pc is finite. Since LMGEN is sound,
the subgoals it infers belongs to this set. Thus, it is easy to
show that Infer-Subgoals can be run only a finite number of
times, adding at most |L| nodes to the goal network each time.
Therefore, we can place an upper bound on the goal network
size in a given state s. The bound on the size of the largest
goal network reached by GoDeL is thus at most |S| times the
previous bound, S being the set of reachable states. Using
this bound, we can subsequently bound the number of reach-
able goal networks. Since S is finite, the number of reachable
planning problems is also finite.
Theorem 5 (completeness). Let P = (D, s0, gn) be as
described above, and M be a set of methods. If P is
solvable and LMGEN is sound, a nondeterministic trace of
GoDeL(D, s0, 〈g〉, 〈〉) will return a solution π for P .

Proof Sketch. From Theorem 4 and the fact that GoDeL
can always fall back to action-chaining to generate a solution
if method decomposition does not work, the theorem follows.



100.0 

300.0 

500.0 

700.0 

900.0 

15  25  35  45  55 

Pl
an
 L
en

gt
h 

Problem Size (number of packages) 

GoDeL‐C  GoDeL‐M  GoDeL‐L  LAMA  GDP‐h 

1.0 

10.0 

100.0 

1000.0 

15  25  35  45  55 Pl
an
ni
ng
 /
m
e 
in
 s
ec
on

ds
 

Problem Size (number of packages) 

GoDeL‐C  GoDeL‐M  GoDeL‐L  LAMA  GDP‐h 

Figure 1: Average plan lengths and running times (in logscale) in the Logistics domain, as a function of the number of packages
to be delivered. Each data point is the average across 10 problems. GoDeL-L could not solve 60-package problems while
LAMA could not solve problems greater than 40.

5 Implementation and Experiments
We implemented GoDeL in C++. The nondeterministic
choice among the options in the set U (Lines 6–9 in Al-
gorithm 1) is implemented using depth-first search. We
sort U using a variant of the GDP heuristic suggested in
[Shivashankar et al., 2012]. For generating landmarks
in Infer-Subgoals, we use LAMA’s landmark generation
code [Richter and Westphal, 2010], which generates sound,
acyclic landmark graphs. GoDeL’s action chaining (line 22)
uses depth-first search with the various actions sorted by the
FF heuristic [Hoffmann and Nebel, 2001] value.

5.1 Experimental Design
The following research questions motivated our experiments:
• Does GoDeL’s performance improve as more planning

knowledge is given to it?
• Does GoDeL’s technique of inferring subgoals help

discover useful intermediate goals which the domain
knowledge can help solve?
• How well does GoDeL perform when given a complete

set of methods?
Our benchmark planning domains, and our reasons for choos-
ing them, were as follows:
• Logistics [Veloso, 1992]. Problem decomposition works

well for these problems: they decompose neatly into (1)
moving packages with the city, (2) moving packages be-
tween airports and (3) moving packages across cities.
• Blocks-World [Bacchus, 2001]. Blocks-World prob-

lems, unlike Logistics problems, do not decompose
neatly. Instead, a good planning strategy needs to se-
lect actions to apply on a state-by-state basis [Ghallab et
al., 2004, Sect. 4.5].
• Depots [Fox and Long, 2002]. This domain combines

aspects of the above two domains, hence is useful for
evaluating the performance of planners with partial plan-
ning knowledge.

For each of these domains, we wrote three different method
sets having complete (C), moderate (M) and low (L) amounts

of domain knowledge respectively, as described below. We
shall henceforth refer to GoDeL when using these various
levels of knowledge as GoDeL-C, GoDeL-M and GoDeL-L
respectively. We compared these variants of GoDeL against
GDP-h [Shivashankar et al., 2012] and LAMA [Richter and
Westphal, 2010], which are state-of-the-art hierarchical and
domain-independent planners, respectively. We provided
GDP-h the same methods given to GoDeL-C in each domain.

All experiments were run on 2GHz machines with 4GB
RAM. We set a time limit of 30 minutes per problem, dis-
carding data points not solved within this time.

5.2 Experimental Results

Logistics. For the Logistics domain, the complete method set
required three methods: one each for (1) same-city delivery,
(2) different-city delivery and (3) airport-to-airport delivery.
We constructed the moderate (M) method set by removing
method 2. The low (L) method set consisted of just method 1.
We compared the planners across 10 n-package problems for
each of n = 15, 20, . . . , 60, from the 1998/2000 International
Planning Competition distributions.

