
Total-Order R/p lti-Agent Task-Network Planning for Contract

S. J. J. Smith and D. S. Nau
Computer Science Department and

Institute for Systems Research
University of Maryland

College Park, MD 20742, USA
sjsmith@cs.umd.edu nau @cs.umd.edu

Abstract

This paper describes the results of applying a modified
version of hierarchical task-network (HTN) planning to
the problem of declarer play in contract bridge. We rep-
resent information about bridge in a task network that is
extended to represent multi-agency and uncertainty. Our
game-playing procedure uses this task network to gener-
ate game trees in which the set of alternative choices is
determined not by the set of possible actions, but by the
set of available tactical and strategic schemes.
This approach avoids the difficulties that traditional
game-tree search techniques have with imperfect-
information games such as bridge-but it also differs
in several significant ways from the planning techniques
used in typical HTN planners. We describe why these
modifications were needed in order to build a successful
planner for bridge.
This same modified HTN planning strategy appears to be
useful in a variety of application domains-for example,
we have used the same planning techniques in a process-
planning system for the manufacture of complex electro-
mechanical devices (Hebbar et al. 1996). We discuss
why the same technique has been successful in two such
diverse domains.

Introduction
Tignum 2 is a computer system for declarer play at the
game of contract bridge. Tignum 2 currently performs
better at declarer play than the strongest commercially
available program. ’ On 5000 randomly generated deals
(including both suit contracts and notrump contracts),

*This material is based on work supported in part by an
AT&T Ph.D. scholarship to Stephen J. J. Smith, by Maryland
Industrial Partnerships (MIPS) grant 501.15, by Great Game
Products, by ARPA grant DABT 63-95-C-0037, and by the Na-
tional Science Foundation under Grants NSF EEC 94-02384
and IRI-9306580. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the funders.

‘It is probably safe to say that the Bridge Baron is the best
program in the world for declarer play at contract bridge. It has
won a number of important computer bridge competitions-

108 Agents

Bridge *

To A. Throop
Great Game Products

8804 Chalon Drive
Bethesda, MD 208 17, USA
bridgebaron@mcimail.com

Tignum 2 beat the strongest commercially available pro-
gram by 254 to 202, with 544 ties. These results are
statistically significant at the CY = 0.05 level. We had
never run Tignum 2 on any of these deals before this test,
so these results are free from any training-set biases in
favor of Tignum 2.

This paper discusses the following issues:

Unlike traditional game-playing computer programs,
Tignum 2 is based not on brute-force game-tree
search but on a modified version of Hierarchical Task-
Network (HTN) planning. We discuss why bridge
presents problems for the traditional approach, and
why an HTN planning approach has worked well in
Tignum 2.

Although Tignum 2 is an HTNplanner, it incorporates
several significant modifications to the planning tech-
niques used in typical HTN planners. We extended
the HTN framework to incorporate multi-agency and
uncertain information, but restricted it to allow only
totally-ordered plans. We describe why these modi-
fications were needed in order to build a successful
planner for the game of bridge.

This same modified HTN planning strategy appears
to be useful in a variety of application domains. For
example, as described in (Hebbar et al. 1996) the
same planning techniques (and some of the same
code!) used in Tignum 2 have been used to build a
process-planning system for the manufacture of com-
plex electro-mechanical devices. We discuss why the
same kind of planning technique has been successful
in two such diverse domains.

In this paper, we present only a sketch of our approach.
Full details of our approach are in (Smith, Nau, &
Throop 1996).

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

Background search tree.

Although game-tree search works well in perfect-
information games (such as chess (Levy & Newborn
1982; Berliner et al. 1990), checkers (Samuel 1967;
Schaeffer et al. 1992), and Othello (Lee & Maha-
jan 1990)), it does not always work as well in other
games. One example is the game of bridge. Bridge is
an imperfect-information game, in which no player has
complete knowledge about the state of the world, the
possible actions, and their effects. Thus the branching
factor of the game tree is very large. Because the bridge
deal must be played in just a few minutes, a full game-
tree search will not search a significant portion of this
tree within the time available.

