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Abstract 

This paper describes the results of applying a modified 
version of hierarchical task-network (HTN) planning to 
the problem of declarer play in contract bridge. We rep- 
resent information about bridge in a task network that is 
extended to represent multi-agency and uncertainty. Our 
game-playing procedure uses this task network to gener- 
ate game trees in which the set of alternative choices is 
determined not by the set of possible actions, but by the 
set of available tactical and strategic schemes. 
This approach avoids the difficulties that traditional 
game-tree search techniques have with imperfect- 
information games such as bridge-but it also differs 
in several significant ways from the planning techniques 
used in typical HTN planners. We describe why these 
modifications were needed in order to build a successful 
planner for bridge. 
This same modified HTN planning strategy appears to be 
useful in a variety of application domains-for example, 
we have used the same planning techniques in a process- 
planning system for the manufacture of complex electro- 
mechanical devices (Hebbar et al. 1996). We discuss 
why the same technique has been successful in two such 
diverse domains. 

Introduction 
Tignum 2 is a computer system for declarer play at the 
game of contract bridge. Tignum 2 currently performs 
better at declarer play than the strongest commercially 
available program. ’ On 5000 randomly generated deals 
(including both suit contracts and notrump contracts), 
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‘It is probably safe to say that the Bridge Baron is the best 
program in the world for declarer play at contract bridge. It has 
won a number of important computer bridge competitions- 
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Tignum 2 beat the strongest commercially available pro- 
gram by 254 to 202, with 544 ties. These results are 
statistically significant at the CY = 0.05 level. We had 
never run Tignum 2 on any of these deals before this test, 
so these results are free from any training-set biases in 
favor of Tignum 2. 

This paper discusses the following issues: 

Unlike traditional game-playing computer programs, 
Tignum 2 is based not on brute-force game-tree 
search but on a modified version of Hierarchical Task- 
Network (HTN) planning. We discuss why bridge 
presents problems for the traditional approach, and 
why an HTN planning approach has worked well in 
Tignum 2. 

Although Tignum 2 is an HTNplanner, it incorporates 
several significant modifications to the planning tech- 
niques used in typical HTN planners. We extended 
the HTN framework to incorporate multi-agency and 
uncertain information, but restricted it to allow only 
totally-ordered plans. We describe why these modi- 
fications were needed in order to build a successful 
planner for the game of bridge. 

This same modified HTN planning strategy appears 
to be useful in a variety of application domains. For 
example, as described in (Hebbar et al. 1996) the 
same planning techniques (and some of the same 
code!) used in Tignum 2 have been used to build a 
process-planning system for the manufacture of com- 
plex electro-mechanical devices. We discuss why the 
same kind of planning technique has been successful 
in two such diverse domains. 

In this paper, we present only a sketch of our approach. 
Full details of our approach are in (Smith, Nau, & 
Throop 1996). 
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Background search tree. 

Although game-tree search works well in perfect- 
information games (such as chess (Levy & Newborn 
1982; Berliner et al. 1990), checkers (Samuel 1967; 
Schaeffer et al. 1992), and Othello (Lee & Maha- 
jan 1990)), it does not always work as well in other 
games. One example is the game of bridge. Bridge is 
an imperfect-information game, in which no player has 
complete knowledge about the state of the world, the 
possible actions, and their effects. Thus the branching 
factor of the game tree is very large. Because the bridge 
deal must be played in just a few minutes, a full game- 
tree search will not search a significant portion of this 
tree within the time available. 

TN Planning. Our work on hierarchical planning 
draws on (Tate 1977; Sacerdoti 1977). In addition. some 
of our definitions were motivated by (Erol, Hendler, & 
Nau 1994; Erol, Nau, and Subrahmanian, 1995). In par- 
ticular, Wilkins’s SIPE planning system (Wilkins 1984; 
Wilkins 1988) was a very successful hierarchical plan- 
ning system. However, these works do not address 
the uncertainty and incomplete information required in 
bridge. 

