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W S  + Branch and Bound = Stable Models 
V.S.  Subrahmanian, Dana Nau, and Carlo Vag0 

Abstract-Though the semantics of nonmonotonic logic pro- 
gramming has been studied extensively, relatively little work has 
been done on operational aspects of these semantics. In this paper, 
we develop techniques to compute the well-founded model of a 
logic program. We describe a prototype implementation and 
show, based on experimental results, that our technique is more 
efficient than the standard alternating fixpoint computation. Sub- 
sequently, we develop techniques to compute the set of all stable 
models of a deductive database. These techniques first compute 
the well-founded semantics and then use an intelligent branch and 
bound strategy to compute the stable models. We report on our 
implementation, as well as on experiments that we have con- 
ducted on the efficiency of our approach. 

monotonic reasoning, negation by failure. 
Index Term-Logic programming, deductive databases, non- 

I .  INTRODUCTION 

N the past several years, the problem of representing nega- I tive information in logic programs and deductive databases’ 
has been intensely studied. However, most of this work has 
concentrated on the declarative aspects of negation in logic 
programming--in particular, the focus has been on developing 
declarative semantics that are applicable to all, or at least a 
wide variety of logic programs, and which possess various 
epistemologically satisfying properties. An important research 
area that has been left relatively untouched is that of develop- 
ing operational semantics and implementation techniques for 
logic: programs that contain negation. It is only in the past year 
that a number of researchers have started working on this 
endeavor. 

‘The primary contribution of this paper is the design and 
implementation of a bottom-up algorithm to compute: the well- 
founded model of a logic program [21] and the set of stable 
models of a logic program [SI. The algorithm for computing 
the well-founded model is based on the observation that Fit- 
ting’s Kripke-Kleene semantics for logic programming is 
“sound,” but not complete w.r.t. well-founded semantics 
(WFS, for short). It is sound in the sense that if Fitting’s 
Kripke-Kleene semantics assigns either true or false to a 
ground atom, WFS makes the same assignment. However, 
WFS may assign true/false to some atoms that are assigned 
“unknown” by Fitting’s semantics. Our procedure first com- 
pules Fitting’s Kripke-Kleene semantics (using an optimized 

I ’Throughout this paper, we will consider only deductive databases, i e., 
logic programs without function symbols. 
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version of Fitting’s OP operator) and simultaneously 
“compacts” the program by deleting parts of the program. It 
then applies an optimized version of the alternating fixpoint 
procedure [20], [3] to the compacted program. Our alternating 
procedure compacts the (already compacted) program further 
at each step. It is well-known [20], [3] that the alternating fix- 
point procedure (without compaction) can compute the well- 
founded semantics. Experiments show that in practice, our 
procedure of first computing the Kripke-Kleene semantics and 
simultaneously compacting the program, and subsequently 
performing the alternating fixpoint computation with compac- 
tion, is much faster, than the naive alternating computation. 

The algorithm for computation of stable models is of par- 
ticular interest because stable models may be computed by 
first computing the well-founded model of the program and 
then using an intelligent branch and bound strategy. Intui- 
tively, the search for stable models may be viewed as taking 
the atoms assigned “unknown” by the WFS, and making a 
true/false assignment to some of these atoms. This corresponds 
to the “branch”ing step. Two aspects are key to the success of 
branch and bound: first, the selection of atom@) on which to 
branch plays a key role, and secondly, an efficient strategy to 
prune branches of the search tree needs to be found. We de- 
velop an algorithm based on branch and bound, for generating 
stable models. The algorithm has been implemented-we re- 
port on experimental results reflecting the efficiency of both 
the algorithm, as well as numerous optimizations present in the 
algorithm. 

The techniques we develop here are intended to be used 
primarily on those parts of a deductive database where fast 
run-time performance is expected and almost no time is avail- 
able for performing deduction at run-time (for domains where 
deduction may be performed at run-time, techniques like those 
of [22], [12] may be used). An example of a concrete domain 
where this kind of database support is critically needed is con- 
trol systems (e.g., plant monitoring systems, weapons guidance 
systems, avionics systems, etc.). 

11. PRELIMINARIES 

In this section, we quickly recapitulate the basic definitions 
of the stable and well-founded semantics for logic programs. 
We assume that readers are familiar with the basic ideas of 
constants, predicates, atoms, literals, Herbrand interpretations*, 
clauses, and logic programs [ 161. We assume that we have an 
underlying hnction-free first order language L containing only 
finitely many constant and predicate symbols. The Herbrand 

2 Throughout this paper, we will use the words “interpretation” and 
“model” to mean “Herbrand interpretation” and “Herbrand model,” respec- 
tively. Recall that an Herbrand interpretation is simply a set of ground atoms 
of the language in question 
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base of L is denoted by BL. In many cases, we will abuse nota- 
tion and use BP to denote the Herbrand Base of the language 
generated by the constant and predicate symbols occurring in a 
logic program P. We will use grd(P) to denote the set of 
ground instances of clauses in P. We now define the Gelfond- 
Lifschitz transform which forms the basis of both the well- 
founded semantics and the stable model semantics for logic 
programs ([3], [20]). 

DEFINITION 1. Suppose P is a logic program and I c B,.. The 
Gevond-Lifschitz transformation of P ,  denoted P‘, is the 
logic program dejned as follows: 

A+-- B1 & . . . & B,, n 2 0, is a (ground) clause in P‘ rffthere 
exists a clause 

A t BI & ... & B, & -IDI & ... & -0, 

(m2 0) in grd(P) such that I fl {D, ,  ..., D,} = 0. Nothing 
else is in P‘. Thus, $ is a negation-free logic program. 

Given a program P and an Herbrand interpretation I, we 
may define an operator, Fp, associated with P, as follows: 
Fp(l) is defined to be the least Herbrand model of the negation 
free logic program P’. 
DEFINITION 2. (Gelfond and Lifschitz) I is a stable model of P 

iff1 = FAO. 
PROPOSITION 1. (van Gelder [20], Baral and Subrahmanian 

[2]) Let P be any logic program. Then F p  is anti-monotone, 
i.e., if I I  r Z2, then F&) c Fp(ll). Consequently, F i ,  the 
function that applies Ff3 twice is monotonic. 

We use the notation wfs-true(P) to denote the set of 
ground atoms true in the well-founded semantics of a logic 
program P. Likewise, wfs-false(P) denotes the set of ground 
atoms false in the well-founded semantics of P. 
DEFINITION 3 .  Let P be a y  logic program. Then: 

1)  A E wfs-true(P) zf l  A E lfp( F,?) and 

2) A E wfs-false(P) rff A E gfp( F ,  ), 

(Here, Ifp($) denotes the least fupoint of F; and 
gfp( F j )  denotes the greatestfixpoint of F, .) 

111. COMPUTATION OF WELL-FOUNDED SEMANTICS 

Suppose P is a logic program. Our algorithms work with 
fully instantiated programs. Later, in Section IV.D, we will 
outline how, given any technique to compute WFShtable 
models for propositional programs, this method can be lifted 
to the first order case. However, the details of this first order 
“lifting” are left to a future paper. 

In the Monotonic Iteration stage (MI-stage, for short), we 
mimic the upward iteration of Fitting’s operator [7] and it- 
eratively build up a set of ground atoms, denoted mi-true(P), 
which are known to be true, and a set mi-false(P) of ground 
atoms known to be false. However, there is one key difference 
from Fitting’s operator that has a significant impact on efi-  
ciency: in addition to mimicking these iterations, the program P 
undergoes repeated simplification, resulting, in the limit, in a 

target program mi-target(P) that is usually considerably sim- 
pler than P. In practice, the monotonic iteration phase is efficient 
(Experiment V.A. 1 )  when compared to the alternating fixpoint 
computation strategy described in [20], [3]. 

In the Gelfond-Lijschitz Oscillation stage (GLO-stage, for 
short), we use the simplified program mi-target(P) produced 
by the MI-stage, and (recursively) oscillate by applying an 
optimized version of the Gelfond-Lifschitz transform. Each 
step of the recursion builds up the set glo-true(P) of ground 
atoms identified to be true in the GLO-stage, and the set 
glo-false(P) of atoms identified to be false in the GLO-stage. 
There are two key differences which distinguish this method 
from the alternating fixpoint strategy described in [20], [3]: 

First, the GLO-stage applies only to mi-target(P) which 
is usually significantly smaller than P in size 
(Section V.A.2). The alternating fixpoint approach would 
use the program, P, which is usually much larger than 
mi-target(P). 
Second, the alternating fixpoint approach [20], [3] would 
proceed as follows: it would hold mi-target(P) fixed and 
start with Io = 0. Given I,, wherej 2 1, it would construct 
I/+l as follows: 

a) it would transform mi-target(P) w r.t. 4 accord- 
ing to the Gelfond-Lifschitz transform. 
b) it would then set I,+l to the least Herbrand model 
of the negation-free program G(mi-target(P), I,) ob- 
tained in (a) above. 

The iteration would stop when we find a k such that 

Our approach adopts a different point of view. We will 
not hold mi-target(P) fixed. As the sequence Io, 11, . . . is 
constructed, we will keep changing the program to up- 
date previously obtained information. These changes in 
the program will cause the program to grow “smaller and 
smaller,” thus leading to greater efficiency in computing 
the least Herbrand model (Experiment V.A.3). 

Furthermore, at any given point in time, we will not 
transform the program w r t I,, but always w.r.t. the 
empty-set. This can be implemented much faster because 
all one needs to do is to ignore all negative literals that 
occur in clause bodies. Both these optimizations play a 
significant role in reducing the time required to compute 
the well-founded semantics (Experiment V.A. 1). 
In the Combination stage (C-stage, for short), we com- 
bine the results of the previous two stages (i.e., the sets 
mi-true(!‘), mi-false(P), glo-true(P), glo-false(P)) in a 
sound and complete manner. 

