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Abstract

Automated composition of Web Services can be achieved by using Al plateghgiques.
Hierarchical Task Network (HTN) planning is especially well-suited for thsk. In this
paper, we describe how HTN planning system SHOP2 can be used with®Wéb Ser-
vice descriptions. We provide a sound and complete algorithm to translate ®¥¢kvice
descriptions to a SHOP2 domain. We prove the correctness of the algositbinowing the
correspondence to the situation calculus semantics of OWL-S. We implemesystban
that plans over sets of OWL-S descriptions using SHOP2 and then exehateesulting
plans over the Web. The system is also capable of executing informatiwigdimg Web
Services during the planning process. We discuss the challenges aodttt of using
planning in the information-rich and human-oriented context of Web Sexvice

1 Introduction

As Web Services — that is, programs and devices accessibktandard Web pro-
tocols — proliferate, it becomes more difficult to find the @pe service that can
perform the task at hand. It becomes even more difficult wheretis no single
service capable of performing that task, but there are coatioins of existing ser-
vices that could. Sufficiently rich, machine-readable dpsions of Web Services
would allow the creation of novel, compound Web Service$iftle or no direct

human intervention. Semantic Web languages, such as th&wteltogy Language
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(OWL) [1] or its predecessor DAML+OIL[2], provide the fountitans for such suf-
ficiently rich descriptions.

The OWL-services language [3] (OWL-5)is a set of ontologies for describing
the properties and capabilities of Web services. The OWLegssgned to support
effective automation of various Web Services related digtss/including service
discovery, composition, execution, and monitoring.

For our work, we are motivated by issues related to autom&tdaiService compo-
sition. The OWL-S process ontology provides a vocabulargéscribing the com-
position of Web Services. This ontology uses an “action”’gyotess” metaphor for
describing Web Service behavior - that is, primitive and ptax actions with pre-
conditions and effects.

Given a representation of services as actions, we can ¢4plpianning techniques
for automatic service composition by treating service cosifon as a planning
problem. Ideally, given a user’s objective and a set of Wetvi€es, a planner
would find a collection of Web Services requests that acki¢hre objective. We
believe that HTN planning is especially promising for thigrmose, because the
concept of task decomposition in HTN planning is very simitathe concept of
composite process decomposition in OWL-S process ontologihis paper, we
explore how to use the SHOP2 HTN planning system[4,5] to doraatic compo-
sition of OWL-S Web Services.

In Section 2, we describe a sample scenario for our reselar&gction 3, we give
the background knowledge about OWL-S process ontology a@F2HIn Section

5, we present our approach for automatic Web services catigrodn Section 4,

we describe why we think HTN planning is suitable for Web $sxwomposition.

In Section 6, we describe the implementation. In Section iseuss the chal-
lenges and difficulties of using planning for composing Webvi&es on Semantic
Web. In Section 8, we summarize some related work. And finall$ection 9, we

conclude our work and present some future research dirsctithroughout this
paper, we use the example we described in Section 2 to dkestur approach.
But our work is designed to be domain-independent and is rstticeed to this

example.

2 Motivating Example

The example we describe here is based loosely on a scenadotal in the Scien-
tific American article about the Semantic Web [6]. SupposeaBit Joan’s mother
goes to her physician complaining of pain and tingling inlbgs and the physician

L' The previous version of OWL-S was called DAML-S and was based oMD#OIL



proposes the following sequence of activities:

e A prescription for Relafen, an anti-inflammatory drug;

e An MRI scan and an electromyography, both of these are didigrtests to try
to determine possible causes for the symptoms;

¢ A follow-up appointment with the physician to discuss theulés of the diag-
nostic tests.

Bill and Joan need to do the following things for their mother:

e Fill the prescription at a pharmacy;
e Make appointments to take their mother to the two treatments
e Make an appointment for the doctor’s follow-up meeting.

For the three appointment times, there are the followinfgpesces and constraints:

e For the two treatments:

- Billand Joan would prefer two appointment times that areectogether sched-
uled at one or two nearby places, so that only one person neettve, and
that person drives only once.

- Otherwise, they would prefer two appointment times on défe days, so that
each person needs to drive once.

e The appointment time for doctor’s follow up check must bedahat the ap-
pointment times for the two treatments.

e An appointment time must fit the schedule of the person thhtdnve to the
appointment.

Assume that there are the requisite Web Services for fingipgiatment times and
making appointments at the relevant clinics, Bill and Joarictase those services
to schedule their mother’s appointments. It would be diffiéar Bill and Joan to
finish their task with an optimal plan by consulting the Welnv&®s manually,
because:

e They may have to try every available pair of close appointrtieres at any two
nearby treatment centers in order to find one that fits théedales.

e Furthermore, if they first choose an appointment time fortoe&tment and then
find they have to use this same time for the other treatmee, ttiey will have
to reschedule the first appointment.

Instead, suppose we use the OWL-S process ontology to encoelsception of
how to use Web Services to accomplish tasks such as the oee fycBill and

Joan. If we have an automated system which can find an exaquait based on
these predefined task decompositions, then we can perfoinargil Joan’s Web
Services composition task automatically.



3 Background

3.1 OWL-S

In the OWL-S process ontology, operations are modeled asgses. There are
three kinds of processeatomic processescompositeprocesses ansimplepro-
cesses. In OWL-S, aatomic process is a model of a “single step” (from the
point of view of the client) Web Service that is directly exesd to accomplish
some task. Executing atomicprocess consists of calling the corresponding Web-
accessible program with its input parameters bound toqudati values. Acom-
posite process represents a compound Web Service, i.e., it candmmgesed
into otheratomic simpleor compositeprocesses. The decomposition ot@m-
positeprocess is specified through its control constructs. Thefsebntrol con-
structs includesSequenceUnordered, Choice If-Then-Else, Iterate, Repeat-
Until, Repeat-While, Split and Split+Join. A simple process is an abstraction of
an atomic or composite process (or of a possibly empty sétesi). It is not con-
sidered to be directly executable, but provides an abstraet of an action. Like
atomic processes, simple processes are, themselveg-sitegl but unlike atomic
processes, it’s possible to peek at the internal structuaesimple process (if avail-
able) or to replace the simple process with an expansion of it

In the process ontology, each process has several prapeniduding,(optional)
inputs preconditions(conditional)outputsand (conditionalgffects Preconditions
specify things that must be true of the world in order for aerdgto execute
a service Effectscharacterize the physical side-effects that execution \bfeh-
service has on the worldnputsand Outputscorrespond to knowledge precondi-
tions and effects. That is, necessary states of our knowlbdge before execution
and modifications to our knowledge base as a result of theuérec Note that
not all services have significant side-effects, in pardicuervices that are strictly
information-providing do not. Here is part of the OWL-S (vers0.9) definition
of an atomic process called PharmacyLocator used in ounmesd scheduling ex-
ample:

<ow : C ass rdf: | D="PharmacylLocat or" >
<rdf s: subCl assOf rdf:resource="&process; #At om cProcess"/ >
</ow : d ass>

<ow : Qbj ect Property rdf: |1 D="Locati onPreference">

<rdf s: subPropertyO rdf:resource="&process; #i nput"/>

<rdf s: domai n rdf:resource="#PharnacylLocator"/>

<rdfs:range rdf:resource= "&concepts; #Locati onPr ef erence"/ >
</ ow : Ohj ect Property>



The process model of a compound Web Service includes thgrdgsin of the
top-level composite process corresponding to that seplicea decomposition of
that composite process into a structured collection ofges further decomposed)
subprocesse$.Web Services composition is sometimes thought of as theepsoc
of generating a (potentially) complexly structured comigoprocess description
which is subsequently executed. On this model, compositegsses are thautput
of composition. In this paper, we take composite processegpatto a planner, that
is, as descriptions diowto compose a sequence of single step actions. Thus, for
us, the goal of automated Web services composition is findleation of atomic
processes instances which form an execution path for somevel composite
process.