TN Planning. Our work on hierarchical planning
draws on (Tate 1977; Sacerdoti 1977). In addition. some
of our definitions were motivated by (Erol, Hendler, &
Nau 1994; Erol, Nau, and Subrahmanian, 1995). In par-
ticular, Wilkins’s SIPE planning system (Wilkins 1984;
Wilkins 1988) was a very successful hierarchical plan-
ning system. However, these works do not address
the uncertainty and incomplete information required in
bridge.

To address this problem, some researchers have tried
making assumptions about the placement of the oppo-
nents’ cards based on information from the bidding and
prior play, and then searching the game trees result-
ing from these assumptions. However, such approaches
have several limitations, as described in Section .

In our work, we have taken a different approach to
this problem, based on the observation that bridge is a
game of planning. For addressing various card-playing
situations, the bridge literature describes a number of
tactical schemes (short-term card-playing tactics such as
finessing and ruffing), and strategic schemes (long-term
card-playing tactics such as crossruffing). It appears that
there is a small number of such schemes for each bridge
deal, and that each of them can be expressed relatively
simply. To play bridge, many humans use these schemes
to create plans. They then follow those plans for some
number of tricks, replanning when appropriate.

Planning with Uncertainty. Some work has been
done on planning with uncertainty and incomplete in-
formation (Peot & Smith 1992; Draper, Hanks, & Weld
1994; Kushmerick, Hanks, & Weld 1994; Collins &
Pryor 1995). However, these works do not address prob-
lems on the scale of bridge, where there is incomplete
information about twenty-five cards. Encouragingly,
problems on a grander scale are starting to be studied
(Haddawy, Doan, & Goodwin 1995; Boutilier, Dearden,
& Goldszmidt 1995; Lin & Dean 1995).

We have taken advantage of the planning nature of
bridge, by adapting and extending some ideas from task-
network planning. To represent the tactical and strategic
schemes of card-playing in bridge, we use multi-agent
methods-structures similar to the “action schemas” or
“methods” used in hierarchical single-agent planning
systems such as Nonlin (Tate 1977), NOAH (Sacerdoti
1977) O-Plan (Currie & Tate 1985), and SIPE (Wilkins
1984; Wilkins 1988), but modified to represent multi-
agency and uncertainty.

Multi-Agent Planning. Much of the previous re-
search on multi-agent planning has dealt with different
issues than those that concern us here. In reactive plan-
ning (Dean et al. 1993), the agent must respond in real
time to externally-caused events-and the necessity of
making quick decisions largely precludes the possibility
of reasoning far into the future. In cooperative multi-
agent planning (Gmytrasiewicz & Durfee 1992; Ped-
nault 1987), the primary issue is how to coordinate the
actions of cooperating agents-and this makes it largely
unnecessary for a single planning agent to generate a
plan that accounts for all of the alternative actions that
another agent might perform.

To generate game trees, we use a procedure similar to
task decomposition. The methods that perform our tasks
correspond to the various tactical and strategic schemes
for playing the game of bridge. We then build up a
game tree whose branches represent moves generated
by these methods. This approach produces a game tree
in which the number of branches from each state is
determined not by the number of actions an agent can
perform, but instead by the number of different tactical
and strategic schemes the agent can employ. If at each
node of the tree, the number of applicable schemes is
smaller than the number of possible actions, this will
result in a smaller branching factor, and a much smaller

Bridge. Some of the work on bridge has focused on
bidding (Lindelof 1983; Gamback, Ray net-, & Pell 1990;
Gamback, Rayner, & Pell 1993). Stanier (1975) and
Quinlan (1979) took some tentative steps towards the
problem of bridge play. Berlin (1985) an approach to
play of the hand at bridge similar to ours; sadly, he
never had a chance to develop the approach (his paper
was published posthumously).