Figure 1 compares the plan lengths and running times of
the various planners in this domain. We see that GoDeL-C
and GDP-h produced plans of similar length. GoDeL-M was
also able to perform at par with these planners; this was be-
cause the subgoal inference algorithm automatically inserted
the goals that method 2 (which is missing for GoDeL-M )
would otherwise have inserted into the goal network. With re-
gard to planning times for these planners, GoDeL-C, GoDeL-
M and GDP-h all reported similar running times.
GoDeL-L, however, did not perform as well with its run-

ning times nearly an order of magnitude higher and its plan
lengths nearly twice as compared to GoDeL-C. This is be-
cause it had to solve a larger portion of the problem via
action-chaining due to the missing methods. Since this part
of GoDeL is relatively simplistic (depth-first search with FF
heuristic), GoDeL in a number of cases found it hard to re-
cover from a bad action it chose to apply in the previous step,
thus leading to longer plans and running times.

LAMA solved the smaller logistics problems (up to 40-



Table 1: Amount of action chaining as a function of the do-
main and the amount of domain-specific knowledge provided.
The lower the fraction, the larger the fraction of the plan that
is generated via method decomposition.

Domain GoDeL-C GoDeL-M GoDeL-L
Logistics 0 0 0.66
Blocks World 0.09 0.48 0.59
Depots 0.08 0.59 0.75

package problems) very quickly, producing plans of roughly
the same length as GDP-h, GoDeL-C and GoDeL-M ; but it
couldn’t solve the larger problems within the time limit.

Blocks World. For the Blocks World domain, the com-
plete set of methods included three methods: one each for (1)
on(X,Y ), (2) clear(X) and (3) on-table(X). The moderate
(M) method set consisted of methods 1 and 2 while the low (l)
method set consisted of just method 1. In addition, all three
method sets used a need-to-move(X) derived predicate that
determined whether X was in its final position. We com-
pared the planners across 25 randomly generated n-blocks
problems for each of n = 10, 20, . . . , 100.

As shown in Figure 2, GoDeL-C, GoDeL-M and GDP-
h have almost identical planning times. GoDeL-M is able
to perform as well as the other two planners because on-
table(X) (which the missing method 3 solves) is easily solv-
able through action chaining. GoDeL-L on the other hand
takes significantly longer to produce the same plans. As with
Logistics, this is because GoDeL-L has to generate a larger
fraction of the plan via action-chaining, thus slowing the plan-
ner down. LAMA solves the smaller problems very quickly,
but slows down on the larger problems, solving problems
larger than 60 blocks slower than GoDeL-M .

With respect to plan length, all the planners produce plans
of similar length with the exception of LAMA, which gener-
ates much longer plans than the others.

Depots. The complete method set for Depots consisted of
five methods and the same derived predicate used in Blocks
World. The moderate (M) method set consisted of the same
set of methods, but with all knowledge related to the Logistics
subproblem removed. The low (l) method set is identical to
the low (l) method set of Blocks World, consisting of just a
single method achieving on(X). We compared the planners
on 25 n-package problems for each n = 8, 16, . . . , 80.

As shown in Figure 3, GoDeL-C has the best running
times, and is the only planner to solve all of the problems.
Even GoDeL-M significantly outperformed GDP-h, which
had access to the full method set. GoDeL-L, which was given
only one Blocks-World method, solved significantly fewer
problems. LAMA solved the fewest problems, having not
solved any problems containing 24 blocks or more.

With respect to plan lengths, GoDeL-C, GoDeL-M and
GDP-h produced plans of similar lengths for the problems
they could solve. GoDeL-L and LAMA however generate
significantly longer plans for the problems they could solve.

5.3 Discussion
The main conclusions from our experimental study were:

• GoDeL performed at par or even better than GDP-h
when given complete domain knowlege.

• GoDeL’s technique of using subgoal inference and
action-chaining in tandem helped it to cope with incom-
plete domain knowledge. Table 1 gives the average frac-
tion of action-chaining (as opposed to method decompo-
sition or relevant-action application) used in generating
plans as a function of the domain and amount of do-
main knowledge given to GoDeL. We can see that as
the amount of domain knowledge is reduced, the frac-
tions gradually increase, indicating that GoDeL is able
to use whatever little knowledge is given to it. The frac-
tion for GoDeL-M in Logistics is particularly striking;
even with one of the methods removed, the plans were
generated without resorting to any action chaining. This
was because GoDeL was able to automatically infer the
subgoals of the missing method and insert them into the
goal network using its subgoal inference algorithm.