0 Last, but not least, the logic prograddeductive database 
may be updated after its initial creation. Such updates 
may cause the well-founded model (or the set of stable 
models) to change. The purpose of the update module is 
to handle such changes. 

Before proceeding to formally describe the details of the 
three-stage approach, we present a simple example to illustrate 
the approach, and help to fix intuitions. 

Ik = Ik+2.  
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EXAMPLE 1. Consider the very simple program containing the G(mi-target(P), 1, following nine clauses: - 
P + 4  

P c r 

9 c l r & ~  3) 

r 4- 1 v  [ 4) 

S t t 5 )  

t c 6) 

V c V ( 7) 

w t 1 v  (8) 

U t 1 s  (9) 

MI-stage: The first thing to observe about this program is 
that t is in wfs-true(P) by virtue of Clause 6 and hence, so 
is s, by virtue of Clause 5. Thus, these two clauses may be 
deleted once it is realized that s, f E wfs-true(P). But once 
it is known that s, r E wfs-true(P), Clause 9 can be deleted 
as .s is surely true, and similarly, s can be deleted from the 
body of Clause 3 .  In effect, then. U E wfs-false(P) as there 
is no clause left at this point with U in the head. The 
MI-stage mimics this kind of reasoning and leads to the 
computation of the following sets: mi-true(P) = {s, t }  and 
mi--false(t’) = {U}, and the simplified target program 
mi.-target(P) below: 

9 t 

r t 

V c V (20) 

W t (21) 
The least model of this program is I ,  = {p ,  4, P, w}. The 
Herbrand Base of mi-target(P) = @, 4,  r, v, w). As 
I ,  = (v), it follows that v MUST be false, and hence, we can 
add v to glo-false(mi-target(P)). At this point, we can use 
this information to simplify mi-target(P); as v must be 
false according to the WFS. Clause 14 can be deleted from 
mi-target(P) and -v can be deleted from the body of 
Clause 15. Hence mi-target(/‘) now becomes the program 
glo-simp,(P) shown below: 

Iglo_simp,(P] 

P t 4  

P t r 

P t r 

4 t 7 r  

r +- 1 4  

V 6- V 

W f- - 7 v  

W t (26) 
Recursively calling the Gelfond-Lifschitz transform w.r.t. 

( lo)  this program yields the sets mi-true(glo-simp,(P)) = 

( 1  1) mjfalse(glo-simpt(P)) = Yj. Thus, the GLO-stage retums, 
as its final output, the set glo-faIse(mi-target(/‘)) = {v} of 

( I 2 )  atoms that are “false” according to WFS, and 
(13) glo-true(mi-target(P)) = {w} as the set of “true” atoms. 

C-stage: At this stage, we simply combine the sets of true 
( 14) and false atoms returned by the MI-stage and the GLO-stage 

( I  to get, as final output, the sets 

mi-target(P) is constructed in such a way that no atoms in 
either mi-true(P) or mi-false(P) occur, either positively or 
negatively, anywhere in mi-target(/‘). It is important to 
note that according to Fitting’s Kripke-Kleene semantics 
(which does not handle positive loops well [21]), v is con- 
cluded to have an “unknown” truth value due to the loop in 
clause 14). The truth value of M. is the negation of 
“unknown,” which is “unknown” too 
GLO-stage: In this stage, we first realize that no atoms in 
mi-true(P) IJ mi-false(P) occur in mi-target(P) We ig- 
nore P and Rork with mi-target(P), and first set 1, = 0 and 
glo_true(mi-target(P)) = glo-false(mi-target(P)) = 0. 
We then compute the least model of the Gelfond-Lifschitz 
transformed program (mi- target( P ))’I, and denote this 
least model by I , .  (mi- target(P))‘“ is the program: 

wfs-true(P) = {s, t }  U {w} = {s, t ,  w) and 

wfs-false(P) = I U} U {v) = {U, v}. 

The atoms p ,  4 ,  r are all assigned “unknown” by WFS. I 

A. The Monotone Iteration Module 
In this section, we describe the technical details of the mono- 

tone iteration module. We assume that readers are familiar with 
the well-known Kripke-Kleene three-valued logic, and the three- 
valued interpretation of logic programming using Fitting’s @,> 
operator [7]. QP assigns to atom A if if there is a clause C in 
grd(P) such that A is the head of c‘ and such that i satisfies the 
body of C. It assigns f to A if, for every clause C in grd(P) hav- 
ing A as the head, it is the case that I satisfies Body where 
Bo& is the body of C. Otherwise, it assigns U to A. 

When performing an upward iteration of Fitting’s operator, 
the program P is held constant. In our approach, at each step 
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of the upward iteration, we modify the program P so that the 
modified program is smaller, in terms of the number of occur- 
rences of literals, than P. 
DEFINITION 4. Suppose P is a ground program, and I is cl 

three-valued interpretation. The mod!fied version of P w.r.t. 
I is a ground logic program, denoted mod(P, I )  obtained as 

1) !f A occurs in the head of a clause C E P and I ( A )  # U, 
then delete clause C jrom P.  

2)  I fA  occurs positively in the body o j a  clause C E P and 
I (A)  = f, then delete clause Cfrom P. 

3)  i f A  occurs positively in the body o f a  clause C E P and 
I (A)  = t, then delete A from the body of clause C. 

4j i f A  occurs negatively in the body of a clause C E P and 
/ ( A )  = t, then delete clause Cfrom P.  

5 )  !f A occurs negativeb in the body of a clause C E P and 
I ( A )  = f, then delete 4 from the bo(& of clause c‘. 

We use mod(P, I) in the computation of 1@(Qp) in the fol- 
lowing way: Initially, we set Po to P (the program under con- 
sideration). We then proceed to compute (€+(Io) where lo as- 
signs U to all ground atoms. @,,(Io) will make some atoms true, 
some atoms false, and leave others unknown. The atoms that 
are made true (respectively, false) will stay true (respectively, 
false) in I@(@ ?) because @ p  is monotone w.r.t. the 5 ordering 
(I, il Ik iff for all ground atoms A ,  I I ( A )  = t (respectively, 0 
impries that 12(A) = t (respectively, 9). Suppose A is an atom 
that is made true in this process. then any clause in P with A in  
the head can be safely deleted as it has nothing new to con- 
tribute. Likewise, any clause with i-i occurring in the body 
can also be deleted because it can have nothing to contribute 
either (the body will stay false in all further iterations). If .-i 
occurs positively in the body of C. then we can delete A from 
the body. Symmetric transformations occur if A’s truth value 
had been fixed to f instead o f t .  The following definition for- 
malizes this informal strategy of pruning P iteratively (the 
word pruning is used because either whole clauses are deleted, 
or individual literals are deleted). 

DEFINITION 5 .  (Pruning Iteration) Let P be a logic program, 
and let I be the interpretation that assigns U to all ground 
atoms in the language S. We define two sequences, called 
the interpretation-sequence (I-sequence, for short) and a 
program-sequence (P-sequence, for short) as follows. 

1(, := I 

I,+I(A) = @)PI(IJ)(A) Y’I,(A)-= U 
and I,@) otherwise 

As all programs dealt with in this paper are deductive dati- 
bases, it is easy to see that there is a minimal integer n such 
that I,, = I,,, and P,  = P,+, . Hence, given any program P, there 
is a unique I-sequence I,, .... I, and a unique P-sequence 
Po, ..., P, associated with P. The following result is straight- 
forward. 

LEhlMA 1. Suppose P is a logic program, and 10, . . ., I,, is the 
I-sequence associated with P. r f  12 j < k 2 n, then 4 i: 1,. I 

follows: 

Po = P 

PI+, = mod( P j , J ) .  

THEOREM 1. (Soundness of Pruning Iteration w.r.t. WFS) Let 
P be a logic program, and let lo, . . . , I,, and Po, . . ., P,, be the 
I-sequence and P-sequence associated with P. Then: 
1) (Soundness w.r.f. Fitting’s Semantics) I, = I@(@,). 
2 )  for all atoms A,  ifI,(A) = t then A E wfs-true(P), i e., A 

is true according to the well-founded semantics for P. 
3)j.or all atoms A, ifI,,(A) = f then A E wfs-false(P), i.e., A 

is false according to the well-founded semantics for P. 1 

The MI-stage is not complete w.r.t. the well-founded se- 
mantics, as can be easily seen by the following example: 

EXAMPLE 2. Consider the single clause program P = { a t  a} .  
The well-founded semantics for P assigns f to a; however, 
the set mi-false ( P )  generated by the MI-module does not 
contain a. I /  

As a final remark on the computation of WFS, we observe that 
if the truth value of a ground atom A is determined, during the 
MI-stage, to be either t or f, then the atom A is completely 
eliminated tiom the target program mi-target(P). 
LEMMA 2. 1) Suppose Ifp(@p)(A) # U. Then A does not occur 

either positively or negative41 zn mi-target(P). 2 )  Suppose 
Ifp(@],)(A) = U. Then there exists a clause C in mi-target(P) 
having A as the head and such that at least one literal in the 

I 
Before proceeding to a detailed description of the GLO- 

stage, we draw the reader’s attention to Fig. 1 and the compu- 
tation of stable models. The idea is that if we want to eventu- 
ally compute the stable models of a deductive database P, we 
first compute the well-founded semantics of P and simultane- 
ously generate a “small” program (denoted glo-simp(P) in 
Fig. 1) which is then piped to the branch and bound procedure 
that computes stable models. Thus, we need to be sure that the 
transformation performed during the WFS coniputation mod- 
ule do not compromise the stable models in any way. The fol- 
lowing lemmas are needed to establish this property. 

body of C is assigned the truth value U b.y I@(@,). 

to mtable model 

not . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Pig. 1. Architecture of the WFS compulation module 

LEMMA 3. Suppose P is a logic program and A (respectively, 
B) is a ground atom which is assigned t (respectively, f! by 
the well-founded semantics of P. Let Q (respectively, Q ) be 
the program obtainedfrom f by: 

1) deleting all clauses in P with head A (respectively, B), 
and 

3 When implementing, we modify a copy ofthe program P 
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2) deleting all clauses in P with 4 (respectively, B) in the 
body, and 

3) deleting positive (respectively, negutive) occurrences of 
A (respectively, B) from the body of any clause in which 
it occurs. 

