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to try to understand why programs have been unable toutilize forward pruning as e�ectively as humans havedone, and whether there are ways to utilize forwardpruning more e�ectively.1As a step toward deeper understanding of how for-ward pruning a�ects quality of play, in this paper weset up a model of forward pruning on two abstractclasses of game trees, and we use this model to inves-tigate how forward pruning a�ects the probability ofchoosing the correct move. Our results suggest thatforward pruning works best in situations where thereis a high correlation among the minimax values of sib-ling nodes. Since we believe that bridge has this char-acteristic, this encourages us to believe that forwardpruning may work better in the game of bridge than ithas worked in other games.Forward-Pruning ModelsConsider a zero-sum game between two players, Maxand Min. If the game is a perfect-information game,then the \correct" value of each node u is normallytaken to be the well known minimax value:mm(u) = 8>>>>><>>>>>: the payo� at uif u is a terminal node;maxfmm(v) : v is a child of ugif it is Max's move at u;minfmm(v) : v is a child of ugif it is Min's move at u:Due to the size of the game tree, computing a node'strue minimax value is impractical for most games. Forthis reason, game-playing programs usually mark somenon-terminal nodes as terminal, and evaluate them us-ing some static evaluation function e(u). The simplestversion of this approach is what Shannon [16] called\Type A" pruning: choose some arbitrary cuto� depthd, and mark a non-terminal node u as terminal if andonly if u's depth exceeds d. A more sophisticated ver-sion of this is quiescence search: mark a non-terminal1In particular, we are developing a forward-pruningsearch technique for the game of bridge [17, 18], by ex-tending task-network planning techniques [22, 23, 13, 20]to represent multi-agency and uncertainty.



node u as terminal if and only if u's depth exceeds dand u is \quiet" (i.e., there is reason to believe thate(u) will be reasonably accurate at u).To further decrease the number of nodes examined,game-tree-search procedures have been developed suchas alpha-beta [5], B* [2], or SSS* [21]. These proce-dures will ignore any node v below u that they canprove will not a�ect u's minimax value mm(u).This approach has worked well in games such aschess [3, 7], checkers [15, 14], and othello [6]. A moreaggressive approach is forward pruning, in which theprocedure deliberately ignores v if it believes v is un-likely to a�ect mm(u), even if there is no proof thatv will not a�ect mm(u). Although several early com-puter chess programs used forward pruning, it is nolonger widely used, because chess programs that usedit did less well than those that did not [4, 24].Our Model of Forward PruningIn the game trees investigated in this paper, the valueof each leaf node is either 1, representing a win forMax, or 0, representing a win for Min. Our model ofa forward-pruning algorithm works as follows. At eachnode uwhere it is Max's move, u has three children, u1,u2, and u3. The forward-pruning algorithm will chooseexactly two of these three nodes to investigate further.Normally, it will make this choice by applying a staticevaluation function eval(:) to the three nodes, and dis-carding the node having the lowest value|and this iswhat we do in the \Statistical Studies" section. Forour mathematical derivations, we assume �xed proba-bilities for which nodes will be chosen and which nodewill be discarded, as described below. There are threepossible cases:1. Two of the nodes, say u1 and u2, have minimax val-ues representing wins for the current player. One ofthe nodes, say u3, has a minimax value representinga loss for the current player. Then the correct twochildren to investigate further are the ones whoseminimax values are the same as the minimax valueof u, in this case u1 and u2. Thus, for a Max node,the correct children have value 1; for a Min node, thecorrect children have value 0. If the algorithm doesnot choose both of the correct children, then the al-gorithm will search only one of u1 and u2. Thus,it will continue part of its search down an incorrectbranch, in this case the branch leading to u3. Thismay result in an error in the algorithm's computa-tion of u's minimax value.In our mathematical derivations, we assume that theprobability of choosing the correct two children isp, where p is constant throughout the tree. Thealgorithm's probability of choosing one correct childand the incorrect child is thus (1 � p)=2 for eachcorrect child.2. One of the nodes, say u1, has a minimax value rep-resenting a win for the current player. Two of the