• GoDeL’s performance improves as more planning
knowledge is given to it. This is evident from the fact
that GoDeL-L (GoDeL with low knowledge) was out-
performed by GoDeL-M (GoDeL with moderate knowl-
edge), which in turn was outperformed by GoDeL-C
(GoDeL with complete knowledge) across all three do-
mains under consideration.

6 Related Work
GoDeL’s goal semantics differs from the goal task seman-
tics in [Erol et al., 1994]: for a task T and goal G, Erol’s
semantics can’t invoke arbitrary methods that achieve G but
aren’t labeled with T . It also differs from the semantics for
tasks in [Kambhampati et al., 1998], which requires manually
annotating tasks with preconditions and effects, and making
special designations to indicate which conditions should be
achieved via decomposition and how to achieve them.

[Castillo et al., 2001] propose the use of articulation func-
tions to translate literals in a higher level of abstraction to a
lower level and use partial-order planning algorithms to re-
solve these open subgoals at each level. [Biundo and Schat-
tenberg, 2001] also propose a similar framework; they an-
notate abstract tasks with preconditions and effects and then
use similar partial-order planning algorithms to refine these
tasks and generate primitive plans. Our approach differs from
these both in the kinds of solutions we consider (extension of
classical planning) as well as the techniques we use (forward
state-space heuristic search; use of landmarks).

Duet [Gerevini et al., 2008] combined the SHOP2 HTN
planner with the domain-independent LPG planner [Gerevini
et al., 2003] to solve planning problems with partial knowl-
edge. Analogously to Kambhampati et al.’s formalism, it re-
quired annotations on non-primitive tasks to indicate whether
tasks should be solved by SHOP2 or by LPG.

[Alford et al., 2009] provided a technique for automatically
translating a restricted form of HTN methods into PDDL,
so that classical planners can be used to solve HTN plan-
ning problems. This translation technique, can be used (sub-
ject to some restrictions) with partial sets of HTN methods,



0.0 

200.0 

400.0 

600.0 

800.0 

0  20  40  60  80  100 

Pl
an
 le
ng
th
 

Problem Size (number of blocks) 

GoDeL‐C  GoDeL‐M  GoDeL‐L  LAMA  GDP‐h 

0.0 

0.1 

1.0 

10.0 

100.0 

0  20  40  60  80  100 

Pl
an
ni
ng
 /
m
e 
in
 s
ec
on

ds
 

Problem Size (number of blocks) 

GoDeL‐C  GoDeL‐M  GoDeL‐L  LAMA  GDP‐h 

Figure 2: Average plan lengths and running times (in logscale) in the Blocks domain, as a function of the number of blocks.
Each data point is the average of 25 randomly generated problems. GoDeL-L and LAMA could not solve 100-block problems.

10.0 

100.0 

1000.0 

0  16  32  48  64  80 

Pl
an
 le
ng
th
 

Problem Size (number of packages) 

GoDeL‐C  GoDeL‐M  GoDeL‐L  LAMA  GDP‐h 

0.1 

1.0 

10.0 

100.0 

1000.0 

0  16  32  48  64  80 

Pl
an
ni
ng
 0
m
e 
in
 s
ec
on

ds
 

Problem Size (number of packages) 

GoDeL‐C  GoDeL‐M  GoDeL‐L  LAMA  GDP‐h 

Figure 3: Average plan lengths and running times (both in logscale) in the Depots domain, as a function of the number of
packages to be delivered. Each data point is an average of 25 randomly generated problems. GoDeL-M could not solve
80-package problems; GDP-h, GoDeL-L and LAMA could not solve problems of size > 64, 32 and 16 respectively.

but is correct only in domains where the recursion depth is
bounded, and this bound needs to be supplied manually.

Another related work is that of [Elkawkagy et al., 2012]
who propose a landmark-based heuristic for HTN planning.
This is in contrast to our work, in which we use landmarks to
generate part of the hierarchy.

[Shivashankar et al., 2012] described a hierarchical goal-
based planning formalism that uses methods to decompose
goals into sequences of subgoals, and also provided the GDP-
h planner used in our experiments. Unlike GoDeL, GDP-
h’s definition of a solution requires method decomposition;
hence GDP-h can’t guarantee solutions to solvable classical
planning problems unless given a complete set of methods.