Then: A two-valued interpretation I is a stable model of Q 
Iff1 U { A }  is a stable model of P .  
The above lemma indicates that as long as the three valued 

interpretation I is "sound" w.r.t. the well-founded semantics (in 
the sense that whenever I assigns true to an atom .4, then 
A E wfs-true(P) and whenever I assigns false to an atom B, 
then R E wfs-true(P)), then P's  stable models may be ob- 
tained from those of mod(P, I) by appending the true atoms in 
I to the stable models of mod(/', I ) .  

B. The Gelfond-Lifschitz Oscillation Module 
As seen in Exaniple 2, the MI-stage alone is not complete 

w.r.t. WFS computation. However, it is sound w.r.1. WI"S 
computation. The Gelfond-Lifschitz Oscillation (GL.0, for 
short) stage performs some further computations with a view 
to computing that part of the WFS which is not already com- 
puted in the MI-stage. The CLO-module takes as input, the 
program mi-target(P) produced by the monotone iteration 
module. It then perfonns an altemating lixpoint-like compula- 
tion ([20], [3]). However, there are a Iew significant differ- 
ences which allow our strategy to be much more efficient 
(Experiment V.A. 1 )  than the ordinary altemating fixpoint 
computation strategy. The first difference is that unlike the 
altemating fixpoint computation, our GLO-procedure only 
applies to the program mi-target(P) which is usually much 
smaller than the program P.  Secondly, as we perform the oscil- 
lation, we continue pruning the program, so that at each stage, 
the oscillation steps are applied to "smaller and smaller" pto- 
grams. This causes the oscillation to be much more efficient 
than othenvise (Experiment V.A.3). 

Lf we look carefully at the well-founded semantics, the it- 
erations of the F,. operator exhibit the following behavior (this 
behavior has been observed by Baral and Subrahmanian [?-I, 
[3] and van Gelder [20]): the interpretations at even levels of 
the oscillation form a monotonically increasing sequence, and 
gradually build up, in  the limit, the set wfs-true(/'): 
FP((LZI) c F ; ( 0 )  s . . . ~  F i ' ( 0 )  E .... The odd levels of the 
oscillation form a monotonically decreasing sequence and 
gradually build up the complement of the set wfs-false(1'): 
F;(@)=,  $(0)2  ...2 Fb""(0) 2 .... In other words, the se- 

quence, F ; ( ~ z ~ ) c  $(@*I E... .E F:'+'(D)G ... is a monotoni- 
cally increasing sequence, and in the limit, it constructs the set 
wfs-false(P). Thus, when we apply FT, first to the empty set 
and compute F i ( 0 ) ,  we know that all atoms in I$(@) are 
false. Hence, we can use this information to transform the pto- 
gram P. In the next stage, when we apply F/, to F i ( 0 ) ,  we 
know that all atoms in the set F i ( 0 )  are true. We may use this 
information to transform the program. Thus, at odd levels, we 
should transform the program P according to what was leamed 
to be false, while at even levels, we should transform the pro- 

____ 

gram under consideration according to what has been leamed 
to be true. These intuitions are formalized in the following 
definitions. 
DEFINITION 6 .  (Transformatiori Strategy) Given a program P, 

and a two-valued interpretution I ,  we now define a trans- 
formation of P w.r.t. This transformation depends on one 
extra parameter, called pas or neg. 

trans(P, I ,  neg) is dejined a3 follows: 

1 )  i f A  E J ,  and A occurs in rhe head o fa  clause C E P, then 
delete C f iam P. 

2) i f A  I, and A occurs positively in the body of a clause 
C E P, then delete C from P. 

3 )  $A E I, and A occurs negatively in the body of a clause 
C E P, then delete all occurrences of 4 +om the body 
of c. 

trans(P, I ,  pos) is defined as,fbllows: 

1 ) i f A  E I and A occurs in the head of a clause C E P, .then 
delete Cfiom P. 

2) i f A  E I and A occurs negatively in the body of a clause 
C E P, then delete C from P. 

3 )  $ A  E I and A occurs positively in the body of a clause 
C E P, then delete all occurrences ofAJi.om the body of C. 

DEFINITION 7. (Pruning Oscillation) suppose P is a logic pro- 
gram. Define the GLO-iteration of P as four sequences: a 
sequence of two-valued interpretations Io, . .., I,,, ..., a se- 
quence of programs Po, ..., P,, ..., a sequence of sets of 
true atoms glo-trueo, ..., glo-true,, ..., and a sequence of 
sets of false atoms glo-false,, . . ., glo-false,, . . .. These se- 
quences are constructed asjollows: 

D] 
Io = 0 
Po = P 

glo-true, = 0 

glo-falseo = 0 

It = FI,(~O) 

P I  = trans( PO, 11, neg) 

glo-truel = 0 

glo-falsel = (BIa - 11) 

por evenj , j  > 0 1  lFor0-g 
I/+? = FpI+i(Jj+l) I,,? =: F,~,+l(lJ+t) 

PIt2 = trans(P/+l, pos) P,+2 = tran.s(PT+I, I,+*, neg) 
glo-true,+2 = glo-true, U I,42 glo-true,+2 = glo-truei 
glo-false,+2 = glo-false, glo-false,+-, = glo-false, U 

Note that the above definition simultaneously defines both the 
sequence of interpretations and the sequence of programs. It is 
well-defmed because, each I, is defmed in terms of P,-I, 
I,-t fo r j  > 0. Likewise, each P, is defined in terms of I, and P,,; 
as I, is defined in terms of this does not lead to any cir- 
cularity. Similar comments apply to glo-true, and glo-false,. 

In order to better illustrate pruning oscillations, we return to 

(B/Tj+ I - I,+z) 

4 Unlike Section Ill A where we modified programs using three-valued in- 
lerpretations, the transformation strategy described here uses two-valued 
interpretations 
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Example 1. 

EXAMPLE 3. Consider the program P of Example 1. We focus 
upon mi-target(P) which consists of clauses 10-15. Our 
sequence of Is and Ps is built as follows: 

1) Io= 0. 

3) glo-falseo = glo-trueo = 0. 
4) Il = Fql(lo) = { p ,  q, r, w). Note that v E I. 
S)Thus, P, = trans(Po,Ip, q, r ,  w } ,  neg). There are two 

clauses in Po containing occurrences of v-clause 14 and 
clause 15. Clause 14 gets deleted, while lv gets deleted 
from the body of clause 15. Thus. P ,  consists now of 
clauses 

2 ) P o =  (10, 11, 12, 13, 14, 15). 

P + -  4 (27)  

4 + -  l r  ( 2 9  
r t l q  (30) 
U’ t (31) 

6) glo-false, = I ,  = { v )  , and glo-truel = 0. 
7) The next stage is the construction of I, = F., (I, ) which 

is equal to { w} . 
8) P2 is now set to trans(PI, {w} ,pos) .  Computing trans(PI, 
{w), pos) leads to Clause 31 being deleted from PI.  
Therefore, P2 consists of clauses 27-30. 

9) At this stage, glo-false2 = glo-falsel, but glo-true2 == { w} . 
10)The next stage is the construction of I ,  = & ( I 2 )  which 

is equal to (p, q, r}. 
1 1)P3 is now set to trans(P2, Ip, q, r ) ,  neg). No clauses are 

deleted nor modified in this step, and we have P3 = P 2 .  
12)glo-false3 = glo-false, U = (v}. Note, in particular, 

that complement of 1, is w.r.t. the Herbrand Base of P2,  
and hence, I ,  = 0. 

13)The next stage is the construction of f4 = Fp, (I,) which 
is equal to 0. 

14)P4 is now set to truns(P3, 0, pos) and leads to no change. 
15)The values of both glo-false4 and glo-true., are the 

same as the values of glo-false3 and glo-true3, respec- 
tively. As there are no changes in the values of both 
glo-true3 and glo-true4, we may terminate construction 

The alternating fixpoint approach [20 ] ,  [3] allows us to stop 
constructing our sequence(s) as soon as we find the smallest n 
such that glo-true,, = glo-true,+2. It turns out that in this case, 
glo-true,, = lfp(F$) = wfs- true(P) and that glo-false,,, 
= gfp( F i )  = wfs- false(P) . The equality lfp( F i )  
= wfs-true(P) has been proved in [3], as has the equality 
gfp(Fi) = wfs-false(P). What remain to be established are 
the equalities glo- true, = lfp( F,? ) and glo- true,, +, 
= gfp( F: ) . We show this below. 