3.2 SHOP2

SHOP2 is a domain-independent HTN planning system, whiahave of the top
four awards out of the 14 planners that competed in the 2Q@2riational Planning
Competition. HTN planning is an Al planning methodology thegates plans by
task decomposition. HTN planners differ from classical Adrmers in what they
plan for, and how they plan for it. The objective of an HTN pianis to produce
a sequence of actions that perform some activity or task déseription of a plan-
ning domain includes a set of operators similar to thoseasdsital planning, and
also a set of methods, each of which is a prescription for lmogdletompose a task
into subtasks. Planning proceeds by using methods to dexs®eripsks recursively
into smaller and smaller subtasks, until the planner reaphenitive tasks that can
be performed directly using the planning operators.

One difference between SHOP2 and most other HTN plannintgmgsis that

SHOP2 plans for tasks in the same order that they will latesXaeuted. Planning
for tasks in the order that those task will be performed matkpgassible to know

the current state of the world at each step in the planningga®y which makes
it possible for SHOP2's precondition-evaluation mechanis incorporate signifi-

cant inferencing and reasoning power and the ability toecd#trnal programs. This
makes SHOP2 ideal as a basis for integrating planning witkreal information

sources, including Web based ones.

In order to do planning in a given planning domain, SHOP2 sdede given the
knowledge about that domain. A SHOP2 knowledge base cerfisperators and
methods (plus, various non-action related facts and axioEech operator is a
description of what needs to be done to accomplish some fpréntask, and each
method tells how to decompose some compound task into a pettidlly ordered

subtasks.

2 Here, we assume that a compound Web Service always has a complatepdsitin
bottoming out in atomic processes. Such a composite procegsdsitable



Definition 1 (Operator) A SHOP2 operator is an expression of the fori®)
Pre Del Add) where

h() is a primitive task with a list of input parameters

Pre represents the operator’s preconditions

Del represents the operator’s delete list which includedistef things that will
become false after operator’s execution.

Add represents the operator’s add list which includes thteolighings that will
become true after operator’s execution.

The expressivity of SHOP2 preconditions and effects ardasino those found in

Planning Domain Definition Language (PDDL) [7]. Precoratticontains logical

atoms with variables that are either defined ior existentially quantified. Logical
atoms can be combined using the logical connectives suabrisnction, disjunc-

tion, negation, implication and universal quantificatidid andDel lists are gen-

erally defined to be a conjunction of logical atoms but caoddl expressions and
guantified expressions can also be used.

Definition 2 (Method) A SHOP2 method is an expression of the foli%() Pre;
Ty Prey Ty ...) where

e h(7)is acompound task with a list of input parametars
e EachPre; is a precondition expression
e EachT; is a partially ordered set of subtasks.

The meaning of this is analogous to a conditional express#idells SHOP2 that
if Pre; is satisfied therY; should be used, otherwise Hre, is satisfied therfs,
should be used, and so forth. A task list is simply a list oksathat tells how this
compound task will be decomposed into subtasks. Tasks irstlean be primitive
or compound and a task list can be defined@eredor unordered

In addition to the usual logical atoms, preconditions of $#20nethods and op-
erators may also contain calls to external programs andrasgints to variables.
These are useful for integrating planning with queries torimation sources on the
Web. For example, the following expression

(assignw (call f t; to ...t,))

will bind the variable symbod with the result of calling external procedufewith
arguments; t, ...t,.

Definition 3 (Planning Problem) A planning problem for SHOP2 is a triple5(
T, D), whereS is initial state, 7" is a task list, andD is a domain description. By
taking (S, 7', D) as input, SHOP2 will return a pla® = (pip,...p,), that is, a
sequence of instantiated operators that will achigvigom S in D.



4 Why HTN Planning is Suitable for Web Service Composition

There is a clear point where the composition as planning angposition as build-

ing up, i.e., “composing”, CompositeProcesses intersebenathe plan itself is

a CompositeProcess. This is always trivially the case asralatd SHOP2 plan

is a sequence of operators. Furthermore, it is straightfoivio extend SHOP2

to generate conditional plans which begin to look like mimterestingCompos-
iteProcesses. However, the generation of CompositePexbgplanning is better
viewed as thespecializationof prewritten CompositeProcesses than the authoring
of complex, entirely novel programs.

There are several ways in which the HTN approach is promiingervice com-
position:

e HTN encourages modularity. Methods can be written withastsideration of
how its subtasks will decompose or what compound tasks irdposes. The
method author is encouraged to focus on the particular hadcomposition at
hand.

e This modularity fits in well with Web Services. Methods c@pend torecur-
sively composable workflowEhese workflows can come from diverse indepen-
dent sources and then integrated by the planner to producsisn specific,
instantiated workflows.

e Since the planner considers the entire execution paths bpportunities to mini-
mize various sorts of failures or costs. Most obvioushhé planner finds a plan,
one knows that the top level task is achievable with the nessuat hand. If the
granularity of the services is large enough then it can baidenably easier for
a human being to inspect and understand the plan.

e HTN planning scales well to large numbers of methods andabpes.

e Some HTN planners (e.g., SHOP2) support complex precomndigasoning, and
even the evaluation of arbitrary code at plan time. Thegdeifea make it straight-
forward to, integrate existing knowledge bases on the Semdfeb as well as
the information supplying Web Services.

e HTN planning provides natural places for human interventibplan time. The
two obvious examples are first, that in preconditions, a aydgervice call can
query a person for special input, and second, if the planiteatpoint where it
cannot continue decomposition, it can request a deconosit that step from
another person, or even a software agent.

3 For example, the HiCAP [8] system employed SHOP as a component of a mitiael in
tive system.



5 From OWL-S to SHOP2

The execution of an atomic process is a call to the correspgnitfeb accessible
program with its input parameters instantiatedhe execution of a composite pro-
cess ultimately consists in the execution of a collectiospafcific atomic processes.
Instead of directly executing the composite process asgr@noon an OWL-S in-
terpreter, we can treat the composite process as speafidati how to compose
a sequence of atomic process executions. In this sectiomjiv&ow how to en-
code a composite process composition problem as a SHOPRimdgoroblem, so
SHOP2 can be used with OWL-S Web Services descriptions toreutcally gen-
erate a composition of Web services calls.

5.1 Encoding OWL-S Process Models as SHOP2 Domains

In this section, we introduce an algorithm for translatingadlection of OWL-
S process model&” into a SHOP2 domairD. In our translation, we make the
following assumption:

Assumption 1 Given a collection of OWL-S process mod€ls= { K, Ko, ..., K, },
we assume:

e All atomic processes defined I can either have effects or outputs, but not
both. According to the situation calculus based semanfi@®/L-S[9], outputs
characterize knowledge effects of executing Web Servioelse#fectscharac-
terize physical effects for executing Web services. An atgmmocess with only
outputs models a strictly information-providing Web SeeviAnd an atomic pro-
cess with only effects models a world-altering Web Servicgeneral, we don't
want to actually affect the world during planning. Howewee, do want to gather
certain information from information-providing Web Sergs, which entails ex-
ecuting them at plan time. To enable information gathernognfWeb Services
at planning time, we require that the atomic processes tathereexclusively
information-providing or exclusively world-altering.

e There is no composite process /i with OWL-S’s Split and Split+Join con-
trol constructs. SHOP2 currently does not handle concayrérherefore in our
translation, we only consider OWL-S process models that Imaveomposite
process usingplit and Split+Join control construct. We also assume only a
non-concurrent interpretation a&fnordered (as permitted by OWL-S). We in-
tend to address how to extend SHOP2 to handle concurrenbg iiuture work.