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-1 +1 -1Figure 1: Example of an N-game-like tree.nodes, say u2 and u3, have minimax values repre-senting losses for the current player. In this case,the correct child is u1. If the algorithm chooses thetwo incorrect nodes, it will continue the rest of itssearch down incorrect branches, those leading to u2and u3. This is likely to result in an error in thealgorithm's computation of u's minimax value.In our mathematical derivations, we assume that theprobability of choosing the two incorrect nodes is r,where r is constant throughout the tree. The algo-rithm's probability of choosing the correct child andone incorrect child is thus (1 � r)=2 for each incor-rect child. (For the rest of this paper, we will setr = (1� p)2 and de�ne q = 1� (p+ r).)3. All of the nodes have the same minimax value. Inthis case, all children are equally correct; the al-gorithm's probability of choosing any given pair ofbranches is 1=3.Game-Tree ModelsIn this section, we de�ne two di�erent classes of gametrees. In later sections, we will investigate how forwardpruning behaves on these trees.N-Game trees and N-Game-Like TreesAn N-game-like tree is a complete tree that containsthe following types of nodes (for example, see Fig. 1):1. Max nodes, where it is Max's move. Each Max nodeis either a leaf node or has three children, all of whichare Min nodes.2. Min nodes, where it is Min's move. Each Min nodehas three children, all of which are RVA nodes.3. RVA (random-value addition) nodes, which have nu-meric values assigned to them at random. The nu-meric value of each RVA node is chosen indepen-dently from the set f�1; 1g with probability pN be-ing the probability of choosing 1. (For the rest of thispaper, we will set pN = 0:61803, the golden ratio, sothat in the limit, there is still a nonzero probabilityof each player having a forced win in the game tree.)Each RVA node has a single child, which is a Maxnode.
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1 0 1 1 0 0 0 0 1Figure 2: Example of a P-game tree.The tree'sMax-height, h, is one less than the numberof Max nodes on any path from the root to a leaf node.2The strength of each leaf node u is the sum of the valuesof the RVA nodes on the path from the root to u. If thestrength of a leaf node is nonnegative, it is classi�ed asa win; otherwise, it is classi�ed as a loss.An N-game tree, as de�ned in [9, 10], is similar to theN-game-like trees de�ned above, except that N-gametrees have no RVA nodes. Instead, a value of 1 or -1is randomly assigned to each arc, with a probability of0.5 of choosing 1. In this paper, we study N-game-liketrees in the \Mathematical Derivations" section, andN-game trees in the \Statistical Studies" section.Comparison with BridgeIn the game of bridge, the basic unit of play is thetrick. After each side has made a move, one side orthe other wins the trick. At each point in a bridgehand, the trick score for each side is the number oftricks that side has scored so far. The outcome of thehand depends on each side's trick score at the end ofthe hand.This trick-scoring method gives bridge a super�cialresemblance to the N-game-like trees de�ned above.To see this, consider a node v in a bridge game tree,and suppose that v represents a bridge deal in which ntricks are left to be played. If T is the subtree rootedat v, then the trick scores of the leaves of T cannotdi�er from one another by any more than n. A similarsituation occurs in an N-game-like tree of height h: ifa Max node v has a Max-height of n, and T is thesubtree rooted at v, then the strength of the leaves ofT cannot di�er from one another by any more than 2n.P-Game TreesA P-game tree [9, 10, 12] is a complete tree that con-tains the following types of nodes (an example appearsin Fig. 2):1. Max nodes, where it is Max's move. Each Max nodeis either a leaf node or has exactly three children, allof which are Min nodes.2This is analogous to the height of a complete tree(which is one less than the number of nodes on any pathfrom the root to a leaf node), except that here we onlycount Max nodes.