THIDREM 2. Suppose P is U logic progrcim. Then, for ull even 
integers i, it is the case that 

P +  r (28)  

- 

of the sequence. I1 

1) wfs-true(P) = wfs-true(P,) U glo-true,(P) and 
2 )  wfs-false(P) = wfs-false(P,) U glo-falseXP). 0 

Part 1) of Theorem 2 says that to compute wfs-true(P), we 
can perform pruning oscillations for i stages. At the end of 
these i stages, we have a set glo-true,(P) of ground atoms, and 
a “pruned” program PI. wfs-true(P) may be obtained by com- 
puting wfs-true(P,) and then adding all the atoms in 
glo-truel@‘) to this set. Part 2) of the theorem is similar. Theo- 
rem 2 has, as an important corollary, the following result: 
COROLLARY 1. (van Gelder [20] ,  Bard and Subrahmanian [3]) 

Suppose P is a logic program. Then wfs-true(P) = 

n 
Though the above corollary says that the GLO-module 

alone is sufficient to compute the well-founded semantics of 
any program P, it turns out that using the GLO-oscillation on a 
program P is relatively inefficient (Experiments V.A.1 and 
V.A.3). Instead, it is computationally faster, in practice, to run 
the MI-module first on program P, and generate the sets 
mi-true(P) and mjfalse(P) and the modified program 
mi-target(P). mi-target(P) is usually much “smaller’’ than P 
(Experiment V.A.2); applying the GLO module on 
mi-target(P) leads to the computation of the sets 
glo-true(mi-target(P)) and glo-false(mi-target(P)) which 
may then be combined using the combination module below. 

C. The Combination Module 
The combination module takes as input, the sets mi-true(P) 

and mi-false(P) returned by the monotone iteration module, 
and the sets glo-true(mi-target(P)) and glo-false(mi-target(P)) 
returned by the GLO-module. It returns, as output, the set 
mi-true(P) U glo-true(mi-target(P)) of “true” atoms, and 
mjfalse(P) U glo-false(mi-target(P)) of “false” atoms. The 
following result now follows immediately from Theorem 2 and 
Corollary 1. 
THEOREM 3. Let P be any logic program. Then. 

glo-true(P) and wfs-false(P) = glo-false(P). 

1) wfs-true(P) = mi-true(P) U glo-true(mi-target(P)) 
2 )  wfs-false(P) = mi-false(P) U glo-false(mi-target(P)) 

U 

Given a logic program P, once the MI-module, 
GLO-module and the combination modules have been exe- 
cuted, the sets wfs-true(P) and the sets wfs-false(P) are hl ly  
computed. A simplified version, glo-simp(mi-target(P)), of P 
is also computed. This simplified program is now fed into the 
stable model computation module (described below). 

IV. COMPUTATION OF STABLE SEMANTICS 

It is well-known [20 ] ,  [3 ]  that the well-founded model ap- 
proximates the stable models of a logic program in the follow- 
ing sense: for any logic program, P, and for any stable model, 
M, of P: 

wfs-true(P) c A4, i.e. the set of ground atoms true in the 
well-founded semantics of P is a subset of the set of at- 
oms true in Mand 
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wfs-false(P) c (B,. M), i.e. the set of ground atoms 
false in the well-founded semantics of P is a subset of the 
set of atoms false in M. 

A. Informal Description of Branch and Bound Algorithm 

as follows: 
Given a logic program P. we compute its stable models 

1 ) First, we compute the well-founded semantics of f“ wing &e 
p r o w h e  outlined in the precedny: section. The WFS computa- 
tion module (Fig. I )  returns the following: the sets wfs-true(P) 
and wfs--fali;e(P), as well as the program glo_simp(P). which is 
a simplified version of mi-target(P). glo*-simp(P) is the final 
element P, of the sequence Po, . . ., P, specitied in Definition 7. 
(As we are only dealing with deductive databases, there must 
exist an integer n such that f’,, P,, ,). 

2 )  Our branch and bound algorithm for computing stable 
models takes glo-simp(1’) as inpul, and returns the set. S, 
of all stiible models crfglo-simp(l-’) as output. 

3) ’The set of (;table models of the original program P is then 
.( wfs-trueiLP) IJ I I I e: S )  . 

An imporfanl point to note is that the program, P, whose 
stable models we wish to compute should not be fed diiectly 
to the branch and bound algorithm (doing so may lead to 
incorrect results). Only glo_simp(P) may be fed to the 
hi ‘inch and bound algorithm The exainple below illustrates 
thc working of the algorithm Formal definitions are given 
after the cxample. 
E U M P L E  4. Suppose q = glo-simp(f’) is the program: 

{ LZ t 4; h f- ,a; c 4- a; c t h } .  All the atoms a, b, c are 
‘ unknown” according to the well-founded semantics. In our 
branch and bound algorithm, we piocess this program as 
follows: Ne first initialke the list S (of stable models found 
thus far) to G3 and we have a list I, containing one node- 
the four-tuple p = (glo_-simp(P), D, D, { a ,  h, c } )  L points 
to a list of nodes that are yet to be processed. The four-tuple 
consists of the program to be processed. atoms assumed to 
be true, atoms assumed to be false, and atoms currently 
‘ unknown.” We select ,in atom that is unknown Ilvt us say 
we select a)  and branch by assigning either fulse or Irue to 
c r .  How best to select an atom from the set of currently 
‘ unknown” atoms is a significant problem; one method of 
doing so is described in Section 1V.C. Fig. 3 shows the 
trranching process once the atom I I  ha? been chosen as the 
atom on which to branch. The left Iwanch assumes a to be 
ialse, the right branch a\sumes a to be true. 

In the left branch, which assumes U to be false, we replace 
occurrences of U (positive and negative) in the body of 
clauses in glo,-simp(f‘) as follows: I f  ~1 occurs positively in 
the body of a clause, replace it by jklse, and if a occurs 
negatively in the body c)f a clause. then delete that negative 
occurrence of LI from the body. ‘Ihi.; leads to a new node 
consisting of 

q : the modified program--- in this case, it consists of the 
clauses. { U  c- -1  h;  h t- , c c-fulw,  c t h } .  A recursive 
call is made to the WFS computation algorithm The set 

of atoms true in the well-founded semantics of this new 
program is {b,  c} and the set of atoms false in the well- 
founded semantics of this new program is { a} .  
T -: The true atoms consist of the true atoms fiom the par- 
ent node (0 in this case) plus the atoms determined to be 
true in the well-founded semantics of the new program. 
Hence, the set of true atoms in the new node is {b, c } .  
F - :  First of all, a must be in F -  because we are branching 
on the assumption that a is false. Ln addition, F -  includes 
all the false atoms from the parent node (0 in this case) 
plus the atoms determined to be false in the well-founded 
semantics of the new program (also 0 in this case). 
Hence, the set of false atoms in the new node is { a } .  
U-:  The set of unknown atoms in the new node is 0 (all 
atoms’ truth values have been “fixed” as above). 
We then check if T is a superset of anything in S. It is 
not. Fnrthermore, we observe that T -  n F = 0, i.e., the 
assumption that a is false has not led to inconsistency. 

Finally, we observe that nothing is now unknown, i.e., U -  
is empty. IIence, all atorns have been assigned truth Val- 
ues, and no inconsistency results. Consequently, we know 
that T i s  stable, and we add it to S. (Had U -  been non- 
empty, we would have added the tuple (q , T- ,  F-,  U-)  to 
the list L.) 

In the right branch, which assumes a to be true, we delete 
positive occurrences of a in clause bodies, and replace oc- 
currences of -la in clause bodies by false. This leads to a 
new node consisting of: 

9+: The modified program consisting of the clauses 
{ a  t T b ;  b c false; c t ; c t h} .  When the well- 
founded computation module is called with this program 
as input, the set {c) is determined to be true and { b }  is 
determined to be false. 
T’: Consists of the assumption, a, and c, and hence is the 
set {a ,  c }  . 
F +: Consists of { b }  

0 U’: This set is empty. 

We then check if T’ is a superset of something in S. It is 
not. Furthermore, T ’ n F ‘ = 0 and hence, there is no in- 
consistency. Furthermore, U + is empty. Consequently, we 
add T ’ to S. 
At this point, L contains no nodes, and we are done. S contains 
the two stable models of this program {a, c} and {b ,  c } .  0 

B. Formal Properties of Branch and Bound Algorithm 
In this section, we develop the formal theory of computing 

stable models using the branch and bound strategy of Fig. 2. 
As can be observed by a cursory glance at the algorithm of 
Fig. 2, various expressions used in the description need to be 
formally defined. The first is the concept of what expressions 
like ‘‘9- is q modified by 4” and ‘‘9’ is 9 modified by A” 
mean. These modifications are similar, but not identical to, the 
transformation strategy given in Definition 6 .  

DFFINITION 8. Suppose q i~ U logic program, and A is a 
ground alom. The result of modi&ing 9 MI r.t. 4, denoted 
CH(q, -VI), i s  the 1ogic.program obtained us follows: 
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1 ) r f  A occurs in the hotly ( f  a c1au.x in q, then A is r+ 

2 )  I f  -4 occurs in the hoh, of U clause in 4, thtw th, it 

The result of modijjing q IY r 1 A ,  denoted CH(q, '1) 15 the 
logic program obtained ~xsjolluws 

1 ) lf-4 occurs in the hody of U c luzue in q, then 7 1  is r$;- 
placed by the atom fiilse. 

2 )  I f A  occurs in  the hodit of a L . 1 u u . w  in 4. then thtrt occuv- 
rence of 4 is dcdeled 

placed by the atorn false. 

occurrence of -,A is deleted 

L = ((P,0,0,Bp)), (* Bp is the Herbrand Base of P *) 
S = 0, (* S 18 the set of stable models obtained 80 far *) 
W ( L  # 0) rln 

&&the first node Q = (q,  T F, 6') ~QKI hst L ,  
Ranlove Q from L,  

there is no To E S such that To <; T h& 
Select ground atom A from U. 
Q- = (q - ,T - .  F-, U - )  where 

q- IS q modified by -.A and 
T -  1 TU the set of atoms true in WFS(q-) and 
F-  16 F U { A )  U the Ret of atoms false in WFS(q ) and 
U -  1s the set ( U  - ( A ) )  - (T U F-) 

d I - is not a superset of any To F '? h 
If Q- 18 consistent t k  

add T- to S 
d U - = B k  

& append Q' to the end of hat  I ,  
Q+= ( q + , T + , F + , U + )  whwe 

q+ is q modified by A a n d  
T+ 18 T U { A }  U the net of atoms true in WFS(q+ I and 
F+ 18 F'U the set of atonis Mae in WFS(q+) axid 
U +  18 the net (U - ( A ) )  - (T* L I  Fe)  
T+ is not a superset of any TO E S 
rf Q' 18 consistent *a 

add T+ to S 
d u + = 0 t h  

& append Qt to the end of list L,  
F& 

return S ,  

Fig 2. Rranch and bound algorithm for computing stable models 

I I 

I m I 

terminates as "unknown" 
net is  empty. 

