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WES + Branch and Bound = Stable Models

V.S. Subrahmanian, Dana Nau, and Carlo Vago

Abstract—Though the semantics of nonmonotonic logic pro-
gramming has been studied extensively, relatively little work has
been done on operational aspects of these semantics. In this paper,
we develop techniques to compute the well-founded model of a
logic program. We describe a prototype implementation and
show, based on experimental results, that our technique is more
efficient than the standard alternating fixpoint computation. Sub-
sequently, we develop techniques to compute the set of all stable
models of a deductive database. These techniques first compute
the well-founded semantics and then use an intelligent branch and
bound strategy to compute the stable models. We report on our
implementation, as well as on experiments that we have con-
ducted on the efficiency of our approach.

Index Terms—Logic programming, deductive databases, non-
monotonic reasoning, negation by failure.

[. INTRODUCTION

I N the past several years, the problem of representing nega-
tive information in logic programs and deductive databases!
has been intensely studied. However, most of this work has
concentrated on the declarative aspects of negation in logic
programming-—in particular, the focus has been on developing
declarative semantics that are applicable to all, or at least a
wide variety of logic programs, and which possess various
epistemologically satisfying properties. An important research
area that has been left relatively untouched is that of develop-
ing operational semantics and implementation techniques for
logic programs that contain negation. It is only in the past year
that a number of researchers have started working on this
endeavor.

The primary contribution of this paper is the design and
implementation of a bottom-up algorithm to compute: the well-
founded model of a logic program {21] and the set of stable
models of a logic program [8]. The algorithm for computing
the well-founded model is based on the observation that Fit-
ting’s Kripke-Kleene semantics for logic programming is
“sound,” but not complete w.r.t. well-founded semantics
(WFS, for short). It is sound in the sense that if Fitting’s
Kripke-Kleene semantics assigns either true or false to a
ground atom, WFS makes the same assignment. However,
WFS may assign true/false to some atoms that are assigned
“unknown” by Fitting’s semantics. Our procedure first com-
putes Fitting’s Kripke-Kleene semantics (using an optimized

1. Throughout this paper, we will consider only deductive databases, i.e.,
logic programs without function symbols.
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version of Fitting’s @, operator) and simultaneously
“compacts” the program by deleting parts of the program. It
then applies an optimized version of the alternating fixpoint
procedure [20], [3] to the compacted program. Our alternating
procedure compacts the (already compacted) program further
at each step. It is well-known [20], [3] that the alternating fix-
point procedure (without compaction) can compute the well-
founded semantics. Experiments show that in practice, our
procedure of first computing the Kripke-Kleene semantics and
simultaneously compacting the program, and subsequently
performing the alternating fixpoint computation with compac-
tion, is much faster, than the naive alternating computation.

The algorithm for computation of stable models is of par-
ticular interest because stable models may be computed by
first computing the well-founded model of the program and
then using an intelligent branch and bound strategy. Intui-
tively, the search for stable models may be viewed as taking
the atoms assigned “unknown” by the WFS, and making a
true/false assignment to some of these atoms. This corresponds
to the “branch”ing step. Two aspects are key to the success of
branch and bound: first, the selection of atom(s) on which to
branch plays a key role, and secondly, an efficient strategy to
prune branches of the search tree needs to be found. We de-
velop an algorithm based on branch and bound, for generating
stable models. The algorithm has been implemented—we re-
port on experimental results reflecting the efficiency of both
the algorithm, as well as numerous optimizations present in the
algorithm.

The techniques we develop here are intended to be used
primarily on those parts of a deductive database where fast
run-time performance is expected and almost no time is avail-
able for performing deduction at run-time (for domains where
deduction may be performed at run-time, techniques like those
of [22], [12] may be used). An example of a concrete domain
where this kind of database support is critically needed is con-
trol systems (e.g., plant monitoring systems, weapons guidance
systems, avionics systems, etc.).

II. PRELIMINARIES

In this section, we quickly recapitulate the basic definitions
of the stable and well-founded semantics for logic programs.
We assume that readers are familiar with the basic ideas of
constants, predicates, atoms, literals, Herbrand interpretations?,
clauses, and logic programs [16]. We assume that we have an
underlying function-free first order language L containing only
finitely many constant and predicate symbols. The Herbrand

2. Throughout this paper, we will use the words “interpretation” and
“model” to mean “Herbrand interpretation” and “Herbrand model,” respec-
tively. Recall that an Herbrand interpretation is simply a set of ground atoms
of the language in question.
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base of L is denoted by B,. In many cases, we will abuse nota-
tion and use By to denote the Herbrand Base of the language
generated by the constant and predicate symbols occurring in a
logic program P. We will use grd(P) to denote the set of
ground instances of clauses in P. We now define the Gelfond-
Lifschitz transform which forms the basis of both the well-
founded semantics and the stable model semantics for logic
programs ([3], [20]).
DEFINITION 1. Suppose P is a logic program and I C B;. The
Gelfond-Lifschitz transformation of P, denoted P, is the
logic program defined as follows:

A« B, & ... & B,, n20, is a (ground) clause in P' iff there
exists a clause

A«<B &..&B,& -D, & ... & —D,

(m= 0) in grd(P) such that I N\ {D,, ..., Dn} = . Nothing
else is in P'. Thus, P! is a negation-free logic program.

Given a program P and an Herbrand interpretation /, we
may define an operator, Fp, associated with P, as follows:
Fp(D) is defined to be the least Herbrand model of the negation
free logic program P.

DEFINITION 2. (Gelfond and Lifschitz) [ is a stable mode! of P
iff 1= FAD).

PROPOSITION 1. (van Gelder [20], Baral and Subrahmanian
[2]) Let P be any logic program. Then F} is anti-monotone,
ie, if Iy ¢ L, then Fp(l;) ¢ Fp({)). Consequently, F,?, the
function that applies F} twice is monotonic.

We use the notation wfs_true(P) to denote the set of
ground atoms true in the well-founded semantics of a logic
program P. Likewise, wfs_false(P) denotes the set of ground
atoms false in the well-founded semantics of P.

DEFINITION 3. Let P be any logic program. Then:
1) A e wis_true(P) iff A e lfp(F}) and
2) A € wis_false(P) iff A ¢ gfp(F7 ).

(Here, fp(F?) denotes the least fixpoint of Fp and
gfp( F‘Z) denotes the greatest fixpoint of Fy.)

III. COMPUTATION OF WELL-FOUNDED SEMANTICS

Suppose P is a logic program. Our algorithms work with
fully instantiated programs. Later, in Section IV.D, we will
outline how, given any technique to compute WFS/stable
models for propositional programs, this method can be lifted
to the first order case. However, the details of this first order
“lifting” are left to a future paper.

In the Monotonic Iteration stage (Ml-stage, for short), we
mimic the upward iteration of Fitting’s &, operator [7] and it-
eratively build up a set of ground atoms, denoted mi_true(P),
which are known to be true, and a set mi_false(P) of ground
atoms known to be false. However, there is one key difference
from Fitting’s operator that has a significant impact on effi-
ciency: in addition to mimicking these iterations, the program P
undergoes repeated simplification, resulting, in the limit, in a

target program mi_target(P) that is usually considerably sim-
pler than P. In practice, the monotonic iteration phase is efficient
(Experiment V.A.1) when compared to the alternating fixpoint
computation strategy described in [20], [3].

In the Gelfond-Lifschitz Oscillation stage (GLO-stage, for
short), we use the simplified program mi_target(P) produced
by the Ml-stage, and (recursively) oscillate by applying an
optimized version of the Gelfond-Lifschitz transform. Each
step of the recursion builds up the set glo_true(P) of ground
atoms identified to be true in the GLO-stage, and the set
glo_false(P) of atoms identified to be false in the GLO-stage.
There are two key differences which distinguish this method
from the alternating fixpoint strategy described in [20], [3]:

o First, the GLO-stage applies only to mi_target(P) which
is usually significantly smaller than P in size
(Section V.A.2). The alternating fixpoint approach would
use the program, P, which is usually much larger than
mi_target(P).

o Second, the alternating fixpoint approach [20], [3] would
proceed as follows: it would hold mi_target(P) fixed and
start with /,= . Given [, where j > 1, it would construct
I+, as follows:

a) it would transform mi_target(P) w.r.t. /; accord-
ing to the Gelfond-Lifschitz transform.
b) it would then set /;,; to the least Herbrand model
of the negation-free program G(mi_target(P), /) ob-
tained in (a) above.
The iteration would stop when we find a & such that
[/‘ =1 k+2-

Our approach adopts a different point of view. We will
not hold mi_target(P) fixed. As the sequence /I, /i, ... is
constructed, we will keep changing the program to up-
date previously obtained information. These changes in
the program will cause the program to grow “smaller and
smaller,” thus leading to greater efficiency in computing
the least Herbrand model (Experiment V.A.3).