To address this problem, some researchers have tried 
making assumptions about the placement of the oppo- 
nents’ cards based on information from the bidding and 
prior play, and then searching the game trees result- 
ing from these assumptions. However, such approaches 
have several limitations, as described in Section . 

In our work, we have taken a different approach to 
this problem, based on the observation that bridge is a 
game of planning. For addressing various card-playing 
situations, the bridge literature describes a number of 
tactical schemes (short-term card-playing tactics such as 
finessing and ruffing), and strategic schemes (long-term 
card-playing tactics such as crossruffing). It appears that 
there is a small number of such schemes for each bridge 
deal, and that each of them can be expressed relatively 
simply. To play bridge, many humans use these schemes 
to create plans. They then follow those plans for some 
number of tricks, replanning when appropriate. 

Planning with Uncertainty. Some work has been 
done on planning with uncertainty and incomplete in- 
formation (Peot & Smith 1992; Draper, Hanks, & Weld 
1994; Kushmerick, Hanks, & Weld 1994; Collins & 
Pryor 1995). However, these works do not address prob- 
lems on the scale of bridge, where there is incomplete 
information about twenty-five cards. Encouragingly, 
problems on a grander scale are starting to be studied 
(Haddawy, Doan, & Goodwin 1995; Boutilier, Dearden, 
& Goldszmidt 1995; Lin & Dean 1995). 

We have taken advantage of the planning nature of 
bridge, by adapting and extending some ideas from task- 
network planning. To represent the tactical and strategic 
schemes of card-playing in bridge, we use multi-agent 
methods-structures similar to the “action schemas” or 
“methods” used in hierarchical single-agent planning 
systems such as Nonlin (Tate 1977), NOAH (Sacerdoti 
1977) O-Plan (Currie & Tate 1985), and SIPE (Wilkins 
1984; Wilkins 1988), but modified to represent multi- 
agency and uncertainty. 

Multi-Agent Planning. Much of the previous re- 
search on multi-agent planning has dealt with different 
issues than those that concern us here. In reactive plan- 
ning (Dean et al. 1993), the agent must respond in real 
time to externally-caused events-and the necessity of 
making quick decisions largely precludes the possibility 
of reasoning far into the future. In cooperative multi- 
agent planning (Gmytrasiewicz & Durfee 1992; Ped- 
nault 1987), the primary issue is how to coordinate the 
actions of cooperating agents-and this makes it largely 
unnecessary for a single planning agent to generate a 
plan that accounts for all of the alternative actions that 
another agent might perform. 

To generate game trees, we use a procedure similar to 
task decomposition. The methods that perform our tasks 
correspond to the various tactical and strategic schemes 
for playing the game of bridge. We then build up a 
game tree whose branches represent moves generated 
by these methods. This approach produces a game tree 
in which the number of branches from each state is 
determined not by the number of actions an agent can 
perform, but instead by the number of different tactical 
and strategic schemes the agent can employ. If at each 
node of the tree, the number of applicable schemes is 
smaller than the number of possible actions, this will 
result in a smaller branching factor, and a much smaller 

Bridge. Some of the work on bridge has focused on 
bidding (Lindelof 1983; Gamback, Ray net-, & Pell 1990; 
Gamback, Rayner, & Pell 1993). Stanier (1975) and 
Quinlan (1979) took some tentative steps towards the 
problem of bridge play. Berlin (1985) an approach to 
play of the hand at bridge similar to ours; sadly, he 
never had a chance to develop the approach (his paper 
was published posthumously). 