Fig 3 .  Ilranch and bound example 

We assume that the proposition fu/w is an artificial atom 
that is not considered (for ease of presentation) to occur in the 
Herhrand Base of the program. The key difference between the 
modification mod(-, -) and CH(-, -) I S  that the latter neber 
causes any clause to be deleted and never affects the head of 
an) clause 
DEI:INITION 9. Suppos~ Tis a Bititrq. ttec' The root oj 7'iv said 

IO be a level 1 node. r f  h is a level I node, and N' IS a chfld 
o f N  then N' i~ said to be a I~~vel  ( I  + I ) node. 
I f  7' contains jinitely ~nuny tiodt's, tiim lhe height of T is 
I Jt>$neii to he may {level( y) 1 N E 7') 

I )EFINITION Io. Suppose f is 11  logic program Let BP be the 
Herbrand Base of P. Furthermore, suppose the cardinality 
of B,, is ti und le1 a,, .., a,, be un enumeration of Bp. The 
abstract computation tree, diwoted .4('T(P), associated with 
P und the enumerution ordtwng a, ,  .., a,, is a full hinary 
tree oj height (11 -t I ) de$ned as $f; , l lo~~s 

1)  The root of A C T ( P )  is luhtded with ( P ,  0, 0, Bp). 
2 )  I f N  i s  u level I node in A( 'T(P) labeled with (q, T, F, U), 

and i S n then N has /uxo children, A' arid N &. The link 
from N to N 1 %  1aheIc.d with TU,, und the* link from N to 
Ni IJ Iuheled M ith a,. 

3 )  The luhel of N is (4  .7' .F ,iJ whrrc 
a) q = CH(q, -q) 
b)  7' -= 7' CI wfs-true(glo-simp(CH(y, 
c) I .  = I. CI {a,} I J  wfs;_faIse(glo-simp(CH(q, -,a,))) 

4) The luhel oj N I F  (q' .  7 '. I ;  I ,  I /  ' )  where 
a) 4' - <'H(y, a,) 
b) 7" - 7 'CI  {a,)  U wll's_trne(glo_simp(CH(q, a,))) 
c )  P - b' 1 wfs_false(glo-simp(CH(y. a,))) 
d ) I '  Il ( { u l } U 7  IJI.") 

d) [ '  - ( ' -  ( { a , )  1J 7 1J I'  ) 

Pruning S ~ U / ~ J ~ I ~  I'he abstrxt conipiitation tree associated 
with a program I' is, in  general very large. [ ht: reason for this 
IY  that ACT(! ' )  is of height lIB, 11 I I v here Ill?, /I is the number 
of ground aloms in the language being considered. Thus, as 
4('T(P) is a full binary tree, it contain$ (2"'9''1' I) - 1)  nodes: a 
potentially very large number 1 he %table niodel algorithm, as 
cnvisaged in Fig. 2, would attetnpt tu alleviate this problem by 
the following methods: 

1 )  First. given a logic program P. we would call the branch 
and bound algorithrti with the program glo-simp(P) 
which IS typically much maller than P and has a much 
smaller Herbrand Base. 1i i  other words, we would study 
the abstract computation tree ilCT(glo-simp(P)) as op- 
posed to A( 'T(P) .  This reduces the number of nodes from 

- I ) .  I n  practice the size of 
the program glo-simp(P) as compared to the size of P is 
very small indeed. 

2) Second, many branches in A('T(glo-simp(P)) can be 
pruned away. If N is a ncde with label Q = (q, T, F, U) 
such that 7 n F # @ then (1 is wid to be inconsistent and 
the left and right subtrees are pruned away via the if-tests 
in lines 14 and 24 of the branch and bound algorithm. 

3) rhird. further pruning c m  he done based upon the set U 
As soon as a node's lab-l has an empty U-component. 
there is no need to expand that node an) further. so it is 
pruned in lines 15 and 25 of the algorithm 

4) Fourth, it is not difficult to see that if \+e consider any 
branch in AC,'7(P), the 'I-components of the nodes in this 
branch are inonotonicallv increasing as we get further 
away from thc root, i.e.. if A I ,  ..., Nk IS  the branch in 
question, and f', is the 7-component o f  the label of node i, 
then TI c T, c . Furthermore, Marek arid 'rruszczynski 
[ 171 have shown that every stable model I of a logic pro- 
gram I' IS minimal in the sense that no strict subset ,I c I 
can be a stablc model of P Consequently, if we already 

(2(lll?,.llkl) - ,) to (21141s .  4mp,i 
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know when, exploring a particular branch, that I is a sta- 
ble model, and if we find that T /  is a label in that branch 
such that I c T,, then we can prune away all subtrees 
rooted at node N,. This is done in lines 13 and 23 of the 
branch and bound algorithm. 

5) Fifth, the specification of ACT(P) is non-deterministic in 
the sense that there are many possible ways of selecting 
which atom to branch on. A judicious choice of the atoms 
on which to branch an may well lead to: 

a) the set of “unknown” atoms heing quickly disposed 
of andlor 
b) pruning of a subtree below the current node 

Given a logic program P, and an enumeration al ,  .. , ti ,  of 
the Herbrand base of P, we use PRUNE _ACT(P) to denote the 
tree obtained by pruning ACT(P) as much as possible using 
conditions 1)-4) above. 
DEFINITION 11. Suppose P is U logic program 1,et 

LEAF(g1o-simp(P)) = { T  I there txists a leaf riode m 
PRP/NEACT(glo_simp(P)) having, LIS its label, (y, T, I;, 
0) ,such that T fl F -0). 
Let MIN-LEAF(g1o-simp(P)) be the set of all c-minimal 
elements ofLEAF(g1o-simp(P)). 
In other words, LEAF(g1o-simp(P)) is simply the set of all T- 

components of the labels of consistent leaves of 
PRCTAUE_ACT(glo-simp(P)) Similarly, MIN-LEAF 
(glo-simp(P)) is the set of minimal elements of 
LEAF(GL0-SIMP(P)) The following example shows the tree 
PRUNE-ACflP), and how stable models may be generated 

EXAMPLE 5. Consider a program I‘ containing the following 
clauses: 

a t 4  h t -la 

C t a  c c -  h 

Fig. 4 shows the tree PRUNE--ACT(P) corresponding to this 
program P. Note that in this case, P = glo-simp(P). 

hanuistent hconristent Stable Stable 

Fig 4 The (pruned) tree AC r(P) for Example 6 i~sing selection ordering c,b,a 

If one looks carefblly at this figure, h e  strutem to select a 
literal is c ,  6 ,  a.  In other words, branching at the root is based 
on c, branching at level 1 nodes is based on b. It turns out that 
we never need to branch on a. 

Suppose we choose, instead, to consider selection of the 
branch literals to occur in the order h, 0, c.  In that case, Fig. 5 
shows the tree PRUNE-ACT(P). One will observe that using this 
selection order causes PRCINE-ACT(P) to contain fewer nodes. 

Hence, this ordering is preferable to the ordering c, b, a. Section 
1V.C provides an outline of how to make such selections a priori. 

I‘ig S The (pruned) treee ACT(P) for Example 6 using selection ordering b,a,c 

Note that once a specific literal ordering is given, the ab- 
stract (un-pruned) computation tree ,4(’T( P) is uniquely de- 
temiined. Strictly speaking, the depth of ACT(P) remains the 
same irrespective of the specified literal ordering because 
technically, ACT(/‘) contains branching nodes for all atoms. 
I’he effect of pruning is to cut down ACT(PI by refbsing to 
branch on nodes that are either 

1)  completely determined, I e ,  the node’s label is of the 
form (y, 7: F, a) or 

2) subsumed, i.e.. 7’ 2 I for some I that is already known to 
be stable. or 

3) inconsistent, i.e., T 11 F = 0. 

The following result is straightforward and is of great utility 
in proving the soundnes and completeness of the branch and 
bound algorithm. 

LEMMA 4. Suppose P is a logic progrum and A is a ground 
atom Then 

1) VA is “unknown ” according to WFS, then there exists a 

a) some literul L in tile body of( ’  is “unknown” ac- 
cording to WFS and 
b) tlierr is no clause C‘ E glo-simp(P) with A in the 
head such that all Icttwds in the body of C‘ are true 
in WFS. 