4 Here, we assume that before the execution of an atomic process thaditierts for
executing the atomic process have been satisfied.



We encode a collection of OWL-S process definitidgnsnto a SHOP2 domai®
as follows:

e For each atomic process with effectsifh we encode it as a SHOP2 operator
that simulates the effects of the world-altering Web Sexvic

e For each atomic process with output i, we encode it as a SHOP2 operator
whose precondition include a call to the information-pding Web Service.

e For each simple or composite procesgsinwe encode it as one or more SHOP2
methods. These methods will tell how to decompose an HTNttegkepresents
the simple or composite process.

The following algorithm shows how to translate an OWL-S débni of an atomic
process with only effects into a SHOP2 operator.

TRANSLATE -ATOMIC -PROCESSEFFECT(Q)

Input: a OWL-S definitiony) of an atomic procesd with only effects.
Output: a SHOP2 operator.

Procedure:

(1) @ =the list of input parameters defined fdrin @

(2) Pre=conjunct of all preconditions of, as defined i)
(3) Add= collection of all positive effects aofl, as defined i)
(4) Del = collection of all negative effects of, as defined i)
(5) ReturnO = (A(7") Pre Del Add

The above algorithm translates each atomic OWL-S definititma SHOP2 oper-
ator that will simulate the effects of a world-altering Weér@3ce by changing its
local state via an operator. Such Web Services will neverxkewged at planning
time, for obvious reasons.

The following algorithm shows how to translate a OWL-S defamtof an atomic
process with only outputs into a SHOP2 operator.

TRANSLATE -ATOMIC -PROCESSOUTPUT(Q®)

Input: a OWL-S definition)) of an atomic procesd with only outputs.
Output: a SHOP2 operator.

Procedure:

(1) @ =the list of input parameters defined fdras inQ

(2) Pre=a conjunct of all the preconditions df, as defined ir), plus one more
precondition of the form (assign (call Monitor A @’)), where Monitor is a
procedure which will handle SHOP2'’s call to Web services

(3) Add=y

> Conditional effects can be easily encoded into SHOP2 operators. faemplicity,
we assume that effects (and outputs) are not conditional.



(4) Del=10
(5) ReturnO = (A(7") Pre Del Adg

The above algorithm translates each atomic OWL-S definitibm & SHOP2 op-
erator that will call the information-providing Web sergim its precondition. In
this way, the information-providing Web Service is exedutieiring the planning
process. The operator for these atomic processes areefhoek-keeping”, thus
none of these operators will appear in the final plan.

The following algorithm shows how to translate a OWL-S deiomitof a simple
process into SHOP2 method(s).

TRANSLATE -SIMPLE -PROCESY(Q)

Input: a OWL-S definition)) of a simple process.
Output: a collection of SHOP2 methods.
Procedure:

(1) @ =the list of input parameters defined fsras inQ

(2) Pre= conjunct of all preconditions of S as defined;in

(3) (b1, ...,b,) =the list of atomic and composite processes that realizeslo
lapse intoS as defined irQ.

(4) fori=1,...,m
o M;=(S(7v) Preb;)

(5) returnM ={M,, ..., M,,}

The following algorithm shows how to translate a OWL-S deifamitof a composite
process witlSequencecontrol construct into a SHOP2 method.

TRANSLATE -SequencePROCESY Q)

Input: a OWL-S definition) of a composite process with Sequencecontrol
construct.

Output: a SHOP2 methatl/.

Procedure:

(1) @ =the list of input parameters defined fGras inQ

(2) Pre=conjunct of all preconditions of C as definedin

(3) B =Sequencecontrol construct of C as defined dn

(4) (by,...,b,) =the sequence of component processeB ak defined irQ)
(5) T = ordered task list ofby, . . . b,,,)

(6) ReturnM = (C(7v') PreT)

The following algorithm shows how to translate a OWL-S deifamitof a composite
process witHf-Then-Else control construct into a SHOP2 method.

TRANSLATE -If-Then-Else-PROCESS(Q)

10



Input: a OWL-S definitiory of a composite process with If-Then-Else control
construct.

Output: a SHOP2 methaott .

Procedure:

(1) @ =the list of input parameters defined f0ras inQ

(2) m;y = conditions forlf as defined irQ

(3) Pre; = conjunct of all preconditions of C as defined@nandr;
(4) Prey is conjunct of all preconditions of C as definedin

(5) b, = process foiThen as defined irQ

(6) by = process foElseas defined irQ)

(7) ReturnM = (0(7) Pre; by Prey bg)

The following algorithm translates a OWL-S definition of a quosite process with
Repeat-While control construct into SHOP2 methods.

TRANSLATE -Repeat-While-PROCESY ()

Input: a OWL-S definitiony of a composite process with Repeat-While con-
trol construct.

Output: a collection of SHOP2 methods.

Procedure:

(1) @ =the list of input parameters defined fGras inQ
(2) mwhie = conditions folWhile as defined irf)

(3) Pre=conjunct of all preconditions of C as definedin
(4) b, = process foRepeatas defined irQ)

(5) M, = (0(7) Pre 01(7))

(6) Mz = (Ci(T") Twhite (0:C1(707)) O D)

(7) ReturnM = {M;, M>}

Note that)/; method definition has two condition-task list pairs. The fiandition
and task list pair ensures that the process inside the lobgraged as long as the
condition is true. When this condition becomes false, SHOMZkeck the second
condition which is empty (denoted ) thus always true. The task list for this
condition is also empty so nothing will be added to the résglplan. This second
pair is just needed to make sure that plan will not fail whea litop condition
becomes false.

The following algorithm translates a OWL-S definition of a quveite process with
Repeat-Until control construct into SHOP2 methods.

TRANSLATE -Repeat-Uti-F-PROCESS Q)
Input: a OWL-S definitiort) of a composite process with Repeat-Until control

construct.
Output: a collection of SHOP2 methods.
Procedure:

11



(1) @ =the list of input parameters defined f0ras inQ
(2) mynea = conditions forUntil as defined ir)

(3) Pre = conjunct of all preconditions of C as defined(n
(4) b, = process foRepeatas defined i

(5) M, =(C(7v) PreCy(7))

(6) M, = (C1(V") (not(mune)) (b1C1 (V")) O D)

(7) ReturnM = {M;, My}

The following algorithm translates a OWL-S definition of a quosite process with
Choicecontrol construct into a collection of SHOP2 methods.

TRANSLATE -Choice- PROCESY()))

Input: a OWL-S definitior) of a composite process with Choice control con-
struct.

Output: a collection of SHOP2 methods.

Procedure:

(1) @ =the list of input parameters defined fGras inQ
(2) Pre=conjunct of all preconditions of C as definediin
(3) B =Choicecontrol construct of C as defined p
(4) (by,...,b,) =the bag of component processesbés defined irf)
(6) fori=1,...,m
e M;=(C(7) Preb,)
(6) returnM ={M, ..., M}

The following algorithm translates a OWL-S definition of a quosite process with
Unordered control construct into a SHOP2 method.