There are no really good computer programs for card- 
playing in bridge, especially in comparison to the suc- 
cess of computer programs for chess, checkers, and oth- 
ello; most computer bridge programs can be beaten by 
a reasonably advanced novice. Sterling and Nygate 
(1990) wrote a rule-based program for recognizing and 
executing squeeze plays, but squeeze opportunities in 
bridge are rare. Recently, Frank, Basin, and Bundy 

elated Work 
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(1992) have proposed a proof-planning approach, but 
thus far, they have only described the results of apply- 
ing this approach to planning the play of a single suit. 
Khemani ( 1994) has investigated a case-based planning 
approach to notrump declarer play, but hasn’t described 
the speed and skill of the program in actual competition. 
The approaches used in current commercial programs 
are based almost exclusively on domain-specific tech- 
niques. 

One approach is to make assumptions about the place- 
ment of the opponents’ cards based on information from 
the bidding and prior play, and then search the game 
tree resulting from these assumptions. This approach 
was taken in the Alpha Bridge program (Lopatin 1992), 
with a 20-ply (5-trick) search. However, this approach 
didn’t work very well: at the 1992 Computer Olympiad, 
Alpha Bridge placed last. 

Game-Tree Search with Uncertainty. Play of bet- 
ter quality can be achieved by generating several ran- 
dom hypotheses for what hands the opponents might 
have, and doing a full complete-information game-tree 
search for each hypothesized hand. This approach is 
used late in the deal in Great Game Products’ Bridge 
Baron program. Ginsberg (1996) has proposed using 
such an approach throughout the deal, employing clever 
techniques that make it possible to perform such a full 
game-tree search in a reasonable amount of time. How- 
ever, Frank and Basin (1996) have shown some pitfalls 
in any approach that treats an incomplete-information 
problem as a collection of complete-information prob- 
lems, as these approaches do. There is not yet any 
evidence that these pitfalls can be overcome. 

Some work has been done on extending game- 
tree search to address uncertainty, including Horacek’s 
(1990), and Ballard’s (1983) work on backgammon. 
However, these works do not address the kind of un- 
certainty involved in bridge, and thus it does not appear 
to us that these approaches would be sufficient to ac- 
complish our objectives. 

Planning in Games. Wilkins (1980; 1982) uses 
“knowledge sources” to generate and analyze chess 
moves for both the player and the opponent. These 
knowledge sources have a similar intent to the multi- 
agent methods that we describe in this paper-but there 
are two significant differences. First, because chess is 
a perfect-information game, Wilkins’s work does not 
address uncertainty and incomplete information, which 
must be addressed for bridge play. Second, Wilkins’s 
work was directed at specific kinds of chess problems, 
rather than the problem ofplaying entire games of chess; 
in contrast, we have developed a program for playing 
entire deals of bridge. 
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roblem Characteristics 
In our work, we consider the problem of declarer play 
at bridge. Our player (who may be a person or a com- 
puter system) controls two agents, declarer and dummy. 
Two other players control two other agents, the defend- 
ers. The auction is over and the contract has been fixed. 
The opening lead has been made and the dummy is vis- 
ible. The hands held by the two agents controlled by 
our player are in full view of our agent at all times; the 
other two hands are not, hence the imperfect informa- 
tion. Bridge has the following characteristics that are 
necessary for our approach: 

Only one player may move at at time. 

In general, no player has perfect information about 
the current state S. However, each player has enough 
information to determine whose turn it is to move. 

A player may control more than one agent in the game 
(as in bridge, in which the declarer controls two hands 
rather than one). If a player is in control of the agent 
A whose turn it is to move, then the player knows 
what moves A can make. 

If a player is not in control of the agent .q whose turn it 
is to move, then the player does not necessarily know 
what moves A can make. However, in this case the 
player does know the set of possible moves .~l rnighr 
be able to make; that is, the player knows a finite set 
of moves M such that every move *-1 can make is a 
member of M. 

Our approach is applicable to any domain with these 
characteristics. Modifications of our approach are pos- 
sible if some of these characteristics are missing. 