Furthermore, at any given point in time, we will not
transform the program wrt. [, but always wrt. the
empty-set. This can be implemented much faster because
all one needs to do is to ignore all negative literals that
occur in clause bodies. Both these optimizations play a
significant role in reducing the time required to compute
the well-founded semantics (Experiment V.A.1).

o In the Combination stage {C-stage, for short), we com-
bine the results of the previous two stages (i.e., the sets
mi_true(P), mi_false(P), glo_true(P), glo_false(P)) ina
sound and complete manner.

e Last, but not least, the logic program/deductive database
may be updated after its initial creation. Such updates
may cause the well-founded model (or the set of stable
models) to change. The purpose of the update module is
to handle such changes.

Before proceeding to formally describe the details of the
three-stage approach, we present a simple example to illustrate
the approach, and help to fix intuitions.
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EXAMPLE 1. Consider the very simple program containing the
following nine clauses:

p « q (N
P « r (2)
q — —r&s 3)
r “« —yg (4)
s «— t (5)
t “«— (6)
Y “— v (7)
w “ -y (8)
u « - 9)

MI-stage: The first thing to observe about this program is
that ¢ is in wfs_true(P) by virtue of Clause 6 and hence, so
is 5, by virtue of Clause 5. Thus, these two clauses may be
deleted once it is realized that s, f € wfs_true(”). But once
it is known that s, r € wfs_true(P), Clause 9 can be deleted
as s is surely true, and similarly, s can be deleted from the
body of Clause 3. In effect, then, u € wfs_false(P) as there
is no clause left at this point with u in the head. The
Ml-stage mimics this kind of reasoning and leads to the
computation of the following sets: mi_true(P) = {s, ¢} and
mi_false(P”) = {u}, and the simplified target program
mi_target(P) below:

i fargei?)
p - q (10)
P e r (1)
q « —r (12)
r — - q (13)
v o v (14)
w - —v (15)

mi_target(P) is constructed in such a way that no atoms in
either mi_true(P) or mi_false(P) occur, either positively or
negatively, anywhere in mi_target(P). It is important to
note that according to Fitting’s Kripke-Kleene semantics
(which does not handle positive loops well [21]), v is con-
cluded to have an “unknown” truth value due to the loop in
clause 14). The truth value of w is the negation of
“unknown,” which is “unknown” too.

GLO-stage: In this stage, we first realize that no atoms in
mi_true(P) U mi_false(P) occur in mi_target(”). We ig-
nore P and work with mi_target(P), and first set /, = & and
glo_true(mi_target(P)) = glo_false(mi_target(P)) = &.
We then compute the least model of the Gelfond-Lifschitz
transformed program (mi_ target(P))"‘, and denote this
least model by /. (mi_ target(P))"’ is the program:
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G(mi_target(P), /y

P « q (16)
P «— r a7
q « (18)
r « 19
v «— v (20)
w — 2n

The least model of this program is /; = {p, ¢, », w}. The
Herbrand Base of mi_target(P) = {p, ¢, r, v, w}. As
I, = {v}, it follows that v MUST be false, and hence, we can
add v to glo_false(mi_target(P)). At this point, we can use
this information to simplify mi_target(P); as v must be
false according to the WFS, Clause 14 can be deleted from
mi_target(P) and —v can be deleted from the body of
Clause 15. Hence mi_target(P) now becomes the program
glo_simp,(P) shown below:

p « q (22)
p “«— r 23)
q «— —F 24)
r — —q 2%
w « (26)

Recursively calling the Gelfond-Lifschitz transform w.r.t.
this program yields the sets mi_true(glo_simp(P)) =
mi_false(glo_simp,(P)) = J. Thus, the GLO-stage returns,
as its final output, the set glo_false(mi_target(P)) = {v} of
atoms that are “false” according to WFS, and
glo_true(mi_target(P)) = {w} as the set of “true” atoms.
C-stage: At this stage, we simply combine the sets of true
and false atoms returned by the Ml-stage and the GLO-stage
to get, as final output, the sets

wis_true(P) = {s, ¢t} U {w} = {s, ¢, w} and

wis_false(P) = {u} U {v} = {u, v}.
The atoms p, g, r are all assigned “unknown” by WFS. [

A. The Monotone Iteration Module

In this section, we describe the technical details of the mono-
tone iteration module. We assume that readers are familiar with
the well-known Kripke-Kleene three-valued logic, and the three-
valued interpretation of logic programming using Fitting’s ®p
operator [7]. ®p assigns to atom A if if there is a clause C in
grd(P) such that A is the head of C and such that / satisfies the
body of C. It assigns f to A if, for every clause C in grd(P) hav-
ing 4 as the head, it is the case that / satisfies — Body where
Body is the body of C. Otherwise, it assigns u to 4.

When performing an upward iteration of Fitting’s operator,
the program P is held constant. In our approach, at each step
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of the upward iteration, we modify the program P 3 so that the
modified program is smaller, in terms of the number of occur-
rences of literals, than P.

DEFINITION 4. Suppose P is a ground program, and [ is a
three-valued interpretation. The modified version of P w.r.1.
1 is a ground logic program, denoted mod(P, I) obtained as
Jollows:

1) if A occurs in the head of a clause C € P and KA) # u,
then delete clause C from P.

2) if A occurs positively in the body of a clause C € P and
I(A) = {, then delete clause C from P.

3) if A occurs positively in the body of a clause C € P and
I(A) = t, then delete A from the body of clause C.

4) if A occurs negatively in the body of a clause C € P and
I(A) = t, then delete clause C from P.

5) if A occurs negatively in the body of a clause C € P and
I{A) = f, then delete —A from the body of clause C.

We use mod(P, I) in the computation of Ifp(®p) in the fol-
lowing way: Initially, we set Py to P (the program under con-
sideration). We then proceed to compute ®p(/,) where /, as-
signs u to all ground atoms. ®x(/o) will make some atoms true,
some atoms false, and leave others unknown. The atoms that
are made true (respectively, false) will stay true (respectively,
false) in 1fp(® p) because ®p is monotone w.r.t. the X ordering
(I; X I, iff for all ground atoms 4, /,(A) = t (respectively, 1)
implies that I;(4) = t (respectively, f)). Suppose 4 is an atom
that is made true in this process. then any clause in P with 4 in
the head can be safely deleted as it has nothing new to con-
tribute. Likewise, any clause with —4 occurring in the body
can also be deleted because it can have nothing to contribute
either (the body will stay false in all further iterations). If .4
occurs positively in the body of C, then we can delete 4 from
the body. Symmetric transformations occur if 4’s truth value
had been fixed to f instead of t. The following definition for-
malizes this informal strategy of pruning P iteratively (the
word pruning is used because either whole clauses are deleted,
or individual literals are deleted).

DEFINITION 5. (Pruning Iteration) Let P be a logic program,
and let 1 be the interpretation that assigns u to all ground
atoms in the language L. We define two sequences, called
the interpretation-sequence (l-sequence, for short) and a
program-sequence (P-sequence, for short) as follows:

Iy=1 Py=P

Ln(4) = Pr)A) i [{(A)=u Py = mod(P,1).
and I{A) otherwise

As all programs dealt with in this paper are deductive data-
bases, it is easy to see that there is a minimal integer »# such
that 1, = I,,, and P,= P,.,. Hence, given any program P, there
is a unique I-sequence Iy, ..., /, and a unique P-sequence
Py, ..., P, associated with P. The following result is straight-
forward.

LEMMA 1. Suppose P is a logic program, and I, ..., I, is the
I-sequence associated with P. If 1<j< k<n, then, < I;. |

3. When implementing, we modify a copy of the program P.

THEOREM 1. (Soundness of Pruning Iteration w.r.t. WFS) Let
P be a logic program, and let I, ..., I, and P, ..., P, be the
I-sequence and P-sequence associated with P. Then:

1) (Soundness w.r.t. Fitting’s Semantics) I, = lfp(®p).

2) for all atoms A, if I,(A) = t then A € wfs_true(P), i.e., 4
is true according to the well-founded semantics for P.

3) for all atoms A, if 1{A) = f then A € wfs_false(P), ie, A
is false according to the well-founded semantics for P.

The Ml-stage is not complete w.r.t. the well-founded se-
mantics, as can be easily seen by the following example:

EXAMPLE 2. Consider the single clause program P = {a« a}.
The well-founded semantics for P assigns f to a, however,
the set mi_false (P) generated by the MI-module does not
contain a. (]

As a final remark on the computation of WFS, we observe that
if the truth value of a ground atom A is determined, during the
Ml-stage, to be either t or f, then the atom 4 is completely
eliminated from the target program mi_target(P).