TRANSLATE -Unordered-PROCESY ()

Input: a OWL-S definitior) of a composite process with Unordered control
construct.

Output: a SHOP2 methatt.

Procedure:

(1) @ =the list of input parameters defined f0ras inQ

(2) Pre=conjunct of all preconditions of C as definedin

(3) B =Unordered control construct of C as defined dn

4) (by,...,b,) =the bag of component processesas defined irnQ
(5) T = unordered task list oft;, ... b,,)

(6) ReturnM = (C(v') PreT)

The following algorithm translates a collection of OWL-S pess models into a
SHOP2 domain.

TRANSLATE -PROCESSM ODEL (K)
Input: a collection of OWL-S process modé{s

12



Output: a SHOP2 domaip.
Procedure:

1) D=0
(2) For each atomic process definitignin K
e If this atomic process has only outputs
- O = TRANSLATE-ATOMIC-PROCESS-OUTPUTY)
e If this atomic process has only effects
- O = TRANSLATE-ATOMIC-PROCESS-EFFECT))
e addOto D
(3) For each simple process definitignin K
e M =TRANSLATE-SIMPLE-PROCESSY))
e add MtoD
(4) For each composite process definit@nn K
e If the process has &equencecontrol construct
- M = TRANSLATE-Sequence-PROCESZ|
If the process has & Then-Else control construct
- M = TRANSLATE-If-Then-Else-PROCES&)
If the process has@hoicecontrol construct
- M = TRANSLATE-Choice-PROCES&))
If the process has Repeat-While control construct
- M = TRANSLATE-Repeat-While-PROCESS]
If the process has Repeat-Until control construct
- M = TRANSLATE-Repeat-Until-PROCES&))
If the process has@nordered control construct
- M = TRANSLATE-Unordered-PROCESS)
e add MtoD
(5) ReturnD

To keep the above pseudocode simple, we did not specify thesige translations
within a composite process. E.g., What happens if we h&agmencef If-Then-
Elseor further nestings? Our way for handling this problem igéat each control
construct within a composite process as a composite proeessbove example,
in our translation, we will have a SHOP2 method for the contpgzrocess with
Sequencecontrol construct and a method for each nedtethen-Else control
construct.

Also we did not explicitly describe how our algorithm hargllerocesses with
dataflow specification. In OWL-S, a composite process canifgpat an output
of a composite process is equal to an output of one of its segses whenever the
composite process is instantiated. Also, for a compositeqss with &Sequence
control construct, one can specify that the output of on@mdess is an input to
another subprocesses. SHOP2 does not have the conceptutpamh and we sim-
ply treat outputs as knowledge effects. The output rest@iisservice are recorded
in the current state using a special predicate and by asgignunique number to

13



each instance of a SHOP2 domain’s methods and operatorgprétieate Qutput
Instance Value) indicates a method or operator instadegtance has the value
Value for the particular outpuDutput.

The other aspect of the translation we omitted in the algoriis the translation of
preconditions and effects. The current OWL-S specificati@nsjon 1.0) does not
have a concrete syntax for precondition specification. OWAL4Swill support the

description of the preconditions and effects of servicasg®WL statements with
variables similar to atoms in Semantic Web Rule Language (SWRigse atoms
will be combined with logical connectives that are alreadpmorted in SHOP2.
The translation of such expressions would be straight-doevibut it is also impor-

tant to preserve the semantics of OWL (see Section 7.1).

5.2 Encoding OWL-S Web Services Composition Problem as SHGPRIng
Problem

Narayanan and Mcllraith [9] give a formal semantics for OWlirSerms of the
situation calculus [10] and Golog [11]. The situation célisuin a first-order lan-
guage for reasoning about action and change. In the situadilculus, the state of
the world is described by functions and relations (fluergttivized to a situation
s, €.9.,f(z, s). The functiondo(a, s) maps a situation and an actiom into a new
situation. A situation is simply a history of the primitiveteons performed from an
initial, distinguished situatiols),.

Golog is a high-level logic programming language based ersituation calculus,
that enables the represenation of complex actions. It §wikdtop of the situation
calculus by providing a set of extralogical constructs (fFggl) for assembling
primitive actions, defined in the situation calculus, intonplex actions that col-
lectively comprise a prograna, Given a domain theory) and a Golog program

J, program execution must find a sequengcsuch thatD = Do(d, Sy, do(d, Sp)).
Do(6, Sy, do(d, Sp)) denotes that Golog progradrstarting atS, will legally termi-
nate in situatiomo(a, Sy)) wheredo(a, Sy)) abbreviatedo(a,,, do(a,—1, . . ., do(as, Sp)).
Thus,ay, . .., a, are the actions that realize Golog programita, starting in the
initial situation, S.

The semantics given in [9] and [12] maps an OWL-S process tolagdmogram
where atomic processes in OWL-S are mapped to primitive reiio Golog and
composite processes in OWL-S are mapped to correspondinglexi@olog ac-
tions. Using these semantics, we can define the OWL-S sergiopasition prob-
lem as follows:

Definition 4 (OWL-S Service Composition) Let K = {K;, Ks, ..., K,,} be a
collection of OWL-S process models satisfying Assumpti{@momh section 5.1)¢'
be a possibly composite process defined<ins, be the initial state, and® =
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a - primitive action

01; 09 - SEqUENce

cond? - test

1] 92 - nondeterministic choice of actions
0* - nondeterministic iteration

if cond then §, elsed, endlIf - conditional
while cond do § endWhile - while loop

Fig. 1. A subset of Golog constructs to create complex actions that avamete OWL-S
constructs.

(p1,p2,- -, pn) be a sequence of atomic processes defindd.ifthenP is a com-
position forC' with respect tak in S iff in action theory, we can prove:

5 | Do(dc, Sp, do(@, Sp)))
where

e Y is the axiomatization ok and S, as defined in action theory.
e Jc is the complex action defined foras defined in action theory
e q; is the primitive action defined fgr; as defined in action theory

Note that, this definition is for offline planning, i.e. théseo execution of information-
providing Web Services during planning. This definitionwamss that the initial
state contains the complete information for the domain ehtity, this is not the
case and we interleave the execution of information-piogicervices with the
simulation of world-altering ones to complete the inforimatin the initial state.
Information gathering is done with respect to the the ihgtate so the planning
process would yield the same results if all the informagooviding Web Services
were executed first and then planning was done. There are comaions (simi-

lar to IRP assumption [12]) that needs to hold in order to extéis theorem for
interleaved execution. We will discuss these conditiorte@end of this section.

We will now prove that the plans SHOPZ2 finds for the OWL-S sergoemposition
problem are equivalent to the action sequences found iatgtucalculus. We will
use the simplified version of SHOP2 algorithm (Figure 2) nigithe proof. Since
Golog does not provide ddnorderedconstruct we will not consider this construct
in our proof and in the SHOP2 algorithm we have omitted thaitetelated to
unordered tasks. Itis possible to defideorderedconstruct in ConGolog (Concur-
rent Golog) [13] which is an extension to Golog that allows@arrent execution.
But since SHOP2 does not allow concurrent processes we casadhis exten-
sion. Also note that in the original Golog formalism compéetions are defined as
macro definitions [11] so complex actions do not have preitimmg. In our proof,
we will show the correspondence to the original Golog apgiicand assume that
in the given OWL-S process model only atomic processes hampditions.
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procedure SHOPZ(T', D)
if T"is empty then return empty plan
Lett be the firsttask in T
if ¢ is a primitive task then
Find an operatas = (h Pre Add Del) in D such that
h unifies witht ands satisfiesPre
if no sucho exists then return failure
Lets’ bes after deletingDel and addingAdd
Let7” beT after removing
return p, SHOP2¢', 17, D)]
else ift is a composite task
Find a methodn = (h Prey 17 Pres Ty ...) in D such that
h unifies witht
12 Find the task list; such that
s satisfiesPre; and does not satisf§rey, k < i
13 if no suchr; exists then return failure
14 LetT’ beT after removing
and adding all the elementsfy at the beginning
15 return SHOP2(, 7", D)
16 end if
17 end SHOP2

a b wNPE

PP O0W~NO

= O

Fig. 2. A simplified version of the SHOP2 planning procedure.