2) If A OCL urs (positivelv or negativtdy) either in the head 
or in the bo43 of any cltnise in glo-simp(P), then A is 

Note that the branch and bound algorithm should not be 
applied directly to a deductive database P. It works only after 
P has been converted to glo-simp(Pt-if applied directly to P, 
incorrect results may be obtained. The reason why the branch 
and bound algorithm should not be directly applied to P is that 
all atoms occurring in glo-sinip(P) are “unknown” according 
to the well-founded semantics of glo-simp(P). It is precisely 
to preserve this property that the programs occurring in labels 
of nodes are of the form glo-simp(CH(y, ta)) rather than just 
CWy, +a). 
THEOREM 4. I IY a stable model of glo-simp(P) i f l  

Before proceeding to prove the soundness and completeness 
of our branch and bound algorithm in lheorem 5 below, a 
number of technical lemmas ni:ed to be established. 

clause C’ E glo-simp(P) with A in the heud such that 

assigned U by WFS. LJ 

I E MIN_L,EAF(glo-simp(P)). I1 
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LEMMA 5 .  The brunch and bound algorithm generates the 
1 

COROLLARY 2. (Termination of Branch and Bound Algorithm) 
I I 

COROLLARY 3. The brunc h und bound algorithm generates the 

LEMMA 6. I f  N and K a n  node.\ of YKIJNE-ACT(P) with 
labels (q, T ,  I;, U )  and (q‘, T‘, F:’, Lr‘), respectively, and rf 
N is to the left of N ( then T’ 

THEOREM 5. (Soundness and Completeness of Branch and 
Rcrund Algorithm) When L alled with glo-simp(P) as input, 
the Branch and Bound Algorithm rvturny as output, the stit 
MIN-LEAF(glo- simp(P)) which I.\ iJmtical to the  et of 
stable models of glo- simp(P). 
Before proceeding to discuss intelligent branching 

strategies, we observe that sometime5. we may be intei- 
ested in truth in some stable model ( i t  P .  Stable models 
reflect multiple possible way\ 0 1  completing an 
“incomplete” description of the worltf Any one of these 
may be the “right” one, but based on the available intui- 
tion, we do not know which. To deteinune truth of a query 
in some stable model of f’, the branch dnd bound niethod 
can be modified as follows as soon as the fiist stable 
model MI is discovered by the blanc ti and bound algo- 
rithm, write down the tuplcs { p ( l ,  i ) lp , ( t  ) E  M i )  Basicall>, 
the tuple p(i ,  7 )  rays that the ground d o n i  p ( 7 )  i s  true i n  

the ith stable model of P When wanting to know i t  the 
query (3x,, ,. , x k ) ( p I ,  ii, )B . . & p , (  im ) )  is true i n  w m e  
stable model of P, the above set of iuples can be queiied 
as: (3i)(3x1, ... x, ) (p , i ,  (i, ,st ... & p m ( i ,  im )).  Alternatibely, 
should we so desire, the hranch and hound algorithm can 
be easily modified to terminate as soon 21s one stable mudr.1 
has been discovered. Whether thir non-deterministic way 
of selecting a stahle model (and commiuing to it) I \  q i r o -  
priate would depend on thr application 

C. Intelligent Branching 
As described earlier (Example S), the \election of atoms on 

whicli to branch makes a significant difference in the height of 
PRI/NE-ACT(P). We describe below, a simple methodology 
for selecting atoms on which to bianch which, in practice, 
causes PRUN.E-ACT(P) to be relatively “small.” We will 
heavily use the “depentiencq graph” of Apt, Blair, and Walker 
[ 1 I for this puipose. 
DEFINITION 12. The graph rmocrated w r h  U logic program P 

i \  deftned as follows 
the nodes of the graph are the ,?rotincl atoms in our uti- 
derlying languugr and 
there is U (dim-ted) edge from A to i3 i f  there is a ckiwbe 
in grd(P:i with A i n  the head such that B occurs erthvr 
positively or negativel? in the hutlv 

DEFINITION 13. Suppose P 1.s a logic pmqram. A ground atom 
A I S  said to depend on ground atom LI i f l  there is U path of 
lmigth 0 or  mow from A t o  B in the depmdency graph o f t ’ .  

nodes qf PRUNE_ACl‘(P) in pre-order (Knuth [ 131) 

The branch and bound algorithm ulway, ter~nrnrctes 

nodes in LEAF(g1o-simp(P)) in Eefi t~ right order. I 

7: I 

I 

Apt, Blair, and Walker [ I ]  use the above dependency graph 
(together with a labeling of the edges) to develop a notion of 
slratification. We will use this graph in a different way. It is 
well known [ 1 ] that “depends on” is a reflexive and transitive 
relation. Using the “depends on” relationship, we will build a 
quotient algebra in the usual way. 

Given a ground atom A,  the equivalence class of A ,  de- 
noted IbII is the set ( B  l B is a ground atom such that A 
depends on B and B depends on A ) .  (The equivalence 
classes correspond to the strongly connected components 
of the dependency graph.) 
We define an ordering, denoted _a, on equivalence classes 
as follows: U 11 BII iff there exists an atom a E 1b11 and 
an atom b E llBll such that b depends upon a. 

on equivalence 
classes is a partial ordering. 

UXAMPLE 6. Consider the program of Example 5 .  Here, the 
equivalence classes are: llall = {a ,  b )  and llcll = I C } .  In par- 
ticular, llbll = Ilall. It is easy to see that { a, b }  q { c } .  The rea- 
son is that c depends on a. 

In fact, it is not difficult to see that if 1b11 and llBl1 are 
equivalence classes such that 1b11 a_ 11811, then every atom in 
B must depend on every atom in A 

Given a logic program P ,  we tnay use the ordering g on the 
rquivalence classes defined above to list the equivalence 
classes in “layers.” This can be done as follows: define Eo to 
tje the set of all +minimal equivalence classes of P .  For i 2 0, 
define E,+i to be the set of all a-minimal members of the set 

EXAMPLE 7. Continuing with the program of Example 5 and 
Example 6, we note that & = { ( a ,  b )  and El = ( { c } } .  
Intelligent Branching Strategy. The strategy for selecting 

atoms on which to branch may now be described as follows: 
Suppose N is the node we are currently attempting to branch 
from, and the label of N is (9, 7: F, U). An atom a E U is se- 
Iccted for  branching iff llall e Ei implies that there is no 
ground atom h E U such that Ilbll E E, wherej < i .  

In other words, the candidates for branching are picked 
Irom the “lowest” possible levels of the Eo, El, ... hierarchy. 
‘Thus, in the case of the root of the tree associated with the 
Iirogram Example 5 and Example 6. we would choose to 
lrranch on either a or b instead of choosing to branch on c .  
‘I’his leads to a “shorter” tree. 

Experiment V.A.5 reports on some experiments that we 
l i ne  run to determine the utility of intelligent branching. 

An alternative formulation of the intelligent branching strat- 
egy is to partition the logic program being processed by the 
Ilranch and bound module according to the equivalence classes 
generated by the <-ordering. The <-minimal components’ sta- 
hie models can then be computed first; stable models of com- 
ponents that are not <-minimal rnay be done once all the stable 
models of all (programs corresponding to) components 
“strictly below” have been computed. This is equivalent to the 
intelligent branching strategy. 

It is not difficult to see that the relation 

111.111 I A E BLI -U,,, El. 

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 23, 2009 at 13:36 from IEEE Xplore.  Restrictions apply.



172 lEEE TKANXACIII INS ON KN0WLEI)GII AND DATA FNGINEI KING, VOl 7, NO 3. JUNE 1995 

D. Partial Instantiation: The Non-Ground Case 
A valid critique of the work presented this far in this paper 

is that it applies to ground programs. This is a drawback be- 
cause the ground instantiation of a logic program is signiii- 
cantly ‘‘larger’’ than the original program. In [ IO] ,  we have 
developed techniques that, given a definite (i.e., negation-free) 
logic program P, and any method for computing the semantiics 
of propositional (i.e., grounded out) logic program, will 
show how to instantiate P on an “instantiate by need” basis ?o 
that the set of atomic logical consequences of the non-ground 
program P can be computed 

13asically, this partial instantiation niethod for evaluatirig 
logic programs proceeds as follows -first, a (non-ground) 
logic program P is treated as if it were a propositional logic 
program /’“(i.e., an atom ‘ 1  occurring 113 I’ is considered to be a 
piopositioii p,& Program 1’” may then be evaluated using any 
kmwn mechanisni for evcxluating p r  opos it  iorzcxl logrc pro- 
gruwis [4], [SI. Assignments of trueKalse to different propou- 
tioiis p,4 and pB i n  P* may lead to “conflicts” when A and B are 
unifiable, but pA and pH ‘irr assigned different truth values. If 
there are n o  such conflicts, then we are done. When h 
conflicts are present, then [ IO] articulates 3 precise strategy for 
renitwing such conflicts and shows that this strategy of 

L\ , d u m  PnJpositional Progrmi +Identity ( ’o i i f l i i t r  -t Patlidlh IwLaiitiatc 

yields a soundnes:, and completeness theorem for the cornpu- 
tation of answer substitutions [ 161 

rhe extension of the partial instantiation strategy for deti- 
nitis progrmis to apply to well-founded and stable models is 
being studied in two separale efforts [ I 1  I. 191. As in [lo], both 
thew efforts assunie the exiqtence of two methods, M,, and M, 
that, given any ground logic program will compute the well- 
founded semantics and the \et of stable models, respectively of 
the ground program. The ntetlindy 1 ke;\crihed in the prcwdirig 
sections p r f o r m  the.se L orrrpututions in the ground cuse Sub- 
sequently, “conflicts” m i l l  be identified and partial instantia- 
tion will be used to reitlove these contlicts Neither of the two 
paixrs [ I  11, [9] in  preparation S ~ O N  how to compute the well- 
founded (or stable models) semantics of propositional pio- 
granis -rather, they alhoh how to use a propositional sra- 
bleiwell-founded seinaiitics computation strategy to generate a 
partial instantiaticrn strategy that will instantiate non .ground 
programs on a “need to-instantiate’‘ h a w  Consequcrrtlt , rhe 
rtietirods developd in thu paper cun he iised in conjundion 
wrrh the pLm.tial in  ytantiiitron slrutegre, hving developai in [‘J], 
[ I 1 ] to jwld computalionul purudigrtzs /or nonmonotonrc loj:ic 
prf ~~:rumrnizng serrrantics in the non-ground case. 