LEMMA 2. 1) Suppose Hp(®p)(A) # u. Then A does not occur
either positively or negatively in mi_target(P). 2) Suppose
Hp(DpXA) = u. Then there exists a clause C in mi_target(P)
having A as the head and such that at least one literal in the
body of C is assigned the truth value u by lfp(Dp). ]

Before proceeding to a detailed description of the GLO-
stage, we draw the reader’s attention to Fig. 1 and the compu-
tation of stable models. The idea is that if we want to eventu-
ally compute the stable models of a deductive database P, we
first compute the well-founded semantics of P and simultane-
ously generate a “small” program (denoted glo_simp(P) in
Fig. 1) which is then piped to the branch and bound procedure
that computes stable models. Thus, we need to be sure that the
transformation performed during the WFS computation mod-
ule do not compromise the stable models in any way. The fol-
lowing lemmas are needed to establish this property.

mi_true Comb . f—— wis_true
i false Stage [ wis_false
glo_true glo false
P MIStage mi_target GLO-Stage
to stable model
oo oo ... |glosimp ~ module
|
MG P Update updnced:
Module program .

Fig. 1. Architecture of the WFS computation module.

LEMMA 3. Suppose P is a logic program and A (respectively,
B) is a ground atom which is assigned t (respectively, 1) by
the well-founded semantics of P. Let Q (respectively, Q) be
the program obtained from P by:

1) deleting all clauses in P with head A (respectively, B),
and
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2) deleting all clauses in P with —A (respectively, B) in the
body, and

3) deleting positive (respectively, negative) occurrences of
A (respectively, B) from the body of any clause in which
it occurs.

Then: A two-valued interpretation [ is a stable model of Q
iff I'U {4} is a stable model of P.

The above lemma indicates that as long as the three valued
interpretation / is “sound” w.r.t. the well-founded semantics (in
the sense that whenever / assigns true to an atom A, then
A e wfs_true(P) and whenever / assigns false to an atom B,
then B € wfs_true(P)), then P’s stable models may be ob-
tained from those of mod(P, I) by appending the true atoms in
1 to the stable models of mod(P, I).

B. The Gelfond-Lifschitz Oscillation Module

As seen in Example 2, the MI-stage alone is not complete
w.rt. WFS computation. However, it is sound w.r.t. WFS
computation. The Gelfond-Lifschitz Oscillation (GLO, for
short) stage performs some further computations with a view
to computing that part of the WFS which is not already com-
puted in the Ml-stage. The GLO-module takes as input, the
program mi_target(P) produced by the monotone iteration
module. It then performs an alternating fixpoint-like computa-
tion ([20], [3]). However, there are a few significant differ-
ences which allow our strategy to be much more efficient
(Experiment V.A.1) than the ordinary alternating fixpoint
computation strategy. The first difference is that unlike the
alternating fixpoint computation, our GLO-procedure only
applies to the program mi_target(”) which is usually much
smaller than the program P. Secondly, as we perform the oscil-
lation, we continue pruning the program, so that at each stage,
the oscillation steps are applied to “smaller and smaller” pro-
grams. This causes the oscillation to be much more efficient
than otherwise (Experiment V.A.3).

If we look carefully at the well-founded semantics, the it-
erations of the /), operator exhibit the following behavior (this
behavior has been observed by Baral and Subrahmanian [2],
[3] and van Gelder [20]): the interpretations at even levels of
the oscillation form a monotonically increasing sequence, and
gradually build up, in the limit, the set wfs_true(P):
FF@)c FF@)c...c F;(@)c.... The odd levels of the
oscillation form a monotonically decreasing sequence and
gradually build up the complement of the set wfs_false(P):
F,',(@); F;(@) 0.2 F,?“%@) OD.... In other words, the se-
quence, FA(@)c Fp(@)c...c FF* (@) c... is a monotoni-
cally increasing sequence, and in the limit, it constructs the set
wfs_false(P). Thus, when we apply F» first to the empty set
and compute FA(@), we know that all atoms in F,l(@) are
Jalse. Hence, we can use this information to transform the pro-
gram P. In the next stage, when we apply F to Fa(@), we
know that all atoms in the set F,g (D) are true. We may use this

information to transform the program. Thus, at odd levels, we
should transform the program P according to what was learned
to be false, while at even levels, we should transform the pro-
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gram under consideration according to what has been learned
to be true. These intuitions are formalized in the following
definitions.

DEFINITION 6. (Transformation Strategy) Given a program P,
and a two-valued interpretation I, we now define a trans-
Jormation of P w.r.t. [.* This transformation depends on one
extra parameter, called pos or neg.

trans(P, I, neg) is defined as follows:

1) ifA ¢ /I, and A occurs in the head of a clause C € P, then
delete C from P.

2)ifA ¢ [ and A occurs positively in the body of a clause
C e P, then delete C from P.

3)ifA e I, and A occurs negatively in the body of a clause
C € P, then delete all occurrences of —A from the body
of C.

trans(P, I, pos) is defined as follows:

1) if A € I and A occurs in the head of a clause C € P, then
delete C from P.

2)if A € [ and A occurs negatively in the body of a clause
C e P, then delete C from P.

3)if A € 1 and A occurs positively in the body of a clause
C € P, then delete all occurrences of A from the body of C.

DEFINITION 7. (Pruning Oscillation) Suppose P is a logic pro-
gram. Define the GLO-iteration of P as four sequences: a
sequence of two-valued interpretations Iy, ..., I, ..., a se-
quence of programs P, .... P, ..., a sequence of sets of
true atoms glo_true, ..., glo_true,, ..., and a sequence of
sets of false atoms glo_false,, ..., glo_false,, .... These se-
quences are constructed as follows:

=1

=0 11 = Fpo(ly)
Py=P Py = trans(Py, I,, neg)
glo_true, =< glo_true, =&

glo_false, = &

1_,‘+2 = FI’/H([/'H)
Py = trans(P,,\, 1,13, pos)

glo_false, = (Bpy— 1))

For odd j, ji]
[,42 = F!‘;H([;H)
P,y = trans(Pjy, 11z, neg)

glo_true;,; = glo_true; U [,  glo_true;,, = glo_true;

glo_false,., = glo_false, glo_false;., = glo_false; U
(Bpj1 = Ii2)

Note that the above definition simultaneously defines both the
sequence of interpretations and the sequence of programs. It is
well-defined because, each /, is defined in terms of P,
fiy for j > 0. Likewise, each P; is defined in terms of J; and P_y;
as I, is defined in terms of Py, /., this does not lead to any cir-
cularity. Similar comments apply to glo_true; and glo_false;.

In order to better illustrate pruning oscillations, we return to

4. Unlike Section I1I.A where we modified programs using three-valued in-
terpretations, the transformation strategy described here uses two-valued
interpretations.
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Example 1.

EXAMPLE 3. Consider the program P of Example 1. We focus
upon mi_target(P) which consists of clauses 10-15. Our
sequence of Is and Ps is built as follows:

D h=6.

2) Po= {10, 11, 12, 13, 14, 15}.

3) glo_false, = glo_true, = .

Hi = Fn,(lo) ={p, g, r, w}. Note that v ¢ I.

5) Thus, Py = trans(Po,{p, q, r, w}, neg). There are two
clauses in P, containing occurrences of v—clause 14 and
clause 15. Clause 14 gets deleted, while —v gets deleted
from the body of clause 15. Thus, P, consists now of

clauses
p “— q (27)
p — r (28)
r - —q (30)
w — (31)

6) glo_false, = I, = {v}, and glo_true, = @.

7) The next stage is the construction of I, = Fp(/;) which
is equal to {w}.

8) P, is now set to frans(P,, {w}, pos). Computing trans(P,,
{w}, pos) leads to Clause 31 being deleted from P,.
Therefore, P, consists of clauses 27-30.

9) At this stage, glo_false, = glo_false,, but glo_true, = {w}.

10)The next stage is the construction of Iy = F, (I;) which
is equal to {p, g, r}.

11)P;5 is now set to trans(P,, {p, g, r}, neg). No clauses are
deleted nor modified in this step, and we have P3 = P;.

12)glo_false, = glo_false, U I, = {v}. Note, in particular,
that complelr}ent of I is w.r.t. the Herbrand Base of P,,
and hence, I; = @.

13)The next stage is the construction of I, = Fp (I;) which
is equal to &.

14)P, is now set to trans(P;, &, pos) and leads to no change.