Conclusion 
By using techniques adapted from task-network plan- 
ning, our approach to playing imperfect-information 
games reduces the large branching factor that results 
from uncertainty in such games. It does this by produc- 
ing game trees in which the number of branches from 
each state is determined not by the number of actions an 
agent can perform, but instead by the number of differ- 
ent tactical and strategic schemes the agent can employ. 
By doing a modified game-tree search on this game tree, 
one can produce a plan that can be executed for multiple 
moves in the game. 

An especially efficient reduction in the branching fac- 
tor occurs when a agent plans a string of actions in 
succession that are all part of one strategic scheme; fre- 
quently, at a given point in time, only one action is 
consistent with the strategic scheme. Another impor- 
tant reduction occurs when an opponent is to follow to 
the play of a trick; the opponent’s move is selected by 
finding the matching actions in the task network, and 
frequently there are only one or two matching actions. 



Tignum 2, our implementation of the above approach, 
uses the above techniques to do card-playing for declarer 
in the game of bridge. In previous work, we showed that 
Tignum 2 performed better in playing notrump contracts 
than the declarer play of the strongest commercially 
available program; we have now shown that Tignum 2 
performs better in playing all contracts (both notrump 
and suit). 

We hope that the approach described in this paper will 
be useful in a variety of imperfect-information domains, 
possibly including defensive play in bridge. We intend 
to investigate this issue in future work. In addition, we 
have a number of observations about planning and game 
playing; these appear below: 

Total-Order HTN Planning 

Unlike almost all other HTN planners Tignum 2 is 
a total-order planner: in all of its task networks and 
methods-and thus all of the plans that it generates- 
the tasks are totally ordered. Also unlike most HTN 
planners, Tignum 2 expands tasks in the order in which 
they will be achieved: in choosing which task to expand 
in a task network, Tignum 2 will always choose the task 
that needs to be performed first. 

We adopted the above approach because of the dif- 
ficulty of reasoning with imperfect information. It is 
difficult enough to reason about the probable locations 
of the opponents’ cards. If our task networks were 
partially ordered, then in many planning situations we 
wouldn’t know what cards the opponents had already 
played. This would make reasoning about the proba- 
ble locations of the opponents’ cards nearly impossible; 
this reasoning is a more serious problem than the prob- 
lems with uninstantiated variables that occur in perfect- 
information domains. 

Being forced into total ordering, however, can be 
turned to our advantage. To provide a coherent frame- 
work for reasoning about partially-ordered plans, most 
current AI planning systems are restricted to manipulat- 
ing predicates in order to decide whether to apply meth- 
ods and operators. In Tignum 2 no such restriction is 
needed: to decide whether to apply a method, Tignum 2 
can use arbitrary pieces of code. This gives us a mech- 
anism for reasoning about the probable locations of the 
opponents’ cards. In addition, these arbitrary pieces of 
code are often simpler than the predicates would be. 

For example, consider a method that takes a finesse in 
a suit. Tignum 2 currently recognizes nineteen different 
kinds of finesse situations, such as Jx opposite KTx, xx 
opposite AJT, and x opposite AQ; one of these finesse 
situations must exist as a precondition for using the 
method. Using an arbitrary piece of code, it’s easy 
to check whether one of these finesse situations exists 
in the suit, and then to apply the method, or not, as 
appropriate. If we were to use the method while leaving 

some of the variables in the precondition uninstantiated, 
and then later in planning try to achieve the precondition 
through the play of tricks earlier in the deal, we would 
have to decide which of the nineteen situations to try to 
achieve-and it wouldn’t immediately obvious which 
of them were even possible to achieve. 