There are no really good computer programs for card-
playing in bridge, especially in comparison to the suc-
cess of computer programs for chess, checkers, and oth-
ello; most computer bridge programs can be beaten by
a reasonably advanced novice. Sterling and Nygate
(1990) wrote a rule-based program for recognizing and
executing squeeze plays, but squeeze opportunities in
bridge are rare. Recently, Frank, Basin, and Bundy

elated Work

Multiagent Problem Solving 109

(1992) have proposed a proof-planning approach, but
thus far, they have only described the results of apply-
ing this approach to planning the play of a single suit.
Khemani (1994) has investigated a case-based planning
approach to notrump declarer play, but hasn’t described
the speed and skill of the program in actual competition.
The approaches used in current commercial programs
are based almost exclusively on domain-specific tech-
niques.

One approach is to make assumptions about the place-
ment of the opponents’ cards based on information from
the bidding and prior play, and then search the game
tree resulting from these assumptions. This approach
was taken in the Alpha Bridge program (Lopatin 1992),
with a 20-ply (5-trick) search. However, this approach
didn’t work very well: at the 1992 Computer Olympiad,
Alpha Bridge placed last.

Game-Tree Search with Uncertainty. Play of bet-
ter quality can be achieved by generating several ran-
dom hypotheses for what hands the opponents might
have, and doing a full complete-information game-tree
search for each hypothesized hand. This approach is
used late in the deal in Great Game Products’ Bridge
Baron program. Ginsberg (1996) has proposed using
such an approach throughout the deal, employing clever
techniques that make it possible to perform such a full
game-tree search in a reasonable amount of time. How-
ever, Frank and Basin (1996) have shown some pitfalls
in any approach that treats an incomplete-information
problem as a collection of complete-information prob-
lems, as these approaches do. There is not yet any
evidence that these pitfalls can be overcome.

Some work has been done on extending game-
tree search to address uncertainty, including Horacek’s
(1990), and Ballard’s (1983) work on backgammon.
However, these works do not address the kind of un-
certainty involved in bridge, and thus it does not appear
to us that these approaches would be sufficient to ac-
complish our objectives.

Planning in Games. Wilkins (1980; 1982) uses
“knowledge sources” to generate and analyze chess
moves for both the player and the opponent. These
knowledge sources have a similar intent to the multi-
agent methods that we describe in this paper-but there
are two significant differences. First, because chess is
a perfect-information game, Wilkins’s work does not
address uncertainty and incomplete information, which
must be addressed for bridge play. Second, Wilkins’s
work was directed at specific kinds of chess problems,
rather than the problem ofplaying entire games of chess;
in contrast, we have developed a program for playing
entire deals of bridge.

110 Agents

roblem Characteristics
In our work, we consider the problem of declarer play
at bridge. Our player (who may be a person or a com-
puter system) controls two agents, declarer and dummy.
Two other players control two other agents, the defend-
ers. The auction is over and the contract has been fixed.
The opening lead has been made and the dummy is vis-
ible. The hands held by the two agents controlled by
our player are in full view of our agent at all times; the
other two hands are not, hence the imperfect informa-
tion. Bridge has the following characteristics that are
necessary for our approach:

Only one player may move at at time.

In general, no player has perfect information about
the current state S. However, each player has enough
information to determine whose turn it is to move.

A player may control more than one agent in the game
(as in bridge, in which the declarer controls two hands
rather than one). If a player is in control of the agent
A whose turn it is to move, then the player knows
what moves A can make.

If a player is not in control of the agent .q whose turn it
is to move, then the player does not necessarily know
what moves A can make. However, in this case the
player does know the set of possible moves .~l rnighr
be able to make; that is, the player knows a finite set
of moves M such that every move *-1 can make is a
member of M.