15)The values of both glo_false, and glo_true, are the
same as the values of glo_false; and glo_true;, respec-
tively. As there are no changes in the values of both
glo_true; and glo_true;, we may terminate construction
of the sequence. [

The alternating fixpoint approach [20], [3] allows us to stop

constructing our sequence(s) as soon as we find the smallest »
such that glo_true, = glo_true,.,. It turns out that in this case,
glo_true, = lfp(Fﬁ) = wfs_true(P) and that glo_false,,,
= gfp(F7) = wis_false(P). The  equality 1fp(F7)
= wis_true(P) has been proved in [3], as has the equality
gfp(F,?) = wis_false(P). What remain to be established are
the equalities glo_true, = Ifp(F?)
= gfp( Fﬁ). We show this below.

and glo_true

n+l

THEOREM 2. Suppose P is a logic program. Then, for all even
integers i, it is the case that

1) wis_true(P) = wfs_true(P;) U glo_true{P) and

2) wfs_false(P) = wfs_false(P)) U glo_false,(P). O
Part 1) of Theorem 2 says that to compute wis_true(P), we
can perform pruning oscillations for / stages. At the end of
these i stages, we have a set glo_true,(P) of ground atoms, and
a “pruned” program P;. wfs_true(P) may be obtained by com-
puting wfs_true(P;) and then adding all the atoms in
glo_true/(P) to this set. Part 2) of the theorem is similar. Theo-
rem 2 has, as an important corollary, the following result:

COROLLARY 1. (van Gelder [20], Baral and Subrahmanian [3])
Suppose P is a logic program. Then wfs_true(P) =
glo_true(P) and wfs_false(P) = glo_false(P). 0

Though the above corollary says that the GLO-module
alone is sufficient to compute the well-founded semantics of
any program P, it turns out that using the GLO-oscillation on a
program P is relatively inefficient (Experiments V.A.1 and
V.A.3). Instead, it is computationally faster, in practice, to run
the MI-module first on program P, and generate the sets
mi_true(P) and mi_false(P) and the modified program
mi_target(P). mi_target(P) is usually much “smaller” than P
(Experiment V.A.2); applying the GLO module on
mi_target(P) leads to the computation of the sets
glo_true(mi_target(P)) and glo_false(mi_target(P)) which
may then be combined using the combination module below.

C. The Combination Module

The combination module takes as input, the sets mi_true(P)
and mi_false(P) returned by the monotone iteration module,
and the sets glo_true(mi_target(P)) and glo_false(mi_target(P))
returned by the GLO-module. It returns, as output, the set
mi_true(P) U glo_true(mi_target(P)) of “true” atoms, and
mi_false(P) U glo_false(mi_target(P)) of “false” atoms. The
following result now follows immediately from Theorem 2 and
Corollary 1.

THEOREM 3. Let P be any logic program. Then:
1) wis_true(P) = mi_true(P) U glo_true(mi_target(P))
2) wis_false(P) = mi_false(P) U glo_false(mi_target(P))
0

Given a logic program P, once the MiI-module,
GLO-module and the combination modules have been exe-
cuted, the sets wfs_true(P) and the sets wfs_false(P) are fully
computed. A simplified version, glo_simp(mi_target(P)), of P
is also computed. This simplified program is now fed into the
stable model computation module (described below).

IV. COMPUTATION OF STABLE SEMANTICS

It is well-known [20], [3] that the well-founded model ap-
proximates the stable models of a logic program in the follow-
ing sense: for any logic program, P, and for any stable model,
M, of P:

o wfs_true(P) C M, i.e. the set of ground atoms true in the
well-founded semantics of P is a subset of the set of at-
oms true in M and
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o wfs false(P) < (B, —~ M), ie. the set of ground atoms
false in the well-founded semantics of P is a subset of the
set of atoms false in M.

A. Informal Description of Branch and Bound Algorithm

Given a logic program P, we compute its stable models
as follows:

1) First, we compute the well-founded semantics of P using the
procedure outlined in the preceding section. The WFS computa-
tion module (Fig. 1) retums the following: the sets wis_true(P)
and wis_false(P), as well as the program glo_simp(P), which is
a simplified version of mi_target(P). glo_simp(P) is the final
element P, of the sequence Py, ..., P, specified in Definition 7.
(As we are only dealing with deductive databases, there must
exist an integer # such that £, = P,,).

2) Our branch and bound algorithm for computing stable
models takes glo_simp(P) as inpul, and returns the set. S,
of all stable models of glo_simp(P) as output.

3) The set of stable models of the original program P is then
{wis_true(P) U I|] e S}.

An important point to note is that the program, P, whose
stable models we wish to compute should not be fed directly
to the branch and bound algorithm (doing so may lead to
incorrect results). Only glo_simp(”) may be fed to the
branch and bound algorithm. The example below illustrates
the working of the algorithm. Formal definitions are given
after the example.

EXAMPLE 4. Suppose ¢ = glo_simp(f) is the program:
{a ¢ --b; b ¢ ~a, ¢ ¢ a; ¢ « b}. All the atoms a, b, ¢ are
“unknown” according to the well-founded semantics. In our
branch and bound algorithm, we process this program as
follows: we first initialize the list S (of stable models found
thus far) to & and we have a list L containing one node—
the four-tuple Q = (glo_simp(P), &. I, {a, b, c}) L points
to a list of nodes that are yet to be processed. The four-tuple
consists of the program to be processed, atoms assumed to
be true, atoms assumed to be false, and atoms currently
“unknown.” We select an atom that is unknown (let us say
we select @) and branch by assigning either false or true to
a. How best to select an atom from the set of currently
“unknown” atoms is a significant problem; one method of
doing so is described in Section IV.C. Fig.3 shows the
branching process once the atom « has been chosen as the
atom on which to branch. The left branch assumes a to be
{alse, the right branch assumes a to be true.

In the left branch, which assumes a to be false, we replace
occurrences of a (positive and negative) in the body of
clauses in glo_simp(P) as follows: If « occurs positively in
the body of a clause, replace it by faise, and if a occurs
negatively in the body of a clause, then delete that negative
occurrence of @ from the body. This leads to a new node
consisting of
e ¢ the modified program-—in this case, it consists of the
clauses: {a ¢ — b; b & ; ¢ ¢ false; c « b}. A recursive
call is made to the WFS computation algorithm. The set

of atoms true in the well-founded semantics of this new
program is {é, c} and the set of atoms false in the well-
founded semantics of this new program is {a}.

e T7: The true atoms consist of the true atoms from the par-
ent node (&J in this case) plus the atoms determined to be
true in the well-founded semantics of the new program.
Hence, the set of true atoms in the new node is {b, c}.

e F: First of all, @ must be in £~ because we are branching
on the assumption that a is false. In addition, ¥~ includes
all the false atoms from the parent node (&J in this case)
plus the atoms determined to be false in the well-founded
semantics of the new program (also & in this case).
Hence, the set of false atoms in the new node is {a}.

e U": The set of unknown atoms in the new node is & (all
atoms’ truth values have been “fixed” as above).

We then check if 7' is a superset of anything in S. It is
not. Furthermore, we observe that 7° N F~ = (J, i.e., the
assumption that a is false has not led to inconsistency.

Finally, we observe that nothing is now unknown, i.e., U~
is empty. Hence, all ators have been assigned truth val-
ues, and no inconsistency results. Consequently, we know
that 7 is stable, and we add it to S. (Had U~ been non-
empty, we would have added the tuple (¢", 77, F~, U") to
the list L.)

In the right branch, which assumes a to be true, we delete
positive occurrences of a in clause bodies, and replace oc-
currences of —a in clause bodies by false. This leads to a
new node consisting of

e g": The modified program consisting of the clauses
{a « —b; b « false; ¢ « ; ¢ « b}. When the well-
founded computation module is called with this program
as input, the set {c} is determined to be true and {4} is
determined to be false.

e T": Consists of the assumption, @, and ¢, and hence is the
set {a, c}.

e F': Consists of {b}

e U": This set is empty.

We then check if 77 is a superset of something in S. It is
not. Furthermore, 7' N F "= & and hence, there is no in-
consistency. Furthermore, U/ * is empty. Consequently, we
add T'to S.

At this point, L contains no nodes, and we are done. .S contains
the two stable models of this program {a, c} and {b, c}. O

B. Formal Properties of Branch and Bound Algorithm

In this section, we develop the formal theory of computing
stable models using the branch and bound strategy of Fig. 2.
As can be observed by a cursory glance at the algorithm of
Fig. 2, various expressions used in the description need to be
formally defined. The first is the concept of what expressions
like “¢” is ¢ modified by —4” and “q” is ¢ modified by 4”
mean. These modifications are similar, but not identical to, the
transformation strategy given in Definition 6.

DEFINITION 8. Suppose q is a logic program, and A is a
ground atom. The result of modifying g w.r.t. —A, denoted
CH(gq, —A), is the logic program obtained as follows:
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D) If A occurs in the body of a clause in q, then A is re-
placed by the atom false.

2D If —A occurs in the body of a clause in q, then that
occurrence of —A is deleted.

The result of modifying q w.r.1. A, denoted CH(q, A4) is the
logic program obtained as follows:

1) If =4 occurs in the body of a clause in q, then —l is re-
placed by the atom false.

2) If A accurs in the bodv of a clause in q, then that occur-
rence of A is deleted.