Theorem 5 Let K = { K, K>, ..., K,,} be a collection of OWL-S process models
satisfying Assumption 1 (from section 5.&)be a possibly composite process de-
fined inK, Sy be the initial state, an® = (p1, po, - . ., p,) be a sequence of atomic
processes defined . Let D = TRANSLATEPROCESSMODEL(K). ThenP is a
composition forC' with respect tai’ in Sy iff P is a plan for planning problemy;,
M, D) whereM is the SHOP translation for process C.

PROOF. Before giving the proof we should note that there is a reptasenal
difference between how SHOP2 and situation calculus de=tiihe state of the
world. SHOP2 represents state by a set of ground atoms whard¢he situation
calculus, the state of the world is described by relationg(fls) relativized to a
situation. For example/,(%) is true at some point in the planning process when that
atom occurs in SHOP2's “state” (e.g., the set of ground afoimshe situation cal-
culus, truth value for that relation is relative to a spedfication argument, e.g.,
f(#,s). The changes to the state in SHOP2 is done by adding or dglatoms
from the state whereas situation calculus defines succetderaxioms to define
the truth values for the fluents in different situations. Ageom this representa-
tional difference, there is an equivalence between SHO&2 and situations, e.g.
f(Z) is true in the initial state of SHOP2 iff(Z, Sy) is true in situation calculus.
Applying the effects of an operator will also preserve thasiigalence. It is easy
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to verify that the truth value for the predicafér) after applying the effects of an
operator will be equal to the truth value Hfz, do(a, s)) whena is the correspond-
ing situation calculus action and the starting states anevalgnt. In general, when
the same sequence of actions/operators are applied tcaficitistate, the state of
the world in the final situation/state will be the same. Tlyloout the proof, we will
use this equivalence and use the same name to denote woelslistoth notations
when the meaning is clear. The proof of the theorem is by itioiic

HypothesisFor a given OWL-S process, P is a plan for the planning problem
(So, M¢, D) iff ¥ = Do(d¢, So, do(d, Sp))) whered = [ay, as, . . .] is the sequence

of primitive actions in situation calculus that correspstmthe sequence of SHOP2
operators inP.

Base CaseSupposeA is an atomic OWL-S process andis the corresponding
primitive action in situation calculus angd, is the corresponding SHOP2 operator.
Then in Golog it is defined that

Do(a,s,s") = Poss(a,s) \s' = do(a, s)

It means when the preconditions for the process is satisfigd@spect to situation

s then the primitive action sequence we will get for this sienptogram will have
only one element, namely= [a]. As seen in line 9 of SHOP2 algorithm, the plan
for a primitive task will return the plan that includes thesogtor instance when the
preconditions of that operator are satisfied (the recursallewill return empty list
as there are no more tasks in the list). Thus, the plan redusgeSHOP2 is ¢ 4]
which is equivalent to the situation calculus result.

Inductive StepWe will do a case by case analysis for each of the control cactst
in the process model to show that our translation and resuftians SHOP2 finds
are correct.

Choice SupposeC' is a composite OWL-S process defined aShwiceof two®
other processeS; and(Cs. The SHOP2 translation far' will yield two methods
M, =(C 0 Mg,) andM, = (C () Mc,). Note that the SHOP2 methods have no pre-
conditions { is used for preconditions) because we have assumed thabstmp
processes cannot have preconditions. Corresponding Godgggm forC' is ¢ =

dc, | dc, and the semantics is defined as

Do(d¢, |0¢y, 8, 8") = Do(d¢y, 8,8") V Do(d¢,, s, 8)

The disjunction means anythat is a valid action sequence for eithief or dc,
will also be a valid sequence for.. From our hypothesis we know for each action
sequencei that satisfie9, (or éc,) we have a valid SHOP2 plaR., (or Pc,).

5 Golog choice operatdris defined for two operands. A choice of more operands could
be done by nestedoperators which would not effect our proof here
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The nondeterministic choice in SHOP2 algorithm (line 11gves that when a plan

is being sought foc”, the solution for any matching method instance, in this case
M, andM,, will be returned as a result. This ensures that when SHO&gkd to
find all the plans foC', both P, and P, will be returned proving the equivalence
to the answer in situation calculus.

SequenceSuppose” is a composite OWL-S process defined &eguencef two

other processe§; andC,. The SHOP?2 translation faf' will yield one method
Mc = (C 0 (Mg, Mc,)). Corresponding Golog program f6tis éc = d¢, ; dc, and
the semantics is defined as

Do(6¢,; 60y, 8,8") = (3s*)(Do(dcy, s, 5*) A Do(d¢,, s*,8'))

Suppose that situatiosi represents a history of the action sequericéf the action
sequence recorded between situatiorsnds’ is d, then the final situatios’ repre-
sents the concatenated sequeneéi,, d,]. Calling SHOP2¢, M, , D) will return
P¢, and from our hypothesis we know that it is equivalent to thigoacsequence
a;. We also know that calling SHOPZ( Mc,, D) will return a planPg, that is
equivalent to the action sequence SHOP2 algorithm shows that (line 14) when
a task (in this casé/.) is removed from the input task netwofk it is replaced
with its sub-elements (in this cagé., and M,). The tasks to solve are selected
from T in the order they were added (line 3) so the resulting plarSidOP26,
M¢, D) will actually be the concatenation éf., and P, which is equivalent to
the sequencé.

If-Then-Else Suppose” is a composite OWL-S process defined withf-dhen-
Elsecontrol construct andond is the condition for the if statement; is the pro-
cess in the then part antd, is the process in the else part. The SHOP2 translation
for C' will yield one methodVi = (C cond M¢, B Mc,). Corresponding Golog pro-
gram forC'is d¢ = (if cond then ¢, elseéqs, endIf) and the semantics is defined
as

Do(if cond then i¢, elsedq, endlf, s, ')
= Do((cond?; 6¢,), S, ')V Do((—cond?; d¢,), S, S’)
= (cond[s] A Do(6¢y, S, S"))V (—cond[s] A Do(6¢,, S, S))

The expressionond[s] evaluates to true whenever the fluentd is true in situa-
tion s. Supposei; is the action sequence for the situatin andd, is the action
sequence for the situatiof,. If s satisfiescond then the result fod- will be a;
otherwise result will bei;. From our hypothesis we know for any possible(or
d,) we have a valid SHOP2 plaR, (or Pr,). When we call SHOP2( M, D),
the algorithm will check the conditions in the method defamt(line 12),cond and
() in this translation. lItond is satisfied algorithm return&-, and otherwise returns
Pc, which is equivalent to the the result in situation calculus.