We give beloa, an outline of how the partial instantiation 
strategy cdn he wed to ctrmpute the well-founded semantics 
The detailed description at the scheme and its sountlness and 
completeness resulls are wntained in [I 1 I .  
E ~ A M P I  r: 8 Let P be the (non-ground) logic program below 

P(X,,YI )C- 7 y(.Yi,YI). 
r ( a ) t .  r( /I)<- 

q ( w ) +  “ 

L/(,Y,,Y,)t -1p(Xz,Yz) 

According to the well-founded semantics, the ground atoms 

r(a),  r(h), q(a, a)  are true, the atom p(a, a) is false, and all 
other ground atoms are “unknown.” 
The partial instantiation strategy works by considering all 

I he atoms occurring in P to be distinct propositional symbols - 
thus, for instance, p(Xi, VI) and q(Xi, Y , )  are considered to be 
distinct propositional symbols. The well-founded semantics of 
1 his “propositional” version of P says that r(a), r(b), q(a, a) are 
true, andp(X1, Yl), q(Xl ,  YI),  p(X2, Y2),  y(&, Y2) are unknown. 
Nothing is assigned false. At this stage, we notice that there is 
<i conflict -+U, U )  1s unifiable with both q(X,,  Yl), q(X2, Y,) 
\ia unifiers HI = {XI = U, Yi = U )  and 6$ = {X2 = a, Y2 = a) ,  
respectively. The conflict exists because q(a, a) is “true” ac- 
cording to the well-lounded semantics, but q(A I, YI), q(&, Y2) 
<ire assigned the truth value ‘ unknown ” We instantiate the 
Llauses in P by 8, and (22, rel,pectively, leading to two new 
clauses: p(a, U)& --q(a, a)  and y(a, U)<-  7p(c~,  a). These are 
then added back into P and the process repeated. At this stage, 
r(a), r(b), q(u, U )  are assigned “true” by the propositional WFS 
computation process, p(u, a)  i k ,  assigned “falsc” and all other 
doms are assigned “unknown. ’ The only conflicts that occur 
illow generate the same substilutions 8, and (A ,  that we saw 
before, and hence, n e  can terminate. 

v. IMPL.EMBNTA’IlON AND EXPERIMFNTATION 

All the components of Fig. 1 as well as the entire branch 
md bound procedure and the procedure for selecting atoms 
have been implemented in a prototype compiler. 

The prototype compiler is written in C running under the 
1 Jnix environment on a Dec-2 IO0 workstation It has roughly 
6200 lines of C code implementing the pruning iteration strat- 
cgy described in Section III.A, the transformation strategy, the 
pruning oscillation described i n  Section IILB, the branch and 
bound procedure of Section IV. and the intelligent branching 
5trategy of Section 1V.C. 

4. Experimental Results 

We have conducted a number of experiments testing the ef- 
ficiency of our prototype compiler. First of all, we have ex- 
perimented with the programs considered in the literature (e.g., 
[ 201) These include definite, stratified, locally-stratified, as 
well as non-locally stratified programs. Our prototype com- 
piler handles all those progranis correctly, and given the rela- 
tively small sizes of those programs, our compiler finishes all 
computations very rapidly lliiless otherwise .jtated, the com- 
putation times of our prototype compiler presented below in- 
clude all computations5 including the total time taken to: read a 
I ground) program, perform the MI-stage and (;LO-stage com- 
putations and output the results In cases where stable models 
‘ire considered, the time to exccute the branch and bound pro- 
cedure is also included. All times are reported m milliseconds. 

Though we have experimented with a number of alternative 
examples, we will only report here on experiments conducted 
with the “win-move” example of van Celder [20]. Other ex- 
periments and examples are described in the longer technical 

5 .  The IJnix utility pwgram pro j l e  is used to rccord computation times. 
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report [19]. These results are representative of our other re- 
suits. The “win-move” example consists of the single rule 
win(X) c move(X, U) & -win(Y), together with a set of facts 

graph (which we call the “game graph”) representing the 
moves in a game. We ran an extensive se1 of experiments with 
the win-move example. In our experimentation, we varied thi: 
number of nodes in the game graph from 50 to 100 in steps of 
10. Once the number of nodes was fixed, we randomly gener 

edges, in steps of 20. Once hoth the number of nodes and the 
number of arcs was fixed, we generated 75 sets ofedges. In 
other words, once the number of nodes and number of arcs wab 

Two conclusions may be drawn from the graph of Fig. 6. . The first Is that approach takes considerably less 
than the alternating approach. For each value of n, the 

low the bold line (for the alternating approach) that is 
marked with the same value of n. 

proach degrades at a lower degree than does the alternat- 
ing approach. Why? Consider the slopes of the lines in- 

bold line n = 100). The slope of the dotted line is smaller 
than the corresponding slope for the bold line. 

Of the form move(-, -). This set Of facts represents a dotted line representing olir approach Is completely be- 

. The second conclusion that may be drawn is that our 

ated edges between these We generated 6o valved (take, for example, the dotted line n = 100 and the 

fixeti, 75 different extens,onal databases The second conclusion is further reinforced by the graph of 
predicates were generated. Each of these was run eight time, Fig. which the time (*en by r)rocedure with 
to average out variations in timing. In totti], we ran 6 x t( x 75 the time taken by the “lternatlng procedure. 

A 2. Size ofmi-brget(p) cornl,crred to the, Size (,fp 8 28,800 logic prograns to get these readings. 

A.1. Our Approach vs. Alternuting Approach to WFS Fig. 7 below shows the number of clauses in mi-target(P) 
Computation ay the number of nodes (represented by constants in P) in the 

gdme graph 1s increased. The gratph is plotted or1  a logarithmic 
approach cc,mpared with the alternating approach as described st ale which means that a linea1 downward slope on the log- 
by van [201. We wished to comp;lre the rate at whicll sc.ale means <in exponential downward slope on an ordinary 

larger in size (in terms of having nlOre cclnstmts and more ot arcs) in the game-graph, Ihertb is a clear downward slope on 
clauses in them), Our approach consists nrnning the (grounci the log-scale graph, showing that in practice, the effect of 

through the MI. (;LO, and C-mOdules pruning iterations causes the sile of mi-target(P) to decrease 
described in Fig. 1. The naive alternating approach would rul, exponentially as a function of the nurrtbcr of constants This 

means that pruning iterations halve a more and more significant the entire program through the GLO module alone. 
Ihe al- impact on the s i x  of mi-target{/‘) as the number of constants 

ternating fixpoint approdch. ‘The x-axis specifies the numbei of gets larger. 

when the number of arcs in the graph differ. Thus, for exain- 
ple, the dotted line marked ri = 100 denotes the time taken b y  

The main aim of this was determllle how 

perfomance in  both approaches degraded as the programs got SC ale. AS Fig. 7 show\, for each Of the Values Of I 2  (the number 

of) a program 

shows how our approach performed 

nodes. The dotted lines denote the times taken by our approach S l r e  of the program ni-targct(P1 
10’ 

proach. The y-axis denotes time in milliseconds. 

x10‘ performance on vln-move Problems 

x - a l t e r n a t i n g  approach 

+ - our approach 

Number @f i%OCeS (k) 

Fig 7 Growth III size of Mi-target(P) 

A 3. Effect of Pruning Osdlation 
Finally, we ran experiments to verify the effectiveness of 

pruning oscillations. Fig. 8 shows that alternating fixpoint 

100 110 

Humber of nOCCS (kl 

Fig. 6. Our approach vs. alternating approach computation with pruning oscillations is an improvement on 
the naive alttirnating fixpoint Lomputiition. In the figure, the 
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dashed lines denote the time-lines for the computation using 
pruning oscillations, while the bold lines denote the times 
taken for the naive alternating fixpoint computations. How- 
ever, simply performing alternating fixpoint computation with 
pruning oscillations does not produce the best results. 

Fig. 8 shows also that our approach of first processing P 
through the MI-module simplifies the program, producing 
mi-target(P) and the sets mi-tme(P) and mi-false(P). Sub- 
sequently executing the GLO-program on mLtarget(P) leads 
to better results than executing the GLO-program on the larger 
program P. 

XlO' performanca on vin-move p r o b l u r  
2 . 5 ,  * 1 

C 
P 
U 

t 
i 

e 
m 

i 
0 

m 
s 

x - a l t e r n a t i n g  approach 
o - a l t e r n a t i n g  approach w i t h  corpaction arcs (0) 

number 0:' 

0 1  1 0 0  110 I 
SO 6 0  1 0  I O  9 0  

Number of nodel (k) 

Fig. 8. Effect of compaction. 

A.4. Stable Model Computation 

Fig. 9 shows the total time taken to compute all the stable 
models of a logic program using our approach. (Again, as be- 
fore, the "win-move" example is being used here.) As can be 
seen from the graph, the performance of our procedure did not 
appear to explode exponentially as a function of the number of 
nodes in the game graph. Beyond that, the results indicate that 
the time taken to compute stable models increases as a func- 
tion of n. 

A.5. The Impact of Intelligent Branching 

In order to determine the effect of intelligent branching, we 
conducted experiments with two programs. The two programs 
both had non-trivial dependency graph structures. In both 
cases, we increased the number of constants while keeping the 
number of rules constant. 

Program 1. This program consisted of the rules shown below. 

zl(x) t v l m ,  wl(x).  z a x )  +- v l (x ) ,  w2(x). 

z : w  +- v2" w 1" z4(A7 + v2(x),  w92(x). 

v l (x )  t s(X). v2(x) t t(X). 

W l ( X )  t p ( X ) .  w 2 ( m  +- 4" 

t (x )  + -lS(x). s(x) t l t ( x ) .  

p ( x )  + -60 y(X) +- -p(x). 