L ={(P,0,0, Bp)); (* Bp is the Herbrand Base of P *) (1)
§ =9 (* § is the set of stable models abtained so far *) @
while (L # @) do (3)
gelect the first node Q = (g, 7, F,U) from list I; )
Remove Q from I; (5)

if there is no To € S such that To ¢ T then )
Select ground atom A from U; (G}

Q@ =(¢",T",F~,U") where &)

¢~ is ¢ modified by A and (9)

T~ is TU the set of atoms true in WFS(¢™} and [$U))

F~ is F U {A} U the eet of atoms false in WFS(¢"} and (11)

U~ is the set (U - {A}) — (T~ L F~) (12)

if 7' is not a superset of any Tg € § then (13}

if @~ is consistent then (14)

U~ =9 then (15)

add T~ to § (16)

else append ¢~ to the end of list L; (17

Qt = (¢+, T+, F* U+) where (1&)

gt is ¢ modified by 4 and (1)

T+is T U {A}U the set of atoms true in WFS(gt) and (20)

F* is F'U the set of atoms false in WFS(q+) and (21

Ut is the set (U — {A}) -~ (T* v F¥) 22)

if T is not a superset of any Tp € S then (23)

if @ is consistent then (24

if U+ =0then (25)

add T to § (26)

¢lse append @+ to the end of list L; @n

end while (28)
retarn $; (29)

Fig. 2. Branch and bound algorithm for computing stable models.

(@ {}{}.{a,b,c})

V

(a7 {b,ch {a}, (D)

a true

=

(¢*{a, e}, {8}, (1)

terminates as “unknown”
set is empty.

terminates as “unknown”
eet is empty.

Fig. 3. Branch and bound example.

We assume that the proposition fulse is an artificial atom
that is not considered (for ease of presentation) to occur in the
Herbrand Base of the program. The key difference between the
modification mod(—, —) and CH(—, —) is that the latter never
causes any clause to be deleted and never affects the head of
any clause.

DEFINITION 9. Suppose T is a binary trec. The root of T is said
to be a level | node. If N is a level i node, and N’ is a child
of N, then N’ is said to be a level (i + 1) node.

If T contains finitely many nodes, then the height of T is
defined to be max{level(N) | Ne T}.

DEFINITION 10. Suppose P is « logic program. Let Bp be the
Herbrand Base of P. Furthermore, suppose the cardinality
of Bpis n and let ay, ..., a, be an enumeration of Bp. The
abstract computation tree, denoted ACT(P), associated with
P and the enumeration ordering a,, ..., a, is a full binary
tree of height (n+ 1) defined as follows:

1) The root of ACT(P) is labeled with (P, &, &, Bp).
2)If N is u level i node in ACT(P) labeled with (g, T, F, U),
and i < n then N has two children, N and N . The link
Srom Nto N is labeled with —a, and the link from N to
N7 is labeled with a,.
3) The label of N is (g ., T .F ",U") where:
a)g =CHlg, ~a)
b) 7" = T U wfs_true(glo_simp(CH(y, —a,)))
o) F = FU {a;} U wfs_false(glo_simp(CH(q, -a;)))
D =U-at\JT UF)
4) The label of N is (¢", T'. ', UU") where.
a)q' = CH{g, a;)
b) T' = TU {a} U wfs_true(glo_simp(CH(g, a,)))
c) F' = FU wfs_false(glo_simp(CH(q, a,)))
DU =gy UT UFY
Pruning Strategy. The abstract computation tree associated
with a program 7 is, in general. very large. The reason for this
is that ACT(P) is of height |B,]| 1+ 1 where ||B,{ is the number
of ground atoms in the language being considered. Thus, as
ACT(P) is a full binary tree, it contains (2™"'" —1) nodes: a
potentially very large number. The stable model algorithm, as
envisaged in Fig. 2, would atternpt to alleviate this problem by
the following methods:

1) First, given a logic program P, we would call the branch
and bound algorithm with the program glo_simp(P)
which is typically much smaller than P and has a much
smaller Herbrand Base. In other words, we would study
the abstract computation tree 4CT(glo_simp(P”)) as op-

posed to ACT(P). This reduces the number of nodes from

WBao gy L , .
QUBHED 1y g (27 ™ _ 1) | In practice the size of

the program glo_simp(P) as compared to the size of P is
very small indeed.

2) Second, many branches in ACT{glo_simp(P)) can be
pruned away. (f N is a node with label O = (g, 7. F, U)
such that 7N ## J then Q is said to be inconsistent and
the left and right subtrees are pruned away via the if-tests
in lines 14 and 24 of the branch and bound algorithm.

3) Third, further pruning can be done based upon the set U.
As soon as a node’s label has an empty U-component,
there is no need to expand that node any further, so it is
pruned in lines 15 and 25 of the algorithm.

4) Fourth, it is not difficult to sce that if we consider any
branch in ACT(P), the T-components of the nodes in this
branch are monotonically increasing as we get further
away from the root, ie., if Ny, ..., N, is the branch in
question, and 7 is the T-component of the label of node i,
then 7, Ty < . Furthermore, Marek and Truszczynski
[17] have shown that every stable model / of a logic pro-
gram £ is minimal in the sense that no strict subset J < /
can be a stable model of P. Consequently, if we already
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know when, exploring a particular branch, that / is a sta-
ble model, and if we find that 7} is a label in that branch
such that I ¢ 7, then we can prune away all subtrees
rooted at node N,. This is done in lines 13 and 23 of the
branch and bound algorithm.

5) Fifth, the specification of ACT(P) is non-deterministic in
the sense that there are many possible ways of selecting
which atom to branch on. A judicious choice of the atoms
on which to branch on may well lead to:

a) the set of “unknown” atoms being quickly disposed
of and/or
b) pruning of a subtree below the current node.

Given a logic program P, and an enumeration a,, ..., a, of
the Herbrand base of P, we use PRUNE _ACT(P) to denote the
tree obtained by pruning ACT(P) as much as possible using
conditions 1)-4) above.

DEFINITION 11. Suppose P is a logic program. let
LEAF(glo_simp(P)) = {T | there exists a leaf node in
PRUNE_ACT(glo_simp(P)) having, as its label, (g, T, F,
@) such that TN F =},

Let MIN_LEAF(glo_simp(P)) be the set of all c-minimal
elements of LEAF(glo_simp(P)).

In other words, LEAF(glo_simp(P)) is simply the set of all 7-
components of the labels of consistent leaves of
PRUNE_ACT(glo_simp(P)). Similarly, MIN_LEAF
(glo_simp(P)) is the set of minimal elements of
LEAF(GLO_SIMP(P)). The following example shows the tree
PRUNE_ACT(P), and how stable models may be generated.

EXAMPLE 5. Consider a program P containing the following
clauses:

a e —b b« —a

cea ceh

Fig. 4 shows the tree PRUNE_ACT(P) corresponding to this
program P. Note that in this case, P = glo_simp(P).

(P89,
e {a,,¢}) .
(P1,8, m: {c},8,
{c}, {a,8}) {a,8})

- . - /\
(P3,{a,c}), (P4, {b,c}, (P5,{a,c} (P8, {b,c},
{t,c},8) {a,c},8) {6},9) {a},9)
Inconsi Inconsi Stable Stable

Fig. 4. The (pruned) tree ACT(P) for Example 6 using selection ordering ¢,b.a

If one looks carefully at this figure, the strategy to select a
literal is ¢, b, a. In other words, branching at the root is based
on ¢, branching at level 1 nodes is based on b. It turns out that
we never need to branch on a.

Suppose we choose, instead, to consider selection of the
branch literals to occur in the order b, g, c. In that case, Fig. 5
shows the tree PRUNE_ACT(P). One will observe that using this
selection order causes PRUNE ACT(P) to contain fewer nodes.

Hence, this ordering is preferable to the ordering c, b, a. Section
1V.C provides an outline of how to make such selections a priori.

(P,0,0,{a,b,c})

\

(P8, {b,c}, {a},0)

o

(P17, {a,¢}, {8}, 9

Stable Stable

Fig. 5. The (pruned) treee ACT(P) for Example 6 using selection ordering b,a,c.

Note that once a specific literal ordering is given, the ab-
stract (un-pruned) computation tree 4CT(P) is uniquely de-
termined. Strictly speaking, the depth of ACT(P) remains the
same irrespective of the specified literal ordering because
technically, ACT(P) contains branching nodes for all atoms.
The effect of pruning is to cut down ACT(P) by refusing to
branch on nodes that are either:

1) completely determined, i.e., the node’s label is of the
form (g, T, F, ) or

2) subsumed, i.e.. 7 2 / for some / that is already known to
be stable, or

3) inconsistent, i.e., TN F = .

The following result is straightforward and is of great utility
in proving the soundness and completeness of the branch and
bound algorithm.