Our approach is applicable to any domain with these
characteristics. Modifications of our approach are pos-
sible if some of these characteristics are missing.

Conclusion
By using techniques adapted from task-network plan-
ning, our approach to playing imperfect-information
games reduces the large branching factor that results
from uncertainty in such games. It does this by produc-
ing game trees in which the number of branches from
each state is determined not by the number of actions an
agent can perform, but instead by the number of differ-
ent tactical and strategic schemes the agent can employ.
By doing a modified game-tree search on this game tree,
one can produce a plan that can be executed for multiple
moves in the game.

An especially efficient reduction in the branching fac-
tor occurs when a agent plans a string of actions in
succession that are all part of one strategic scheme; fre-
quently, at a given point in time, only one action is
consistent with the strategic scheme. Another impor-
tant reduction occurs when an opponent is to follow to
the play of a trick; the opponent’s move is selected by
finding the matching actions in the task network, and
frequently there are only one or two matching actions.

Tignum 2, our implementation of the above approach,
uses the above techniques to do card-playing for declarer
in the game of bridge. In previous work, we showed that
Tignum 2 performed better in playing notrump contracts
than the declarer play of the strongest commercially
available program; we have now shown that Tignum 2
performs better in playing all contracts (both notrump
and suit).

We hope that the approach described in this paper will
be useful in a variety of imperfect-information domains,
possibly including defensive play in bridge. We intend
to investigate this issue in future work. In addition, we
have a number of observations about planning and game
playing; these appear below:

Total-Order HTN Planning

Unlike almost all other HTN planners Tignum 2 is
a total-order planner: in all of its task networks and
methods-and thus all of the plans that it generates-
the tasks are totally ordered. Also unlike most HTN
planners, Tignum 2 expands tasks in the order in which
they will be achieved: in choosing which task to expand
in a task network, Tignum 2 will always choose the task
that needs to be performed first.

We adopted the above approach because of the dif-
ficulty of reasoning with imperfect information. It is
difficult enough to reason about the probable locations
of the opponents’ cards. If our task networks were
partially ordered, then in many planning situations we
wouldn’t know what cards the opponents had already
played. This would make reasoning about the proba-
ble locations of the opponents’ cards nearly impossible;
this reasoning is a more serious problem than the prob-
lems with uninstantiated variables that occur in perfect-
information domains.

Being forced into total ordering, however, can be
turned to our advantage. To provide a coherent frame-
work for reasoning about partially-ordered plans, most
current AI planning systems are restricted to manipulat-
ing predicates in order to decide whether to apply meth-
ods and operators. In Tignum 2 no such restriction is
needed: to decide whether to apply a method, Tignum 2
can use arbitrary pieces of code. This gives us a mech-
anism for reasoning about the probable locations of the
opponents’ cards. In addition, these arbitrary pieces of
code are often simpler than the predicates would be.

For example, consider a method that takes a finesse in
a suit. Tignum 2 currently recognizes nineteen different
kinds of finesse situations, such as Jx opposite KTx, xx
opposite AJT, and x opposite AQ; one of these finesse
situations must exist as a precondition for using the
method. Using an arbitrary piece of code, it’s easy
to check whether one of these finesse situations exists
in the suit, and then to apply the method, or not, as
appropriate. If we were to use the method while leaving

some of the variables in the precondition uninstantiated,
and then later in planning try to achieve the precondition
through the play of tricks earlier in the deal, we would
have to decide which of the nineteen situations to try to
achieve-and it wouldn’t immediately obvious which
of them were even possible to achieve.