Repeat-While Suppose&”' is a composite OWL-S process defined witRepeat-
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While control construct andond is the condition for the while statement aot
is the process in the loop body. As we have assumed that cagecesses
do not have preconditions, without losing generality, wie semplify the SHOP2
translation to be\/ = (C cond (C, C) () ). Corresponding Golog program f6r
is d¢ = (while cond do d¢, endWhile) and the semantics is defined as

Do(while cond do ., endWhile, s, s’) =Do([[(cond?; d¢,)]*; —cond?], S, S’)

This definition includes the nondeterministic iterationeggtion* which has a
second-order semantics [11]. We will use the restrictedivarof Golog as de-
fined in [12] where the the iterations has a lirkitThis restriction eliminates the
problems caused by unlimited looping and enables us to dafimgt order seman-
tics.

Assume the iteration runs times. Whenk = 0, the above formula simplifies to
Do(—cond?, s, ") which returns an empty action sequence in situatadoutus.
This new formula also implies conditiotvnd is false in the initial situatiors.
When SHOP?2 is trying to solv&/., sincecond is false the algorithm will choose
(line 12) the second condition-task list pair (note thatsbeond condition inV/x

is () which is always true). The second task lisfiso SHOP2 will return an empty
plan as well. Supposeis a valid action sequence fog,. From our hypothesis we
know for each action sequené¢hat satisfies, we have a valid SHOP2 plai, .

In the general case, whén> 0, the Golog formula become3o([cond?; (0¢,)*;
...; cond?; (0¢, )*; =cond?], s, s') hence the action sequence will lag,[. . ., a@y].
Note that action sequence for each step of iteration mayfiexeht, for example
whendg, contains nondeterministic choices. We also know that! will be true
in situationss, sy, ..., sy_1; and false in situatio,. When SHOP2 is searching
a plan for M, the first condition {ond) will evaluate to true and SHOP2 will
chose the first task list{; C). Solving the first taskC; will add P; to the plan
and solving second task will recursively continue untitond fails. Since, initial
states are equal and plan prefixes are same]{ will not hold afterkth iteration.
At this point, algorithm will chose the second conditioskdist pair (empty task
list) which will conclude the recursion and the plan retutnell be [P, ..., Pl
At each step of the iteration we will have the equivalent watiates so the action
sequencer; and planP; will be equivalent due to our hypothesis. Therefore, the
final plan and the final action sequence will be equivalent.

Repeat-Until The proof for this case will be very similar to the above prémf
Repeat-Whileonstruct.

Our proof did not include the effects of executing inforroatproviding services
during planning. Information gathering during planningssme as the Middle
Ground execution (MG) for sensing actions in Golog apprd&2h In both cases,
planning starts with an incomplete initial state and exegusensing actions add
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new knowledge to the state. As long as the information negddrom the services
is same, we would still have the equivalence of world statdmth representations
and we could extend the proof to this case.

The correctness of MG depends on Invocation and Reasonatdsteace (IRP)

assumption. Intuitively, IRP assumption says that 1) Infation-providing ser-

vices should be executable in the initial state, and 2) m&dron gathered from
these services cannot be changed by external or subseatiensaThe first con-

dition follows from the fact that information gathering isrte with respect to the
initial state. Second condition assumes no external sauitehange the gathered
information during the planning process but also prohithits planner do any ac-
tion that will do so. This is to prevent problems such as thme:dn our example

domain (see Section 2) a Web Service is executed to get thialdeaappointment

times from a hospital. Then planner simulates schedulingppointment at one
of the available time slots. If the information-providingrsice is executed again
and available appointment times (which has not yet beenggtjrare added to the
knowledge base then there would be a problem because plaonéa be able to

schedule another appointment in the same time slot. IRPlptshine second step
(changing the information retrieved) to overcome this peob This is certainly

very restrictive in our case and our solution is to prohib# tast step where the
same information-providing service is executed more thareo

To establish the soundness and completeness of our appvedcive the following
assumptions about the information-providing Web Services

e executable (in the initial state with all parameters gread)d
¢ terminable (with finite computation)
e repeatable (with same result for the same call during thenatg process)

We also assume that the information that is returned froferdift Web Services
are disjoint, i.e. no two services return the same inforomatirhese assumptions
guarantee that information gathered can only be changetidowndtions planner
simulates and there is no way that this simulated changdwilindone by another
information gathering step as long as we execute each iafttom providing Web
Service at most once.

One other thing to note is that, different from the Golog apgh, we don't allow
the information-providing services appear in the final psimce our translation
methodology maps them to “book-keeping” operators. Howelies is just a style
difference as in the Golog approach a post-processing s&mjigested to find the
world-altering services for the execution of the resultplgn. In some situations,

it could still be valuable to include the information-prdirig services in the plan
so a prudent action could verify if the information-providiservices still return
same information. This could be easily achieved in our sydby changing the
TRANSLATEATOMIC-PROCESSOUTPUT procedure to generate a standard oper-
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ator rather than a “book-keeping” operator (translatidesdor precondition and
effect).

6 Implementation

To realize our ideas, we started with an implementation oVéLES to SHOP2
translator. This translator is a Java program that readsdallaction of OWL-

S process definitions and outputs a SHOP2 domain. As showreitranslation
algorithm in Section 5.1, when planning for any problem iis thomain, SHOP2
will actually call the information-providing Web servicés collect information
while maintaining the ability of backtrack by merely simitithg the effect of world-
altering Web services. The output of SHOP2 is a sequence datiering Web
services calls that can be subsequently executed.

We built a monitor which handles SHOP2’s calls to externtdimation-providing
Web Services during planning. We wrote a OWL-S Web Servicesw®r which
communicates with SOAP based Web Services described by O\ytougdings
to WSDL descriptions of those Web Services. Upon SHOP2'sastyjthe moni-
tor will call this OWL-S Web Services executor to execute togesponding Web
Service. Since the information-providing services areagswdefined as atomic pro-
cesses, the service is executed by invoking the WSDL seruitka grounding.
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The monitor also caches the responses of the informatioviging Web services
to avoid invoking a Web Service with same parameters more tmece during
planning. This will save the network communication times anprove planning
efficiency, and establishes the repeatability conditiguied for proving SHOP2'’s
soundness and completeness. Also information can only dkedaidto the current
state if it has not been changed by the planner. We assum¢hthatiched infor-
mation will not be changed by other agents during plannirdyvaa will generalize
this in our future work.

We also built a SHOP2 to OWL-S plan converter, which will camvke plan pro-
duced by SHOP2 to OWL-S format which can be directly execuyeithé® OWL-S
executor.

We ran our scenario from Section 2 on this system. In doing so:

e Our system communicated with real Web Services. Unforalpathe current
Web Services available on the Web have only WSDL descriptigtisout any
semantic mark-up. Therefore, we created OWL-S mark-up feritsSDL de-
scriptions of these online services. For some servicesstivegessary to create
even the WSDL description, e.g. for CVS Online Pharmacy Stoneas not
possible to use real services for some of the services dithmause none was
available as Web Services, e.g. a doctor’s agent providiagpatient’s prescrip-
tion, or it was infeasible to use a real Web Service for theaesrg. making an
appointment with a doctor each time the program is execti@dhese services,
we implemented Web Services to simulate these functioesilit

e We built Web Services that allow the access to user’s pelstfoamation sources.
For example, it is necessary to learn the user’'s schedule tblke to generate
a plan for the example task in our demo. It is possible to gstitfformation
from the sources available on the user's machine such asariinformation
Manager like Microsoft's Outlook. We have implemented ‘46cSOAP based
services that will retrieve this kind of information. WSDL&O®WL-S descrip-
tions are also generated for these local services so that#mebe composed and
executed in the same way as other remotely available service

Finally, some information gathering services were impleted as direct Java
calls from SHOP2 over a Java/SHOP2 bridge. For example, we aaervice
which asks the user for acceptable distances to the treatraater by popping
up a window on the user’s client to accept input. Changing tita éntered at
this point will possibly yield a different plan to be genex@llowing the planner
produce custom plans depending on personal preferences.

e We also encoded a description of how to compose Web Senaceadks such
as the one faced by Bill and Joan in section 2 in OWL-S. The dasamiis given
as a OWL-S composite process that is composed of severalauimosite pro-
cesses that are defined as sequence, choice or unorderedsa®cThis OWL-S
description constitutes the top level composite processrieed in Section 5.1
and is translated into a SHOP2 domain for planning. We enoux of the con-
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straints mentioned in section 2 as Web Service preconditigight now, there
is no standard process modeling language for specifying S¥ehice precondi-
tions. Therefore, we directly encode the Web Services mitons in SHOP2
format.