2. Min nodes, where it is Min's move. Each Minnode has exactly three children, which are both Maxnodes.As before, the tree's Max-height, h, is one less thanthe number of Max nodes on any path from the root toa leaf node. Since the tree is complete, each leaf nodehas the same height, and thus the same Max-height.The value of each leaf node u is randomly, indepen-dently chosen from a the set f0; 1g, with probability pPof choosing 1. (For the rest of this paper, we will setpP = 0:68233, in order to guarantee that in the limit,there is still a nonzero probability that each player willhave a forced win in the game tree [1, 11, 9].) Becauseu's value does not depend on the path from the rootto u, there is no need for RVA nodes.Mathematical DerivationsForward Pruning on N-Game-Like TreesWe want to compute the probability that the forward-pruning algorithm estimates a value of s and the actualvalue is t for an N-game-like tree T whose Max-heightis h. That is, we want Pr[estimated value s, actualvalue t j T 's Max-height is h]. We can compute thisfrom the node strengths, as follows. Leteh;x;y = Pr[estimated strength x, actual strength yj Max-height h, root is a Max node];fh;x;y = Pr[estimated strength x, actual strength yj Max-height h, root is an RVA node];gh;x;y = Pr[estimated strength x, actual strength yj Max-height h, root is a Min node].These probabilities depend on p and pN (recall thatpN = 0:61803). The base case is e0;x;y = 1 if x = y = 0,and e0;x;y = 0 otherwise. The recurrence for fh;x;y isfh;x;y = pNeh;x�1;y�1 + (1� pN )eh;x+1;y+1:The recurrences for gh;x;y and eh+1;x;y are too compli-cated to include here; see [19]. Now, let�eh;s;t = Pr[estimated value s, actual value tj Max-height h, root is a Max node];�fh;s;t = Pr[estimated value s, actual value tj Max-height h, root is an RVA node];�gh;s;t = Pr[estimated value s, actual value tj Max-height h, root is a Min node].Then �eh;1;1 = Xx:x�0 Xy:y�0 eh;x;y;�eh;1;0 = Xx:x�0 Xy:y<0 eh;x;y;�eh;0;1 = Xx:x<0 Xy:y�0 eh;x;y;�eh;0;0 = Xx:x<0 Xy:y<0 eh;x;y:For �f and �g, the equations are similar.



Forward Pruning on P-Game TreesSince there are no strengths in P-game trees, we cancompute the probabilities for the values directly. Wede�nee0h;x;y = Pr[estimated value x, actual value yj Max-height h, root is a Max node];g0h;x;y = Pr[estimated value x, actual value yj Max-height h, root is a Min node].The base case is e0;x;y = pP if x = 1 and y = 1; (1�pP )if x = 0 and y = 0; and 0 otherwise. As shown in [19],the recurrence for g0h;x;y is identical to that for fh;x;y,except that each occurrence of eh;m;n is replaced bye0h;m;n. The recurrence for e0h+1;x;y is identical to thatfor eh+1;x;y, except that each occurrence of fh;m;n isreplaced by f 0h;m;n.Probability of Correct DecisionWe can use the above recurrences to measure the prob-ability of correct decision. This is the probability thatthe forward-pruning algorithm, given a choice betweentwo alternatives that have di�erent minimax values,will choose the correct one.3 In particular, consideran N-game-like tree T of Max-height h, whose root isa Max node u with children u1 and u2 such that thevalue of u1 is greater than the value of u2. ThenDh = Pr[estimated value of u1 >estimated value of u2]+ 12Pr[estimated value of u1 =estimated value of u2]= [�gh�1;1;1�gh�1;0;0 +�gh�1;0;1�gh�1;0;0=2 + �gh�1;1;1�gh�1;0;1=2][(�gh�1;1;1 + �gh�1;0;1)� (�gh�1;1;0 + �gh�1;0;0)]:Similarly, for P-game trees,D0h = [gh�1;1;1gh�1;0;0 +gh�1;0;1gh�1;0;0=2 + gh�1;1;1gh�1;0;1=2][(gh�1;1;1 + gh�1;0;1)� (gh�1;1;0 + gh�1;0;0)]:Results and InterpretationsTo derive closed-form solutions for the recurrencesdescribed in the \Mathematical Derivations" sectionwould be very complicated. However, since we do haveexact statements of the base cases and recurrences, wecan compute any desired value of eh;x;y or e0h;m;x;y, andthus any desired value ofDh orD0h. We have computedDh and D0h for trees of height h = 1; 2; : : : ; 15. The re-sults are shown in Fig. 3, along with the probability3We have also investigated the probability of correct de-cision among three alternatives; the formulas [19] are toocomplicated to present here, but the results are similar.