We have been quite successful in applying Tignum 2’s
total-order HTN planning technique (as well as some
of the same code used in Tignum 2!) to another ap-
plication domain very different from bridge: the task of
generating process plans for the manufacture of complex
electro-mechanical devices such as microwave transmit-
receive modules (Hebbar et al. 1996). That this same
set of techniques should occur in two such widely vary-
ing areas is quite striking. In particular, we can make
the following observations:
Q HTN planning has long been thought to be more use-

ful in practical planning domains than planning with
STRIPS-style operators (Wilkins 1988), and our ex-
perience confirms this opinion. Bridge has a natural
element of hierarchical planning. Humans use hierar-
chies of schemes to create plans to play bridge deals.
The bridge literature describes many such schemes.
Hierarchical planning gives each play acontext; with-
out such a context, one might search through many
methods at each play. Hierarchical planning is also
quite natural in process planning for complex electro-
mechanical devices. In this case, the planning hierar-
chy derives naturally from the part-whole hierarchy
of the device itself.

e Our experience also suggests that in a number of ap-
plication domains, it may work well to develop plans
in a totally-ordered manner, expanding tasks in the
order that they are to be performed in the final plan.
In AI planning, it is more common to expand tasks
in some order other than the order in which they are
to be performed. This way, the planner can con-
strain its search space by making some “important”
or “bottleneck” decision before commiting to other
less-important steps. For example, if I want to fly
to another continent, it probably is better for me first
to decide what flight to take, rather than how to get
to the airport. By considering the “fly” task before
the “get to airport” task, I can probably constrain the
search space a great deal.
However, deciding on a step that will come later in a
plan before deciding on a step that will come earlier in
the plan also incurs a drawback: when I am deciding
on the later step, cannot know what its input state will
be, because I have not yet decided what sequence of
steps to use to produce that input state. This funda-
mental source of uncertainty can make the planning
mechanisms much more complex than they would be
otherwise.
In both of the problem domains we have examined

Multiagent Problem Solving 111

(contract bridge, and process planning for microwave
modules), there can be situations where it might be
desirable to make a decision about a later step before
making a decision about an earlier step in the plan-
but in both domains, such situations do not seem to
occur often enough to make it worth the trouble to put
in the necessary planning mechanisms.

Planning in Games

As in most games, the plan existence problem in bridge
is rather trivial; a sequence of legal plays is all that is
required. We focus instead on the optimization prob-
lem: coming up with the best, or nearly the best, line
of play. To do this, our planning procedure produced
structures similar to game trees. Evaluation and se-
lection of plans occured in these trees, and we learned
that these structures seem to be a natural solution to the
optimization problem. In addition, the wealth of devel-
oped efficiency improvements for game trees-such as
transposition tables, adaptations of alpha-beta pruning,
and the like-are available. although we have not yet
implemented any of them.

Because our approach avoids examining all possible
moves for all agents, it is related to the idea of for-
ward pruning in game-playing. The primary difference
from previous approaches to forward pruning is that
previous approaches used heuristic techniques to prune
“unpromising” nodes from the game tree, whereas our
approach simply avoids generating nodes that do not
fit into a tactical and strategic scheme for any player.
Although forward pruning has not worked very well in
games such as chess (Biermann 1978; Truscott 198 I),
our recent study of forward pruning (Smith & Nau 1994)
suggests that forward pruning works best in situations
where there is a high correlation among the minimax
values of sibling nodes. Part of our motivation for the
development of Tignum 2 is our belief that bridge has
this correlation.

Some tasks and methods we added for suit play turned
out to improve notrump play as well. For example, be-
cause discarding losers is much more a factor in suit
play than it is in notrump play, it wasn’t until we con-
centrated on suit play that some vulnerabilities in the
discarding routines became clear. From this, we learn
that broadening the focus of a task network can improve
the task network on a narrower focus.

There are some pitfalls in suit play that didn’t exist in
notrump play. For example, to get a ruff, one might have
to cross to another hand. One way to cross to that other
hand might be in trump, which might use up the trump
for the ruff. Once the trump is used up, there’s no way
to get it back. From this, we learn that so-called “white
knights”- actions that make a false precondition, that
was once true, true again-rarely arise in bridge.