Figure 4 shows the various components of the systeand the results achieved
from a sample run of the example domain. The user starts wsilmple user in-
terface where an OWL-S service description for any desirekl tan be loaded.
When the service description for the example domain is ssdeet form to enter
the required parameters for the task is presented to theTdseiform is generated
based on the ontologies used to describe the input parasradtére service. The
Ul will also automatically fill out some of the fields such as titome address from
a user specified knowledge base.

Once all the input parameters are provided SHOP2 startddin@ipg process us-
ing the domain description obtained from the translatiothefOWL-S files. Note
that the service selected in the Ul is specified by an “abSttask list, that is, a set
of tasks which can be achieved in a variety of ways. In ordéexecute” (it would
be better to say, “perform”, or “achieve”) this service weshdecompose these
abstract tasks into actions (services) that we can actunbked. SHOP2 decom-
poses the top level task into smaller subtasks, and of coliese may be multiple
different decompositions for any given task. For exampites decomposition for
the top level task yields a task to schedule two appointmemthe same day for
the same person whereas another decomposition will yiedglkatd schedule two
appointments on two different days for two different drivésee Section 2 for more
information on domain characteristics). Another exampkact task is to find the
availability of the prescribed medicine in an online phacynstore. A decomposi-
tion for this task will include all the different Web Servicéor different online
stores. These decompositions are statically given in the 3Adervice descrip-
tions but one can imagine a more dynamic setting where a WelicBeepository
is queried for possible decompositions.

The SHOP2 planner will execute the information-providingd/&ervices to gather
the necessary information for plan generation. e.g. gettladlable appointment
times from hospitals. Based on the collected informatiorpthener will, if possi-
ble, produce a plan that is a valid decomposition of the tapll&sk. This plan is
simply a sequence of atomic, directly executable Web Sesvstich as “order the
medicine from the online pharmacy store”, “make the appoarit in the hospital
for the treatment”, and “update my personal calendar wighappointment info”.
User has the option to view the details of the plan, rejeciplhe if desired, and
re-plan with a new set of constraints.

To test the effectiveness of our approach, we have run SH@QR2weral instances

" This system was demonstrated in the Developer’s Day of the 12th WWWremntein
Budapest, Hungary
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of the example problem. These problem instances varied éases where it was
easy to schedule satisfactory appointments to a case irhwbicearby treatment
centers had treatment time slots that were close togetbahas Bill and Joan
would both have to drive Mom for treatments on separate dayall of these

cases, SHOP2 was easily able to find the best possible soltdigure 4 shows a
snapshot of the running system and the interaction betwiemnemt components
of the system.

7 Discussion

7.1 Using Semantic Web Knowledge Bases

SHOP?2 represents the state of the world as a set of grounchlagoms. SHOP2
uses axioms which are generalized versions of Horn clansetetr conditions that
are not explicitly asserted in the current state. SHOPZsrtm prover makes a
closed-world assumption. In contrast, Semantic Web, amticpkarly OWL, has
an open-world assumption. The inferences in OWL are done mggpect to the
OWL Semantics[14]. OWL DL species of the language can be dyrezdpped to
SHION(D) Description Logic (DL)[15] which itself is a deatble subset of first
order logic.

Unfortunately, it is not possible to directly express themaatics of OWL DL using
SHOP2 axioms. Therefore using SHOP2's theorem prover tireauses us to
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lose the inferencing capability normally an OWL reasonespeses. Furthermore,
the size of the data involved in the planning process overga@mWeb will be
much bigger than the ones encountered in classical plamqpriglems. The state
of the world consists of all the information coming from doigies either stored
locally or found remotely on the Web. Therefore, the theopeaver should be able
to work in Web scale, with thousands or maybe hundreds ofsods of facts and
axioms. SHOPZ2’s inferencing capabilities are not satisfgcfor the expressivity
and the scalability needed to deal with knowledge basegifoarSemantic Web.

Itis possible to completely replace the theorem prover SEI@des with a new one.
As long as the theorem proving is decidable and the theorewepis sound and
complete then the soundness and completeness of the pisensured. So, we can
use an OWL reasoner to reason about the state of the world.i©Omdllel, the state
will be simply represented as an OWL knowledge base. The pitton checking
is equivalent to querying the knowledge base and applyiferesfis equivalent
to adding and deleting facts from the knowledge base. If ws&ict ourselves to
the OWL DL language then we can use sound and complete DL regssfor this
purpose. Also there exists DL reasoners specialized to@a&edy large knowledge
bases [16]. Therefore, we can solve both the expressivitysaalability problems.

Using a DL reasoner inside SHOP2 planner brings out somessiat classical

planning theory has not addressed thoroughly. In gendeaisical planners do not
let axiomatic inference at all or only allow a restrictedrfoof inference. For ex-

ample, secondary relations, relations whose values caadigcdd from other rela-

tions, are allowed to appear only in preconditions but neffiects to avoid certain

complications [17, P. 42]. Any property in OWL that is definedcheive an inverse

property can be seen as a secondary relation because tedmatiat property can

be deduced from its inverse property. Either the planneulshaot accept operator
descriptions that use these properties in effects or itlshaefine the semantics as-
sociated with it. The semantics may require that if a refeitsan the delete list and

the property used in the relation has an inverse property tiwe inverse relation

will also be deleted.

As an initial attempt to investigate the applicability oktldea, we have incorpo-
rated the OWL DL reasoner Pellet [18] into SHOP2. To avoid tfabjems men-
tioned above we have considered only a restricted set oepsodefinitions where
preconditions and effects consist of ABox expressions afettsfdo not mention
secondary relations. It was possible to represent the gsodescriptions used in
the example defined in Section 2 with these restrictions. iQitial observations
showed that using a DL reasoner increased the amount of émered for plan-
ning but overall planning time was still dominated by thedispent for remote
Web Service execution. Of course, the reasoning time isaela the structures of
the ontologies used and having very complex definitionsatetfect the reasoner
performance significantly. As a future work we are contiiguio investigate this in
detail along with the effects of allowing more expressive nstructs in operator

25



definitions.

7.2 Information Gathering During Planning

There is a fundamental difference between exclusivelyrmédion-providing and

possibly world-altering atomic processes. We typicallytta execute information-
providing atomic processes at various points in the planmprocess, while we

never want to execute world-altering ones. Contrariwisepatposition execution
time, the primary interest is in the execution of world-ahg processes. Indeed,
in our system we do not include any information-providinggasses in compo-
sitions. Furthermore, currently we do not permit worldeehg processes to be
information-providing, at least in the sense that they niaste no outputs. This
simplification made the system fairly easy to implement wuthsubstantial modi-

fication of SHOP2.