We have been quite successful in applying Tignum 2’s 
total-order HTN planning technique (as well as some 
of the same code used in Tignum 2!) to another ap- 
plication domain very different from bridge: the task of 
generating process plans for the manufacture of complex 
electro-mechanical devices such as microwave transmit- 
receive modules (Hebbar et al. 1996). That this same 
set of techniques should occur in two such widely vary- 
ing areas is quite striking. In particular, we can make 
the following observations: 
Q HTN planning has long been thought to be more use- 

ful in practical planning domains than planning with 
STRIPS-style operators (Wilkins 1988), and our ex- 
perience confirms this opinion. Bridge has a natural 
element of hierarchical planning. Humans use hierar- 
chies of schemes to create plans to play bridge deals. 
The bridge literature describes many such schemes. 
Hierarchical planning gives each play acontext; with- 
out such a context, one might search through many 
methods at each play. Hierarchical planning is also 
quite natural in process planning for complex electro- 
mechanical devices. In this case, the planning hierar- 
chy derives naturally from the part-whole hierarchy 
of the device itself. 

e Our experience also suggests that in a number of ap- 
plication domains, it may work well to develop plans 
in a totally-ordered manner, expanding tasks in the 
order that they are to be performed in the final plan. 
In AI planning, it is more common to expand tasks 
in some order other than the order in which they are 
to be performed. This way, the planner can con- 
strain its search space by making some “important” 
or “bottleneck” decision before commiting to other 
less-important steps. For example, if I want to fly 
to another continent, it probably is better for me first 
to decide what flight to take, rather than how to get 
to the airport. By considering the “fly” task before 
the “get to airport” task, I can probably constrain the 
search space a great deal. 
However, deciding on a step that will come later in a 
plan before deciding on a step that will come earlier in 
the plan also incurs a drawback: when I am deciding 
on the later step, cannot know what its input state will 
be, because I have not yet decided what sequence of 
steps to use to produce that input state. This funda- 
mental source of uncertainty can make the planning 
mechanisms much more complex than they would be 
otherwise. 
In both of the problem domains we have examined 
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(contract bridge, and process planning for microwave 
modules), there can be situations where it might be 
desirable to make a decision about a later step before 
making a decision about an earlier step in the plan- 
but in both domains, such situations do not seem to 
occur often enough to make it worth the trouble to put 
in the necessary planning mechanisms. 

Planning in Games 

As in most games, the plan existence problem in bridge 
is rather trivial; a sequence of legal plays is all that is 
required. We focus instead on the optimization prob- 
lem: coming up with the best, or nearly the best, line 
of play. To do this, our planning procedure produced 
structures similar to game trees. Evaluation and se- 
lection of plans occured in these trees, and we learned 
that these structures seem to be a natural solution to the 
optimization problem. In addition, the wealth of devel- 
oped efficiency improvements for game trees-such as 
transposition tables, adaptations of alpha-beta pruning, 
and the like-are available. although we have not yet 
implemented any of them. 

Because our approach avoids examining all possible 
moves for all agents, it is related to the idea of for- 
ward pruning in game-playing. The primary difference 
from previous approaches to forward pruning is that 
previous approaches used heuristic techniques to prune 
“unpromising” nodes from the game tree, whereas our 
approach simply avoids generating nodes that do not 
fit into a tactical and strategic scheme for any player. 
Although forward pruning has not worked very well in 
games such as chess (Biermann 1978; Truscott 198 I), 
our recent study of forward pruning (Smith & Nau 1994) 
suggests that forward pruning works best in situations 
where there is a high correlation among the minimax 
values of sibling nodes. Part of our motivation for the 
development of Tignum 2 is our belief that bridge has 
this correlation. 

Some tasks and methods we added for suit play turned 
out to improve notrump play as well. For example, be- 
cause discarding losers is much more a factor in suit 
play than it is in notrump play, it wasn’t until we con- 
centrated on suit play that some vulnerabilities in the 
discarding routines became clear. From this, we learn 
that broadening the focus of a task network can improve 
the task network on a narrower focus. 

There are some pitfalls in suit play that didn’t exist in 
notrump play. For example, to get a ruff, one might have 
to cross to another hand. One way to cross to that other 
hand might be in trump, which might use up the trump 
for the ruff. Once the trump is used up, there’s no way 
to get it back. From this, we learn that so-called “white 
knights”- actions that make a false precondition, that 
was once true, true again-rarely arise in bridge. 
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