References
Ballard, B. W. 1983. The *-minimax search procedure
for trees containing chance nodes. Artificial Intelligence
21:327-350.

Berlin, D. L. 1985. SPAN: integrating problem solv-
ing tactics. In Proc. 9th International Joint Conference
on Artificial Intelligence, 1047-105 1.

Berliner, H. J.; Goetsch, G.; Campbell, M. S.; and
Ebeling, C. 1990. Measuring the performance potential
of chess programs. Artijcial Intelligence 43:7-20.

Biermann, A. W. 1978. Theoretical issues related to
computer game playing programs. Personal Comput-
ing, September 1978:86-88.

Boutilier, C.; Dearden, R.; and Goldszmidt, M. 1995.
Exploiting structure in policy construction. In Proc.
14th International Joint Conference on Artificial Intel-
ligence.

Collins, G. and Pryor, L. 1995. Planning under un-
certainty: some key issues. In Proceedings of the I4th
International Joint Conference onArtiYcia1 Intelligence,
1670-1676. Morgan Kaufmann, San Mateo, California.

Currie, K. and Tate, A. 1985. O-Plan-control in
the open planner architecture. BCS Expert Systems
Conference, Cambridge University Press, UK.

Dean, T.; Kaelbling, L. P.; Kirman, J.; and Nichol-
son, A. 1993. Planning with deadlines in stochastic
domains. In Proceedings of the Eleventh National Con-
ference on Artificial Intelligence, 574-579. MIT Press,
Cambridge, Massachusetts.

Draper, D.; Hanks, S., and Weld, D. 1994. Probabilis-
tic planning with information gathering and contingent
execution. In Proceedings of the 2nd International Con-
ference on AI Planning Systems, Kristian Hammond,
editor. AAAI Press, Menlo Park, California.

Erol, K.; Hendler, J.; and Nau, D.S. 1994. UMCP:
A sound and complete procedure for hierarchical task-
network planning. In Proc. Second International ConJ:
on AI Planning Systems (AIPS-94), pages 249-254.

Erol, K.; Nau, D. S.; and Subrahmanian, V. S. 1995.
Complexity, decidability and undecidability results for
domain-independent planning. Artificial Intelligence
76175-88.

Frank, I.; Basin, D.; and Bundy, A. 1992. An adap-
tation of proof-planning to declarer play in bridge. In
European Conference on Artificial Intelligence.

Frank, I. and Basin, D. 1996. Search in games with
incomplete information: a case study using bridge card
play. Under review.

Gamback, B.; Rayner, M.; and Pell, B. 1990. An ar-
chitecture for a sophisticated mechanical bridge player.
In Beal, D. F. and Levy, D.N.L., editors, Heuristic Pro-
gramming in Artificial Intelligence-The Second Com-
puter Olympiad. Ellis Horwood, Chichester, UK.

Gamback, B.; Rayner, M.; and Pell, B. 1993. Prag-
matic reasoning in bridge. Tech. Report 299, Computer

112 Agents

Laboratory, University of Cambridge.
Ginsberg, M. 1996. How computers will play bridge.

Bridge World, to appear.
Gmytrasiewicz, I? J. and Durfee, E. H. 1992.

Decision-theoretic recursive modeling and the coordi-
nated attack problem. In Proceedings of the 1st In-
ternational Conference on AI Planning Systems, James
Hendler, editor. Morgan Kaufmann, San Mateo, Cali-
fornia.

Haddawy, P.; Doan, A.; and Goodwin, R. 1995. Ef-
ficient decision-theoretic planning: techniques and em-
pirical analysis. In Proceedings UAI95,229-236.

Hebbar, K.; Smith, S. J. J.; Minis, I.; and Nau, D. S.
1996. Plan-based evaluation of designs for microwave
modules. ASME Design for Manufacturing conference,
to appear.

Horacek, H. 1990. Reasoning with uncertainty in
computer chess. Artificial Intelligence 43137-56.