LEMMA 4. Suppose P is a logic program and A is a ground
atom. Then:

D If A is “unknown” according to WFS, then there exists a
clause C' € glo_simp(P) with A in the head such that
a) some literal L in the body of C is “unknown” ac-
cording to WFS and
b) there is no clause C’ € glo_simp(P) with A in the
head such that all literals in the body of C are true
in WFS.
2)If A occurs (positively or negatively) either in the head
or in the body of anv clause in glo_simp(P), then A is
assigned u by WFS. 0

Note that the branch and bound algorithm should not be
applied directly to a deductive database P. It works only after
P has been converted to glo_simp(P)—if applied directly to P,
incorrect results may be obtained. The reason why the branch
and bound algorithm should not be directly applied to P is that
all atoms occurring in glo_simp(P) are “unknown” according
to the well-founded semantics of glo_simp(P). It is precisely
to preserve this property that the programs occurring in labels
of nodes are of the form glo_simp(CH(g, +a)) rather than just
CH(q, *a).

THEOREM 4. [ is a stable model of glo_simp(P) iff

I e MIN_LEAF(glo_simp(P)). J

Before proceeding to prove the soundness and completeness
of our branch and bound algorithm in Theorem 5 below, a
number of technical lemmas need to be established.
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LEMMA 5. The branch and bound algorithm generates the
nodes of PRUNE_ACT(P) in pre-order (Knuth [13]). i

COROLLARY 2. (Termination of Branch and Bound Algorithm)
The branch and bound algorithm always terminates. I

COROLLARY 3. The branch and bound algorithm generates the
nodes in LEAF(glo_simp(P)) in left to right order. [

LEMMA 6. If N and N are nodes of PRUNE_ACT(P) with
labels (g, T, F, U) and (¢', T*, F', U’), respectively, and if
Nistothe left of N then T € T. 1

THEOREM 5. (Soundness and Completeness of Branch and
Bound Algorithm) When called with glo_simp(P) as input,
the Branch and Bound Algorithm returns as output, the set
MIN_LEAF(glo_simp(P)) which is identical to the set uf
stable models of glo_simp(P).

Before proceeding to discuss intelligent branching
strategies, we observe that sometimes, we may be inter-
ested in truth in some stable model of P. Stable models
reflect multiple possible ways of completing an
“incomplete” description of the world. Any one of these
may be the “right” one, but based on the available intu:-
tion, we do not know which. To determine truth of a query
in some stable model of P, the branch and bound method
can be modified as follows: as soon as the first stable
model M, is discovered by the branch and bound algc-
rithm, write down the tuples {p(l, f)| p(f) € M,}. Basically,
the tuple p(i, f) says that the ground atom p(f) is true in
the ith stable model of P. When wanting to know if the
query (3x,,...x. ) p, (1)& ... & p,(£,)) is true in some
stable model of P, the above set of tuples can be queried
as: (3)(3x,, ... x (pi, ()& ... & p,, (i, 1,)). Alternatively,
should we so desire, the branch and bound algorithm can
be easily modified to terminate as soon as one stable model
has been discovered. Whether this non-deterministic way
of selecting a stable model (and commitling to it) is appro-
priate would depend on the application

C. Intelligent Branching

As described earlier (Example 5), the selection of atoms on
which to branch makes a significant difference in the height of
PRUNE_ACT(P). We describe below, a simple methodology
for selecting atoms on which to branch which, in practice,
causes PRUNE_ACT(P) to be relatively “small.” We will
heavily use the “dependency graph™ of Apt, Blair, and Walker
[1} for this purpose.

DEFINITION 12. The graph associated with a logic program P
is defined as follows:

o the nodes of the graph are the ground atoms in our un-
derlying language and

o there is a (directed) edge from A to B if there is a clause
in grd(P) with A in the head such that B occurs either
positively or negatively in the body.

DEFINITION 13, Suppose P is a logic program. A ground atom
A is said to depend on ground atom B iff there is a path of
length O or more from A 10 B in the dependency graph of P.

Apt, Blair, and Walker [1] use the above dependency graph
(together with a labeling of the edges) to develop a notion of
stratification. We will use this graph in a different way. It is
well known [1] that “depends on” is a reflexive and transitive
relation. Using the “depends on” relationship, we will build a
quotient algebra in the usual way.

e Given a ground atom A, the equivalence class of A, de-
noted [|A| is the set {B | B is a ground atom such that A
depends on B and B depends on A}. (The equivalence
classes correspond to the strongly connected components
of the dependency graph.)

e We define an ordering, denoted <, on equivalence classes
as follows: ||A]| < | B| iff there exists an atom a € ||A|| and
an atom b € ||B|| such that b depends upon a.

It is not difficult to see that the relation < on equivalence
classes is a partial ordering.

EXAMPLE 6. Consider the program of Example S. Here, the
equivalence classes are: ||a|| = {a, b} and |ic|| = {c}. In par-
ticular, ||b]| = [lall. It is easy to see that {a, b} < {c}. The rea-
son is that ¢ depends on a.

In fact, it is not difficult to see that if ||A|] and ||B|| are
equivalence classes such that ||A|| < ||B||, then every atom in
B must depend on every atom in A.

Given a logic program P, we may use the ordering < on the
equivalence classes defined above to list the equivalence
classes in “layers.” This can be done as follows: define Eq to
be the set of all <-minimal equivalence classes of P. For i 2 0,
define E;,; to be the set of all <-minimal members of the set
{lall1A e By~ Uy By
EXAMPLE 7. Continuing with the program of Example 5 and

Example 6, we note that Eg = {{a, b} and E; = {{c}}.

Intelligent Branching Strategy. The strategy for selecting
atoms on which to branch may now be described as follows:
Suppose N is the node we are currently attempting to branch
from, and the label of Nis (q. T, F, U). An atom a € U is se-
lected for branching iff |la] € E; implies that there is no
ground atom b € U such that ||b]| € E; where j < i.

In other words, the candidates for branching are picked
from the “lowest” possible levels of the Eq, E;, ... hierarchy.
Thus, in the case of the root of the tree associated with the
program Example 5 and Example 6, we would choose to
branch on either ¢ or b instead of choosing to branch on c.
This leads to a “shorter” tree.

Experiment V.A.5 reports on some experiments that we
have run to determine the utility of intelligent branching.

An alternative formulation of the intelligent branching strat-
egy is to partition the logic program being processed by the
branch and bound module according to the equivalence classes
generated by the <-ordering. The <-minimal components’ sta-
ble models can then be computed first; stable models of com-
ponents that are not <-minimal may be done once all the stable
models of all (programs corresponding to) components
“strictly below” have been computed. This is equivalent to the
intelligent branching strategy.
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D. Partial Instantiation: The Non-Ground Case

A valid critique of the work presented this far in this paper
is that it applies to ground programs. This is a drawback be-
cause the ground instantiation of a logic program is signifi-
cantly “larger” than the original program. In [10], we have
developed techniques that, given a definite (i.e., negation-free)
logic program P, and any method for computing the semantics
of a propositional (i.e., grounded out) logic program, will
show how to instantiate P on an “instantiate by need” basis s0
that the set of atomic logical consequences of the non-ground
program P can be computed.

Basically, this partial instantiation method for evaluating
logic programs proceeds as follows-—first, a (non-ground)
logic program P is treated as if it were a propositional logic
program P*(i.e., an atom 4 occurring in 7 is considered to be a
proposition p,). Program P* may then be evaluated using any
known mechanism for evaluating propositional logic pro-
grams [4], [5]. Assignments of true/false to different proposi-
tions p4 and pg in P* may lead to “conflicts” when 4 and B are
unifiable, but p, and py are assigned different truth values. If
there are no such conflicts, then we are done. When such
conflicts are present, then [ [0] articulates a precise strategy for
removing such conflicts and shows that this strategy of

Evaluate Propositional Program --Identify Conflicts - Partially Instantiate

yields a soundness and completeness theorem for the compu-
tation of answer substitutions [16].

The extension of the partial instantiation strategy for defi-
nite programs to apply to well-founded and stable models is
being studied in two separate efforts [11], [9]. As in [10], both
these efforts assume the existence of two methods, M,, and M;
that, giver any ground logic program will compute the well-
founded semantics and the set of stable models, respectively of
the ground program. The methods described in the preceding
sections perform these computations in the ground case. Sub-
sequently, “conflicts” will be identified and partial instantia-
tion will be used to remove these conflicts. Neither of the two
papers [11], [9] in preparation show how to compute the well-
founded (or stable models) semantics of propositional pro-
grams—rather, they show how to use a propositional sta-
ble/well-founded semantics computation strategy to generate a
partial instantiation strategy that will instantiate non-ground
programs on a “need-to-instantiate” basis. Consequently. the
methods developed in this paper can be used in conjunction
with the partial instantiation strategies heing developed in [9],
[11] to yield computational paradigms for nonmonotonic logic
programming semantics in the non-ground case.

We give below, an outline of how the partial instantiation
strategy can be used to compute the well-founded semantics.
The detailed description of the scheme and its soundness and
completeness results are contained in [11].

EXAMPLE 8. Let P be the (non-ground) logic program below
PXLY e = g(XL YY),
r{a)e—.
gla,a)e-.
According to the well-founded semantics, the ground atoms

¢(X2, ¥a)e- = p(X1, 1a).
rh)e— .

rHa), r(b), ¢(a, a) are true, the atom p(a, a) is false, and all
other ground atoms are “unknown.”