The above set of rules was augmented by adding facts of the 
form y(-)  where y is a unary predicate symbol. The predicate y 
was used solely to introduce constant symbols in the language. 
This program has 4" stable models where n is the number of 
constants in our language. Table I shows the results of using 
the naive branch and bound strategy as opposed to the intelli- 
gent branching strategy. It is clear that the intelligent branch- 
ing significantly speeds up the computation. All times given 
below are in milliseconds. The times reported below include 
the times taken to construct the dependency graph associated 
with a program, and to compute the sets EQ, El, ... described 
in Section 1V.C. 

TABLE I 
NAIVE VS. INTELLIGENT BRANCH AND BOUND 

and Bound 
Intelligent 43 262 1,413 9,431 95,766 
Branch and 

Bound 

t 
P 
U 

t 
i 
m 
a 

i 
0 

n 

lime for computing a t a b l e  models 

2 . 5  

1. - 

Ol. 5 0  6 0  7 0  80 9 0  100 

Number of nodes (k) 

Fig. 9. Time for stable model computation. 

Program 2. This program consisted of the rules shown below. 

s (x )  +- p m ,  q m .  

.GI +- dx), 0 3 .  

s (x )  +- P(x>, m. 
p ( X )  c- 1 (x). 

dx) 4- 1 (X). r(X) t 1 ( X ) .  

As before, the above set of rules was augmented by adding 
facts of the form U(-) where y is a unary predicate symbol. The 
predicate y was used solely to introduce constant symbols in 
the language. The program has no stable models at all, and 
hence, both the naive branch and bound strategy, as well as the 
intelligent branching strategy need to search almost the whole 
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of ACT(P). Table I1 shows the results of using the naive 
branch and bound strategy as opposed to the intelligent 
branching strategy. It is clear that the intelligent branching 
significantly speeds up the computation. All CPU times given 
below are in milliseconds. 

TABLE I1 
NAIVE VS. INWLLIGENT BRANCH AND BOUND AS CONSTANTS INCREASE 

On progranis that generated dependency graphs with little 
or no structure, we found that the effect of intelligent branch- 
ing was relatively minor. 

B. Storage and Access of Models 

One reason why deductive databases are elegant is because 
they can be developed much more quickly: when creating a 
relational database, the database creator(s) must insert all tu- 
ples in each relation, one by one. into the database. This 
method of creating a relational database is consequently error- 
prone. Deductive databases, on the other hand, can be created 
much more quickly than relational databases because instead 
of inserting all tuples, one by one, into a relation, the presence 
of J tuple in a relation may be implied by a rule in the data- 
base A second advantage IS that deductive databases use up 
less storage space than relational databa\es. Both these advan- 
tages (rapid database creation, lower storage requirements) are 
offset by the fact that at run-time, query processing takes much 
longer than in the relational model 

When (parts of) a database is used 10 provide support, in 
real-time, to say a real-time control system, then run-time, 
resolution-based theorem proving approach used by deductive 
databases is infeasible in practice. Hence, our proposal is that 
those parts of a database that are expected to provide such 
support be compiled into a relational database format. After a 
deductive database is compiled, the model(s) of interest (well- 
founded/stable) are stored in relational format so that queries 
against the deductive database can be answered by checking 
wi~h  the stored model(s). (In the nexl two subsections, we 
show how to store and access the well-founded model, as well 
as the set of stable models.) 

hi other words, we are proposing a trade-off By compiling 
those parts of a deductive database that need to provide intelli- 
gent real-time support, we retain the advantage of rapid data- 
base creation (as the creator of the database still proceeds in 
the same way as for deductive DBs), but lose the advantage of 
lower storage requirements. In return, we gain the advantage 

of rapid query-processing at run-time. These trade-offs may be 
summed up in Table 111. 

TABLE III 
PROS AND CONS OF DIFFERENT DATA MODELS 

VI. DISCUSSION 

Though it is now almost five years since the development of 
the well-founded semantics and stable semantics, relatively 
little work has been done on implementing these alternative 
semantics. To our knowledge, this is the first work which 
shows precisely how to compute the stable semantics by using 
computation of the well-founded semantics as a first step. 

Computation of well-founded semantics of logic programs 
has been studied by Kemp et al. 1121, Chen and Warren 161, 
Warren [22], and by Leone and Rullo [ 141. Kemp et al. show 
how, given a query Q to a logic program P, and a sideways 
information passing strategyh 5 ,  it is possible to create a new 
program Mugic(P, S, Q). More importantly, this new program 
has the same well-founded semantics as the original program 
J’, and has a particular syntactic form. Kemp et al.1121 show 
how the query Q may be answered w.r.t. the new program 
Mugic(P, S, Q) .  Warren 1221 shows how to construct a Prolog 
meta-interpreter for the well. founded semantics based on 
OLDT-resolution. Warren’s technique uses a table to tabulate 
previously solved goals -his avoids redundant computation. 
Chen and Warren [h] extend the work in 1221 and develop a 
sound and complete technique for computing WFS called 
XOLDTNF-resolution. Leone md Rullos’s technique is simi- 
lar to the above techniques in spirit, and deals with safe com- 
putations in a datalog language containing well-founded nega- 
tion. They do not present an implementation, however. 

Computation of the set of stable models has also been stud- 
ied by Sacca and Zaniolo [ 18 ] .  Their method is based on a 
backtracking technique which assumes an undefined atom to 
be false and then continues the computation on this assumption 
until it computes a stable model or discovers a contradiction in 
which case it backtracks. Thc branch and bound technique 
developed here may be vieued as an improvement of the 
Sacca-Zaniolo technique-especially as various pruning (i.e., 
bounding) techniques we use speed up the computation. A new 
and important feature of our work is that our computations are 
based on a prior computation cif the well-founded model which 
the backtracking method does not do. Last, but not least, Le- 
one et al. [ 15 1 study computation of nonmonotonic negation in 
logic programming. In contrast to our work, their work makes 
use of choice constructs in its computation. 

The main difference between our work and that of Warren 

6. See [ 121 for an explanation of this expression. 

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 23, 2009 at 13:36 from IEEE Xplore.  Restrictions apply.



376 IEEE TRANSACTlONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. I. NO. 3, JUNE 1995 

and Kemp et al. is that our compilation technique is query- 
independent, while in their case, the query plays a key role in 
transforming the program P. Thus, our technique may be ap- 
plied at compile-time, and hence is more suitable in situations 
where very quick run-time responses are desired: In our 
overall architecture, run-time query evaluation is done by a 
standard run-time query language implementation. In contrast, 
the methods of Kemp et al. are query-dependent, and hence, 
the work of creating Mugic(P, S, Q) is done after the query Q 
has been asked, i.e., at run-time. 

Another advantage of computing the well-founded seman- 
tics at compile-time and storing it in a relational format is that 
more expressive queries, such as aggregate queries, need not 
be specially developed for this purpose. Furthermore, standard 
techniques developed by relational database researchers for 
run-time query optimization may now be used. On the other 
hand, aggregate query processing techniques need to be spe- 
cifically developed for the magic set approach. These tech- 
niques involve deduction at run-time. 

A disadvantage of our approach vis-a-vis the approach of 
Kemp et al. is that we do more work at compile-time, and as 
we are storing the well-founded model, we have larger space 
requirements. A lot of work has been done by the relational 
database community on storing very large databases on auxil- 
iary storage. For instance, the U.S. Census Bureau’s database 
is approximately 15 Gigabytes in size. NASA’s EOS database 
(Earth Observing System) is approximately bytes in size. 
Hence, we believe that storage is not such a major problem. It 
is possible that a suitable trade-off between the two approaches 
is desirable in a full-fledged working system: use our approach 
to compile those parts of the database involving predicates that 
require “rapid” run-time responses, and use the Kemp et al. 
approach to handle other predicates. 
‘To summarize, we believe that those parts of a database in- 

volving “real-time” predicates need to be processed at com- 
pile-time using techniques such as ours. Those parts of a data- 
base that do not involve real-time predicates do not need to be 
pre-processed, and in such cases, the techniques of Kemp et al. 
121 and Warren 1221 are perhaps more appropriate. 

VII. CONCLUDING REMARKS 

Though nonmonotonic modes of negation have been studied 
extensively in deductive databases and logic programming, 
relatively little work has been done on the computation and 
implementation of nonmonotonic semantics. In this paper, we 
take a first step towards developing a compiled approach for 
computing the 

well-founded model of nonmonotonic deductive data- 
bases and 
the set of stable models of nonmonotonic deductive 
databases. 

We believe that the desired run-time performance of differ- 
ent parts of a deductive database system is likely to vary. A 
database system that interacts with a real-time control system, 
for instance, is likely to contain predicates, some of which 
need to he processed in real-time, others which do not need to 

be processed particularly rapidly, and still others that fall be- 
tween these two extremes. Those parts of the database that 
deal with “real-time” predicates need to be pre-compiled in 
advance. Run-time efficiency compromises are not an option 
in such cases. In such cases, the fastest known technology for 
run-time query processing is the relational database scheme. 
We suggest, therefore, that the part of a database dealing with 
predicates whose run-time responses are of critical importance, 
be completely compiled in advance. One way of doing such 
compilation is described in this paper when the desired se- 
mantics is the well-founded semanticshtable model semantics. 

Future research will concentrate on the development of the 
update module shown in Fig. 1, and the development of opti- 
mal representations (in relational format) for storing the well- 
founded model and/or the set of stable models. The update 
module must not only re-compute the new well-founded model 
(or new set of stable models) when an update occurs, but also 
update the relational representation of the well-founded 
model (respectively, set of stable models). We plan to study 
these topics. 
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