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Figure 3: Dh and D0h versus h for various values of p.of correct decision by random guess, included for com-parison purposes. Our interpretation of these resultsis as follows:41. The higher the value of p, the more likely it is thatthe forward-pruning algorithm will choose the cor-rect two nodes to investigate at each level of the tree,and thus the more likely it is that the algorithm willreturn a good approximation of the tree's minimaxvalue. As shown in Fig. 3, this occurs in both P-game trees and N-game-like trees.2. In N-game-like trees, there is much stronger corre-lation among the values of sibling nodes than thereis in P-game trees. Therefore, in N-game-like trees,even if the forward-pruning algorithm chooses thewrong node, the minimax value of this node is nottoo far from the minimax value we would computeanyway. Thus, as shown in Fig. 3, for each value ofp, the forward-pruning algorithm returns more ac-curate values in N-game-like trees than in P-gametrees. Statistical StudiesThe results in the \Mathematical Derivations" sectionsuggest that minimax with forward pruning does bet-ter when there is a high correlation among the minimaxvalues of sibling nodes in a game tree. Previous stud-ies [9, 10] have shown that ordinary minimaxing alsodoes better when there is a high correlation among theminimax values of sibling nodes in a game tree. Thus,the next question is whether minimax with forward4The probability of correct decision for N-game-liketrees exhibits a \manic-depressive" behavior similar to thatobserved in [8], that is, it is higher for odd Max-heightsthan it is for even Max-heights. We believe this is becauseour RVA nodes are only put below Min nodes. StandardN-game trees have the equivalent of our RVA nodes belowboth Min and Max nodes.



pruning would do better than ordinary minimaxing|for otherwise, it wouldn't make sense to use forwardpruning for actual game playing.To answer this question, we computed the proba-bilities of correct decision at various search depths onP-game trees and N-game trees, for minimax with andwithout forward pruning. For this study, we wanted touse a real evaluation function rather than a mathemat-ical model of one. This made it impossible to do ananalysis similar to the one in the \Mathmetical Deriva-tions" section, so instead we did a statistical study.For h = 2; : : : ; 6, we generated 5000 ternary N-gametrees and P-game trees of Max-height h. The treeswere generated at random, except that if a tree's rootdid not have at least one forced-win child cwin andone forced-loss child closs, we discarded the tree andgenerated another. For each tree T , we did a depthd minimax search of T ,5 using the same evaluationfunction used in [9, 10]:eval(u) = winning leaf-descendants of uall leaf-descendants of u :We did this for d = 1; : : : ; 2h� 2.6 To get a statisticalapproximation of the probability of correct decision,we averaged the following over all 5000 N-game treesor P-game trees:quantity averaged = 8>>><>>>: 1 if mm(cwin; d� 1) >mm(closs ; d� 1);1=2 if mm(cwin; d� 1) =mm(closs ; d� 1);0 otherwise:We then repeated the same experiment, using minimaxwith forward pruning.The results are shown in Figures 4 and 5, whichgraph the probability of correct decision for minimax-ing both with and without forward pruning. To indi-cate how good a decision each approach could producegiven the same amount of search time, these �guresgraph the probability of correct decision as a function5The depth-d minimax value of a node ismm(u; d) =8>>>><>>>>: eval(u) (the payo� at u)if d = 0 or u is a terminal node;maxfmm(v; d� 1) : v is a child of ugif it is Max's move at u;minfmm(v; d� 1) : v is a child of ugif it is Min's move at u:where eval(u) is u's evaluation function value. A depth dminimax search from a node u means computing the depthd � 1 minimax values of u's children.6We did not search to depths 2h � 1 and 2h becausethe comparison would not have been fair. At these depths,ordinary minimaxing applies eval(u) only to nodes withinone move of the end of the game. For such nodes, eval(u)produces perfect results, hence so does ordinary minimax-ing.