The partial instantiation strategy works by considering all
the atoms occurring in P to be distinct propositional symbols —
thus, for instance, p(Xj, Y|) and g¢(X|, Y;) are considered to be
distinct propositional symbols. The well-founded semantics of
this “propositional” version of 1 says that r(a), r(b), ¢(a, a) are
true, and p(X,, Y1), g(X;, 1)), plXs, Ya), g(X,, Ys) are unknown.
Nothing is assigned false. At this stage, we notice that there is
a conflict—q(a, «) is unifiable with both g(X,, Y\), 9(Xz, 12)
via unifiers 8, = {X, = a, Y1 = a} and 6, = {X;, = q, ¥; = a},
respectively. The conflict exists because g(a, @) is “true” ac-
cording to the well-founded semantics, but (X, 1), ¢(X3, 12)
are assigned the truth value “unknown.” We instantiate the
clauses in P by 8, and &, respectively, leading to two new
clauses: p(a, o)« —q(a, a) and ¢(a, a)¢—~ —p(a, a). These are
then added back into P and the process repeated. At this stage,
Ha), r(b), ¢(a, a) are assigned “true” by the propositional WFS
computation process, p(a, a) is assigned “false” and all other
atoms are assigned “‘unknown.” The only conflicts that occur
now generate the same substitutions 8, and 6,, that we saw
before, and hence, we can terminate.

V. IMPLEMENTATION AND EXPERIMENTATION

All the components of Fig. | as well as the entire branch
and bound procedure and the procedure for selecting atoms
have been implemented in a prototype compiler.

The prototype compiler is written in C running under the
Unix environment on a Dec-2100 workstation. It has roughly
6200 lines of C code implementing the pruning iteration strat-
egy described in Section TII.A, the transformation strategy, the
pruning oscillation described in Section I11.B, the branch and
bound procedure of Section IV, and the intelligent branching
strategy of Section IV.C.

A. Experimental Results

We have conducted a number of experiments testing the ef-
ficiency of our prototype compiler. First of all, we have ex-
perimented with the programs considered in the literature (e.g.,
[20]). These include definite, stratified, locally-stratified, as
well as non-locally stratified programs. Our prototype com-
piler handles all those programs correctly, and given the rela-
tively small sizes of those programs, our compiler finishes all
computations very rapidly. Unless otherwise stated, the com-
putation times of our prototype compiler presented below in-
clude all computations® including the total time taken to: read a
{ground) program, perform the MI-stage and GLO-stage com-
putations and output the results. In cases where stable models
are considered, the time to execute the branch and bound pro-
cedure is also included. All times are reported in milliseconds.

Though we have experimented with a number of alternative
examples, we will only report here on experiments conducted
with the “win-move” example of van Gelder [20]. Other ex-
periments and examples are described in the longer technical

5. The Unix utility program profile is used to record computation times.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 23, 2009 at 13:36 from IEEE Xplore. Restrictions apply.



SUBRAHMANIAN, NAU, AND VAGO: WFES + BRANCH AND BOUND = STABLE MODELS

report [19]. These results are representative of our other re-
sults. The “win-move” example consists of the single rule
win(X) < move(X, Y) & —win(Y), together with a set of facts
of the form move(—, —). This set of facts represents a directed
graph (which we call the *“game graph”) representing the
moves in a game. We ran an extensive sel of experiments with
the win-move example. In our experimentation, we varied the
number of nodes in the game graph from 50 to 100 in steps of
10. Once the number of nodes was fixed, we randomly gener-
ated edges between these nodes. We generated 60 to 200
edges, in steps of 20. Once both the number of nodes and the
number of arcs was fixed, we generated 75 sets of edges. In
other words, once the number of nodes and number of arcs was
fixed, 75 different extensional databases containing move
predicates were generated. Each of these was run eight times
to average out variations in timing. In total, we ran 6 x § x 75
x 8 = 28,800 logic programs altogether to get these readings.

A.l. Our Approach
Computation

vs. Alternating Approach to WFS

The main aim of this experiment was to determine how our
approach compared with the alternating approach as described
by van Gelder [20]. We wished to compare the rate at which
performance in both approaches degraded as the programs got
larger in size (in terms of having more constants and more
clauses in them). Our approach consists of running the (ground
version of) a program P through the MI. GLO, and C-modules
described in Fig. 1. The naive alternating approach would run
the entire program through the GLO module alone.

Fig. 6 shows how our approach performed vis-a-vis the al-
‘ternating fixpoint approach. The x-axis specities the number of
nodes. The dotted lines denote the times taken by our approach
when the number of arcs in the graph differ. Thus, for exam-
ple, the dotted line marked » = 100 denotes the time taken by
our approach when the number of nodes varies from 50 to 100.
The bold lines denote the times taken by the alternating ap-
proach. The y-axis denotes time in milliseconds.

x10° Performance on win-move problems
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x = alternating approach aumber o
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Fig. 6. Our approach vs. alternating approach.
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Two conclusions may be drawn from the graph of Fig. 6.

e The first is that our approach takes considerably less time
than the alternating approach. For each value of n, the
dotted line representing our approach is completely be-
low the bold line (for the alternating approach) that is
marked with the same value of n.

e The second conclusion that may be drawn is that our ap-
proach degrades at a lower degree than does the alternat-
ing approach. Why? Consider the slopes of the lines in-
volved (take, for example, the dotted line n = 100 and the
bold line n = 100). The slope of the dotted line is smaller
than the corresponding slope for the bold line.

The second conclusion is further reinforced by the graph of
Fig. 6 which compares the time taken by our procedure with
the time taken by the alternating procedure.

A.2. Size of mi_target(P) compared to the Size of P

Fig. 7 below shows the number of clauses in mi_target(P)
as the number of nodes (represented by constants in P) in the
game graph is increased. The graph is plotted on a logarithmic
sizale which means that a linear downward slope on the log-
scale means an exponential downward slope on an ordinary
scale. As Fig. 7 shows, for each of the values of » (the number
of arcs) in the game-graph, there is a clear downward slope on
the log-scale graph, showing that in practice, the effect of
pruning iterations causes the size of mi_target(P) to decrease
exponentially as a function of the number of constants. This
means that pruning iterations have a more and more significant
impact on the size of mi_target{P) as the number of constants
gets larger.

Size of the program mi_target(P)
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Fig. 7. Growth in size of Mi_target(P).

A.3. Effect of Pruning Oscillation

Finally, we ran experiments to verify the effectiveness of
pruning oscillations. Fig. 8 shows that alternating fixpoint
computation with pruning oscillations is an improvement on
the naive alternating fixpoint computation. In the figure, the
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dashed lines denote the time-lines for the computation using
pruning oscillations, while the bold lines denote the times
taken for the naive alternating fixpoint computations. How-
ever, simply performing alternating fixpoint computation with
pruning oscillations does not produce the best results.

Fig. 8 shows also that our approach of first processing P
through the MI-module simplifies the program, producing
mi_target(P) and the sets mi_true(P) and mi_false(P). Sub-
sequently executing the GLO-program on mi_target(P) leads
to better results than executing the GLO-program on the larger
program P.
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Fig. 8. Effect of compaction.

A.4. Stable Model Computation

Fig. 9 shows the total time taken to compute all the stable
models of a logic program using our approach. (Again, as be-
fore, the “win-move” example is being used here.) As can be
seen from the graph, the performance of our procedure did not
appear to explode exponentially as a function of the number of
nodes in the game graph. Beyond that, the results indicate that
the time taken to compute stable models increases as a func-
tion of n.

A.5. The Impact of Intelligent Branching

In order to determine the effect of intelligent branching, we
conducted experiments with two programs. The two programs
both had non-trivial dependency graph structures. In both
cases, we increased the number of constants while keeping the
number of rules constant.

Program 1. This program consisted of the rules shown below.

z1(X) « v1(X), wl(X). 22(X) « v1(X), w2(X).
23(X) « v2(X), wi(X). Z4(X) « v2(X), w2(X).

vI(X) « s(X). v2(X) &« «X).
wl(X) < p(X). w2(X) ¢ g(X).
t(X) ¢~ —s(X). s(X) & —(X).
PX) & —q(X). gxX) « —p(X).
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The above set of rules was augmented by adding facts of the
form y(—) where y is a unary predicate symbol. The predicate y
was used solely to introduce constant symbols in the language.
This program has 4" stable models where n is the number of
constants in our language. Table I shows the results of using
the naive branch and bound strategy as opposed to the intelli-
gent branching strategy. It is clear that the intelligent branch-
ing significantly speeds up the computation. All times given
below are in milliseconds. The times reported below include
the times taken to construct the dependency graph associated
with a program, and to compute the sets Ey, E,, ... described
in Section IV.C.