7 Conclusion and Future Work
In our formalism, methods provide suggestions for ways to
accomplish classical goals (rather than impose requirements
for how to accomplish tasks, as in HTN planning formal-
ism in [Ghallab et al., 2004, Chap. 11]). Thus, GoDeL can
work correctly with complete domain knowledge (a full set
of methods for every task), no domain knowledge (other than

the basic actions, of course), or anything in between. It will
terminate with a correct solution if one exists; the amount of
knowledge only determines how fast that solution is found.

If GoDeL is given methods only for hard subproblems, its
subgoal inference algorithm can automatically figure out sub-
goals for which those methods are relevant. When given com-
plete domain knowledge, GoDeL performs at par or better
than GDP-h [Shivashankar et al., 2012]. Thus, we believe
that GoDeL naturally supports ‘incremental’ domain author-
ing; users can build partial domain models, evaluate the plan-
ner’s performance with that, and then incrementally improve
the model if required.

For future work, we will further investigate relations be-
tween landmarks and problem decomposition, e.g., ways to
automatically learn methods by generalizing landmarks.

Acknowledgments This work was supported in part by ARO
grant W911NF1210471, ONR contract N0001412C0239 and
grant N000141210430, DARPA contract FA865011C7191
and a UMIACS New Research Frontiers Award. The views
expressed are those of the authors and do not reflect the offi-
cial policy or position of the funders.



References
[Alford et al., 2009] Ron Alford, Ugur Kuter, and Dana S.

Nau. Translating HTNs to PDDL: A small amount of do-
main knowledge can go a long way. In IJCAI, July 2009.

[Bacchus, 2001] Fahiem Bacchus. The AIPS ’00 planning
competition. AI Mag., 22(1):47–56, 2001.

[Biundo and Schattenberg, 2001] S. Biundo and B. Schat-
tenberg. From abstract crisis to concrete relief–a prelimi-
nary report on combining state abstraction and HTN plan-
ning. In Proc. of the 6th European Conference on Plan-
ning, pages 157–168, 2001.

[Castillo et al., 2001] L Castillo, J Fdez-Olivares, and
A González. On the adequacy of hierarchical planning
characteristics for real-world problem solving. Euro-
pean conference on planning (ECP-2001), pages 169–180,
2001.

[Elkawkagy et al., 2012] Mohamed Elkawkagy, Pascal
Bercher, Bernd Schattenberg, and Susanne Biundo.
Improving hierarchical planning performance by the use
of landmarks. In AAAI, pages 1763–1769, 2012.

[Erol et al., 1994] Kutluhan Erol, James Hendler, and
Dana S. Nau. UMCP: A sound and complete procedure for
hierarchical task-network planning. In AIPS, pages 249–
254, June 1994. ICAPS 2009 influential paper honorable
mention.

[Fox and Long, 2002] Maria Fox and Derek Long. Interna-
tional planning competition, 2002. http://planning.cis.
strath.ac.uk/competition.

[Gerevini et al., 2003] A. Gerevini, A. Saetti, and I. Serina.
Planning through stochastic local search and temporal ac-
tion graphs in LPG. JAIR, 20:239–290, 2003.

[Gerevini et al., 2008] Alfonso Gerevini, Ugur Kuter,
Dana S. Nau, A. Saetti, and N. Waisbrot. Combining
domain-independent planning and HTN planning. In
ECAI, pages 573–577, July 2008.

[Ghallab et al., 2004] Malik Ghallab, Dana S. Nau, and
Paolo Traverso. Automated Planning: Theory and Prac-
tice. May 2004.

[Hoffmann and Nebel, 2001] J. Hoffmann and Bernhard
Nebel. The FF planning system. JAIR, 14:253–302, 2001.

[Hoffmann et al., 2004] Jörg Hoffmann, Julie Porteous, and
Laura Sebastia. Ordered landmarks in planning. JAIR,
22:215–278, 2004.

[Kambhampati et al., 1998] S. Kambhampati, A. Mali, and
B. Srivastava. Hybrid planning for partially hierarchical
domains. In AAAI, pages 882–888, 1998.

[Richter and Westphal, 2010] Silvia Richter and Matthias
Westphal. The LAMA planner: Guiding cost-based any-
time planning with landmarks. J. Artif. Intell. Res. (JAIR),
39:127–177, 2010.

[Shivashankar et al., 2012] Vikas Shivashankar, Ugur Kuter,
Dana S. Nau, and Ronald Alford. A hierarchical goal-
based formalism and algorithm for single-agent planning.
In AAMAS, pages 981–988, 2012.

[Veloso, 1992] Manuela M. Veloso. Learning by analogical
reasoning in general problem solving. PhD thesis CMU-
CS-92-174, Carnegie Mellon University, 1992.