However, mapping information-gathering processes toadled “book-keeping”
operators is somewhat unaesthetic. In the translatiorritiigp we described, for
each atomic process that does not have any effects a bopkagegperator is cre-
ated with a precondition that contains the external calkexate the service and an
effect to assert the output results as knowledge effects bblok-keeping operator
appears as a subtask in the method definition that uses thi¢ oéshat service.
But, these operators are treated specially by SHOP2 and thay appear in the
resulting plans.

It is also possible to directly encode the information-padowy operators in the
preconditions of the calling methods. The external calleivise execution would
be put into the method’s precondition instead of the inteliste book-keeping
operator. The output of the information-providing serwiaauld be stored in a local
variable using SHOP2assignfeature. We don’t need to store results globally since
by definition only the enclosing process should be able te@ssthe results of

a subprocess. Using local variables proves to be a moreegiffisiay to handle
outputs since the overall number of facts stored in the otstate are not effected
by the information gathering services.

This different encoding technique has some consequenoesxkmple, normally
it is possible to define preconditions for information-pirg services. While the
book-keeping operators can be used to represent theseioondihe new encoding
method does not keep this information. As far as the coresstof the plan is con-
cerned, this is not really a problem. We can directly exeoitemation-providing
services and if the precondition of that service is not Batighe service will sim-
ply fail to execute. Checking preconditions is more efficigrain trying to execute
the service. For typical public information-providing gees, there are no adverse
consequences to trying to execute the services. In a situatiere attempting a in-
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formation Web Service call was expensive or harmful, we wdwdve to fall back
on our prior encoding.

Another issue related to the performance arises when irdtom gathering and
world altering services are used together inside sequeRoegxample, an infor-
mation gathering service may be defined in between two wdtédiag actions.
When this information providing service is encoded in thecpralition of the
method it will be evaluated before both of the world altergegvices. This will
not effect the resulting plan in any way but may have some anhpa the perfor-
mance. If during planning process it turns out that the fistigvaltering action is
not applicable in the current state then the time spent towtgethe information
gathering service is wasted.

So far we have only considered the cases where we explicidywkvhich services
will provide the information needed for the given task. Butuadly information
gathering itself can be seen as another planning probleimmAsdiscussed in the
previous section, precondition checking is reduced toygjaaswering on Seman-
tic Web. If the information required to answer the query i$ pgesent then we
can search for the services who can supply the necessaryTtiggrocess can be
done as a goal oriented planning process [19] and SHOP2 callldnother plan-
ner for this purpose. It is also possible that informatiooving services have a
hierarchical structure similar to the world altering on€sen we can use SHOP2
recursively to first generate a plan for information gathgstep, execute this plan
to get the information and then use this information to saheinitial planning
problem.

8 Related Work

Mcllarith and Son [9,12] proposed an approach to buildingragechnology based
on the notion of generic procedures and customizing usestnts. They adapt
and extend the Golog language to enable programs that aegigerustomizable
and usable in the context of the Web. They augment a ConGoterpineter that

combines online execution of information-providing sees with offline simula-

tion of world altering services. Our approach is very simiia this. A general

logic-based system has the ability to do arbitrary reagpabout the theory but in
general we suspect that a logic based approach will not b#iaier’t as an HTN

planner.

Matskin and Mao [20] applies software synthesis and contpposnethods to Web
Services composition. Their work is based on similaritiesasteen Web Service
composition and component-based system development twasef engineering.
They use OWL-S for service descriptions and adopt Struc&yathesis Program
(SSP) method for automated service composition. Serviogposition is based
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on the input-output information of services components raagiires little domain
knowledge. This approach treats each service as an atotric\without inspecting
the internal process model and therefore lacks the abditgason about different
decompositions in a composite process.

RETSINA [21] is an open multi-agent system that providesastiructure for differ-
ent types of deliberative, goal directed agents. RETSINAesgsncludes a planner
based on the HTN planning paradigm. The RETSINA planner attends HTN
planning by adding interleaving of planning and executidnol basically allows
the actions execute before a plan is completely formed,lairto our approach.
Paolucci et al. [22] describes using RETSINA planner in th&ext of creating au-
tonomous Web Services that can automatically interact eaith other. However,
authors do not give details about how HTN planning is empoyethe system.
It is not clear whether OWL-S Process Model was used or plgndomain was
given a priori to the planner agent. For this reason, we damade a comparison
with our approach.

9 Conclusion

In this paper, we have defined a translation from OWL-S proossdels to the
SHOP2 domains, and from OWL-S composition tasks to SHOPZhpigrprob-

lems. We have described our implemented system which pesftris translation,
uses an extended SHOP2 implementation to plan with and bedrdnslated do-
main, and then executes the resulting plans. In the pro¢esgining the translation
and building the system, we observed that:

e Inour current approach, the planner always executes optpdticing actions as
it plans. While this is fine for many situations, it may not ajwde appropriate.
For example, the execution of some Web Services may takeyalmeg time.
It would be better if the planner could continue to plan whilaiting for this
information.

¢ In our paper, we assume that all effects are physical. In t@agituations, there
may be other changes, such as in the mental states of thesagenited, that
are not modeled. We will explore this problem in our futurerkvo

¢ Information providing (whether exclusively so, or not) iisely to be a signifi-
cant fraction of the available and salient Web Services.yM&ab contexts seem
to beinformation richbutaction poor In such environments, we would want to
reconsider the strict partition of services into exclulsiveformation providing
and output free. For example, world-altering services wiitputs might supply
information needed to decide subsequent courses of a€llearly, such a ser-
vice shouldn’t be executed at planning time, which suggéstiswe will need to
investigate generating conditional plans by SHOP2 styl&lipanning.

Conditional plans will also help mitigate the constraint oformation change
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during planning. Currently, both for theoretical and pre&tireasons, we only
execute an information providing process once during ptapfor any given
input, and subsequently retrieve a cached result. GivenFB¢i€peed, this is
not that unreasonable a restriction for many cases, butittamal plans would
permit planning for various contingencies.

These considerations raise a host of issues regardingiplans. composition
execution time execution of information providing proassincluding those
of deciding which such processes to execute only duringnatay only during
plan execution, and during both. Furthermore, in complang Irunning planning
sessions, it might make sense to refresh the monitors cacloefftain services
at intervals. Presumably, OWL-S descriptions will be ergttho help support
the requisite analysis. We intend to explore these issukeglne work.
Compared the complexities raised above, composite pracease no addi-
tional or special problems — encoding them as SHOP2 metheeas correct
and straightforward, modulo the need to extend SHOP2 tolbaxhcurrency.
Simple processes are the odd duck of the lot. Though variembears of the
OWL-S coalition have suggested, in conversation, that snppbcesses were
intended to support HTN planning, we found them neither sga®y, nor conve-
nient, nor useful. In part, their lack of a clear semantiestipularly with regard
to the relationship of their inputs, outputs, precondisioand effects to those of
their corresponding atomic or composite processes. Funthre, while the lan-
guage of the technical overview[3] suggests that a giveplgiprocess can be a
view of one atomic process or one composite process, butatbt beither the
language nor the ontology actually require this restrictdd/e speculated that
this would make simple processes useful for specifying @eant alternative
composition paths, but it wasn't clear that this was realyrenconvenient (for
our purposes) than using tl@hoice control construct.
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