TABLE I
NAIVE VS. INTELLIGENT BRANCH AND BOUND
Number of 1 2 3 4 5
Constants
Naive Branch 101 | 637 | 3,165 | 16,744 | 129,186
and Bound
Intelligent 43 | 262 | 1,413 | 9,431 95,766
Branch and
Bound
Number of 4 16 64 256 1,024
Stable Models
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Fig. 9. Time for stable model computation.

Program 2. This program consisted of the rules shown below.
5(X) < p(X), q(X). $(X) < p(X), r(X).
5(X) « g(X), r(X). pX) & = (X).

g(X) « - (X). rX) « = (X).

As before, the above set of rules was augmented by adding
facts of the form y(—) where y is a unary predicate symbol. The
predicate y was used solely to introduce constant symbols in
the language. The program has no stable models at all, and
hence, both the naive branch and bound strategy, as well as the
intelligent branching strategy need to scarch almost the whole
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of ACT(P). Table II shows the results of using the naive
branch and bound strategy as opposed to the intelligent
branching strategy. It is clear that the intelligent branching
significantly speeds up the computation. All CPU times given
below are in milliseconds.

of rapid query-processing at run-time. These trade-offs may be
summed up in Table III.

TABLE I
PROS AND CONS OF DIFFERENT DATA MODELS

Criterion Relational Deductive Our
NAIVE VS, INTELLIGENT BRANZ: ENLIE BgUND AS CONSTANTS INCREASE C Database Slow Fast Fast
reation Time Error-prone Fewer Errors | Fewer Errors
Number of Without Intelligent With Intelligent Storage High Much Smaller High
Constants Branching Branching_m Requirements
5 105 54 Run-Time High Poor High
10 224 117 Efficiency
15 346 198
20 482 303 -
> <os Yen VI. DISCUSSION
30 873 586 Though it is now almost five years since the development of
35 1,117 755 the well-founded semantics and stable semantics, relatively
40 1,379 972 little work has been done on implementing these alternative
45 1,691 1,203 semantics. To our knowledge, this is the first work which
30 2,008 1,475 shows precisely how to compute the stable semantics by using

On programs that generated dependency graphs with little
or no structure, we found that the effect of intelligent branch-
ing was relatively minor.

B. Storage and Access of Models

One reason why deductive databases are elegant is because
they can be developed much more quickly: when creating a
relational database, the database creator(s) must insert all tu-
ples in each relation, one by one, into the database. This
method of creating a relational database is consequently error-
prone. Deductive databases, on the other hand, can be created
much more quickly than relational databases because instead
of inserting all tuples, one by one, into a relation, the presence
of a tuple in a relation may be implied by a rule in the data-
base. A second advantage is that deductive databases use up
less storage space than relational databases. Both these advan-
tages (rapid database creation, lower storage requirements) are
offset by the fact that at run-time, query processing takes much
longer than in the relational model.

When (parts of) a database is used to provide support, in
real-time, to say a real-time control system, then run-time,
resolution-based theorem proving approach used by deductive
databases is infeasible in practice. Hence, our proposal is that
those parts of a database that are expected to provide such
support be compiled into a relational database format. After a
deductive database is compiled, the model(s) of interest (weli-
founded/stable) are stored in relational format so that queries
against the deductive database can be answered by checking
with the stored model(s). (In the next two subsections, we
show how to store and access the well-founded model, as well
as the set of stable models.)

In other words, we are proposing a trade-off: By compiling
those parts of a deductive database that need to provide intelli-
gent real-time support, we retain the advantage of rapid data-
base creation (as the creator of the database still proceeds in
‘the same way as for deductive DBs), but lose the advantage of
lower storage requirements. In return, we gain the advantage

computation of the well-founded semantics as a first step.

Computation of well-founded semantics of logic programs
has been studied by Kemp et al. [12], Chen and Warren [6],
Warren [22], and by Leone and Rullo [14]. Kemp et al. show
how, given a query Q to a logic program P, and a sideways
information passing strategy® S, it is possible to create a new
program Magic(P, S, Q). More importantly, this new program
has the same well-founded semantics as the original program
P, and has a particular syntactic form. Kemp et al.[12] show
how the query Q may be answered w.r.t. the new program
Magic(P, S, Q). Warren [22] shows how to construct a Prolog
meta-interpreter for the well-founded semantics based on
OLDT-resolution. Warren’s technique uses a table to tabulate
previously solved goals —his avoids redundant computation.
Chen and Warren [6] extend the work in {22] and develop a
sound and complete technique for computing WES called
XOLDTNF-resolution. Leone and Rullos’s technique is simi-
lar to the above techniques in spirit, and deals with safe com-
putations in a datalog language containing well-founded nega-
tion. They do not present an implementation, however.

Computation of the set of stable models has also been stud-
ied by Sacca and Zaniolo [18]. Their method is based on a
backtracking technique which assumes an undefined atom to
be false and then continues the computation on this assumption
until it computes a stable model or discovers a contradiction in
which case it backtracks. The branch and bound technique
developed here may be viewed as an improvement of the
Sacca-Zaniolo technique—especially as various pruning (i.e.,
bounding) techniques we use speed up the computation. A new
and important feature of our work is that our computations are
based on a prior computation ¢f the well-founded model which
the backtracking method does not do. Last, but not least, Le-
one et al. [15] study computation of nonmonotonic negation in
logic programming. In contrast to our work, their work makes
use of choice constructs in its computation.

The main difference between our work and that of Warren

6. See [12] for an explanation of this expression.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 23, 2009 at 13:36 from IEEE Xplore. Restrictions apply.



376 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 7, NO. 3, JUNE 1995

and Kemp et al. is that our compilation technique is query-
independent, while in their case, the query plays a key role in
transforming the program P. Thus, our technique may be ap-
plied at compile-time, and hence is more suitable in situations
where very quick run-time responses are desired: In our
overall architecture, run-time query evaluation is done by a
standard run-time query language implementation. In contrast,
the methods of Kemp et al. are query-dependent, and hence,
the work of creating Magic(P, S, Q) is done after the query Q
has been asked, i.e., at run-time.

Another advantage of computing the well-founded seman-
tics at compile-time and storing it in a relational format is that
more expressive queries, such as aggregate queries, need not
be specially developed for this purpose. Furthermore, standard
techniques developed by relational database researchers for
run-time query optimization may now be used. On the other
hand, aggregate query processing techniques need to be spe-
cifically developed for the magic set approach. These tech-
niques involve deduction at run-time.

A disadvantage of our approach vis-a-vis the approach of
Kemp et al. is that we do more work at compile-time, and as
we are storing the well-founded model, we have larger space
requirements. A lot of work has been done by the relational
database community on storing very large databases on auxil-
iary storage. For instance, the U.S. Census Bureau’s database
is approximately 15 Gigabytes in size. NASA’s EOS database
(Earth Observing System) is approximately 10° bytes in size.
Hence, we believe that storage is not such a major problem. It
is possible that a suitable trade-off between the two approaches
is desirable in a full-fledged working system: use our approach
to compile those parts of the database involving predicates that
require “rapid” run-time responses, and use the Kemp et al.
approach to handle other predicates.

To summarize, we believe that those parts of a database in-
volving “real-time” predicates need to be processed at com-
pile-time using techniques such as ours. Those parts of a data-
base that do not involve real-time predicates do not need to be
pre-processed, and in such cases, the techniques of Kemp et al.
[12] and Warren [22] are perhaps more appropriate.

VII. CONCLUDING REMARKS

Though nonmonotonic modes of negation have been studied
extensively in deductive databases and logic programming,
relatively little work has been done on the computation and
implementation of nonmonotonic semantics. In this paper, we
take a first step towards developing a compiled approach for
computing the

¢ well-founded model of nonmonotonic deductive data-
bases and

o the set of stable models of nonmonotonic deductive
databases.

We believe that the desired run-time performance of differ-
ent parts of a deductive database system is likely to vary. A
database system that interacts with a real-time control system,
for instance, is likely to contain predicates, some of which
need to be processed in real-time, others which do not need to

be processed particularly rapidly, and still others that fall be-
tween these two extremes. Those parts of the database that
deal with “real-time” predicates need to be pre-compiled in
advance. Run-time efficiency compromises are not an option
in such cases. In such cases, the fastest known technology for
run-time query processing is the relational database scheme.
We suggest, therefore, that the part of a database dealing with
predicates whose run-time responses are of critical importance,
be completely compiled in advance. One way of doing such
compilation is described in this paper when the desired se-
mantics is the well-founded semantics/stable model semantics.

Future research will concentrate on the development of the
update module shown in Fig. 1, and the development of opti-
mal representations (in relational format) for storing the well-
founded model and/or the set of stable models. The update
module must not only re-compute the new well-founded model
(or new set of stable models) when an update occurs, but also
update the relational representation of the well-founded
model (respectively, set of stable models). We plan to study
these topics.
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