Khemani, D. 1994. Planning with thematic actions.
In Proceedings of the 2nd International Conference on
AI Planning Systems, Kristian Hammond, editor. AAAI
Press, Menlo Park, California.

Kushmerick, N.; Hanks, S.; and Weld, D. 1994. An
algorithm for probabilistic least-commitment planning.
In Proceedings of the Twelfth National Conference on
Artijcial Intelligence, 1123-l 128. AAAI, Menlo Park,
California.

Lee, K.-F. and Mahajan, S. 1990. The development
of a world class Othello program. Arti$ciaZ Intelligence
43:21-36.

Levy, D. and Newborn, M. 1982. All About Chess
and Computers. Computer Science Press.

Lin, S.-H. and Dean, T. 1995. Generating optimal
policies for Markov decision processes formulated as
plans with conditional branches and loops. In Third
European Workshop on Planning.

Lindelof, E. 1983. COBRA: the computer-designed
bidding system. Victor Gollancz Ltd, London, UK.

Lopatin, A. 1992. Two combinatorial problems in
programming bridge game. Computer Olympiad, un-
published.

Manley, B. 1993. Software ‘judges’ rate bridge-
playing products. The Bulletin (published monthly by
the American Contract BridgeLeague), 59(11), Novem-
ber 1993:5 l-54.

Pednault, E. P. D. 1987. Solving multiagent dynamic
world problems in the classical planning framework. In
Reasoning about Actions and Plans: Proceedings of the
1986 Workshop, 42-82. Morgan Kaufmann, Los Altos,
California.

Peot, M. and Smith, D. 1992. Conditional nonlinear
planning. In Proc. First Internat. Con. AI Planning
Systems, 189-197. Morgan Kaufmann, San Mateo, Cal-
ifornia.

Quinlan, J. R. 1979. A knowledge-based system for

locating missing high cards in bridge. In Proc. 6th In-
ternational Joint Conf ArtiJicial Intelligence, pp. 705-
707.

Sacerdoti, E. D. 1977. A Structure for Plans and
Behavior. American Elsevier Publishing Company.

Samuel, A. L. 1967. Some studies in machine learn-
ing using the game of checkers. ii-recent progress. IBM
Journal of Research and Development 2160 1-6 17.

Schaeffer, J.; Culberson, J.; Treloar, N.; Knight, B.;
Lu, P.; and Szafron, D. 1992. A world championship cal-
iber checkers program. ArtiJicial Intelligence 53:273-
290.

Smith, S. J. J. and Nau, D. S. 1994. An analysis of
forward pruning. In Proc. 12th National Conference on
Artijcial Intelligence, pp. 1386-l 39 1.

Smith, S. J. J.; Nau, D. S.; and Throop, T. 1996. A
planning approach to declarer play in contract bridge.
Computational Intelligence, 12:1, February 1996, 106-
130.

Stanier, A. 1975. Bribip: a bridge bidding program.
In Proc. 4th International Joint Conf Artificial Intelli-
gence.

Sterling, L. and Nygate, Y. 1990. Python: an expert
squeezer. Journal of Logic Programming 812 I-39.

Tate, A. 1977. Generating project networks. In Proc.
5th International Joint Con& ArtiJcial Intelligence.

Truscott, T. R. 1981. Techniques used in minimax
game-playing programs. Master’s thesis, Duke Univer-
sity, Durham, NC.

Wilkins, D. E. 1980. Using patterns and plans in
chess. Artificial Intelligence 14: 165-203.

Wilkins, D. E. 1982. Using knowledge to control tree
searching. Artificial Intelligence 18: l-5 1.

Wilkins, D. E. 1984. Domain independent planning:
representation and plan generation. Artificial Intelli-
gence 22:269-30 1.

Wilkins, D. E. 1988. Practical Planning. Morgan
Kaufmann, San Mateo, California.

Multiagent Problem Solving 113