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Figure 4: Probability of correct decision on N-games,versus number of nodes generated, for minimax withand without forward pruning. The data is averagedover 5000 game trees.
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Figure 5: Probability of correct decision on P-games,versus number of nodes generated, for minimax withand without forward pruning. The data is averagedover 5000 game trees.of the number of nodes generated by the search.7 Ascan be seen, minimaxing with forward pruning gen-erally does better than ordinary minimaxing on N-games, and slightly worse than ordinary minimaxingon P-games. ConclusionIn this paper, we set up models of forward pruning onternary N-game-like game trees, and ternary P-gametrees. We used these models to compute the probabil-7For ternary game trees, the number of nodes generatedby a ordinary minimax search is 31+: : :+3n = (3n+1�3)=2.The number of nodes generated with forward pruning is3(20 + : : :+ 2n�1) = 3(2n � 1). This is without alpha-betapruning. With alpha-beta pruning, there would have beena di�erent number of nodes generated in each game tree,making it di�cult to obtain meaningful averages over our5000 games.



ity of correct decision produced by minimax with andwithout forward pruning.In our studies, minimax with forward pruning didbetter than ordinary minimaxing in cases where therewas a high correlation among the minimax values ofsibling nodes in a game tree. Thus, forward pruningmay possibly be a viable decision-making technique ongame trees having the following characteristics:�rst characteristic: there is generally a high correla-tion among sibling nodes;second characteristic: when there are exceptions tothe �rst characteristic, one can accurately identifythem.To extend our work, we intend to do an empiricalstudy of forward pruning on the game of bridge. Weare interested in bridge for the following reasons:� Bridge is an imperfect-information game, because noplayer knows exactly what moves the other playersare capable of making. Because of this, the gametree for bridge has a large branching factor, resultingin a game tree containing approximately 6:01� 1044nodes in the worst case. Ordinary minimax searchtechniques do not do well in bridge, because theyhave no chance of searching any signi�cant portionof the game tree.� Our preliminary studies on the game of bridge showthat by using forward-pruning techniques based ontask-network planning, we can produce search treesof only about 1300 nodes in the worst case [17].Thus, forward pruning will allow us to search all theway to the end of the game. Thus, we will not needto use a static evaluation function, and thus will nothave to deal with the inaccuracies produced by suchfunctions.� We believe that bridge has the two characteris-tics described above, primarily because of the trick-scoring method used in bridge. Thus, we believe thatforward pruning techniques may produce reasonablyaccurate results in bridge.References[1] Baudet, G. M. 1978. On the branching factor of thealpha-beta pruning algorithm. Artif. Intel. 10:173{199.[2] Berliner, H. J. 1979. The B* tree search algorithm:A best-�rst proof procedure. Artif. Intel. 12:23{40.[3] Berliner, H. J.; Goetsch, G.; Campbell, M. S.; andEbeling, C. 1990. Measuring the performance po-tential of chess programs. Artif. Intel. 43:7{20.[4] Biermann, A. W. 1978. Theoretical issues relatedto computer game playing programs. Personal Com-puting 86{88.[5] Knuth, D. E. and Moore, R. W. 1975. An analysisof alpha-beta pruning. Artif. Intel. 6:293{326.
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